
Simple and reliable boundary detection for meshfree
particle methods using interval analysis

Marcos Sandima, Afonso Paivaa,∗, Luiz Henrique de Figueiredob

aInstitute of Mathematical and Computer Sciences, USP, São Carlos, Brazil
bIMPA, Rio de Janeiro, Brazil

Abstract

We present two novel algorithms for detecting boundary particles in 2D and 3D

domains that are suitable for meshfree particle methods in Computational Fluid

Dynamics. We combine a robust purely geometric sphere covering test based on

interval analysis with an adaptive spatial subdivision of the sphere associated

with a given particle. The methods are simple, fast, and easy to code. We report

comparisons against state-of-the-art boundary detection methods in free-surface

flow problems to demonstrate the effectiveness and accuracy of our approaches.

Keywords: boundary particles, interval analysis, geometric enclosure,

free-surface flows, meshfree particle methods

2020 MSC: 76M28, 76B07

1. Introduction

Meshfree methods, such as Smoothed Particle Hydrodynamics (SPH) [1],

Moving Least-Squares Particle Hydrodynamics (MLSPH) [2], and Moving Parti-

cle Semi-implicit (MPS) [3], provide attractive numerical discretizations for a

wide range of Computational Fluid Dynamics applications. In these methods,5

particles typically carry a kernel function for a local approximation of attributes,

such as density and pressure, instead of keeping track of the connectivity between

∗Corresponding author
Email addresses: marcos.sandim@gmail.com (Marcos Sandim), apneto@icmc.usp.br

(Afonso Paiva), lhf@impa.br (Luiz Henrique de Figueiredo)

Preprint submitted to Journal of Computational Physics July 2, 2020

particles during the simulation. Besides, meshfree interpolations can also be

applied to local subdomains to perform numerical integration like Galerkin type

methods [4, 5] or to achieve generalized finite difference stencils from scattered10

nodes [6].

An intrinsic advantage of meshfree methods over mesh-based methods is

related to problems involving complex free-surface flows, efficiently capturing

the topological changes (splitting and merging regions) that occur in the free

surface, such as fragmentation, fracture, waves, splashing, and air bubbles15

creation. A delicate task for meshfree methods in handling boundary conditions

at solid walls (e.g., no-slip and pressure Neumann condition) or across the free

surface (e.g., constant pressure and kinematic condition), because such tasks

demand accurate identification of boundary particles, that is, the particles that

comprise the boundary of the fluid. This drawback is especially severe when20

solving problems where incompressibility must be satisfied [7] or surface tension

has a meaningful effect on the flow behavior [8]. Beyond boundary conditions,

detecting boundary particles is essential also in applications comprising level-set

definition [9, 10] and particle shifting technology (PST) [11].

Despite its importance, the problem of accurately detecting boundary particles25

has not been extensively addressed in the literature. To detect the “exact”

boundary, Dilts [2] provided a robust and reliable two-dimensional (2D) algorithm,

where complex geometric predicates determine whether a particle is covered by

its neighbor particles. Haque and Dilts [12] extended that algorithm to three-

dimensional (3D) particles. However, their extension is neither straightforward to30

implement nor efficient, since computing mutual covering of spheres is expensive.

Lo and Shao [13] proposed criteria where an SPH particle is classified as boundary

particle if its density is less than a certain threshold with respect to a reference

density. He et al. [14] and Liu et al. [15] presented a similar approach considering

the SPH weighting of the particle distances. Although these methods involving35

SPH kernels are simple, they are inaccurate for free-surface flows with large

deformations. Marrone et al. [9] performed boundary/non-boundary particle

classification using a pre-processing step based on the spectrum of the SPH

2

correction matrix [16] combined with a geometrical test that verifies whether a

neighbor particle lies in a conical region determined by a SPH approximation40

of normal vector. Barecasco et al. [17] simplified that method by replacing the

normal vector by a cover vector defined by a weighted average of the particle

positions. However, both approaches [9, 17] are sensitive to the non-uniformity

of particle distribution due to the estimative of surface normals. Recently, Wang

et al. [11] presented an optimization of the algorithm by Marrone et al. [9] just45

by changing the pre-processing step by the criteria regarding the SPH divergence

of the particle positions as stated by Lee et al. [18]. Sandim et al. [10] introduced

an accurate and efficient geometrical test reinterpreting the original problem as

a point-cloud visibility problem. Lin et al. [8] proposed an algorithm to detect

boundary particles in 2D. Their method first computes a Delaunay triangulation50

of the neighbor particles projected on a unit circle, and then classifies a particle

as boundary if any circumcircle radius exceeds a certain threshold. Since Lin

et al. [8] provided no hints on extending their method to 3D, we believe that

extension is not straightforward.

In this paper, we present two novel algorithms for detecting boundary particles55

in 2D and 3D. Our approach is similar to the ones by Dilts and Haque [2, 12], in

that we perform a purely geometric sphere covering test. The key difference is

that we use interval analysis methods to ensure robustness. The accuracy of our

methods relies on an adaptive spatial subdivision of the sphere associated with a

given particle. The first method performs an interval evaluation of the implicit60

function defining the sphere for each particle. The second method uses geometric

predicates on the enclosures of the boundary of the sphere. Both methods are

robust: they do not produce false negatives; that is, no boundary particles are

classified as interior. Moreover, the methods are simple, easy to code, and with

competitive computational times. We perform a set of comparisons against65

state-of-the-art boundary detection methods in free-surface flow problems to

demonstrate the effectiveness and accuracy of our approaches.

