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Abstract—The thesis describes a simple integer-based compu-
tational representation for periodic tilings of regular polygons
using complex numbers, which is now the state of the art for these
objects. Several properties of this representation are discussed,
including elegant and efficient strategies for acquisition, recon-
struction, rendering, and automatic crystallographic classification
by symmetry detection. The thesis also describes a novel strategy
for the enumeration and generation of triangle-square tilings via
equivalence with edge-labeled hexagonal graphs. The equivalence
provide triangle-square tilings with an algebraic structure that
allows an unfolding interpretation.

I. INTRODUCTION

Tilings and patterns have been part of human culture for as
long as we think ourselves as humans [1]. Their presence is
ubiquitous in the human world, be it as ornament in fabric and
architecture, or as part of the functional design of materials and
structures. Islamic art, with its historical richness of geometric
patterns [2], has inspired artists such as Escher and researchers
in mathematics and computer science. A method for generating
Islamic-style patterns from tilings with regular polygons has
been proposed by Kaplan [3]; this is a very direct application
of this thesis, among many others.

In mathematical terms, a tiling is a subdivision of the
plane into bounded closed faces topologically equivalent to
a disc. We focus on periodic tilings whose faces are regular
polygons and which are periodic, that is invariant under two
linearly independent translations. These restrictions impose
much rigidity while still allowing much variety (Figure 1).

Tiling the plane periodically with regular polygons is an
absorbing subject [4], [5]. The oldest formal treatment was
proposed 400 years ago by Kepler, in his 1619 book “Har-
monices Mundi”. Yet, a complete classification of these tilings
remains elusive. Lenngren’s survey [6] described the previous
state of the art for this problem and Chavey [7] made the most
recent contribution in the subject until our paper [8], derived
from the thesis [9].

Crucial to any computational study or application of tilings
is a representation that makes it convenient to synthesize,
compare, explore, and analyze tilings. Using standard rep-
resentations of subdivisions of the plane to represent tilings
brings unneeded complexity and numerical problems due to
irrational vertex coordinates. Thus, specialized representations
are needed. The computational and visualization tools devel-
oped as part of the representation turned out to be fundamental
to the creation of novel enumeration results and methods.

Fig. 1. Examples of periodic tilings of the plane by regular polygons.

The thesis has two main contributions. The first contribution
is the formulation of a simple integer-based representation for
periodic tilings of regular polygons using complex numbers.
This representation allowed us to acquire geometric state-of-
the-art models from two large collections of images [10], to
synthesize new images of the tilings at any scale with arbitrary
precision [11], and to classify tilings by crystallographic
groups using symmetry detection. These results are described
in Chapters 2, 3, and 4 of the thesis. They are concisely
presented in [8] and summarized in Section II.

The second contribution is the proposal and demonstration
of a series of results, and the implementation of algorithms
that allow the enumeration and generation of periodic triangle-
square tilings (formed by triangles and squares only). Exploit-
ing the topology of their dual, we derive their equivalence
with an edge-labeled hexagonal graph over the flat torus. This
allows us to define families of triangle-square tilings and find
a set of minimal generators that provide each family with
an algebraic structure. This offers a characterization of all
triangle-square tilings. We show some experimental results of
using this approach to generate tilings and some geometric
insight on their algebraic structure. These results are contained
in Chapter 5 of the thesis and summarized in Section III.

Three papers have been published from the thesis so far
(Section IV). A large collection of tilings in our representation
and reference implementations are freely available at the
project page: http://chequesoto.info/tilings.html.
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Fig. 2. Archimedean vertices.

