A Hybrid Method for Computing Apparent Ridges

Eric Jardim

Luiz Henrique de Figueiredo

IMPA — Instituto Nacional de Matemdtica Pura e Aplicada, Rio de Janeiro, Brazil

ejardim@impa.br

lhf@impa.br

S =)
?’V 2N vy .
= - -
Yo N
(&, / l
= VY
: )
\}\\ / (’
s\‘ "J //9'{'/\\ |
1\

shaded model

Abstract—We propose a hybrid method for computing appar-
ent ridges. Our method combines object-space and image-space
computations and runs partially in the GPU, taking advantage
of modern graphic cards processing power and producing
faster results in real time.

Expressive line drawing of 3D models is a classic artis-
tic technique and remains an important problem in Non-
Photorealistic Rendering [1]. A good line drawing can convey
the shape geometry without using other cues like shading,
color, and texture. Frequently, a few good lines are enough
to convey the main geometric features [2]. There are several
techniques for depicting shapes with lines, but no single
method has proved to be the best for an arbitrary model or
viewing position.

Object contours or silhouettes are perhaps the most basic
type of view-dependent line. Although they may not capture
all relevant geometric features in an object, any line drawing
should contain the visible boundaries of the object [4].
Ridges and valleys [5] are found by computing principal
curvatures and principal directions, and their derivatives.
They are second-order curves that complement contour
information. Since their definition only takes into account
the geometry of the model, ridges and valleys are view-
independent features. This can cause animation artifacts as
these features appear to be rigid, independent of the viewing
point. Suggestive contours [6] are view-dependent lines that
naturally extend contours at the joints. They also depend
on second-order information, being based on the radial
curvature in the view direction and its derivative. However,
suggestive contours do not appear at elliptic regions (where

view-dependent curvature and maximum direction

apparent ridges

the Gaussian curvature is positive). Thus, convex features
cannot be depicted with suggestive contours. Moreover,
they do not include silhouettes, which must be computed
separately. Apparent ridges [3] is a recent technique that
seems to produce good results. With a single mathematical
definition of what a good line is, apparent ridges depict
most features that are captured by other definitions and some
additional features not captured before, and its lines are
view-dependent. Apparent ridges combine both second-order
information and view-dependency: they are based on a view-
dependent curvature that plays an analogue role for apparent
ridges as the curvature does for ridges and valleys. Another
advantage is that contours are a special case of apparent
ridges and so do not require an additional rendering step.

Unlike the original method [3], which works entirely over
the mesh in object space, our method computes the curvature
data needed to find apparent ridges in an object-space phase
and an image-space phase. This split allows us to use vertex
shaders and pixel shaders to compute each part in the GPU,
exploiting GPU processing power and parallelism.

To compute apparent ridges, one must first compute the
view-dependent curvature g; and its derivative Dy, g; in the
maximum view-dependent principal direction ¢;. Apparent
ridges are the maxima of ¢; in the ¢; direction, that is,
the points where Dy, q1 = 0 and Dy, (D¢, q1) < 0. In the
original method, all features are computed in object space,
directly on the mesh. It is simple to write a vertex shader to
compute ¢; and ¢;. However, since the estimation of Dy, ¢;
on the mesh depends on the values of adjacent vertices, it is
not possible to access them in a single vertex pass.



(| f\
L N
e ) N
< ) % (N
N N
\/ )
our method

In our method, we still compute ¢; and ¢; on the mesh,
but we estimate the zeros of Dy, q; in image space. This is
a reasonable choice because ¢; is, by definition, a screen
vector. First, ¢g; and ¢; are computed in a vertex program and
color-coded in the framebuffer (see the middle picture in the
banner figure). Then, the zeros of Dy, q; are estimated on
the image using edge detection via a Laplacian-like adaptive
filter that considers the ¢; direction. We implemented this
step in a fragment shader. We also included a boundary
detector in this fragment shader for handling models with
boundaries (like the tablecloth).

As shown in the pictures above, our method produces
images that are quite similar to the ones produced by the
original method: apparent ridge lines appear generally in the
same place Slight differences are due to the nature of the
estimation. Some features are better captured by our method
(see the tablecloth), but some features are not captured in
image space when screen resolution is too high (see some
gray lines at the brain). While the images produced by both
methods are equally pleasant, we believe that ours are a little
more expressive due to the pixel-level estimation.

On the tested models, we have seen speedups ranging
from 3 to 8 times faster, using a fixed image resolution. We
also noticed that the original method is more sensitive to the

mesh size, while our method is sensitive to the image size.

As future work, we intend to experiment with other filters
to improve image quality and extend this method to other
lines, such as suggestive contours.

REFERENCES

[1] B. Gooch and A. Gooch, Non-Photorealistic Rendering. A K Pe-
ters, 2001.

[2] M. C. Sousa and P. Prusinkiewicz, “A few good lines: suggestive
drawing of 3d models,” Computer Graphics Forum, vol. 22,
no. 3, pp. 327-340, 2003.

[3] T. Judd, F. Durand, and E. Adelson, “Apparent ridges for line
drawing,” ACM Transactions on Graphics, vol. 26, no. 3, p. 19,
2007.

[4] A.Hertzmann, “Introduction to 3d non-photorealistic rendering,”
in Non-Photorealistic Rendering (SIGGRAPH 99 Course Notes),
1999.

[5] K. Na, M. Jung, J. Lee, and C. G. Song, “Redeeming valleys and
ridges for line-drawing,” in Advances in Multimedia Information
Processing, Lecture Notes in Computer Science, vol. 3767, pp.
327-338, 2005.

[6] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella,
“Suggestive contours for conveying shape,” ACM Transactions
on Graphics, vol. 22, no. 3, pp. 848-855, 2003.

This work is part of the first author’s M.Sc. work at IMPA. The authors are
partially supported by CNPq. This work was done in the Visgraf laboratory
at IMPA, which is sponsored by CNPq, FAPERJ, FINEP, and IBM Brasil.



