
The Visual Computer manuscript No.
(will be inserted by the editor)

Acquiring periodic tilings of regular polygons from images

José Ezequiel Soto Sánchez · Asla Medeiros e Sá · Luiz Henrique de Figueiredo

Full paper accepted in CGI 2019 / The Visual Computer. Last revised on March 28, 2019.

Abstract We describe how we have acquired geometrical
models of many periodic tilings of regular polygons from
two large collections of images. These models are based on a
simplification of the representation recently proposed by us
that uses complex numbers. We also describe an algorithm
for deciding when two representations give the same tiling,
which was used to identify coincidences in these collections.

Keywords tilings · tessellations · geometrical models

1 Introduction

Tiling the plane with regular polygons remains a fascinating
subject [6,3,10,12], with a venerable history [5] going back
400 years to Kepler’s book “Harmonices Mundi” of 1619.
Yet, no complete classification of these tilings exists. Crucial
to any classification is a representation that can be used to
compare tilings for equality. We have recently proposed such
a representation [19] but left deciding equality as future work.

In this paper, we review and simplify our original repre-
sentation in section 2 and in section 3 give an algorithm that
exploits the simplified representation for deciding when two
representations give the same tiling. In sections 4 and 5 we de-
scribe in detail how we have acquired representations for the
tilings in two large collections: the one in the catalog by Sá
and Sá [20], which contains images of vertex constellations
as dots, and the one by Galebach [4], which contains line
drawings of tilings. We used our equality decision algorithm
to find coincident tilings in these two collections.

José Ezequiel Soto Sánchez and Luiz Henrique de Figueiredo
IMPA, Rio de Janeiro, Brazil

Asla Medeiros e Sá
FGV EMAp, Rio de Janeiro, Brazil

2 Representing tilings

To represent a periodic tiling of the plane by regular polygons
we focus solely on the translational symmetries of the tiling,
purposely ignoring rotations and reflections. Our representa-
tion of a tiling contains three pieces of data: a small set of
directions for the edges, two translation vectors that define a
fundamental domain or basic cell for the tiling, and a set of
seeds in the basic cell that represent each vertex in the tiling
by translations. An example will be shown below. We have
argued that this representation is simple to understand and to
use to reconstruct the tiling [19].

We start by normalizing the scale, position, and orienta-
tion of the tiling by taking the edges to have unit length (all
edges have the same length since they are sides of regular
polygons) and choosing one of the vertices to be the origin
and one of the edges to be horizontal. After this normaliza-
tion, the edges of the tiling are aligned with the complex n-th
roots of unity for n ∈ {1,2,3,4,6,8,12}. These are called
the basic directions. Since there is only one tiling containing
octagons (Fig. 1), we shall disregard n = 8 here. Thus, the
edges of the tiling are aligned with the complex 12-th roots
of unity, that is, the powers of ω = exp(2πi

12) = (
√

3+ i)/2.
We shall see how this reduction simplifies the representation.

Fig. 1 The only periodic tiling of the plane containing octagons.

2 J. E. Soto Sánchez, A. Medeiros e Sá, L. H. de Figueiredo

Fig. 2 A tiling and its representation data: translation vectors (in blue
and red), basic translation cell (in gray), and seeds (in black) [19].

An example. Consider the tiling in Fig. 2. Our original rep-
resentation [19] uses three basic directions for the edges:
ω1 = 1 = ω0, ω4 = i = ω3, and ω6 = ω2. The translation
vectors are t1 = ω1 (in blue) and t2 = ω4 +ω6 (in red). They
define a parallelogram, the basic cell (in gray). The seeds are
the vertices inside the basic cell: the origin and ω1 +ω4 (in
black). Thus, according to our original scheme [19], the data
representing this tiling is:

basic directions: ω1, ω4, ω6
translation vectors: [1,0,0], [0,1,1]

seeds: [0,0,0], [1,1,0]

As suggested by this example, the key concept in our rep-
resentation is to represent vertices and translation vectors us-
ing integer linear combinations of the basic directions. In our
original scheme [19], the designer must choose an ordered
set of non-redundant basic directions to achieve uniqueness
of representation for vertices and translation vectors. Thus,
the representation depends on that choice. Comparing rep-
resentations based on different sets of basic directions is
complicated, and was left as future work.