3

2. Boundary particles

Let P be a set of scattered particles sampling a compact region Ω ⊂ Rd and

let ∂Ω be the boundary surface of Ω. We index the particles in P by i ∈ N.70

Particle i is located at the point pi ∈ Rd. Our main goal is to identify the

boundary particles in P , that is, the set of particles in P that lie on ∂Ω. Ideally,

we would like to identify all boundary particles precisely, but we shall aim for a

large subset of particles that are guaranteed to be on the boundary.

To define boundary particles precisely, we assume that P is an r-sampling75

of Ω [19]: for every point x ∈ Ω, there is a particle i in P such that ‖x− pi‖ < r.

The parameter r corresponds to the numerical resolution of the problem. For in-

stance, in SPH solvers the radius r coincides with the SPH smoothing length [12].

Thus, the radius r dictates the accuracy of the method: the boundary detection

method should be able to capture small-scale details of the fluid (like cavities,80

thin-sheets, ligaments, and drops) of diameter or thickness at least 2r.

Let Bi be the ball of radius r centered at the point pi and let Si = ∂Bi

be the boundary sphere of Bi. A particle i is called an interior particle when

its sphere Si is completely covered by the neighboring balls; more precisely,

when Si ⊂ ∪j∈NiBj where Ni = {j ∈ N : ‖pj − pi‖ ≤ 2r}. Note that it is the85

boundary Si of Bi that is completely covered other balls, not necessarily the

whole ball Bi (Figure 1). A particle i is called a boundary particle when it is not

an interior particle.

3. Boundary detection using interval analysis

To determine whether a particle is on the boundary, we perform a purely90

geometric covering test, following the definition above. This approach is similar

to the ones by Dilts and Haque [2, 12]. The contribution of this paper is two

robust and efficient solutions for this geometric problem. They rely on adaptive

spatial subdivision and robust geometric tests. There is a single user parameter,

the subdivision depth, which controls the tradeoff between speed of processing95

and accuracy of the results.

4

Figure 1: Interior particles (brown dots) and boundary particles (green dots).

Our methods use tools from interval analysis: interval arithmetic and geomet-

ric enclosures. The first method is easier to understand and to implement. It also

serves as an introduction to the second method, which deals with slightly more

complicated geometry. Recall that our main task is deciding whether particle i100

is an interior particle. By definition, we have to check whether the boundary Si

of Bi is completely covered by neighboring balls Bj for j ∈ Nj .

3.1. Using interval arithmetic

In our first method, we perform an adaptive spatial subdivision of the

bounding box of Bi into query boxes. We test the query boxes that intersect Si

against the neighboring balls Bj . The geometric tests in this method rely on the

implicit formulation of balls:

Bj = {x ∈ Rd : fj(x) ≤ 0}, where fj(x) = ‖x− pj‖2 − r2

We test a query box Q against a ball Bj by computing the interval I = fj(Q).

We compute this interval exactly using interval arithmetic [20]1. There are three105

1Interval arithmetic is a numerical technique that provides estimates for the whole range of
values taken by a function in a box in Rd. For the functions fj defining spheres, it happens
that the estimates computed by interval arithmetic are exact.

5

possible outcomes of this computation, according to the position of the bounds

of I, given by min I and max I, with respect to 0:

• max I ≤ 0: Then I ⊆ [−∞, 0] and Q is completely inside Bj .

• min I > 0: Then I ⊆ (0,∞) and Q is completely outside Bj .

• min I ≤ 0 ≤ max I: Then Q straddles the boundary Sj of Bj .110

The query boxes that straddle the boundary Si of Bi are called boundary

boxes. They are found by testing the interval fi(Q). Boundary boxes are

the interesting query boxes; the other ones are discarded. We test whether a

boundary box Q is completely covered by neighboring balls Bj using the same

test on the interval fj(Q). There are three possible outcomes:115

• Q is completely inside Bj for some j: Then the part of Si inside Q is

completely covered by Bj .

• Q is completely outside Bj for all j: Then the part of Si inside Q is

completely uncovered by the neighboring balls.

• Otherwise, Q is partially covered. Then, Q is subdivided by bisection120

at its center into 2d children boxes, the test is applied recursively to the

children, and the results are combined.

If all boundary boxes are completely covered, then particle i is an interior particle.

Otherwise, particle i is a boundary particle.

The function is_interior provided by Algorithm 1 implements these ideas:125

it performs an adaptive spatial subdivision of the sphere associated to particle i,

starting the recursion with the bounding box of Bi, that is, the cube centered

at pi with side 2r. The algorithm follows a subdivision tree (a quadtree in 2D

and an octree in 3D), trying to classify query boxes according to the criteria

above, up to a maximum depth chosen by the user to control the tradeoff between130

speed and accuracy.

