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(a) Co) (c) 

Fig. 2. Example of a picture (a) which can be interpreted as a simple 
rookwise connected path in two different ways (b), (c). 
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Fig. 3. Bitmap rotation by shearing. (a) is the original bitmap, (b) shows it after 
shearing horizontally, (c) shows it after shearing vertically, and (d) shows it after 

shearing horizontally again. 
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C:, - -  a temporary variable. 
CN (-- ALL O; 
F O R L I N [ O . . N )  DO - -  for each scan line (L = 0 ,1  . . . . .  N -  1)do: 

C:=  Bd CUT [[L, 0], [L + 1, N]]; - -  get descriptor for line L of Bd. 
CN (-- CN XOR (C AND (C SHIFT [0, - 1])); - -  remove rightmost 1 in each run 

- -  of l ' s  in scan line L and XOR 
it into CN. 

C (-- CN OR C; - -  write GN back into Bd, adding original path. 
CN := CN SHIFT [1, O] - -  align CN with the next scan line 

OD 
} 

T h e  cond i t ion  t h a t  the  p a t h  no t  t o u c h  i tself  is essential .  Fig. 2 shows  a p a t h  for  
wh ich  t he  no t i on  of  in ter ior  is ambiguous .  

4 .3 .  Rotat ion of a Bitmap by Shea r ing  

We  m e n t i o n e d  in Sec t ion  1.2 t h a t  it is possible to  ro t a t e  an  n x n b i t m a p  wi th  
r o u g h l y  3 n bitblts .  B y  r o t a t i o n  he re  we m e a n  the  ac tua l  r e a r r a n g e m e n t  of  b i t m a p  
pixels in m e m o r y ,  no t  jus t  a desc r ip to r  t r ans fo rma t ion .  T h e  s imples t  w a y  to  get  
this  effect  in M U M B L E  is by  execu t ing  the  a s s ignmen t  T ~-- A ROT c; A ~-  T, 
where  c is t he  cen te r  o f  the  b o u n d i n g  box of  A. However ,  the  t e chn ique  used  in 
the  fol lowing example  is ins t ruct ive,  as  s imilar  m e t h o d s  can  be used  for  b i t m a p  
t r anspos i t i on  (for example ,  see [2]). 

Fig. 3 i l lus t ra tes  h o w  the  t e chn ique  works  on  a smal l  example .  

SRotate:  PROC 
{M:  BITMAP,  N: INT I - -  assume the bounds of  M are [ [0,  0],  [N, N] ]  

A: [ [0 ,  O], [ 2 *N  - 1, 2 *N - 1] ]  B ITMAP OF DEPTH 1; 
- -  circularly rotate rows of M fight by I (Figure 3b). 
FOR I IN [0. .N - 1] DO 

A C U T  [[I ,  0],  [I + 1 , 2 * N  - 1] ]  * -  M CUT [[I, 0] ,  [I + 1, N] ]  SHIFT [0, I]) 
OD; 
M *-- A CUT [ [0,  0],  [N, N] ]  + A CUT [ [0,  N], [N, 2*N - 1] ] ;  
- -  circularly rotate columns of M down by N - 1 - J (Figure 3c). 
F O R J I N [ O . . N -  1 ] D O  

A CUT [ [0,  J],  [ 2 . N  - 1, J + 1] ]  , -  M CUT [ [0,  J],  IN, I + 1] ]  SHIFT IN - J - 
1, 0] 

OD; 
M . -  A CUT [ [0,  0],  [N, N] ]  + A CUT [ [N, 0] ,  [ 2 *N  - 1, NI l ;  

- -  c i r cu la r l y  ro ta te  rows of  M left by N - 1 - I (F igure 3d). 
FOR I IN [ 0 . . N  - 1] DO 

A CUT [[I ,  0],  [I + 1, 2 *N - 1] ]  * -  M CUT [[I ,  0],  [I + 1, N] ]  SHIFT [0, I + 1] 
OD; 
M *-- A CUT [ [0,  0],  IN, N] ]  + A CUT [ [0,  N], IN, 2*N - 1] ]  

} 

4 . 4 .  R o t a t i o n  b y  the  Use  of M a s k s  

T h e  fol lowing r o t a t i o n  a lgo r i t hm uses  a " b i n a r y  m a s k "  t echn ique ,  ba sed  on the  
work  of  F l o y d  [10, 2]. T h e  b i t m a p  size is a s s u m e d  to  be 2 n ! 2 n, and  the  r o t a t i o n  
is a ccompl i shed  in n steps.  Af te r  k steps,  t he  cu r r en t  p ic ture  is t he  original  one  
excep t  t h a t  it has  been  divided in to  square  s u b a r r a y s  of  size 2 ~ ! 2 k, and  each  
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2.2 Duality 

The dual of a planar graph G can be informally defined as a graph G* obtained 
from G by interchanging vertices and faces while preserving the incidence 
relationships. The definition below extends this intuitive concept to arbitrary 
subdivisions. 