A simplified representation. We simplify the representation
of tilings first by noting that the expressions of vertices and
translation vectors in terms of basic directions translate into
polynomials in ω with integer coefficients. The set of such
expressions is traditionally denoted by Z[ω]. Our simplifi-
cation is based on the key observation that {1,ω,ω2,ω3}
is an additive basis for Z[ω] over Z, because the minimal
polynomial of ω is ω4−ω2 +1. This allows us to express
all powers ωk for k ≥ 4 as follows:

ω4 =−1+ω2 = [−1,0,1,0]
ω5 =−ω +ω3 = [0,−1,0,1]
ω6 =−1 = [−1,0,0,0]
ω7 =−ω = [0,−1,0,0]
ω8 =−ω2 = [0,0,−1,0]
ω9 =−ω3 = [0,0,0,−1]
ω10 = 1−ω2 = [1,0,−1,0]
ω11 = ω−ω3 = [0,1,0,−1]
ω12 = 1 = [1,0,0,0]

Thus, all polynomial expressions in ω reduce uniquely
to cubic expressions. Therefore, we can represent all tilings
using a fixed set of basic directions: {1,ω,ω2,ω3}. This
completely eliminates the choice of basic directions in our
original scheme [19]. It also opens the door to the equality
decision algorithm, as explained in the next section.

Every vertex in the tiling has a unique expression as an in-
teger linear combination of the basic directions {1,ω,ω2,ω3}.
As before [19], this expression is found by following any path
connecting the origin to the vertex, adding each edge in the
path, and simplifying the sum using the equations above.
Alternatively, the sum representing the path is a polynomial
in ω and the simplified sum is the remainder of this polyno-
mial modulo the minimal polynomial ω4−ω2 +1 (Fig. 3).

In our simplified scheme, the data for the tiling in Fig. 2 is:

basic directions: 1, ω , ω2, ω3

translation vectors: [1,0,0,0], [0,0,1,1]
seeds: [0,0,0,0], [1,0,0,1]

because t1 =ω1 = 1, t2 =ω4+ω6 =ω2+ω3, and the second
seed is ω1 +ω4 = 1+ω3. Although it contains one more
coordinate for each element in this case (but not always), our
representation is actually simpler because the set of basic
directions is fixed and can be kept implicit. The only data
are the coordinates of translation vectors and seeds. Uniform
data simplifies further processing.

Vertices as integer linear combinations of basic directions

! + !10 + !11 + !0 + ! + !2 + !3 = !11 + !10 + !3 + !2 + 2! + 1

= V � O

Fig. 3 Paths are polynomials in ω . This path from the blue origin to
the red vertex is ω +ω10 +ω11 +ω0 +ω +ω2 +ω3, which reduces to
2+3ω . Thus, the red vertex has coordinates [2,3,0,0] in Z[ω].

3 Equivalent representations

Even with a fixed set of basic directions, a tiling can have sev-
eral equivalent representations. Indeed, there is much room
for choosing the translation vectors for a given translation
grid. This choice affects the basic cell and so the seeds. There
is also a little room for choosing which vertex is the ori-
gin, because not every tiling is vertex-transitive (the tiling

Acquiring periodic tilings of regular polygons from images 3

in Fig. 2 has two types of vertices), and a little room for
choosing which edge is horizontal, because not every tiling
is edge-transitive (the tiling in Fig. 2 has four types of edges).
These two choices affect the seeds and the expression of the
vertices as integer linear combinations of the basic directions.

Choice of translation vectors. When do two pairs of transla-
tion vectors determine the same translation grid? Take a pair
of translation vectors t1, t2 and write them as integer linear
combinations of the basic directions:

t1 = a111+a12ω +a13ω2 +a14ω3

t2 = a211+a22ω +a23ω2 +a24ω3

In matrix form we get

(
t1
t2

)
=

(
a11 a12 a13 a14
a21 a22 a23 a24

)
1
ω

ω2

ω3


or, more concisely, T = AW .