II. AN INTEGER REPRESENTATION FOR PERIODIC TILINGS
OF THE PLANE BY REGULAR POLYGONS

Only a few regular polygons tile the plane. The internal
angles of the faces around a vertex must sum 360◦. This
can be written in terms of the number of sides of the faces
around a vertex as

∑p
i=1

ki−2
ki

= 2. The 17 integer solutions of
this equation translate into 21 polygon configurations around
a vertex, but only 15 satisfy global geometric constraints
that make the configuration viable. These are known as the
Archimedean vertices (Figure 2). Thus, all tilings by regular
polygons contain only triangles, squares, hexagons, octagons
or dodecagons. There is exactly one tiling that includes oc-
tagons, the truncated square tiling, composed solely of vertices
of type J. Disregarding this singular tiling allows us to align
the edges of all the others with the 12th roots of the unity.

A. Lattice coordinates

Our philosophy is to focus on the vertices of a tiling.
Without loss of generality, we assume that one of the vertices
is at the origin and one of the edges is horizontal. This way, by
following paths along the edges, we can represent all vertices
of a tiling as integer polynomials in ω, the principal 12th root
of the unity. Although a vertex can be reached by different
polynomial paths, reducing the polynomials modulo the 12th
cyclotomic polynomial (ω4 − ω2 + 1) guarantees that each
vertex is represented as a unique polynomial of degree at
most 3, say a0+a1ω+a2ω2+a3ω

3. This allows us to represent
each vertex only by its polynomial coefficients [a0, a1, a2, a3],
which we call its lattice coordinates.



0 1 2 2
2 3 0 −2

0 0 0 0
0 1 0 0
0 1 1 0
0 2 1 0
0 2 1 1
0 2 2 1
1 2 1 1
1 2 1 0
1 3 1 0
1 3 1 −1
2 3 0 −1
2 3 1 −1
2 3 1 0
2 4 1 0


Fig. 3. Example of a tiling and its representation.

The periodicity of the tiling requires that it is invariant under
two linearly independent translations t1, t2. This creates a grid
over the plane in which each cell contains equivalent sets of
points. The vertices in the basic cell T0 = {λ1t1 + λ2t2 :
λ1, λ2 ∈ [0, 1)} are called seeds. Thus, every vertex of the
tiling is equivalent by translations to exactly one seed. The
seeds and their translations decompose the set of vertices
into interlocking regular systems of points sharing the same
translation group in the sense of Hilbert and Cohn-Vossen [12]
(Figure 4, center-left).

Translation vectors are represented in lattice coordinates,
since they coincide with vertices equivalent to the one at the
origin. This way, a tiling with n seeds is represented by a
(2+n)×4 integer matrix containing lattice coordinates of the
translation vectors and the n seeds (Figures 3 and 4 left).

B. Topological primitives

The edges of the tiling are deduced by finding the points
at unit distance from each other. This would usually take
O(n2) distance computations. However, in our representation
this can be done in linear time by creating a vertex cloud and
a hash table with the lattice coordinates of the seeds and their
equivalent vertices: translated copies on the 8 cells around the
basic cell. Edges are reconstructed by making a hash query in
each basic direction around a seed to check whether there is
a vertex. Once the star (the pattern of edges around a seed) is
computed, faces can be generated procedurally following the
basic directions. Applying this strategy in only one orientation
for each seed generates a unique copy of each polygonal face,
forming a patch, which can be propagated to cover an arbitrary
region of the plane using the translation grid.

C. Acquisition

At the start of this research, the state of the art in high-order
Archimedean tilings were image collections. Algorithms were
designed for acquiring the vertices and automatically detecting
minimum translation grids. This allowed us to determine the
symbols of all exemplars of Galebach collection [13] and all
but 3 exemplars of Sá e Sá collection [14].



Fig. 4. From left to right: lattice coordinates, fundamental parallelogram and seeds, interlocked systems of points, edges, and full tiling.

D. Symmetry

The symmetries of plane periodic patterns are well under-
stood and have been completely classified: there are exactly 17
symmetry groups, known as the wallpaper groups [15]. Our
representation allows all symmetry operations to be performed
over lattice coordinates. This means that applying simple
transformations on the seeds and making hash queries allows
the detection of all the symmetries of a tiling. We follow the
standard flowchart by Washburn and Crowe [16] to classify
the wallpaper groups given the detected symmetries.