6

Algorithm 1: Recursive classification of a particle i

function is interior(i):

Q← bounding box of Bi

return query(Q, i, 0)
end

function query(Q, i, depth):

if Q is completely inside Bi or Q is completely outside Bi then

return true // uninteresting boxes

end

uncovered← true

foreach j ∈ Ni do

if Q is completely inside Bj then

return true

end

if Q straddles the boundary Sj of Bj then

uncovered← false

end

end

if uncovered then

return false // definitely boundary

end

if depth = maximum depth then

return false // probably boundary

end

return subdivide(Q, i, depth)
end

function subdivide(Q, i, depth):

Q = Q1 ∪ · · · ∪Q2d // subdivision

return query(Q1, i, depth+ 1) and . . . and

query(Q2d , i, depth+ 1)
end

Figure 2 illustrates this algorithm in 2D using a quadtree with maximum

depth 3. In this case, the algorithm classifies particle i as a boundary particle

without having to process the whole quadtree. For this, we assume that the135

conjuction in subdivide is short-circuited, that is, stops at the first term that

is false. (The algorithm is correct even if this assumption does not hold; it just

processes more query boxes.)

7

Figure 2: The 2D version of our boundary detection method using interval arithmetic.
The ball Bi around particle i is shown in light blue. We check whether the circle Si (dark
blue) is covered by its neighboring balls (orange). Some boundary boxes are not processed
(yellow), and some are covered by a neighbor ball (dark green), while the non-boundary boxes
(light green) are discarded by our method. A query box (red) at depth 3 reveals an uncovered
region of Si. Thus, particle i is a boundary particle.

We shall now discuss some important implementation details.

Finding neighboring particles. Crucial to the performance of the algorithm is a140

fast way to identify the set Ni of neighboring particles. For this task, we use the

linked-list algorithm [1], where the cells of the search grid have a size of 2r.

Faster tests. To test whether a query box Q is a boundary box, we skip interval

arithmetic and test the signs of fi on the vertices of Q. Then Q is a boundary

box iff the signs are not the same. This change does not affect correctness145

because query boxes are subdivisions of the bounding box of Bi and so are in

special positions with respect to Bi. In particular, a boundary box never has all

of its vertices outside Bi. The one exception is the bounding box of Bi, which is

the initial query box. We avoid this case by starting the recursion at depth 1,

by changing is_interior slightly to call subdivide instead of query, as shown150

in Algorithm 2:

8

Algorithm 2: Modified recursive classification of a particle i

function is interior(i):

Q← bounding box of Bi

return subdivide(Q, i, 0)
end

This change improves overall performance by about 16%. On the other hand,

we cannot use the signs of fj on the vertices of Q to test Q against neighboring

balls Bj because their relative positions are arbitrary. We must rely on interval155

arithmetic for those tests.

Interval arithmetic libraries. For computations with intervals, we used PyInter-

val2 in 2D and Boost C++3 in 3D, both easy-to-use libraries. For the simple

case of a sphere equation, we could avoid a full interval arithmetic library and

use the simple ad-hoc code given in the Appendix. We could also probably avoid160

using outward rounding, because the geometric resolution is much lower than

the numerical resolution of the floating point system.

Avoiding recursion. While Algorithm 1 is easy to understand and to check

correctness, our actual implementation in Algorithm 3 simulates recursion by

keeping query boxes that need to be checked in a stack. This makes it easier to165

terminate the process earlier without changing the final result, by following the

simple rules below:

R1: If Q is uncovered, we can safely say that Si has an uncovered region and

thus the particle i is a boundary particle;

R2: If Q is covered, we stop the subdivision at Q;170

R3: If Q is partially covered and the maximum depth has not been reached, we

subdivide Q and continue recursively;

2https://pypi.org/project/pyinterval/
3https://www.boost.org/doc/libs/1_66_0/libs/numeric/interval/doc/interval.htm

9

https://pypi.org/project/pyinterval/
https://www.boost.org/doc/libs/1_66_0/libs/numeric/interval/doc/interval.htm

R4: If the maximum depth has been reached, we declare that the particle i is

a boundary particle. These are the potential false positives, i.e., interior

particles misclassified as boundary particles.175

Rules R1 and R2 have precedence over R3 and R4. If R2 is satisfied,

we must keep evaluating the sibling nodes until we find an uncovered node or

determine that all nodes are covered, in which case that the particle i is interior.

In R4, although Q is partially covered, we classify the particle i as boundary

particle for two reasons: (i) we ensure that the algorithm will never produce a180

false negative and (ii) it allows us to a short circuit the evaluation process and

thus speeds up the detection.

Whenever we need a box to evaluate, we get the one on the top of the stack;

when we subdivide a box, we push its children ton top of the stack. The simulated

depth-first traversal is beneficial since we can reach rules R1 and R4 quicker185

and terminate the process earlier. If we do not arrive at R1 or R4, and we reach

the bottom of the stack, then all boxes fell on rule R2, and thus they are all

covered; consequently, the particle i in an interior particle.

3.2. Using geometric enclosures

Our first method is simple to understand and to implement, but it spends190

effort classifying query boxes against a ball Bi: it finds and discards boxes that

are completely inside or completely outside Bi. However, we care only about

the boundary Si of Bi and the only interesting boxes are the boundary boxes.

Our second method performs an adaptive spatial subdivision of an enclosure

of Si, a process that takes place in a lower dimension. We decompose Si into a195

coarse mesh of linear elements and enclose Si around that mesh with a union of

thin convex polytopes which we shall call slabs. This cover is refined as needed

by adaptively refining the underlying mesh.

In 2D, the mesh is initially given by the sides of an equilateral triangle

inscribed in Si. The mesh is then adaptively refined into an inscribed polygon.200

The slab around a mesh segment L is the rectangle having one side on L and

the opposite side tangent to the circle Si at the projection of the midpoint b

10

Figure 3: Slab (gray) enclosing a segment L (green).

of L onto Si (see Figure 3). To test a segment L against a neighboring ball Bj ,

we test the corresponding slab Q against Bj by testing the signs of fj at the

vertices of Q, as follows:205

• If fj(v) < 0 for all vertices v of Q: Then Q is completely inside Bj .

