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Abstract. This paper addresses the problem of removing the noise
from noisy points clouds in the context of surface reconstruction.
We introduce a new smoothing operator Q inspired by the moving
least-squares method and robust statistics theory. Our method can
be seen as an improvement of the moving least-squares method to
preserve sharp features. We also present effective numerical opti-
mization algorithms to compute Q and some theoretical results on
their convergence.

§1. Introduction

Data acquired with 3D scanners is invariably noisy. Moreover, the in-
creasing use of 3D scanners has implied a growth in the complexity of
the scanned models. Therefore, it is crucial that we develop efficient and
robust algorithms for surface reconstruction and denoising point clouds
that preserve the fine features of the models for further processing.

A significant effort has been done in mesh smoothing in the last years,
resulting in a variety of algorithms such as the Laplacian operator [20],
anisotropic diffusion [3, 6, 8, 9], diffusion of the normal field [4, 17, 21],
and locally adaptive Wiener filtering [1, 19].

Recent methods [11, 14] introduced feature-preserving mesh smoothing
based on robust statistics. Those methods implement non-interactive w-
estimators [13], where the new position p′ of a vertex p is computed as a
weighted sum of the predictors Πq(p) from its spatial neighborhood:

θ = k−1
∑

q∈N(p)

aqwg(Πq(p)− p)wf (‖q − p‖)Πq(p) (1)

In [14], the predictor Πq(p) is the projection of p onto the tangent plane
of the triangle q and the new position of the vertex p is p′ = θ. In [11], a
local parameter space is determined using a tangent plane at the vertex p,
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where the neighborhood of p can be seen as a height field over the tangent
plane. The predictor Πq(p) = I(q) is the height of the point q and the
new position is computed as p′ = p + θnp, where np is the normal of the
tangent plane.

Levin [15] developed a mesh-independent method for smooth surface
approximation, the moving least-squares method (MLS), introducing a
different paradigm based on a projection procedure. Given a manifold S
and a set of points {ri}i∈I on or near S, an approximating manifold S̃
is defined as the set of fixed points of a projection operator Ψ, that is,
S̃ = {x ∈ R3 : Ψ(x) = x }. The operator Ψ is defined by a two-step
procedure. First, given a sample point r, a local reference frame around r
is computed by fitting a hyperplane H = {x ∈ R3 : n · x − D = 0 }
minimizing the following weighted least-squares error in the neighborhood
of the sample ∑

i∈I

(n · ri −D)2θ(‖ri − q‖), (2)

where q is the projection of r onto H. Next, a local polynomial approx-
imation p of S is determined by taking the hyperplane H as reference
domain and minimizing the following least-squares error:∑

i∈I

(p(xi)− fi)2θ(‖ri − r − tn‖), (3)

where xi is the projection of ri onto H and fi is the height of ri over H.
The projection of r onto S̃ is then defined as Ψ(r) = q + p(0) · n. For a
detailed implementation of this method for high-quality rendering of point
set surfaces, see [2].

Based on the approaches above [11, 14, 15], our main goal here is to
propose an algorithm for surface approximation and point cloud smoothing
that detects outliers in the data and preserves the significant edges of the
surface. We introduce an M-estimator procedure as an improvement of [15]
to smooth point clouds while preserving salient features. Briefly, at each
sample point r, our algorithm determines a normal vector nr and shifts
the sample along that direction obtaining a new position Q(r) = r + trnr.
The normal nr and the displacement tr are computed by the robust fitting
of a hyperplane H in the neighborhood of the sample point r.

The organization of the paper is as follows: in Section 2 we explain the
proposed method in detail; in Section 3 we discuss the numerical methods
used and their convergence; in Section 4 we show the proposed method in
action, with several examples illustrating how the algorithm preserve data
features; finally, our conclusions are given in Section 5.
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§2. Proposed Method

Starting from a noisy point cloud P near a surface S, our goal is determine
a noise-free data set P ′ = { r′ = Q(r) : r ∈ P } that retains the features
of the model, using an operator Q(r) = r + trnr. At each sample point
r ∈ P , we estimate a new position r′ = r + trnr, where nr is a projec-
tion direction and tr is a displacement along nr. As mentioned in the
introduction, the optimal values for tr and nr are computed by the robust
fitting of an hyperplane in a neighborhood N(r) of the sample point r.
The hyperplane Hr is obtained minimizing the following cost functional
with respect to t and n, subject to the restriction ‖n‖ = 1:∑

q∈N(r)

ρ(h̃q)w(‖q − r‖), (4)

where hq = nt(q − r − tn) is the height of the point q with respect to the
hyperplane H passing through the point r + tn and orthogonal to n.

