SIBGRAP 18 that Conference on Graphics, Patterns and Images

Synthesizing Periodic Tilings of Regular Polygons

Asla Medeiros e Sá FGV Luiz Henrique de Figueiredo IMPA José Ezequiel Soto Sánchez IMPA

Motivation: tile the plane with regular polygons

Kepler (1619)

Rigidity: only 15 vertex neighborhoods

Rigidity: only 11 tilings are 1-regular

image by C. Kaplan

Goal: represent and synthesize complex k-regular tilings

Understanding tilings: many symmetries

Understanding tilings: translation symmetries (group p1)

Understanding tilings: fundamental domain

Reconstruct tiling from vertices

Reconstruct tiling from vertices: edges

Reconstruct tiling from vertices: translation grid

Reconstruct tiling from vertices: fundamental domain

Reconstruct tiling from vertices: patch

Reconstruct tiling from vertices: full tiling

$$\pm \omega_n, \ \pm \overline{\omega}_n \qquad \omega_n = e^{\frac{2\pi i}{n}}$$

$$n \in \{1,2,3,4,6,8,12\}$$

$$\pm \omega_n, \ \pm \overline{\omega}_n \qquad \omega_n = e^{\frac{2\pi i}{n}}$$
$$n \in \{1, 2, 3, 4, 6, 8, 12\}$$

$$\pm \omega_n, \ \pm \overline{\omega}_n \qquad \omega_n = e^{\frac{2\pi i}{n}}$$

$$n \in \{1, 2, 3, 4, 6, 8, 12\}$$

- $-+\omega_1$
- $-+\omega_6$

$$\pm \omega_n, \ \pm \overline{\omega}_n \qquad \omega_n = e^{\frac{2\pi i}{n}}$$

$$n \in \{1,2,3,4,6,8,12\}$$

- $-+\omega_1$
- $-+\omega_{\epsilon}$
- $-\overline{\omega}_{12}$

$$O + \omega_{12} + \overline{\omega}_6$$

$$O + \omega_{12} + \overline{\omega}_6 + \overline{\omega}_{12}$$

$$O + \omega_{12} + \overline{\omega}_6 + \overline{\omega}_{12} + \omega_1$$

$$O + \omega_{12} + \overline{\omega}_6 + \overline{\omega}_{12} + \omega_1 + \omega_{12}$$

$$O + \omega_{12} + \overline{\omega}_6 + \overline{\omega}_{12} + \omega_1 + \omega_{12} + \omega_6$$

$$O + \omega_{12} + \overline{\omega}_6 + \overline{\omega}_{12} + \omega_1 + \omega_{12} + \omega_6 + \omega_4$$

$$O + \omega_{12} + \overline{\omega}_6 + \overline{\omega}_{12} + \omega_1 + \omega_{12} + \omega_6 + \omega_4 = v$$

$$O + \omega_{12} + \omega_4$$

$$O + \omega_{12} + \omega_4 + \omega_6$$

$$O + \omega_{12} + \omega_4 + \omega_6 + \omega_4$$

$$O + \omega_{12} + \omega_4 + \omega_6 + \omega_4 + \omega_6$$

$$O + \omega_{12} + \omega_4 + \omega_6 + \omega_4 + \omega_6 + \omega_{12}$$

$$O + \omega_{12} + \omega_4 + \omega_6 + \omega_4 + \omega_6 + \omega_{12} + \overline{\omega}_{12}$$

$$O + \omega_{12} + \omega_4 + \omega_6 + \omega_4 + \omega_6 + \omega_{12} + \overline{\omega}_{12} = t$$

Tiling symbols

Each tiling is represented by:

- two translation vectors define the fundamental region
- set of seeds vertices inside fundamental region
- translation vectors and seeds expressed as integer linear combinations of basic directions

Basic directions can be simplified:

$$\omega_2 + \omega_1 = 0$$

$$\omega_3 + \overline{\omega}_6 = 0$$

$$\omega_2 + \omega_6 + \overline{\omega}_6 = 0$$

$$\omega_4 - \omega_{12} + \overline{\omega}_{12} = 0$$

$$\omega_1 = 1, \quad \omega_2 = -1, \quad \omega_4 = i$$

At most four basic directions needed

Unique representation

Tiling symbols

basic
$$\Omega=\{\omega_1,\omega_4,\omega_6,\omega_{12}\}$$
 directions
$$t_1=[0,1,2,3]$$
 vectors $t_2=[2,-3,0,6]$ seeds $S_1=[0,0,1,2]$ $S_2=[0,0,1,3]$

 $S_3 = [1, 0, 0, 1]$

 $S_{24} = [2, 3, 1, 1]$

user selects vertices

user selects vertices

connect vertices with basic directions

$$\Omega = \{\omega_1, \omega_4, \omega_8, \overline{\omega}_8\}$$

 $find \ translations \ by \ maximizing \ overlap$

$$\Omega = \{\omega_1, \omega_4, \omega_8, \overline{\omega}_8\}$$

$$t_1 = [1, 1, 1, 0]$$

 $t_2 = [1, -1, 0, 1]$

fundamental region

$$\Omega = \{\omega_1, \omega_4, \omega_8, \overline{\omega}_8\}$$

$$t_1 = [1, 1, 1, 0]$$

 $t_2 = [1, -1, 0, 1]$

fundamental region

$$\Omega = \{\omega_1, \omega_4, \omega_8, \overline{\omega}_8\}$$

$$t_1 = [1, 1, 1, 0]$$

 $t_2 = [1, -1, 0, 1]$

seeds

$$\Omega = \{\omega_1, \omega_4, \omega_8, \overline{\omega}_8\}$$

$$t_1 = [1, 1, 1, 0]$$

$$t_2 = [1, -1, 0, 1]$$

$$S_1 = [0, 0, 0, 0]$$

 $S_2 = [0, 0, 0, 1]$

$$S_3 = [1, 0, 0, 1]$$

$$S_4 = [1, 0, 1, 1]$$

patch

$$\Omega = \{\omega_1, \omega_4, \omega_8, \overline{\omega}_8\}$$

$$t_1 = [1, 1, 1, 0]$$

$$t_2 = [1, -1, 0, 1]$$

$$S_1 = [0, 0, 0, 0]$$

 $S_2 = [0, 0, 0, 1]$

$$S_3 = [1, 0, 0, 1]$$

$$S_4 = [1, 0, 1, 1]$$

tiling

$$\Omega = \{\omega_1, \omega_4, \omega_8, \overline{\omega}_8\}$$

$$t_1 = [1, 1, 1, 0]$$

 $t_2 = [1, -1, 0, 1]$

$$S_1 = [0, 0, 0, 0]$$

 $S_2 = [0, 0, 0, 1]$

$$S_3 = [1, 0, 0, 1]$$

 $S_4 = [1, 0, 1, 1]$

Book & catalogue: 200+ Arquimedean tilings

"Sobre malhas arquimedianas", Ricardo Sá e Asla Medeiros e Sá, 2017

Web interface to catalogue

Web interface to catalogue

www.impa.br/~cheque/tiling/

SIBGRAP 18 that Conference on Graphics, Patterns and Images

Synthesizing Periodic Tilings of Regular Polygons

Asla Medeiros e Sá FGV Luiz Henrique de Figueiredo IMPA José Ezequiel Soto Sánchez IMPA