

Region reconstruction with the sphere-of-influence diagram

Luiz Henrique de Figueiredo





Region reconstruction with the sphere-of-influence diagram

Luiz Henrique de Figueiredo

with Afonso Paiva





at Bellairs Workshop on Computational Geometry, Barbados, 2019 photo by Yushi Uno

Pioneer in Computational Geometry, the study of algorithms for geometric problems



Pioneer in Computational Geometry, the study of algorithms for geometric problems

Coined the term Computational Morphology

### Computational Morphology

A Computational Geometric Approach to the Analysis of Form

Edited by

Godfried T. TOUSSAINT School of Computer Science McGill University Montreal, Quebec Canada

1988

Pioneer in Computational Geometry, the study of algorithms for geometric problems

Coined the term Computational Morphology

"When a computational geometric structure or operator is intended to extract the shape or form of an object to which it is applied, it is referred to as a problem in computational morphology."

### Computational Morphology

A Computational Geometric Approach to the Analysis of Form

Edited by

Godfried T. TOUSSAINT School of Computer Science McGill University Montreal, Quebec Canada

1988

Pioneer in Computational Geometry, the study of algorithms for geometric problems

Coined the term Computational Morphology

"When a computational geometric structure or operator is intended to extract the shape or form of an object to which it is applied, it is referred to as a problem in computational morphology."

Given a set of points S in the plane, what is the shape of S?

# Region reconstruction from point samples point sample











## Spheres of influence Toussaint (1988) point sample

nearest neighbor

nearest neighbor disk sphere of influence radius  $\mathbf{r}(\mathbf{p})$ 



### Spheres of influence Toussaint (1988) nearest neighbor disks spheres of influence









sphere-of-influence diagram

= sphere-of-influence graph

 $\cap$  Delaunay triangulation



sphere-of-influence diagram

 $= {\sf sphere}\text{-}{\sf of}\text{-}{\sf influence} \; {\sf graph}$ 

 $\cap \ \mathsf{Delaunay} \ \mathsf{triangulation}$ 

Delaunay filtering





sphere-of-influence diagram easy to find boundary



## Spheres of influence sphere-of-influence diagram easy to find boundary



reconstructed boundaries

























# Effect of sample quality – false holes



# Effect of sample quality – topological irregularities



scaled nearest neighbor radius of a sample point  ${\boldsymbol p}$ 

Radke (1988)

$$R(p) = \mu r(p)$$

scaled nearest neighbor radius of a sample point p

Radke (1988)

$$R(p) = \mu r(p)$$

uv edge of sphere-of-influence diagram when scaled disks intersect

$$dist(\mathfrak{u},\mathfrak{v})\leqslant R(\mathfrak{u})+R(\mathfrak{v})$$

scaled nearest neighbor radius of a sample point p

Radke (1988)

$$R(p) = \mu r(p)$$

uv edge of sphere-of-influence diagram when scaled disks intersect

$$\mathsf{dist}(\mathfrak{u}, \mathfrak{v}) \leqslant \mathsf{R}(\mathfrak{u}) + \mathsf{R}(\mathfrak{v}), \qquad \mu \geqslant \mu(\mathfrak{u}, \mathfrak{v}) = \frac{\mathsf{dist}(\mathfrak{u}, \mathfrak{v})}{r(\mathfrak{u}) + r(\mathfrak{v})}$$

scaled nearest neighbor radius of a sample point p

Radke (1988)

$$R(p) = \mu r(p)$$

uv edge of sphere-of-influence diagram when scaled disks intersect

$$\mathsf{dist}(\mathfrak{u}, \mathfrak{v}) \leqslant \mathsf{R}(\mathfrak{u}) + \mathsf{R}(\mathfrak{v}), \qquad \mu \geqslant \mu(\mathfrak{u}, \mathfrak{v}) = \frac{\mathsf{dist}(\mathfrak{u}, \mathfrak{v})}{\mathsf{r}(\mathfrak{u}) + \mathsf{r}(\mathfrak{v})}$$

uvw face of sphere-of-influence diagram when

threshold

$$\mu \geqslant \mu(\mathfrak{u},\mathfrak{v},\mathfrak{w}) = \max(\mu(\mathfrak{u},\mathfrak{v}),\mu(\mathfrak{v},\mathfrak{w}),\mu(\mathfrak{w},\mathfrak{u}))$$





















#### Related work

 $\alpha$ -shapes

Edelsbrunner, Kirkpatrick, Seidel (1983)

χ-shapes

Duckham, Kulik, Worboys, Galton (2008)

■ CT-shapes

Thayyil, Parakkat, Muthuganapathy (2020)

#### Related work

 $\alpha$ -shapes

Edelsbrunner, Kirkpatrick, Seidel (1983)

qualitative comparison

χ-shapes

Duckham, Kulik, Worboys, Galton (2008)

■ CT-shapes

Thayyil, Parakkat, Muthuganapathy (2020)

quantitative comparison







 $\alpha$ -threshold of Delaunay triangle with sides  $\alpha$ , b, c is radius of circumcircle

$$\alpha \geqslant \frac{abc}{\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}$$

 $\alpha$ -threshold of Delaunay triangle with sides  $\alpha$ , b, c is radius of circumcircle

$$\alpha \geqslant \frac{abc}{\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}$$

$$\mu$$
-threshold of Delaunay triangle with vertices  $u, v, w$ 

$$\mu \geqslant \mu(u, v, w) = \max(\mu(u, v), \mu(v, w), \mu(w, u))$$
$$\mu(u, v) = \frac{\text{dist}(u, v)}{r(u) + r(v)}$$

 $\alpha$ -threshold of Delaunay triangle with sides  $\alpha$ , b, c is radius of circumcircle

$$\alpha \geqslant \frac{abc}{\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}$$

not scale invariant

 $\mu$ -threshold of Delaunay triangle with vertices u, v, w

$$\mu \geqslant \mu(\mathfrak{u}, \mathfrak{v}, \mathfrak{w}) = \max(\mu(\mathfrak{u}, \mathfrak{v}), \mu(\mathfrak{v}, \mathfrak{w}), \mu(\mathfrak{w}, \mathfrak{u}))$$

$$\mu(\mathfrak{u},\mathfrak{v}) = \frac{\mathsf{dist}(\mathfrak{u},\mathfrak{v})}{\mathsf{r}(\mathfrak{u}) + \mathsf{r}(\mathfrak{v})}$$

scale invariant

 $\alpha$ -spectrum versus  $\mu$ -spectrum





#### Conclusion

The sphere-of-influence diagram...

- lacktriangleright reconstructs regions from well-distributed point samples, already for  $\mu=1$
- automatically identifies connected components and holes
- lacktriangleright supports a scaling parameter  $\mu$  to handle samples of lower spatial quality, choosing a suitable  $\mu$  is easier than choosing a suitable  $\alpha$
- is a natural subset of the Delaunay triangulation, extracted in linear time
- relies on a simple geometric predicate for Delaunay filtering



Region reconstruction with the sphere-of-influence diagram

Luiz Henrique de Figueiredo

with Afonso Paiva