Definition 2.1. Two subdivisions S and S* are said to be dual of each other if 
for every directed and oriented edge e of either subdivision there is another edge 
e Dual of the other such that 

Dl. (e Dual) Dual = e. 
D2. (e Sym) Dual = (e Dual) Sym. 
D3. (e Flip) Dual = (e Dual) Flip Sym. 
D4. (e Lnext) Dual = (e Dual) Onext-‘. 

Equation D4 states that moving counterclockwise around the left face of e in 
one subdivision is the same as moving clockwise around the origin of (e Dual) in 
the other subdivision. To see why, note that the edges on the boundary of the 
face F = e Left, in counterclockwise order, are 

(e Lnext, e Lnext*, . . . , e Lnextm = e) 

for some m 1 1. This path maps through Dual to the sequence 

((e Dual) One&-‘, (e Dual) Onext-*, . . . , (e Dual) Onextmm = e Dual) 

of all edges coming out of the vertex u = (e Dual) Org of S*, in clockwise order 

around u. 
We can therefore extend Dual to vertices and faces of the two subdivisions by 

defining (e Left) Dual = (e Dual) Org and (e Org) Dual = (e Dual) Left. Equations 
D2 and D3 imply that any two edges that differ only in orientation and direction 
will be mapped to two versions of the same undirected edge. Combining this with 
the preceding argument we conclude that Dual establishes a correspondence 
between Z’Y and Z?L~*, between YP and 99*, and between 9-9 and YP*, 
such that incident elements of S correspond to incident elements of S*, and vice 
versa. It follows that two vertices of one subdivision are connected by an edge 
whenever (and as many times as) the corresponding faces of the other are 
incident to a common edge. So, in the particular case when S and S* are 
subdivisions of the sphere, the graphs of S and S* are duals of each other in the 
sense of graph theory. 

Figure 4 shows a subdivision of the extended plane (solid lines) superimposed 
on its dual (dotted lines). Note that the two subdivisions of Figure 4 have the 
property that each undirected edge of one meets (and crosses) only the corre- 
sponding dual edge of the other, and that each vertex of one is in the correspond- 
ing dual face of the other. When this happens, we say that S and S* are strict 
duals of each other. In that case, the dual of an oriented and directed edge e is 
the edge of the dual subdivision that crosses e from left to right, but taken with 
orientation opposite to that of e. That is, the dual subdivision should be looked 
from the other side of the manifold, or the manifold should be turned inside out. 
This reflects the correspondence between counterclockwise traversal of e Left to 
clockwise traversal of (e Dual) Org. 
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Fig. 4. A subdivision of the 
extended plane (solid lines) 
and a strict dual (dashed 
lines). 

This implicit “flipping” of the manifold is unavoidable if S and S* are 
superimposed as strict duals and we insist that Dual be its own inverse. It has 
the serious drawback of making the calculus of the edge functions much less 

intuitive. It is therefore preferable to relate the two dual subdivisions by means 
of the function 

e Rot = e Flip Dual = e Dual Flip Sym, 

which maps ZY to 82’ without this implicit “flipping.” The edge e Rot is called 
the rotated version of e; it is the dual of e, directed from e Right to e Left and 
oriented so that moving counterclockwise around the right face of e corresponds 
to moving counterclockwise around the origin of e Rot. If the two subdivisions 
are superimposed as strict duals, as in Figure 4, then we may say that e Rot is e 
“rotated 90” counterclockwise” around the crossing point. In fact, the only reason 
for not defining duality in terms of Rot (rather than Dual) is that it falls short 
of being its own inverse: (e Rot) Rot gives e Sym instead of e. 

2.3 Properties of Edge Functions 

The functions Flip, Rot, and Onext satisfy the following properties: 

El. e Rot4 = e. 
E2. e Rot Onext Rot Onext = e. 
E3. e Rot2 # e. 
E4. e E 8s iff e Rot E 8S*. 
E5. e E 8s iff e Onext E BS. 
Fl. e Flip2 = e. 
F2. e Flip Onext Flip Onext = e. 
F3. e Flip Onext” # e for any n. 
F4. e Flip Rot Flip Rot = e. 
F5. e E 8s iff e Flip E ZS. 
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Fig. 5. The edge functions. 

c-3 Ned 

A number of useful properties can be deduced from these, as for example 

e Flip-l = e Flip, 
e Sym = e Rot2, 

e Rot-’ = e Rot3 = e Flip Rot Flip, (1) 
e Dual = e Flip Rot, 

e One&-’ = e Rot Onext Rot = e Flip Onext Flip, 

and so forth. For added convenience in talking about subdivisions, we introduce 
some derived functions. By analogy with e Lnext and e Onext, for a given e we 
define the next edge with same right face, e Rnext, and with same destination, e 
Dnext, as the first edges that we encounter when moving counterclockwise from 
e around e Right and e Dest, respectively. These functions satisfy also the 
following equations: 

e Lnext = e Rot-’ Onext Rot, 
e Rnext = e Rot Onext Rot-‘, (2) 
e Dnext = e Sym Onext Sym. 