• If fj(v) > 0 for all vertices v of Q: Then Q is completely outside Bk.

• Otherwise, Q straddles the boundary Sj of Bj .

As in the first method, there are three possible outcomes:

• Q is completely inside Bj for some j: Then L is completely covered210

by Bj .

• Q is completely outside Bj for all j: Then L is completely uncovered by

the neighboring balls.

• Otherwise, L is partially covered. Then, L is subdivided at its midpoint

into two children segments, the test is applied recursively to the children,215

and the results are combined.

If all segments are completely covered, then particle i is an interior particle.

Otherwise, particle i is a boundary particle. Figure 4 illustrates our second

method in 2D.

11

Figure 4: The 2D version of our method based on geometric enclosures. At each level, we check
whether the slabs (gray) are covered by its neighboring balls (orange). At maximum depth 3,
a slab (red) shows an uncovered region of Si. Thus, the particle i is a boundary particle.

Computing slabs in 3D. Firstly, we apply the affine transformation Ti(x) =220

r−1(x − pi) in the sphere Si and its neighboring balls. Note that the center

of Si is translated for the origin 0 and all balls become unit balls.

In 3D, the linear elements are triangles; the mesh is initially given by the

faces of a regular tetraheadron inscribed in Si. Let L be a mesh triangle and

b its barycenter. The slab around L is the frustum obtained by projecting L225

onto the plane P that is tangent to Si at the projection b = b/‖b‖ of b onto Si

(see Figure 5).

Each vertex a ∈ L is projected onto P to mimic a perspective projection from

the viewpoint 0. Considering a as the projection of a onto P , by construction

as shown in Figure 5, we have that a · b = cos θ = ‖a‖−1. Thus, the projected230

vertex is given by a = a/(a · b).

Figure 5: Perspective projection of a triangle L (green) onto the tangent plane P (blue) of
the unit sphere Si: the frustum formed by L and its projection (left) and the projection of
a single vertex a ∈ L on the plane P (right).

12

Figure 6: Mesh refinement in 3D (center) and its underlying quadtree (top-right): a regular
tetrahedron inscribed in Si is refined using midpoint subdivision scheme (bottom-left).

The mesh triangle L is refined when necessary by using the standard midpoint

subdivision scheme (see Figure 6). Then, we update the location of these new

vertices by projecting them on Si. Although the refined mesh provides a better

approximation of Si, this process can produce hanging nodes and so a non-235

conforming mesh. However, this is not a problem because we are not interested

in the resulting mesh itself, only in the slabs that enclosure the boundary.

The mesh refinement process rapidly reduces the total volume of the enclosure

because the combined volumes of the slabs associated with the four child nodes

will be a fraction of the volume associated with the original parent node. So each240

subdivision step improves the accuracy of the covering test, consequently its

convergence.

We apply the rules R1–R4 of the previous method in each slab. Assuming

that a slab is a boundary box, the labeling of a generic element (box or slab)

regarding its covering is summarized in Algorithm 3.245

13

Algorithm 3: Classification of a particle i

function is interior(i):
initialize the stack T with the nodes from the first tree-level
while T 6= ∅ do

Q← the topmost element from T
remove Q from T
q ← label (Q, i)
if q is uncovered then

return false
else if q is covered then

continue // proceed to the next element of T
else // Q is partially covered

` ← the depth of Q
if ` < maximum depth then

Q = Q1 ∪ · · · ∪Qm // subdivision

foreach child node Qk do
if Qk is boundary box then

add Qk to the top of T with depth `+ 1
end

end

else
return false

end

end

end
return true

end

function label(Q, i):
q ← uncovered
foreach j ∈ Ni do

if Q is completely outside Bj then
continue // keep the current label

else //either covered or partially covered
if Q is completely inside Bj then

return covered
end
q ← partially covered

end

end
return q

end

14

Figure 7: Comparison between IA () and GE () methods. On the left, the classification of
the boundary particles (green) and interior particles (brown) in a model with 170k particles,
and a cutaway view thereof. On the right, the symmetric log (symlog) plots of the FP and
the computational times (in milliseconds) w.r.t. the subdivision depth.

4. Results

We first analyze the performance of our novel techniques based on interval

arithmetic (IA) and geometric enclosure (GE). Assuming the classification

provided by Dilts and Haque [2, 12] as ground truth, we count the number of250

particles according to their assignment:

• True Positive (TP): a boundary particle correctly classified;

• True Negative (TN): an interior particle correctly classified;

• False Positive (FP): an interior particle classified as boundary;

• False Negative (FN): a boundary particle classified as interior.255

Since our interval approaches do not produce false negatives (i.e., FN = 0),

the comparison between IA and GE approaches is performed by analyzing the

number of false positives. Figure 7 shows an error analysis based on FP in

a static model and a comparison of the computational performance between

both approaches as well. We observe that GE approach converges to the exact260

classification faster than IA with less computational effort.

15

(a) Marrone [9] (b) Sandim [10] (c) Lin [8] (d) Our IA (e) Our GE

Figure 8: Comparison between different boundary detection methods in a 2D dam-break
simulation using SPH (top) at t = 1.4. The misclassified particles are highlighted (bottom):
FP (red) and FN (blue).