Two pairs of translation vectors T and T ′ determine the
same translation grid iff there is an invertible 2×2 integer
matrix U such that T ′ =UT . (Note that U is invertible over Z
and so has determinant ±1. There are infinitely many such
matrices U , with arbitrarily large entries.) Write T = AW and
T ′ = A′W as above. Then, T ′ =UT iff A′ =UA, because the
basic directions in W are linearly independent over Z.

The question now is: Given two 2× 4 integer matrices
A and A′, when is there an invertible 2×2 integer matrix U
such that A′ = UA? There is a classical algebraic tool that
decides exactly this problem: the Hermite normal form of
integer matrices [1]. The Hermite normal form is an integer
analogue of the reduced echelon form and can be found with
an integer version of Gaussian elimination. More precisely, if
A is an m×n integer matrix, then there is an invertible m×m
integer matrix U such that H =UA is an m×n integer matrix
in row-reduced form, called the Hermite normal form of A.

The key result relevant to our problem is that two pairs
of translation vectors T = AW and T ′ = A′W determine the
same translation grid iff the Hermite normal forms of A
and A′ coincide. This follows from the uniqueness of the
Hermite normal form. We have thus solved the first problem.

Choice of horizontal edge. The second problem is how to
deal with the choice of which edge is horizontal. Since every
edge is aligned with a power of ω , any two edges differ in
direction by a power of ω , and this corresponds to a multi-
plication by ωk for some k. Therefore, we can compute the
Hermite normal form of AMk, where M is the matrix of the
multiplication by ω in the basis {1,ω,ω2,ω3}:

ω


1
ω

ω2

ω3

=


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 1 0




1
ω

ω2

ω3

= MW

We try all 12 possibilities, k = 0, . . . ,11. If the Hermite nor-
mal forms of AMk and A′ coincide for some k, then the two
representations use the same grid after a rotation.

Choice of origin. Once we have determined that the trans-
lation grids of two representations are the same, up to a
rotation Mk, it remains to test whether the vertices are the
same. This depends on the seeds. Two representations having
the same translation grid and seed sets S1 and S2 of the same
size give the same tiling iff there is a seed s0 ∈ S1 such that,
for each seed s1 ∈ S1, s1− s0 is mapped under Mk to a vertex
generated by S2. This test uses their coordinates in Z[ω].

4 Acquiring tilings from images

We have acquired representations for the tilings in two large
collections. The collection by Sá and Sá [20] contains 213
images of vertex constellations as colored dots, such as the
one in Fig. 4, which is a 189× 183 PNG image. The dots
have diameter about 8 pixels. The collection by Galebach [4]
contains 1351 images with low-resolution line drawings of
tilings, such as the one in Fig. 5, which is a 768×576 PNG
image. The lines are 1-pixel wide and have no antialiasing.

Fig. 4 Sample input image: tiling GMUW from Sá and Sá [20].

Fig. 5 Sample input image: the 2-uniform tiling 1 from Galebach [4].

4 J. E. Soto Sánchez, A. Medeiros e Sá, L. H. de Figueiredo

Fig. 6 Our pipeline. From top to bottom, left to right: vertices extracted from image; spanning tree; stars; basic cell, translation vectors, and seeds.

We followed the pipeline below for acquiring representa-
tions of tilings from images, as suggested before [19].

1. Find approximate coordinates for the vertices in the tiling.
2. Correct the vertices so that the edges have unit length and

are aligned with the basic directions.
3. Find the edges.
4. Find the translation vectors.
5. Find the seeds.
6. Find minimal translation vectors and seed sets.

We give below complete details for each step. Fig. 6 illus-
trates this acquisition pipeline for the input image in Fig. 4.

The pipeline relies on our simplified representation of
the vertices as points in Z[ω], which are found in step 2. As
mentioned before [19], the vertices are the central elements
of the tiling. Edges and faces are easily deduced from the

vertices, since the tiling is composed of regular polygons.
This approach is reminiscent of the regular systems of points
discussed by Hilbert and Cohn-Vossen [8].

Acquiring vertices. The goal of this step is to find approx-
imate coordinates for the vertices in the image. This is the
only step that depends on the nature of the input. We use
standard image processing to identify and extract the vertices
from the input image.