The orientation and direction of these edges is defined so that e Lnext Left = 
e Left, e Rnext Right = e Right, and e Dnext Dest = e Dest. Note that e Rnext 
Dest = e Org, rather than vice versa. By moving clockwise around a fixed endpoint 
or face, we get the inverse functions, defined by 

e Oprev = e Onext-l = e Rot Onext Rot, 
e Lprev = e Lnext-’ = e Onext Sym, 
e Rprev = e Rnext-l = e Sym Onext, 
e Dprev = e Dnext-’ = e Rot-l Onext Rot-‘. 

(3) 

It is important to notice that every function defined so far (except Flip) can 
be expressed as the composition of a constant number of Rot and Onext opera- 
tions, independently of the size or complexity of the subdivision. Figure 5 
illustrates these various functions. 
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Fig. 9. The result of MakeEdge. 

Fig. 10. The effect of spl ice: Trading a vertex for a face. (a) a Org = b Org, a Left 

# b Left. (b) a Org # b Org, a Left = b Left. 

F’g.ll The effect of Splice 

1 . 

Changing the connectivity of the 

manifold. (a) o Org # b Org, a Left 

# b Left. (b) a Org = b Org, a Left 

= b Left. 
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very coarse approximation, with a relative uncertainty 
of the result is almost 50%; however, it is somewhat 
faster to compute than the square root formula, and it 
may still be accurate enough for many applications. 

2.2 Estimating Roundoff Errors 
In practice, besides the approximation error that results 
from using the L, norm to compute a distance, we also 
have rounding errors due to the subtraction and the 
division by 4. Fortunately, the magnitude of these 
errors is easy to estimate. 

A fundamental “axiom” of numerical analysis [5] says 
that for each floating-point number system there is a 
constant u (the machine precision) such that the result 
c* of computing c = a * b in floating point (where * is 
either +, -, a, or /) satisfies c* = c( 1 + A), for some A 
with [Al < u. Furthermore, the same guarantee applies 
to the basic numerical functions (J, sin, exp, etc.), if 
they are properly implemented. 

So, for example, the computed value d’ of the distance 

d = d(p.z - q.x)2 + (P.Y - Q.YJ2 (4) 

is actually 

8 = { [(P.X - VW+ h)12(l + A2) 

+ KP.Y - !l.Y)P f W12(1 + bp2 0 + J45) (5) 

where I&( 5 21 for all i. 
We can simplify the last expression by resorting to 

a standard numerical analysis trick. Observe that the 
maximum relative rounding error IA1 in a floating-point 
operation is normally very small, typically 10-s or less. 
If we define u to be just a little bigger than this max- 
imum error (say, twice as big), then we can prove that 
any expression of the form 

fi(l+xi)/fi(l+J;) 
i=l j=l 

lies in the interval 1 f (m + n)u, provided m and n are 
not too big. In particular, this “safety factor” built into 
u allows us to ignore second and higher powers of the 
Ai in error bounds, and freely move factors of (1 f Xi) 
between the numerator and denominator. Using this 
trick, formula (5) simplifies to 

d“ = j/[(p.x - q.x)2 + (p.9 - q.y)]‘(l + 3A6) (1 + A5) 

and finally to 

d’ = &.x - q.x)2 + (p.y - q.y)2 (1 + ;A,) (6) 

for some Ji with IAil 5 21. We conclude that the exact 
distance d is well inside the interval d’ f 3u. Therefore, 

the Coincident procedure can return the uncertainty 
interval 

e = (e.lo, e.hi) = (d*(l - 3u)/2, d*(l + 3u)/2) (7) 

Note that the division by 2 is exact, and the rounding 
error in the multiplication by (1 + 3u) is on the order of 
u2 and is therefore covered by the safety factor implicit 
in u. 

Of course there are many other correct implementa- 
tions of Coincident, each with its own cost and accuracy. 
We are not concerned here with the problem of choosing 
between those alternatives. Our goal is not so much to 
design fast or accurate primitives, but to show how to 
make good use of arbitrarily inaccurate ones. 