In search of a balance between accuracy and efficiency in IA and GE methods,

we choose the maximum depth of 6 in all experiments carried out below.

Figure 8 provides a qualitative comparison by showing the misclassified

particles (FP and FN) resulting from each technique in an SPH simulation265

of a 2D dam-break problem, as described in [9]. The zoomed rectangle in this

figure shows that our geometric approaches can capture cavities and thin sheets

of fluid better than any other detection method due to the reduced number of

misclassified particles.

Figure 9: Boundary detection using IA in a single vortex at different times t = 0.0, 0.25, 0.5
and 1.0 (from left to right): boundary particles (green) and interior particles (brown).

16

(a) t = 0.00 (b) t = 2.48

(c) t = 4.95 (d) t = 7.43

Figure 10: Boundary detection using GE in an SPH flow simulation of an injector (blue) with
inlet velocity of 4m/s in a domain with an obstacle (gray) at different times (t): boundary
particles (green) and interior particles (brown).

Figure 9 shows the behavior of the particles in the classical single vortex270

experiment, as detailed by Enright et al. [21]. Our IA method detects the

boundary particles gracefully, even when the particles are compressed due to a

considerable stretching caused by the vortex flow field.

Figure 10 shows an SPH flow simulation of a liquid been injected in a domain

with an obstacle. Our GE method captures the bubbles formed by the impact275

of the liquid against a rigid obstacle.

Figures 11 and 12 depict the boundary detection using IA and GE methods in

complex free-surface flows in 3D resulting from the impact of a double dam-break

and against a rigid tall obstacle after a single dam-break, respectively. Our

geometric methods are resilient to the fragmentation of the interface and the280

thin layers of particles created by the impact.

17

Figure 11: Boundary particles detected by our IA method in an SPH flow simulation of a
dam-break problem of two liquid columns at opposite corners of a container with a square
base of size 2.5 and height 3.5 at different times (t).

All SPH flow simulations presented in this section were performed using the

computational platform SPHysics [22].

Beyond SPH, Figure 13 shows the versatility of our GE method when applied

to detect the boundary particles in an Affine Particle-in-Cell (APIC) [23] flow285

simulation of a liquid sloshing in a spherical tank. In this experiment, we use

the APIC implementation provided by Kim [24].

Similar to the level-set definition from the boundary particles introduced by

Marrone et al. [9], Figure 14 demonstrates the effectiveness of our geometric

approach when the free-surface is reconstructed from the level-set of the Enright290

test [21] generated by Sandim et al.’s algorithm [25].

(a) t = 0.0 (b) t = 0.2

Figure 12: Boundary particles detected by our GE method in an SPH flow simulation of the
impact against a rigid obstacle after a dam-break, as reported in [9].

18

(a) t = 0.0 (b) t = 0.3

(c) t = 0.6 (d) t = 0.9

Figure 13: APIC flow simulation of liquid sloshing starting in a section of a sphere of
diameter 0.8: boundary particles detected by our GE method at different time instants.

4.1. Quantitative analysis

To perform quantitative comparisons between different boundary detection

methods, we measure the accuracy of each method using the metric proposed by

Sandim et al. [10]:

M = Rec · (1− FPR) ,

where Rec = TP/(TP+FN) and FPR = FP/(P+TN) are well-known metrics

in data analysis [26] called Recall and False Positive Rate (FPR), respectively.

Recall measures the accuracy of a method in detecting boundary particles295

precisely among the actual set of boundary particles. The best result occurs

when Rec = 1, meaning that all boundary particles were classified correctly,

although of the possible presence of false positives. While FPR quantifies how

many interior particles were misclassified as boundary. The best case occurs

19

Figure 14: The Enright test at different times t = 0.0, 0.5, 1.0 and 1.5 (from left to right):
the boundary particles detected by our GE method (at top) and its level-set (at bottom).

when FPR = 0, when no interior particles have been classified as boundary.300

Thus, the best classification occurs when the combined metric M reaches its

maximum value of 1, i.e. when the Recall is maximum, and FPR is minimum

simultaneously.

Table 1 and Table 2 show the number of particles (|P|), the parameter r,

and the average scores resulting from each technique in 2D and 3D, respectively.305

We apply the same parameters as suggested in the corresponding paper of each

technique. Remembering, for the assessments of IA and GE, we choose the

maximum depth of 6. Notice that our interval approaches reliably detect all

boundary particles, providing certified results with Rec = 1. Moreover, the GE

approach outperforms the other methods in all experiments.310

We implemented the 2D version of our techniques in Python and the 3D ver-

sion in C++. All boundary detection methods in C++ were parallelized using

OpenMP, except the ground truth [12] due to its complexity. All experiments

have been performed on a computer equipped with processor Intel i7-8750H

with six 2.2GHz cores and 16GB RAM. Table 3 shows the computational times315

regarding the number of processor cores for the experiments in 3D. The column

speedup is the relation 1-core/6-core, and the last column is how much faster

20

Table 1: Quantitative analysis between different boundary detection methods in 2D (best
results are shown in bold).