The new position r′ can be seen as the projection of r onto a local linear
approximation Hr of the surface S. The estimation of this approximating
hyperplane Hr is robust to gross deviation of the points q ∈ N(r). The
identification of outliers is controlled by a robust error norm ρ in (4), which
penalizes points q ∈ N(r) with large values of the height hq. According to
this, the points q ∈ N(r) on different sides of a sharp feature are considered
possible outliers. See Figure 1.

H
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Fig. 1. The smoothing operator Q(r) = r+trnr. The point r is projected
onto the fitting hyperplane Hr, a linear approximation of the surface S,
computed giving less influence to outliers.

Several examples of robust error norms can be found in the liter-
ature [5]. In general all these robust potential grow slower than the
quadratic error norm (limt→∞

ρ′(t)
2t = 0). We use a Gaussian error norm

ρ(x) = 1 − e
− x2

2σρ , where the parameter σρ controls the sensitivity of (4)

to outliers. We also use a Gaussian weight w(x) = e−
x2

2σw , where the
parameter σw controls the influence of points far away from r.
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The first step to compute the smoothing operator Q at a sample point r
is to determine a neighborhood N(r). We do this through a growing
process. We initially compute a subset N = {s : ‖s − r‖ < σw} of the
k-nearest neighbors of r with distance to r smaller than σw. We typically
use k = 8. The set N is augmented N ← N ∪Ns for each element s ∈ N
not processed, where Ns is a subset of the k-nearest neighbors of s that are
not in N with distance to r smaller than the parameter σw. This process
is repeated for each new point in N not processed until there are not more
points to be added, then the final neighborhood is N(r) = N . Observe
that determining the neighborhood in this way tends to eliminate points
that are in different connected components or on different sides of a thin
region. See Figure 2.

N(r) S

S

r

1

2

Fig. 2. Two close sheets S1 and S2 of a surface S corresponding to a thin
region of S or two different connected components. The neighborhood
N(r) is computed with respect the sheet S1.

Having found the neighborhood N(r), we apply the smoothing opera-
tor Q(r) = r + trnr, where tr and nr minimize (4) subject to ‖n‖ = 1:

{nr, tr} = arg min
{n,t}

∑
q∈N(r)

ρ(nt(q − r)− t)w(‖q − r‖) (5)

The optimal values of nr and tr are computed by alternately minimizing
with respect to n and t until we are close to the minimum value. This
procedure is summarized in Algorithm 1.

Algorithm 1
t0 = 0
repeat {for k = 1, . . .}

(i) Compute nk as the minimum of (5) with t = tk−1 fixed
(ii) Compute tk as the minimum of (5) with n = nk fixed

until we are close to the minimum.

Step (i) of Algorithm 1 is devoted to solving a constrained optimization
problem. We solve problem (5) with respect to n having fixed t, subject to
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the restriction ‖n‖ = 1. To solve this problem, we use Newton’s method
over Riemannian manifolds [22, 10]. Given a C∞ manifold (in our case,
the sphere S2) with Riemannian structure g, Levi-Civita connection ∇,
and a C3 function f over S2, we have the following algorithm:

Algorithm 2 Newton Method
Select a point p1 ∈ P such as (∇2f)p1 is nondegenerate
repeat {for i = 1, . . .}

(1) Solve Hi = −(∇2f)−1
pi

(∇f)pi

(2) Compute pi+1 = exppi
Hi

until we are close to the minimum.