For vertex constellations, we found the vertices by finding
the centroids of the connected components in the image, us-
ing regionprops in MATLAB. We had to rotate a few images
to ensure that every image had a horizontal edge.

For line drawings, we convolved the input image with
a 3× 3 kernel of ones. In this new image, we selected the
pixels having value at least four. The corresponding pixels

Acquiring periodic tilings of regular polygons from images 5

in the original image surround a vertex, where at least three
lines meet. Recall that lines are 1-pixel wide and have no an-
tialiasing. We then found the vertices by finding the centroids
of the connected components in the new image, as before.

Finally, we ensured that all implied edges have approxi-
mately unit length by scaling the extracted points about their
centroid with a scale of 1/d, where d is the distance from the
origin to its nearest neighbor. The origin is the point nearest
to the centroid of the point cloud.

Correcting vertices. The approximate (x,y) coordinates for
the vertices found in the first step are corrected in the second
step by enforcing the restriction that the edges have unit
length and are aligned with the basic directions. The output of
this step are exact coordinates in Z[ω] for the vertices in the
tiling. When needed, the corresponding Cartesian coordinates
are easily found from the Cartesian coordinates of the basic
directions {1,ω,ω2,ω3}, which are known exactly to any
precision required.

We build a spanning tree T for the vertices using front
propagation as follows. The tree T and the front F start with
the origin, which is the vertex closest to the centroid of the
vertices. While F is not empty, we remove a vertex v ∈ F and
find all vertices w not in T such that 1−δ < d(v,w)< 1+δ .
The edge vw is added to the tree T and the vertex w is added to
the front F . Ideally, we seek those w such that d(v,w)= 1, but
we need to use a tolerance δ because the vertex coordinates
coming from the first step are approximate. The comfortable
value δ = 0.35 worked for all 1564 vertex clouds. This large
tolerance attests to how robust this step is.

For each edge vw, we store for w its coordinates in
Z[ω], which are given by v + ωk, where ωk is the direc-
tion closest to vw. (Not having to deal with edges from oc-
tagons here significantly helps robustness, since the candi-
date edges are better separated.) Thus, if v = [a1,a2,a3,a4]

and ωk = [b1,b2,b3,b4], as given in section 2, then w =

[a1 + b1,a2 + b2,a3 + b3,a4 + b4]. The origin is of course
[0,0,0,0] in Z[ω].

The spanning tree T is just a tool for systematically visit-
ing all vertices and finding their coordinates in Z[ω]. These
coordinates for a vertex v correspond to the unique path in T
from the origin to v. The tree T is not needed in the other
steps and is discarded.

Finding edges. We find the edges of the tiling by finding
the star of each vertex v, that is, the list of vertices w such
that vw is an edge of the tiling, ordered circularly around v
(Fig. 7). Although this finds each edge twice (once as vw and
once as wv), having the stars of the vertices is useful when
finding the translations vectors, as we shall see.

Since each edge vw is aligned with some ωk, we represent
the star of v by the ordered list of the exponents that appear
in these edges (Fig. 7). To avoid testing all possible pairs of

Fig. 7 The red vertices form the star of the black vertex. The edges are
ω0,ω3,ω6,ω8,ω10 and the star is represented by the list [0,3,6,8,10].

vertices to find the edges, we store the vertices in a hash table
indexed by their coordinates in Z[ω], found in the previous
step. Then, to find the edges around a vertex v, we simply
test whether v+ωk is in the hash table. If so, we add k to the
star of v. We test k = 0, . . . ,11 and so the list of exponents is
already ordered. Note again that v+ωk is computed in Z[ω],
using the reductions given in section 2.

Finding translation vectors. In this step, we find two transla-
tion vectors that define a basic cell for the tiling.

A translation vector t must induce an automorphism of
the tiling seen as a graph, that is, it must send every vertex v to
another vertex v′ = v+ t and it must respect edges. However,
this is true only if the vertex cloud is infinite because there
are no automorphisms induced by translations on a finite
cloud. When the vertex cloud is finite, we must settle for a
partial automorphism: some vertices and edges will be sent
outside the cloud, and some vertices and edges in the cloud
will not be the image of any vertex or edge. Therefore, even
efficient algorithms for graph automorphisms [15,11] cannot
find translations, only rotations and reflections.

