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of an object to which it is applied, it is referred
to as a problem in computational morphology.”

Given a set of points S in the plane,
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Effect of sampling density



Effect of sampling density

r = 0.005 n = 7270
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Effect of sampling density
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Effect of sampling density

r = 0.020 n = 451



Effect of sample quality – false holes



Effect of sample quality – topological irregularities



Tuning parameter µ

scaled nearest neighbor radius of a sample point p Radke (1988)

R(p) = µ r(p)

uv edge of sphere-of-influence diagram when scaled disks intersect

dist(u, v) 6 R(u) + R(v), µ > µ(u, v) =
dist(u, v)

r(u) + r(v)

uvw face of sphere-of-influence diagram when

threshold

µ > µ(u, v,w) = max(µ(u, v),µ(v,w),µ(w,u))
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Effect of sample quality µ = 1
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Effect of sample quality µ = 1.42
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Comparison with α-shapes

critical α = 19.69 α = 21.30 µ = 1.20
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α-spectrum versus µ-spectrum



α-spectrum min 5.73 max 52923.99 not scale invariant



µ-spectrum min 0.50 max 20.80 scale invariant



Conclusion

The sphere-of-influence diagram. . .

reconstructs regions from well-distributed point samples, already for µ = 1

automatically identifies connected components and holes

supports a scaling parameter µ to handle samples of lower spatial quality,
choosing a suitable µ is easier than choosing a suitable α

is a natural subset of the Delaunay triangulation, extracted in linear time

relies on a simple geometric predicate for Delaunay filtering
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