In (1) we solve the linear system (∇2f)pi
Hi = (∇f)pi

where ∇2f is
the Hessian of (5) with respect to n, (∇f)pi

is its differential, and Hi is
the solution on the tangent plane Tpi

S2 of the above linear system. In
step (2), we make a displacement (with t = 1) along the unique geodesic
γ(t) = exppi

Hi t, with γ(0) = pi and direction γ′(0) = Hi.
As is widely known, Newton’s method has quadratic convergence when

started near the solution. For that reason, in the first iteration (k = 1) of
the algorithm 1, we use as initial input vector an estimative of the solution
of the equation (5) with t = 0 and in the next iterations (k > 1) we use
as input the normal nk−1 computed at the previous step. To determine
the initial normal for the first iteration (k = 1), we compose the Lagrange
equation of (4) for t = 0 and its derivate with respect to n, obtaining:

L(n, λ) =
∑

q∈N(r)

ρ(hq)w(‖q − r‖) + λ(‖n‖2 − 1) (6)

Ln(n, λ) =
∑

q∈N(r)

θq(q − r)(q − r)tn− λn = 0, (7)

with weight θq = Ψρ(hq)Ψw(‖q− r‖) and weight functions Ψρ(x) = e
− x2

2σρ

and Ψw(x) = e−
x2

2σw . As before, hq = nt(q − r).
Equation (7) can be represented in matrix form with a symmetric and

definite positive matrix M(n) depending of n:

M(n)n = λn where M(n) =
∑

q∈N(r)

θq(q − r)(q − r)t (8)

The weight θq determines the influence of the term (q − r)(q − r)t. Large
values of hq imply small values of the weight θq and consequently less
influence of (q − r)(q − r)t in the matrix M(n).

To solve equation (8), we propose the following iterative scheme:

M(nk)nk+1 = λk+1nk+1, (9)
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where λk+1 is the smallest eigenvalue of M(nk) and nk+1 is its associate
orthonormal eigenvector. The traditional covariance analysis is obtained
for the starting normal n0 = 0 (M(0)n1 = λ1n1). A few iterations of this
method produce good results and always decrease the objective function,
as Lemma 2 in the next section shows.

In step (ii) of Algorithm 1, we minimize (5) with respect to t, keeping
the normal n fixed; This is an unconstrained optimization problem. The
necessary first-order condition for a minimum is then:∑

q∈N(r)

Ψρ(hq − t)Ψw(‖q − r‖)(hq − t) = 0 (10)

Solving this equation for t yields the following recurrence equation

ti+1 = k−1
ti

∑
q∈N(r)

Ψρ(hq − ti)Ψw(‖q − r‖)hq (11)

where we have introduced a normalization factor

kti =
∑

q∈N(r)

Ψρ(hq − ti)Ψw(‖q − r‖) (12)

Lemma 1 in the next section shows that the sequence ti always con-
verges. Note that one iteration of equation (11) starting at t0 = 0 is
exactly the proposed method in [11].

§3. Numerical Methods

Convergence. We now analyze some theoretical aspects about the con-
vergence of the iterative method proposed in the previous section. We
shall prove that the sequence (11) ti+1 = f(ti) converges to a fixed point
of the function f(t) = k−1

t

∑
q∈N(r) Ψρ(hq − t)Ψw(‖q − r‖)hq.

We need some results of Comaniciu and Meer [7] to state the conver-
gence of (11). They introduce the Mean Shift (MS) to estimate the mode
of the data kernel density estimator of a finite set of samples {xi}ni=1 in Rd:

d(x) =
1

NHd

n∑
i=1

K(
x− xi

h
)

The Mean Shift is defined as the difference of two consecutive steps MS(ym) =
ym+1 − ym of the sequence (ym)

ym+1 =
∑n

i=1 xil(‖ym−xi

h ‖2)∑n
i=1 l(‖ym−xi

h ‖2)
, (13)
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where l(t) = −k′(t) and k(t) is the profile of the Kernel K(x); in other
words, k(‖x‖2) = K(x). The following two theorems from [7] discuss the
convergence of the sequence (ym):

Theorem 1. Given three consecutive steps ym+1, ym, ym−1 of the se-
quence {ym} with Gaussian weight l(x) = exp(−x), we have (ym+1 −
ym)(ym − ym−1) > 0.