Note that the problem of finding translation vectors is not
the standard cloud registration problem in computer vision,
which deals with two clouds of points [7]. In that context, the
problem is solved by finding the best rigid transformation
that maps one cloud to the other, in the sense of least squares.
However, we are looking for exact solutions, not approxi-
mate ones. Exact solutions are possible because the vertices
have exact integer coordinates in Z[ω], and so do translation
vectors. Our solution is exact in this sense; it does not use
the (x,y) coordinates of the vertices, which are necessarily
approximate, since they involve

√
3.

To find the translation vectors, we need to analyze the
translational symmetries of the vertex cloud. We try all pos-
sible translations and pick the best ones. Here are the details.

A translation vector must send the origin to another vertex
of the same type in the tiling. A necessary condition for two
vertices to have the same type is that they have the same star,
hence the computation in the previous step. To each vertex v

6 J. E. Soto Sánchez, A. Medeiros e Sá, L. H. de Figueiredo

having the same star as the origin, we assign a score to the
translation vector t that sends the origin to v:

score(t) = #((V ± t)∩V)

Here, V is the vertex cloud and V ± t is the result of translat-
ing V by t in both directions. A vertex w is counted in this
score iff w+ t or w− t is a vertex w′ ∈V and w and w′ have
the same star. This score measures how much of the tiling is
preserved under translation by t. We use coordinates in Z[ω]

to test whether w± t ∈V with the hash table.
We order the pairs (score(t), length(t)) lexicographically

in order of decreasing score and increasing length, and select
the top two translation vectors that are linearly independent.
Including lengths in this selection helps to find a small basic
cell.

Finding seeds. The seeds are the vertices inside the basic cell
determined by the translation vectors t1 and t2 found in the
previous step. The basic cell is {λ1t1 +λ2t2 : λ1,λ2 ∈ [0,1)}.
Note that this cell is half-open, that is, open at the sides not
containing the origin.

For each vertex v in the tiling, we find its coordinates
(λ1,λ2) in the basis (t1, t2) by solving a standard 2×2 linear
system. This step uses the (x,y) coordinates of v, t1, t2. Then
v is a seed iff −ε ≤ λ1,λ2 ≤ 1− ε . This tests ensures that
we find all seeds, including the ones on the closed sides of
the basic cell, but not the ones on its open sides. The value
ε = 10−6 worked well in all cases.

Finding minimal translation vectors. The translation vectors,
the basic cell, and the set of seeds found in the previous steps
may not be the smallest possible. This is due to the size and
shape of the vertex cloud. Nevertheless, if we have succeed
in reproducing almost all vertices in the cloud by translating
the seeds inside the basic cell along the translation vectors,
then we have acquired the tiling correctly. In particular, we
can generate arbitrarily large vertex clouds for the tiling.

We find minimal translation vectors and seed sets by run-
ning steps 3–5 again on a synthetic vertex cloud generated in
a 5×5 grid of translation cells and insisting that the candidate
translations reproduce all vertices in the 3×3 subgrid.

5 Results

We applied the pipeline described in section 4 to the tilings
by Sá and Sá [20] and by Galebach [4]. For each tiling, we
verified how well the tiling reconstructed from our acquired
representation matched the original input data. More pre-
cisely, we computed how many corrected vertices appeared
in the vertex cloud obtained by translating the seeds along
the translation vectors to cover the input cloud.

Table 1 Verification results for the two collections of tilings.

Sá and Sá: % success 100 99 98 96 49
tilings 195 9 7 1 1

Galebach: % success 100 99
tilings 1346 5

The results are shown in Table 1, which should be read
as follows: In the collection of 213 tilings by Sá and Sá, 195
tilings were perfectly reconstructed, 9 tilings had at least
99% success but less than 100%, 7 tilings had at least 98%
success but less than 99%, 1 tiling had at least 96% success
but less than 97%, 1 tiling had at least 49% success but less
than 50%. In the collection of 1351 tilings by Galebach,
the results are even better, probably because their clouds
are larger: 1346 tilings were perfectly reconstructed and the
remaining 5 tilings had at least 99% success.