Experiment |P| r Methods Rec FPR M

Figure 8 11.2k 0.009

Marrone et al. [9] 0.9767 0.0245 0.9523
Sandim et al. [10] 0.9979 0.0184 0.9796
Lin et al. [8] 0.9762 0.0189 0.9577
Our IA 1.0000 0.0036 0.9964
Our GE 1.0000 0.0016 0.9984

Figure 9 837 0.022

Marrone et al. [9] 0.9779 0.0701 0.9093
Sandim et al. [10] 1.0000 0.0776 0.9224
Lin et al. [8] 0.9982 0.0642 0.9341
Our IA 1.0000 0.0569 0.9431
Our GE 1.0000 0.0472 0.9528

Figure 10 [5k, 23.4k] 0.051

Marrone et al. [9] 0.9735 0.0136 0.9602
Sandim et al. [10] 0.9540 0.0040 0.9502
Lin et al. [8] 0.9307 0.0106 0.9209
Our IA 1.0000 0.0052 0.9948
Our GE 1.0000 0.0014 0.9986

Table 2: Quantitative analysis between different boundary detection methods in 3D (best
results are shown in bold).

Experiment |P| r Methods Rec FPR M

Figure 11 275.4k 0.033

Marrone et al. [9] 0.9127 0.0304 0.8850
Sandim et al. [10] 0.9992 0.0269 0.9723
Our IA 1.0000 0.0094 0.9906
Our GE 1.0000 0.0065 0.9935

Figure 12 1.1M 0.007

Marrone et al. [9] 0.9708 0.0376 0.9343
Sandim et al. [10] 0.9998 0.0298 0.9700
Our IA 1.0000 0.0122 0.9878
Our GE 1.0000 0.0070 0.9930

Figure 13 550k 0.007

Marrone et al. [9] 0.6928 0.0269 0.6742
Sandim et al. [10] 0.9938 0.0338 0.9602
Our IA 1.0000 0.0169 0.9831
Our GE 1.0000 0.0089 0.9911

Figure 14 1.9M 0.005

Marrone et al. [9] 0.9708 0.0376 0.9343
Sandim et al. [10] 0.9998 0.0298 0.9700
Our IA 1.0000 0.0122 0.9878
Our GE 1.0000 0.0070 0.9930

Figure 15 [22k, 3.2M] 0.010

Marrone et al. [9] 0.6727 0.1729 0.5564
Sandim et al. [10] 0.99908 0.2027 0.7965
Our IA 1.0000 0.2219 0.7781
Our GE 1.0000 0.0787 0.9213

is a detection method than the exact method, i.e., the rate of CPU time of a

detection method over the exact method using a single core. As can be seen,

the GE method is almost twice as fast as the exact method in the worst case.320

21

Table 3: Average computational times (in seconds) per time-step.

Experiment |P| Methods 1-core 6-core speedup rate

Figure 11 275.4k

Haque and Dilts [12] 19.70 7 7 1.00
Marrone et al. [9] 4.77 0.97 4.91 4.13
Sandim et al. [10] 4.68 1.02 4.59 4.21
Our IA 15.26 2.85 5.35 1.29
Our GE 10.60 2.38 4.46 1.86

Figure 12 1.1M

Haque and Dilts [12] 113.00 7 7 1.00
Marrone et al. [9] 31.09 6.52 4.77 3.63
Sandim et al. [10] 23.37 5.37 4.35 4.84
Our IA 81.32 15.07 5.39 1.39
Our GE 61.45 13.68 4.49 1.84

Figure 13 550k

Haque and Dilts [12] 112.89 7 7 1.00
Marrone et al. [9] 15.51 3.60 4.30 7.28
Sandim et al. [10] 17.03 5.73 2.97 6.63
Our IA 48.36 9.95 4.86 2.33
Our GE 37.10 8.48 4.38 3.04

Figure 14 1.9M

Haque and Dilts [12] 649.05 7 7 1.00
Marrone et al. [9] 149.16 35.53 4.20 4.35
Sandim et al. [10] 74.85 21.21 3.53 8.67
Our IA 362.61 70.32 5.16 1.79
Our GE 300.71 71.73 4.19 2.19

The scalability of the detection methods is measured on a mushroom jet

simulation using SPH, as illustrated by Figure 15. In this simulation, more than

3 million particles are inserted in the system along the time. The computational

time of GE method is located between the exact and the fastest methods.

5. Conclusion325

We have presented two novel methods for detecting boundary particles in

both 2D and 3D domains. These methods are tailored to particle-based methods

in free-surface flow simulations. We combine a robust purely geometric sphere

covering tests based on interval analysis with an adaptive spatial subdivision

of the sphere associated with a given particle. Our approaches outperform the330

state-of-the-art boundary detection methods as attested by the set of experiments

and comparisons carried out in the paper. As an application, we show that

the proposed methods can be applied to define a level-set function from the

boundary particles by using the strategy provided by Sandim et al. [25].

22

Figure 15: SPH flow simulation of a mushroom jet with inlet velocity of 5m/s. On the top,
the level-set from the boundary particles detected by our GE method at t = 0.5. On the
bottom-left, the sketch of the problem geometry. On the bottom-right, the computational
times (in seconds) of each detection method: Haque and Dilts [12] (), Marrone et al. [9] (),
Sandim et al. [10] (), our IA (), and our GE ().

As future work, we intend to port our geometric methods to GPU architecture,335

since the particle classification is performed locally and independently for each

particle. Another direction is to apply our boundary detection to adapt tree-

based grids dynamically around the liquid interface in fluid simulations [27] and

in particle remeshing applications [28] as well.

