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Introduction
The problem of shape reconstruction from noisy dot pat-
terns is a classical problem in low level computer vision,
pattern recognition, and cluster analysis. We extend [1],
which uses results from graph theory and differential topol-
ogy to construct correct polygonal approximations of dif-
ferentiable arcs from a dense set of sample points on them
(i.e., exact, noiseless data, as depicted in figure 1(a)). Fol-
lowing directions pointed out by [1] our extension is an ap-
proach for a more general class of curves, including loops,
multiple connected components, and represented by noisy
sample sets, figure 1(b). We use probability theory results
to estimate parameters that allow automatic reconstruction
based on a single user-selected probability.

Method
Similar to the approach in [1], our method consists of four
steps: computation of an Euclidian minimum spanning tree
(EMST ) over the sample set S , bridge deletion, topologi-
cal noise filtering, and loop closure. In the bridge and loop
identification steps, we use thresholds to delete bridges and
to close loops. The computation of these thresholds is based
on some statistics defined on EMST (S).

Euclidean MST computation. The EMST (S) of a finite set
of points S ⊂ R

2 is a minimum spanning tree of the com-
plete weighted graph K(S) whose vertices are the elements
of S and the edges’ weights are the Euclidean distances
of the adjacent vertices. We avoid building K(S), by ex-
ploiting the fact EMST (S) ⊂ Del(S) and precompute a
Delaunay triangulation of S .

Threshold estimation. The estimation of thresholds used to
identify bridges and loops exploits the following result from
probability theory [2, section V.7]:

One-Tailed Chebyshev’s Inequality: “Let X be a ran-
dom variable with expected value µ and finite variance
σ2, then P (X − µ ≥ κσ) ≤ 1

1+κ2, ∀κ > 0”.

This gives us the opportunity of fixing an upper bound p ∈
(0, 1] for the probability that a random variable tresspasses
a certain amount ε = µ + κσ. By setting p = 1

1+κ2, we
have κ =

√

1−p
p

, by the one-tailed Chebyshev’s inequality,
p ≥ P (X − µ ≥ κσ) = P (X ≥ ε).

Bridge deletion. To detect connected components we delete
every edge of EMST (S) whose weight is greater than the
threshold given by κbridge =

√

1−pbridge

pbridge
, obtaning a mini-

mum spanning forest MSF (S), figure 2(b). Analyzing our
threshold estimation method we observe that, if the prob-
ability pbridge is too high, edges other than bridges may be
deleted, if it is too low (pbridge ≈ 0) then bridges can change
the topology of the curve, as depicted in figure 4.

Topological noise filtering. To filter topological noise (i.e.,
vertices with valence greater than 2), we use the follow-
ing graph properties: the Topological length of a path is the
number of its edges; the Euclidean length of a path is the
sum of weights (Euclidean lengths) of its edges; A diame-
ter path is a path with maximal length (in the topological or
Euclidean sense). To filter out the noise from MSF (S), a
diameter path Pi(S) is computed for each connected com-
ponent Ci(MSF (S)) and the edges not in the diameter path
are deleted (figure 3(a)).

Loop closure. To identify the loops that must be closed in
each Pi(S), we check whether the distance di between its
extremes is lower than the threshold εloop = µi + κloopσi,
where κloop =

√

1−ploop

ploop
, ensuring that the probability of

an open arc be erroneously closed in the loop closure step
is lower than ploop ∈ (0, 1] (figure 3(b)). Observe that, if
the probability ploop is is too high, some loops may fail to
be closed, and, if it is too low, some edges which do not
belong to the curve may be added (figure 5).
The whole pipeline of our method is depicted in figures 2, 3
figures 6–11.

Results
We have performed a number of different experiments to
evaluate our method and the effects of parameters. Al-
though we have experimented with both topological and
Euclidean lenghts of graph paths, no relevant qualitative
difference has been noticed. We have added to the method
in [1] a more intuitive set of parameters and have shown that
the modified, automatic method, constructs a good polygo-
nal approximation for low-noise sets even if you have just a
rough knowledge of the sampled curve topology, expressed
by the probabilities pbridge and ploop. As future work, we
intend to use wavelets to filter geometric noise from the
reconstructed polygonal approximation [3] and experiment
with 3D noisy sampled curves, since our method is easily
applicable to the three-dimensional setting.

(a) (b)
Figure 1: densely sampled curves: (a) exact, on curve,

sample set; (b) general curve noisily sampled

(a) (b)
Figure 2: (a) euclidean MST; (b) bridge deletion

(a) (b)
Figure 3: (a) topological noise filtering; (b) loop closure

(a) (b)
Figure 4: (a) high pbridge (= 0.5) creates many connected
components; (b) low pbridge (= 0.01) doesn’t identify the

bridges

(a) (b)
Figure 5: (a) high ploop (= 0.2) doesn’t find the loop; (b)

low ploop (= 0.0001) closes “obviously” open arcs

Figure 6: point cloud

Figure 7: delaunay triangulation

Figure 8: euclidean MST

Figure 9: bridge deletion

Figure 10: topological noise filtering

Figure 11: loop closure

Figure 12: point cloud and MST

Figure 13: bridge deletion and topological noise
filtering
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