Theorem 2. If the kernel K(x) has a convex and monotonically decreas-
ing profile, then the sequence (d(ym)) is monotonically increasing.

We now applying Theorems 1 and 2 to our particular case:

Lemma 1. The sequence ti+1 = f(ti) is strictly monotone and converges
to a stationary point that is not a maximum.

Proof: From Theorem 1, we get that (ti − ti−1)(ti+1 − ti) > 0. Thus,
ti − ti−1 and ti+1 − ti have the same sign. Therefore, the sequence ti is
strictly monotone (increasing or decreasing).

Because the ti are convex combinations of hq and |hq| = |nt(q − r)| <
‖q − r‖ < σw, we have that ti is inside the interval [−σw, σw]. Thus, the
sequence (ti) is monotone and limited, and so it converges.

Problem (5) can be transformed into a maximization problem

{t} = arg max
t

∑
q∈N(r)

K(hq − t)w(‖q − r‖), (14)

where the function K(t) = 1 − ρ(t) has a convex and monotone profile
exp(−t). Applying Theorem 2 to equation (14), we obtain that the se-
quence d(ti) =

∑
q∈N(r) ρ(hq − ti)w(‖q − r‖) is decreasing and therefore

tr = lim ti is not a maximum.

Now we analyze the convergence of the iterative scheme (9) proposed
in the previous section to minimize problem (5) with t = 0:

nr = arg min F (n) with F (n) =
∑

q∈N(r)

ρ(nt(q − r))w(‖q − r‖) (15)

The next lemma shows that the sequence (nk) generated by (9) always
decreases the objective function F (n).

Lemma 2. With (nk) defined by M(nk)nk+1 = λk+1nk+1, where λk+1 is
the minimum eigenvalue of M(nk) with associated orthonormal eigenvec-
tor nk+1, the sequence (F (nk)) is strictly decreasing.
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Proof: Denoting the height of the point q with respect to the hyperplane
passing at r and orthogonal to nk by hk = nt

k(q − r), we have:

F (nk+1)− F (nk) =
∑

q∈N(r)

(ρ(hk+1)− ρ(hk))w(‖q − r‖)

=
∑

q∈N(r)

(e
− (hk)2

2σ2
ρ − e

−
(hk+1)2

2σ2
ρ )w(‖q − r‖)

Since L(x) = e−x is a convex function, the following inequality L(x1)−
L(x2) < L′(x1)(x1−x2) hold. Combining this inequality with equation (8),
we obtain:

F (nk+1)− F (nk) <
∑

q∈N(r)

−e
− h2

k
2σ2

ρ w(‖q − r‖)( h2
k

2σ2
ρ

−
h2

k+1

2σ2
ρ

)

=
1

2σ2
ρ

∑
q∈N(r)

θq(h2
k+1 − h2

k)

=
1

2σ2
ρ

∑
q∈N(r)

θq(hk+1 − hk)t(hk+1 + hk)

=
1

2σ2
ρ

∑
q∈N(r)

(nk+1 − nk)t(θq(q − r)(q − r)t)(nk+1 + nk)

=
1

2σ2
ρ

(nk+1 − nk)tM(nk)(nk+1 + nk)

=
1

2σ2
ρ

(λk+1 − nt
kM(nk)nk)

Since λk+1 = min‖x‖=1 xtM(nk)xt, we obtain λk+1−nkM(nk)nk < 0,
and the lemma follows.

Newton’s Method over S2. We now present Newton’s method on
the sphere in more detail. As known, the geodesics in S2 satisfy the
following second order differential equation ẍk + xk = 0, for k = 1, 2, 3.
Therefore, the Cristoffel symbols are given by Γk

i,j = δi,jx
k, where δi,j is

the Kronecker symbol. Hence, the ij-th component of the bilinear form

(∇2f)n =
∑
i,j

((
∂f

∂xi∂xj
)n −

∑
k

Γk
i,j(

∂f

∂x
)n))dxi ⊗ dxj

is given by

((∇2f)n)i,j = (
∂f

∂xi∂xj
)n − δi,j(nt · (∂f

∂x
)n)



Surface Reconstruction and Smoothing from Point Clouds 9

Writing the equation above in matrix form we obtain:

(∇2f)n = Hf (n)− λHh(n) = Hf (n)− λI,

where Hf (n) and Hh(n) are the Hessian of f(n) and of the restriction
h(n) = ‖n‖2 − 1 respectively and the dot product λ = ntfn is the La-
grangian multiplier.