A tiling is m-uniform when it has exactly m equivalence
classes of vertices under symmetry, and k-Archimedean when
the vertices belong to exactly k types of Archimedean vertices.
Identifying the vertices inside the crystallographic fundamen-
tal region of the tiling – following Schattschneider [17] –
allows us to classify a tiling automatically in its m-uniform
k-Archimedean classes (Figure 5).
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Fig. 5. Tilings with automatically detected and annotated symmetries.

III. ENUMERATION AND GENERATION OF
TRIANGLE-SQUARE TILINGS

It is natural to ask whether and how one can generate
arbitrarily complex tilings. More precisely, can we find, or
at least count, all the tilings satisfying some constraints?
Constraints could include the area of the fundamental region,
the number of vertices or faces, and so on. Is there a set
of equations or expressions that determine such tilings? We
focus on triangle-square tilings, that is, tilings formed solely
by triangles and squares, because these tilings contain all
tilings by regular polygons after refinement. Dodecagons are
obtained from hexagons with a corona of alternating triangles
and squares, and hexagons correspond to groups of 6 triangles.

A. Restricted dual tilings

A triangle-square tiling T is a combinatorial arrangement
of triangles and squares on the plane, which is completely
determined by one of two complementary sets of triangles
E and L, present in the tiling. A tiling containing triangles
satisfies that either one of these sets is not empty and both
have even cardinality.

We define the restricted dual tilings TE∗ and TL∗ as the dual
tilings on each of these sets, and analyze their combinatorial
structure. In the example in Figure 6, one can see the restricted
duals and how they correspond to two connected components
of T ∗, the dual tiling of T .

B. Edge-labeled dual hexagonal graphs

Each restricted dual tiling is isomorphic to a hexagonal
graph, as one can observe. We focus on TE∗, but the analysis
for TL∗ is analogous, they alternate when a rotation by ω is
applied. The number of squares that each edge of the restricted
dual crosses can be encoded in the graph, as edge labels. This
way, we define G∗ξ , the edge-labeled dual hexagonal graph
of T , with labels ξ. Figure 6 illustrates G∗ξ , the edge-labeled
dual hexagonal graph of T , corresponding to TE∗. We draw
the graph G∗ξ as a hexagonal tiling. The dual of a hexagonal
tiling is a triangular one. Thus, the primal Gξ of the edge-
labeled dual hexagonal graph is a triangle tiling with labels
on its edges. Figure 6 illustrates both G∗ξ and Gξ with their
corresponding labels.
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Fig. 6. Relations between a triangle-square tiling T , its restricted duals TE∗ and TL∗, the edge-labeled dual hexagonal graph G∗ξ and the folded triangle
tiling Gξ .

Gξ is a folded version of T , obtained by folding the triangle
faces in set E over the rest of the tiling using TL∗ as the
valleys of a crease pattern. Figure 6 illustrates Gξ obtained by
folding T over the crease pattern with valleys on TL∗. The
labels indicate the number of folds under each edge.

C. Enumeration and generation

The enumeration and generation of triangle-square tilings
is given by the equivalence of a given tiling T with its edge-
labeled dual hexagonal graph G∗ξ . This is done by enumerating
all possible plane tori tiled with h hexagonal faces, which, in
turn, correspond to triangle-square tilings with 2h triangles
in set E . Over each topology indexed by a pair (i, h), we
deduce the geometric constraints that define a valid labeling.
These constraints are given by an integer, large and sparse,
homogeneous system of equations.

For each family T(i,h) of tilings in the (i, h) topology, a
Hilbert basis for the set of valid labelings is computed by
available algebraic geometry methods; in this case Normaliz
[18] was used. Every valid labeling is obtained as a positive
integer linear combination of elements in the basis. Elements
of the basis can be interpreted as inflations or unfoldings of the
triangle tiling over discrete geodesics or over discrete 3-fold
nets. The positive integer linear combinations form increas-
ingly complex unfoldings, generating new tilings (Figure 7).