In summary, these results show over 99% success overall
for the tilings by Sá and Sá: all but one tiling were perfectly
reconstructed except possibly for a few vertices (6 in the
worst case). For the tilings by Galebach, over 99% of the
tilings were perfectly reconstructed with no exceptions; the
five remaining tilings were perfectly reconstructed except for
a few vertices (3 in the worst case). In both collections, the
exceptional vertices that were not reconstructed are typically
at the fringe of the original cloud and have been acquired
erroneously because they have very few neighbors and so the
wrong star.

The only example where our algorithm found an incor-
rect translation cell is the tile named PTU6 by Sá and Sá
(Fig. 8). This failure is due to input data that is insufficient to
recognize the full periodicity of the tiling, even for humans.
Despite appearances, the input image (top) does not have
enough information to allow our algorithm to find the correct
vertical translation, because the neighborhood of the center
hexagon is never fully replicated in the image. The hexagons
in the top and bottom rows are equivalent under a vertical
translation, but they are not equivalent to the hexagons in the
middle row. This is a subtle point even for a human: notice
how the yellow vertices are distributed differently around the
hexagons in the center column. Our algorithm did find one
correct translation (bottom).

Finding coincidences. We used the equality decision algo-
rithm described in section 3 to detect coincidences in the
two collections. To avoid testing all pairs of models, we only
tested pairs with the same number of seeds and basic trans-
lation cells of the same area. These are necessary but not
sufficient conditions for two representations to define the
same tiling. We tested 364 potential coincidences, having
the same number of seeds, area, and Hermite normal form.
We found 143 coincidences, some of which are not obvious
because they involve rotations. Fig. 9 shows an example.

Acquiring periodic tilings of regular polygons from images 7

Fig. 8 The input image does not contain sufficient information for
reconstructing the tiling. The neighborhood of the center hexagon is not
fully replicated in the image.

After a rotation, the tiling GLMT2 in the collection by Sá
and Sá [20] is the same as the 4-uniform tiling 37 and the
4-archimedean, 4-uniform tiling 16 in Galebach [4].

6 Related work

This paper is a significant continuation of our recent work
[19], where we proposed a representation for tilings but used
it mainly for synthesis and rendering. In hindsight, that rep-
resentation is suitable for designing and acquiring tilings
manually, because of the designer can freely choose a set
of non-redundant basic directions. After discarding the only
tiling containing octagons (Fig. 1), we have simplified the
representation to use the natural additive basis of Z[ω] as a
fixed set of basic directions. This simpler and more elegant
representation is a key tool in the automatic acquisition of
tilings from images, while remaining easy and natural for
manual acquisition.

An important class of tilings by regular polygons are
k-uniform tilings, whose vertices form k equivalence classes
with respect to the symmetries of the tiling. The enumeration
of all k-uniform tilings for a given value of k is far from
trivial. Lenngren [12] reviewed the most important steps in
the investigation of k-uniform tilings, summarizing the efforts

Fig. 9 Coincidences in the two catalogs: the tiling in the top row is the
same as the tiling in the bottom row, after a rotation. Input images on
the left, reconstructed tilings on the right.

found in literature on classifying tilings by regular polygons,
and pointing out directions of research in the area.

The collection of tilings by Galebach [4] is the state of the
art in the classification of k-uniform tilings [21]. Only low-
resolution images with line drawings of tilings are available
at that site, but unfortunately not vertex coordinates or code.

Efforts in producing catalogs on tilings of regular poly-
gons are recurrent in the literature. In 1989, Chavey [2] col-
lected results and drawings of regular tilings, arguing that
classifications and theoretical results on the topic are scat-
tered across several papers. Chavey provides drawings of
165 tilings of regular polygons, arranged by vertex orbits
and labelled according to vertex types. Recently, Wikipedia
included a catalog of 564 tilings [22] that cite Chavey [2]
and Galebach [4] as sources. The SVG images in Wikipedia
contain coordinates that could be extracted and used in our
pipeline. However, the tilings in Wikipedia are a subset of
those by Galebach [4] and have fewer vertices.