23

Acknowledgements340

We want to thank the anonymous reviewers for their suggestions. We also

thank Cristin Barghiel from SideFX for their kind donation of the Houdini soft-

ware. This study was financed in part by the Coordenação de Aperfeiçcoamento

de Pessoal de Ńıvel Superior – Brazil (CAPES), by the National Council for Scien-

tific and Technological Development – Brazil (CNPq) under grants 301642/2017-6345

and 301244/2017-0, and the São Paulo Research Foundation (FAPESP) under

grant 2019/23215-9. The computational resources provided by the Center for

Mathematical Sciences Applied to Industry (CeMEAI), also funded by FAPESP

(grant 2013/07375).

References350

[1] G. Liu, M. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle

Method, World Scientific, 2003.

[2] G. A. Dilts, Moving least-squares particle hydrodynamics II: conservation

and boundaries, Int. J. Numer. Meth. Eng. 48 (10) (2000) 1503–1524. doi:

10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D.355

[3] S. Koshizuka, K. Shibata, M. Kondo, T. Matsunaga, Moving Particle Semi-

Implicit Method, Academic Press, 2018.

[4] G. F. Fasshauer, Meshfree Approximation Methods with MATLAB, World

Scientific, 2007.

[5] V. P. Nguyen, T. Rabczuk, S. Bordas, M. Duflot, Meshless methods: A360

review and computer implementation aspects, Math. Comput. Simulat.

79 (3) (2008) 763 – 813. doi:https://doi.org/10.1016/j.matcom.2008.

01.003.

[6] N. Flyer, G. A. Barnett, L. J. Wicker, Enhancing finite differences with radial

basis functions: experiments on the Navier-Stokes equations, J. Comput.365

24

http://dx.doi.org/10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D
http://dx.doi.org/10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D
http://dx.doi.org/10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2008.01.003
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2008.01.003
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2008.01.003

Phys. 316 (2016) 39–62. doi:https://doi.org/10.1016/j.jcp.2016.02.

078.

[7] S. M. Hosseini, J. J. Feng, Pressure boundary conditions for computing

incompressible flows with SPH, J. Comput. Phys. 230 (19) (2011) 7473–7487.

doi:https://doi.org/10.1016/j.jcp.2011.06.013.370

[8] Y. Lin, G. Liu, G. Wang, A particle-based free surface detection method

and its application to the surface tension effects simulation in smoothed

particle hydrodynamics (SPH), J. Comput. Phys. 383 (2019) 196 – 206.

doi:https://doi.org/10.1016/j.jcp.2018.12.036.

[9] S. Marrone, A. Colagrossi, D. Le Touzé, G. Graziani, Fast free-surface375

detection and level-set function definition in SPH solvers, J. Comput. Phys.

229 (10) (2010) 3652–3663. doi:https://doi.org/10.1016/j.jcp.2010.

01.019.

[10] M. Sandim, D. Cedrim, L. G. Nonato, P. Pagliosa, A. Paiva, Boundary

detection in particle-based fluids, Comput. Graph. Forum 35 (2) (2016)380

215–224. doi:10.1111/cgf.12824.

[11] P.-P. Wang, Z.-F. Meng, A.-M. Zhang, F.-R. Ming, P.-N. Sun, Improved

particle shifting technology and optimized free-surface detection method

for free-surface flows in smoothed particle hydrodynamics, Comput. Meth.

Appl. Mech. Eng. 357 (2019) 112580. doi:https://doi.org/10.1016/j.385

cma.2019.112580.

[12] A. Haque, G. A. Dilts, Three-dimensional boundary detection for particle

methods, J. Comput. Phys. 226 (2) (2007) 1710 – 1730. doi:https://doi.

org/10.1016/j.jcp.2007.06.012.

[13] E. Y. Lo, S. Shao, Simulation of near-shore solitary wave mechanics by an390

incompressible SPH method, Appl. Ocean Res. 24 (5) (2002) 275 – 286.

doi:https://doi.org/10.1016/S0141-1187(03)00002-6.

25

http://dx.doi.org/https://doi.org/10.1016/j.jcp.2016.02.078
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2016.02.078
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2016.02.078
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2011.06.013
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.12.036
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2010.01.019
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2010.01.019
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2010.01.019
http://dx.doi.org/10.1111/cgf.12824
http://dx.doi.org/https://doi.org/10.1016/j.cma.2019.112580
http://dx.doi.org/https://doi.org/10.1016/j.cma.2019.112580
http://dx.doi.org/https://doi.org/10.1016/j.cma.2019.112580
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2007.06.012
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2007.06.012
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2007.06.012
http://dx.doi.org/https://doi.org/10.1016/S0141-1187(03)00002-6

[14] X. He, N. Liu, G. Wang, F. Zhang, S. Li, S. Shao, H. Wang, Staggered

meshless solid-fluid coupling, ACM Trans. Graph. 31 (6) (2012) 149:1–149:12.

doi:10.1145/2366145.2366168.395

[15] X. Liu, P. Lin, S. Shao, An ISPH simulation of coupled structure interaction

with free surface flows, J. Fluids Struct. 48 (2014) 46–61. doi:https:

//doi.org/10.1016/j.jfluidstructs.2014.02.002.

[16] P. Randles, L. Libersky, Smoothed particle hydrodynamics: Some re-

cent improvements and applications, Comput. Meth. Appl. Mech. Eng.400

139 (1) (1996) 375– 408. doi:https://doi.org/10.1016/S0045-7825(96)

01090-0.

[17] A. Barecasco, H. Terissa, C. Naa, Simple free-surface detection in two and

three-dimensional SPH solver, arXiv (2013) 1–10arXiv:1309.4290.