2.3 Collinearity and Orientation 
The tests for collinearity and orientation of three given 
points deserve careful discussion, since they are basic 
building blocks of many two-dimensional geometric al- 
gorithms. We denote by Collinear(p, q, r) the predi- 
cate that checks whether the points p, q and P of ?R2 
lie on a common straight line, in any order. There- 
fore, c-Collinear(p,q, r) is true if there exists a line 1 
that passes within & of all three points. The predicates 
Collinear and e-Collinear are obviously symmetric in 
their three arguments. 

We can visualize the .c-Collinear predicate as follows. 
Consider the disks P and & of radius E centered at p 
and Q, respectively. The set of all lines passing through 
a point of r-and a point of Q cover a bow-tie-shaped 
region of the plane bounded by the two inner and two 
outer tangents of P and Q. (If P and Q have a point 
in common, then this region degenerates to the entire 
plane.) We call this region the c-buttefly determined 
by p and q. See figure 3. 

Figure 3. The E-butterfly of p and q. 

Obviously, the three points p, q, and r are E-collinear 
if and only if the E-disk centered at r intersects the 
c-butterfly of p and q. Equivalently, the three points 
are E-collinear if and only if one of the c-disks intersects 
the c-stroke of the other two points, which is how we 
call the convex hull of the two c-disks centered at those 
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points. See figure 4. 

Figure 4. E-Collinearity. 

In exact geometry, a triangle T = (p, q, r) whose ver- 
tices are not collinear can be further classified by its ori- 
entation, either positive (counterclockwise) or negative 
(clockwise). The orientation is the sign of the determi- 
nant 

1 Pax P*Y 
D(P, q, r) = 1 q-2 Q*Y (8) 

1 r.2 r.y 

We define the predicates Pos(p, q, r) and Neg(p, q, r) as 
meaning D(p, q, r) > 0 and D(p, q, r) 5 0, respectively. 
Note that PM(T) is not the same thing as not Neg(T); 
in fact Pm(T) A Neg(T) s Collinear(T). (This conven- 
tion is a bit confusing, but it seems to simplify many of 
the proofs and algorithms we will see later on.) 

By definition, then, E-Pos(p, q, r) means that is possi- 
ble to make D(p, q, r) 1 0 by displacing the three points 
by at most E in suitable directions. In graphical terms, 
E-Pos(p, q, r) means that the closed e-disk centered at r 
either intersects the c-butterfly ofp and Q, or lies fully to 
the left of it (as looking from p towards q). See figure 5. 

Figure 5. E-Orientation. 

From linear algebra we know that the the determinant 
D changes sign if we swap any two of the three points, 
and remains unchanged if the three permuted are per- 
muted in a cyclic fashion. Thus, 

E-Pos(p, q, r) G e-Pos(q, r,p) E c-Pos(r,p, q) 
E e-Neg(q, p, r) G c-iVeg(r, q,p) E c-Neg(p, r, q) 

Note again that &-Neg(T) is quite different from 
not a-Pas(T), and, in fact, 

e- Collinear(p, q, r) E c-Neg(p, q, r) A c-Pos(p, q, r) 

Geometrically, the determinant D is twice the area of 
the triangle pqr, with a plus or minus sign depending 
on the orientation of the three points. In the Euclidean 
metric, the smallest perturbation that makes the three 
points collinear is one that moves them onto the perpen- 
dicular bisector of the shortest altitude of the triangle. 
See figure 6. 

Figure 6. 

Since the area of a triangle is given by one half its base 
times its height, the necessary perturbation E is iIDJ/b, 
where b is the length of the longest side. 

We can use this result to implement a Pos box that 
uses only single-precision floating-point computations, 
as follows. First, we need to estimate the rounding er- 
rors incurred in the computation of IDl/b. From equa- 
tion (8) we get 

D= (q.x-p.z)(r.y-p.y)-(q.y-p.y)(r.x-p.x) (9) 

If we compute this formula using floating-point opera- 
tions, we obtain an approximate result D’ satisfying 

Dk = ((4.x - p.x)(r.y - p.y)(l + 3X1) 

-(q.y - p.y)(r.+ - p.x)(l + W))(l + X3) 

= D(l + X3) + 3A4M 

where M = IQ.2 - p.xl1r.y - p-yI+lq-y - p4llr.x - p.21, 
and l&l < U. We can compute the longest side b by the 
obvious formula 

b = max {IIP, 41, Ilq, 41, Ilv4lI 
where II II is the familiar square root formula (4). As we 
discussed in section 2.2, if we assume that the square 
root operation is accurate to the machine precision, then 
the the computed value b’ satisfies b’ = b(1 + 3Xe). 
Therefore, the computed value h* for the triangle’s 
height h = D/b satisfies 

h* = D( 1+ A3) + 3X&4 
b(l + 3A7) 

(1 + k3) 

= 

In fact, since IDI 2 I<, we can further simplify this to 
h* = h + 7AllM/b. Therefore, we conclude that 

h E h’ f 7uM*/b* (10) 
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