Liu et al. [14] carefully reviewed the field of compu-
tational symmetry, including the long history of symmetry
detection algorithms, dating back to 1932. They mention that
detection of reflection symmetry used to dominate the field
of symmetry detection in computer vision. Their review clas-
sifies methods by the types of symmetries detected, as well as
the type of method used for detection. We stress that we are
interested only in translations, even though periodic tilings of
regular polygons have several types of symmetries. Thus, our
problem falls into the class of lattice detection algorithms.
Liu et al. [14] classified a few papers as lattice detection.
All of them base their search for translation direction in the
frequency space. Our approach is based on voting schemes,

8 J. E. Soto Sánchez, A. Medeiros e Sá, L. H. de Figueiredo

which are more frequently used to detect rotations and reflec-
tions. We search for global translational symmetry although
we have necessarily only local information in hand.

Liu et al. [13] investigate the problem of automatically
inferring the lattice structure of near-regular textures in real-
world images. The first step toward automatic texel discovery
is the detection of repeated interest points present in the im-
age. The key trade-off is to extract enough interest points to
reveal some repeated structure reliably without overwhelm-
ing the subsequent lattice finder with false positives. Liu
et al. [13] report good performance for their algorithm by
testing it on the data used in Symmetry Detection from Real-
World Images Competition 2013. The problem that we solve
here is different for two main reasons: (1) we seek transla-
tions in Z[ω] and search in a few directions; (2) our data
is composed of several interlocked lattices that share same
translation grid. This would most probably be a challenging
dataset for previous algorithms.

Kaplan [9] presented a method for rendering Islamic
patterns on top of a tiling of the plane. The method is based
on Hankin’s “polygons-in-contact” technique, which dates
back to 1920’s. The method can be directly applied on top of
the periodic tilings by regular polygons that we have acquired,
achieving analogous results. All the derived products, such
as 3D printings of ornaments, can also be produced out of
the tilings acquired here, as well as their duals.

Sá et al. [18] described how, given a volume boundary, to
find a low-density internal mesh that is 3D-printable. Their
method exploits the relationship between primal and dual
tessellations, and has two steps, The first step defines a cell
complex partition for the internal space of the volume. The
second step applies the Skin4Skeleton algorithm, which uses
the dual cell complex to produce a 3D-printable cell-complex
mesh with a parametrized thickness. The same idea is useful
for producing an offset to a polygonal tiling with parame-
terized thickness, and so can be applied for pre-processing
tilings in order to send them to a laser cutter machine.

Nasri and Benslimane [16] proposed a modeling method
to automatically generate periodic Moorish geometric pat-
terns. Their approach is to construct a periodic pattern using
isometric transformations of its template motif. They iden-
tify the shapes vocabulary characterizing the Moorish style
by analyzing a dataset of historical Moorish patterns. The
research context of their paper shares the same background
as the studies and classifications available in literature for
tilings of regular polygons. This fact is not surprising since
the symmetry structure underlying both are the same. In the
case of periodic tilings of regular polygons, the pattern struc-
ture is so rigid that there is little room for playing with shape
grammars, but the overall structure of this paper on Moorish
patterns has the same flavor as the one proposed here, in the
sense that it extracts shape knowledge out of a collection of
given images in order to permit synthesis of periodic patterns.

7 Conclusion

We have described a uniform representation for periodic
tilings of regular polygons that simplifies our original repre-
sentation [19]. We have also described in detail a pipeline
to acquire such representations from images, which we used
on two large collections of tilings [4,20]. This pipeline is
quite robust and can be easily adapted to handle other kinds
of images, by using suitable image processing to extract ver-
tices. Previously [19], we had the user select the vertices
directly on the image, which could even be photographs with
mild perspective distortions. The pipeline can also be used
to handle vector graphics, such as SVG and PostScript, as
long as it is possible to extract vertex coordinates, even in
different coordinate spaces.

The data acquired from the two collections of tilings will
be available at our project web page [17] for further research
in the topic. The data are JSON files containing the name of
the tiling and the coordinates in Z[ω] of its translation vectors
and seeds. These coordinates are very small integers (less
than 15 in absolute value). The file for the whole collection by
Sá and Sá [20] has about 64K bytes; the file for the collection
by Galebach [4] has about 343K bytes.