[18] E.-S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, P. Stansby, Com-405

parisons of weakly compressible and truly incompressible algorithms for

the SPH mesh free particle method, J. Comput. Phys. 227 (18) (2008)

8417–8436. doi:https://doi.org/10.1016/j.jcp.2008.06.005.

[19] S. Katz, A. Tal, R. Basri, Direct visibility of point sets, ACM Trans. Graph.

26 (3) (2007) . doi:10.1145/1276377.1276407.410

[20] M. J. C. Ramon E. Moore, R. Baker Kearfott, Introduction To Interval

Analysis, SIAM, 2009.

[21] D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set

method for improved interface capturing, J. Comput. Phys. 183 (1) (2002)

83–116. doi:https://doi.org/10.1006/jcph.2002.7166.415

[22] M. Gomez-Gesteira, B. Rogers, A. Crespo, R. Dalrymple,

M. Narayanaswamy, J. Dominguez, SPHysics – development of a free-surface

fluid solver – Part 1: Theory and formulations, Comput. Geosci. 48 (2012)

289 – 299. doi:https://doi.org/10.1016/j.cageo.2012.02.029.

26

http://dx.doi.org/10.1145/2366145.2366168
http://dx.doi.org/https://doi.org/10.1016/j.jfluidstructs.2014.02.002
http://dx.doi.org/https://doi.org/10.1016/j.jfluidstructs.2014.02.002
http://dx.doi.org/https://doi.org/10.1016/j.jfluidstructs.2014.02.002
http://dx.doi.org/https://doi.org/10.1016/S0045-7825(96)01090-0
http://dx.doi.org/https://doi.org/10.1016/S0045-7825(96)01090-0
http://dx.doi.org/https://doi.org/10.1016/S0045-7825(96)01090-0
http://arxiv.org/abs/1309.4290
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2008.06.005
http://dx.doi.org/10.1145/1276377.1276407
http://dx.doi.org/https://doi.org/10.1006/jcph.2002.7166
http://dx.doi.org/https://doi.org/10.1016/j.cageo.2012.02.029

[23] C. Jiang, C. Schroeder, J. Teran, An angular momentum conserving affine-420

particle-in-cell method, J. Comput. Phys. 338 (2017) 137–164. doi:10.

1016/j.jcp.2017.02.050.

[24] D. Kim, Fluid Engine Development, CRC Press, 2016.

[25] M. Sandim, N. Oe, D. Cedrim, P. Pagliosa, A. Paiva, Boundary particle

resampling for surface reconstruction in liquid animation, Computers &425

Graphics 84 (2019) 55 – 65. doi:https://doi.org/10.1016/j.cag.2019.

08.011.

[26] T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 (8)

(2006) 861 – 874. doi:https://doi.org/10.1016/j.patrec.2005.10.

010.430

[27] M. A. Olshanskii, K. M. Terekhov, Y. V. Vassilevski, An octree-based solver

for the incompressible Navier–Stokes equations with enhanced stability and

low dissipation, Computers & Fluids 84 (2013) 231 – 246. doi:https:

//doi.org/10.1016/j.compfluid.2013.04.027.

[28] A. Obeidat, S. P. Bordas, An implicit boundary approach for viscous435

compressible high reynolds flows using a hybrid remeshed particle hydro-

dynamics method, J. Comput. Phys. 391 (2019) 347 – 364. doi:https:

//doi.org/10.1016/j.jcp.2019.01.041.

Appendix

Algorithm 4 shows pseudo code for computing the image of a 3D query box440

Q = [xmin, xmax] × [ymin, ymax] × [zmin, zmax] by the function fk defining the

sphere Sk. As mentioned in the text, we avoid using outward rounding, because

the geometric resolution is much lower than the numerical resolution of the

floating point system.

27

http://dx.doi.org/10.1016/j.jcp.2017.02.050
http://dx.doi.org/10.1016/j.jcp.2017.02.050
http://dx.doi.org/10.1016/j.jcp.2017.02.050
http://dx.doi.org/https://doi.org/10.1016/j.cag.2019.08.011
http://dx.doi.org/https://doi.org/10.1016/j.cag.2019.08.011
http://dx.doi.org/https://doi.org/10.1016/j.cag.2019.08.011
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2013.04.027
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2013.04.027
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2013.04.027
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.01.041
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.01.041
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.01.041

Algorithm 4: Ad-hoc interval evaluation of fk(Q)

function FK(xmin, xmax, ymin, ymax, zmin, zmax):

global xk, yk, zk, r

[amin, amax]← square (xmin, xmax, xk)

[bmin, bmax]← square (ymin, ymax, yk)

[cmin, cmax]← square (zmin, zmax, zk)

fmin ← amin + bmin + cmin − r2
fmax ← amax + bmax + cmax − r2

return [fmin, fmax]

function square(tmin, tmax, t):

tmin ← tmin − t
tmax ← tmax − t
if tmin ≥ 0 then

fmin ← t2min

fmax ← t2max

else if tmax ≤ 0 then

fmin ← t2max

fmax ← t2min

else

fmin ← 0

fmax ← max{t2min, t
2
max}

end

return [fmin, fmax]

445

28

	Introduction
	Boundary particles
	Boundary detection using interval analysis
	Using interval arithmetic
	Using geometric enclosures

	Results
	Quantitative analysis

	Conclusion