Algorithms for the enumeration of the hexagonal graph
topologies and for the generation of a triangle-square tiling
from a valid labeling are thoroughly discussed in the thesis.
Also, complementary conditions between TE∗ and TL∗ are
deduced. More than 100 million tilings were generated in order
to validate the asymptotic analysis of the behavior of these
tilings as the label values grow.



Fig. 7. Examples of operations between tilings corresponding to basic labelings in T(4,6), the unfoldings are highlighted at each step.



IV. PUBLICATIONS AND FUTURE WORK

Our representation is compact and efficient for rendering,
manipulating, and analyzing periodic tilings of the plane with
regular polygons. It is the first computational representation
of periodic tilings for which there is a large collection of
tilings available. Representing these complex mathematical
objects with integers allows new robust algorithms for artistic
and computational applications. The representation and its
properties are the focus of the recent publication An integer
representation for periodic tilings of the plane by regular
polygons [8], which appeared in Computers & Graphics,
Vol. 95, 2021. The first results of the research were presented
on Synthesizing periodic tilings of regular polygons [11] at the
31st Conference on Graphics, Patterns and Images (SIBGRAPI
2018). We also presented Acquiring periodic tilings of regular
polygons from images [10] at Computer Graphics International
2019, which was published in The Visual Computer Journal,
Vol. 35, 2019.

The proposed enumeration and generation strategy for
triangle-square tilings is a novel approach to an old estab-
lished problem. The proposed strategy has different levels of
abstraction and establishes connections with other branches
of mathematics. It also provides an algebraic interpretation
of the unfolding or inflation phenomenon, clearly observed
when analyzing the tiling collections. It has been a great
experience tackling a combinatorial geometric problem using a
computational approach while having so much visual support
from the computer graphics tools, allowing us to enjoy the
appealing beauty of the resulting images. Tim Weyrich derived
an independent enumeration strategy based on a search over
lattice coordinates, and we are currently working together on a
publication on tiling enumeration as part of an active research
program on periodic tilings with regular polygons.1

Apart from the mathematical and computational contribu-
tions presented, the thesis has a broad range of applications.
I have started exploring extensions of the representation to
aperiodic tilings of arbitrary n-fold order. Several ideas and
techniques from the thesis can be applied on modeling and
digital fabrication on different ways. These are part of a
research program that I hope to be able to finance and execute
from 2022 onwards. Mathematics popularization is a constant
interest for me, I have developed a high precision laser-
cut puzzle prototype for its exhibition and distribution on
mathematics festivals and museums (Figure 8). The puzzle
will be accompanied by a widely varied tiling catalog.

ACKNOWLEDGMENTS

I profoundly thank Luiz Henrique de Figueiredo, Asla
Medeiros e Sá, and Tim Weyrich for their generosity and
counseling during this research. I am very grateful to Diego
Nehab, Luiz Velho, and all the colleagues from Visgraf lab,
as well as IMPA’s staff for their constant support.

My PhD was supported by a CNPq scholarship.

1http://chequesoto.info/tilings.html

Fig. 8. Tiling puzzle prototype.
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[14] R. Sá and A. Medeiros e Sá, Sobre Malhas Arquimedianas. Editora
Olhares, São Paulo, 2017.

[15] J. H. Conway, H. Burgiel, and C. Goodman-Strauss, The Symmetries of
Things. CRC Press, 4 2016.

[16] D. K. Washburn and D. W. Crowe, Symmetries of Culture: Theory and
Practice of Plane Pattern Analysis. University of Washington Press,
1988.

[17] D. Schattschneider, “The Plane Symmetry Groups: Their Recognition
and Notation,” American Mathematical Monthly, vol. 85, no. 6, pp. 439–
450, 6 1978.

[18] W. Bruns and B. Ichim, “Normaliz: Algorithms for affine monoids and
rational cones,” Journal of Algebra, vol. 324, no. 5, pp. 1098–1113, 9
2010.