Acknowledgements We thank Sá and Sá and Galebach for making
their collections of tilings freely available at their websites. The first
author is partially supported by a CNPq doctoral scholarship. The third
author is partially supported by a CNPq research grant. This research
was done in the Visgraf Computer Graphics laboratory at IMPA. Visgraf
is supported by the funding agencies FINEP, CNPq, and FAPERJ, and
also by gifts from IBM Brasil, Microsoft, NVIDIA, and other compa-
nies.

Compliance with ethical standards Conflict of Interest: The authors
declare that they have no conflict of interest.

References

1. Bradley, G.H.: Algorithms for Hermite and Smith normal matrices
and linear Diophantine equations. Mathematics of Computation
25, 897–907 (1971)

2. Chavey, D.: Tilings by regular polygons. II. A catalog of tilings.
Computers & Mathematics with Applications 17, 147–165 (1989)

3. Conway, J.H., Burgiel, H., Goodman-Strauss, C.: The symmetries
of things. AK Peters (2008)

4. Galebach, B.: n-uniform tilings. probabilitysports.com/tilings.html
5. Grünbaum, B., Shephard, G.C.: Tilings by regular polygons. Math-

ematics Magazine 50, 227–247 (1977)
6. Grünbaum, B., Shephard, G.C.: Tilings and patterns. W. H. Free-

man (1989)
7. Hartley, R.I., Zisserman, A.: Multiple view geometry in computer

vision. Cambridge University Press (2004)
8. Hilbert, D., Cohn-Vossen, S.: Geometry and the imagination.

Chelsea (1952)
9. Kaplan, C.S.: Islamic star patterns from polygons in contact. In:

Proceedings of the Graphics Interface 2005, pp. 177–185 (2005)
10. Kaplan, C.S.: Introductory tiling theory for computer graphics.

Synthesis Lectures on Computer Graphics and Animation 4(1),
1–113 (2009)

Acquiring periodic tilings of regular polygons from images 9

11. Kawarabayashi, K.i., Mohar, B.: Graph and map isomorphism and
all polyhedral embeddings in linear time. In: STOC’08, pp. 471–
480. ACM (2008)

12. Lenngren, N.: k-uniform tilings by regular polygons. Tech. Rep.
U.U.D.M. project report 2009:23, Uppsala University (2009)

13. Liu, S., Ng, T., Sunkavalli, K., Do, M.N., Shechtman, E., Carr,
N.: PatchMatch-based automatic lattice detection for near-regular
textures. In: Proceedings of ICCV 2015, pp. 181–189 (2015)

14. Liu, Y., Hel-Or, H., Kaplan, C.S., Gool, L.J.V.: Computational
symmetry in computer vision and computer graphics. Foundations
and Trends in Computer Graphics and Vision 5(1-2), 1–195 (2010)

15. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. Journal
of Symbolic Computation 60, 94–112 (2014)

16. Nasri, A., Benslimane, R.: Parametric shape grammar formalism
for Moorish geometric design analysis and generation. Journal on
Computing and Cultural Heritage 10, 1–20 (2017)

17. Soto Sánchez, J.E., Sá, A.M., de Figueiredo, L.H.: Periodic tilings
of regular polygons. www.impa.br/∼cheque/tiling/

18. Sá, A.M., Echavarria, K.R., Arnold, D.: Dual joints for 3d-
structures. The Visual Computer 30(12), 1321–1331 (2014)

19. Sá, A.M., de Figueiredo, L.H., Soto Sánchez, J.E.: Synthesizing
periodic tilings of regular polygons. In: Proceedings of SIBGRAPI
2018, pp. 17–24. IEEE Computer Press (2018)

20. Sá, R., Sá, A.M.: Sobre malhas arquimedianas. Editora Olhares
(2017)

21. The On-Line Encyclopedia of Integer Sequences: A299780. oeis.
org/A299780

22. Wikipedia: Euclidean tilings by convex regular polygons.
en.wikipedia.org/wiki/Euclidean tilings by convex regular
polygons