In Algorithm 2 we need to solve Hi = −(∇2f)−1
ni

(∇f)ni
with Hi on

the tangent plane, where (∇f)ni
= ∇f − λni is the gradient of f(ni).

In general, a linear operator A : R3 → R3 defines a linear operator on
the tangent plane TnS2 for each n in S2 such that A · u = (I − nnt)Au.
Therefore the solution of the linear system A ·u = v with u and v in TnS2

has the form

u = A−1v − α−1(A−1n)(nA−1v), α = ntA−1n (16)

Rewriting Algorithm 2 in this context with Lnn = ∇2f and Ln = ∇f
to simplify the notation we obtain:

Algorithm 3 Newton’s Method in S2

Find an initial point n1 ∈ S2

repeat {for i = 1, . . .}
(i) vi = L−1

nini
Lni − α−1(L−1

nini
ni)(niL

−1
nini

Lni), with α = nt
iL
−1
nini

ni

(ii) ni+1 = cos(‖vi‖)ni + sin(‖vi‖) vi

‖vi‖
until we are close to the minimum.

In Step (i) we solve a linear system Lninivi = Lni with right and left
side on the tangent space TniS

2. Applying equation (16) we obtain the
solution vi = L−1

nini
Lni
−α−1(L−1

nini
ni)(niL

−1
nini

Lni
), where α = nt

iL
−1
nini

ni.
The linear systems x0 = L−1

nini
Lni

and x1 = L−1
nini

ni are in general ill
conditioned, so we used the DGSVD methods proposed in [12] to solve ill
conditioned linear problems. Step (ii) corresponds to taking t = 1 in the
geodesic γ(t) = expni

(tvi), taking the form ni+1 = cos(vi)ni + sin(vi) vi

‖vi‖
on the sphere S2.

§4. Experiments

Our method has been tested on several data sets in combination with a
surface reconstruction method that we are developing [16]. Figure 3 shows
the ability of the algorithm to preserve fine features: note how the edges
and corners are preserved. Figure 4 presents a comparison of our method
with moving least-squares. Note how details are preserved: the eye, hair
and scar of the igea; the eye, nose, feet and creases of the bunny; and the
eye, nose and teeth of the dragon.
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(a) original (b) noisy model (c) our method

Fig. 3. Preserving features in the fandisk model.

(a) noisy models (b) our method (c) MLS method

Fig. 4. Comparing our method with MLS.
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All the models were contaminated with Gaussian noise along of the
normal direction: the igea, bunny and dragon models with zero mean and
variance of 15% of 1

10 bounding box diagonal; the fandisk model with
variance of 8%.

The parameters σρ and σw were: σρ = 2.5h and σw = 0.2h for the igea
model; σρ = 4.5h and σw = 1.0h for the dragon; σρ = 2.5h and σw = 0.26h
for the bunny; and σρ = 0.12h and σw = 2.0h for the fandisk, where h is
the mean spacing between the points. In all the models the diameter of
the neighborhood was set to σw. As in methods [14, 11], a small value in
the parameter σw leads to faster computation because the neighborhood
N(r) is small and large value may cross sharp features and over-smooth
the results. The parameter σρ controls the sensitivity to outliers; for small
values of σρ the small features of the models are preserved and for larges
values only salient features are preserved.

§5. Conclusion

We have presented a new method for point cloud denoising which is in-
spired by robust statistics and can be seen as an extension of the moving
least-squares method to be preserve features. The method makes a robust
estimation of the surface normal at the point cloud and was implemented
with an effective numerical optimization procedure. It has two empirical
parameters σρ and σw that can be set by the user. How to determine
these parameters automatically is an open issue.
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