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Motivation

Basic problems in computer graphics and geometric modeling
typically reduce to solving systems of nonlinear inequalities:

fl(iljl,.. .,.%'n) Z 0

fm(z1,...,2n) >0 Q

v <a2® -z



Motivation — rendering an implicit surface with ray casting

Implicit surface

h: R > R

h(z,y,z) =0,

Ray

8
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Ray intersects surface when

First intersection occurs at smallest zero of f in [0, 00)

Need all zeros for rendering CSG models



Motivation — rendering an implicit surface with ray casting
Implicit surface
h(z,y,z) =0, h:R®* >R
Ray
r(t)=e+t-v=(x(t),y(t),2(t), te]l0,00)

Ray intersects surface when

First intersection occurs at smallest zero of f in [0, 00)

Need all zeros for rendering CSG models

At 4+ (Y2 + 22 + 1722 (Y2 + 22) — 20(x? + 92 + 22) +17=0



Motivation — plotting an implicit curve
Implicit curve

f(z,y) =0, f:R*>R



Motivation — plotting an implicit curve
Implicit curve

f(z,y) =0, f:R*>R

0.004 4 0.110z — 0.177y — 0.174z2 + 0.224zy — 0.303y>
—0.168z3 + 0.327x2y — 0.087zy? — 0.013y> + 0.235z*
—0.6672%y + 0.7452%y% — 0.029zy> + 0.072y* = 0



Motivation — plotting an implicit curve
Implicit curve

flz,y) =0, f:R*>R

0.004 + 0.110z — 0.177y — 0.1742% + 0.224zy — 0.303y>
—0.168z3 + 0.327x2y — 0.087zy? — 0.013y> + 0.235z*
—0.6672%y + 0.7452%y% — 0.029zy> + 0.072y* = 0
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Descartes



Motivation — plotting an implicit curve
Implicit curve

f(z,y) =0, f:R*>R

0.004 4 0.110z — 0.177y — 0.174z2 + 0.224zy — 0.303y>
—0.168z3 + 0.327x2y — 0.087zy? — 0.013y> + 0.235z*
—0.6672%y + 0.7452%y% — 0.029zy> + 0.072y* = 0



Motivation — intersecting two parametric surfaces
Parametric surfaces
g1: Ql C R2 — R,3

g2: 2 C R 5 R?

Intersection

g1(u1,v1) — g2(uz,v2) = 0



Motivation — intersecting two parametric surfaces
Parametric surfaces
g1: Ql C R2 — R3

g2: 2 C R 5 R?

Intersection

g1(u1,v1) — g2(uz,v2) = 0

x1(u1,v1) — x2(ug, v2)

y1(u1,v1) — y2(uz2, v2)

I
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21 (u1,v1) — 22(u2, v2)



Motivation — intersecting two parametric surfaces

Parametric surfaces

g: M CcR?SR3

g2: 2 C R 5 R?

Intersection

g1(u1,v1) — ga(ug,v2) =0

x1(u1,v1) — x2(ug, v2)

y1(u1,v1) — y2(uz2, v2)

I
o o o

z1(u1, v1) — z2(u2, v2)

Hongwei Lin, Yang Qin, Hongwei Liao, Yunyang Xiong
“Affine Arithmetic-Based B-Spline Surface Intersection with GPU Acceleration”
IEEE TVCG, 2014
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Motivation

Basic problems in computer graphics and geometric modeling
typically reduce to solving systems of nonlinear equations:

fl(xl,...,xn) :0

fm(x1,...,2n) =0

Low-dimensional solutions
= sampling costly and unreliable

Interval methods provide robust adaptive solutions



interval arithmetic



Interval arithmetic Moore (1960)

Introduced to improve reliability of numerical computations through automated
a posteriori error analysis of both rounding errors in floating-point arithmetic
and measurement errors in input data
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Interval arithmetic Moore (1960)

Introduced to improve reliability of numerical computations through automated
a posteriori error analysis of both rounding errors in floating-point arithmetic
and measurement errors in input data
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Ramon E. Moore (1929-2015) 1966



Interval arithmetic Moore (1960)

Introduced to improve reliability of numerical computations through automated
a posteriori error analysis of both rounding errors in floating-point arithmetic
and measurement errors in input data

Methods
and Applications
of Interval Analysis
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Interval arithmetic Moore (1960)

Introduced to improve reliability of numerical computations through automated
a posteriori error analysis of both rounding errors in floating-point arithmetic
and measurement errors in input data

Introduction to

INTERVAL ANALYSIS

/ b+ [c,d]= [(n%c\l

S Tod o (¢ et

&5

Ramon E. Moore
R. Baker Kearfott
Michael J. Cloud

Ramon E. Moore (1929-2015) 2009



Interval arithmetic in computer graphics and geometric modeling

Can probe the global behavior of mathematical functions

Provides reliable bounds for the values of a function over
whole regions of its domain

Avoids costly and unreliable point sampling
Leads naturally to adaptive algorithms

Both micro and macro scales



Interval arithmetic in computer graphics and geometric modeling

Can probe the global behavior of mathematical functions

GENERATIVE MODELING

Provides reliable bounds for the values of a function over
whole regions of its domain

Avoids costly and unreliable point sampling
Leads naturally to adaptive algorithms

Both micro and macro scales JOHN M. SNYDER

1992



Interval arithmetic in computer graphics and geometric modeling

Can probe the global behavior of mathematical functions

Provides reliable bounds for the values of a function over
whole regions of its domain

s
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Nicholas M. Patrikalakis'
Takashi Mackawa

Avoids costly and unreliable point sampling :

~ Shape Interrogation
; ; - for Computer

Leads naturally to adaptive algorithms Aided Design and

) Manufacturing
Both micro and macro scales

- RAs

2002



Interval arithmetic in computer graphics and geometric modeling

Can probe the global behavior of mathematical functions

Provides reliable bounds for the values of a function over
whole regions of its domain

Avoids costly and unreliable point sampling
Leads naturally to adaptive algorithms

Both micro and macro scales

Abel J. P. Gomes - Irina Voiculescu
Joaquim Jorge - Brian Wyvill
Callum Galbraith

Implicit Curves and
Surfaces: Mathematics,
Data Structures and
Algorithms

Y
&) Springer

2009



Interval arithmetic
Represent quantities as intervals
x ~ [a,b] = =z € [a, ]

Operate with intervals generating other intervals

[a,b] + [c,d] = [a+¢,b+d]
[a,b] X [c,d] = [min(ac,ad,be,bd), max(ac, ad, be, bd)]
@h/led = [abx [1/d,1/d
[a,0)> = [min(a?,b?), max(a?, b*)] if 0 ¢ [a, D]
[a,0)> = [0, max(a?,b?)] if 0 € [a,b]
explat] = [exp(a), exp(D)

Automatic extensions for complicated expressions with operator overloading



Interval arithmetic

Every expression f has an interval extension F' :
v € X; = f(ay,...,2p) € F(Xy,...,X,)
Reliable range estimates without point sampling
F(X) 2 f(X) = {f(x) : 2 € X}
In particular:

0¢ F(X) = 0¢ f(X)
= f(x) =0 has no solution in X
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Interval arithmetic

Every expression f has an interval extension F' :
r;, € X; = f(ﬁl,...,l‘n) S F(Xl,,Xn)

Reliable range estimates without point sampling

F(X) 2 f(X) = {f(z) : 2 € X}

In particular, even if F(X) 2 f(X):

0¢ F(X) = 0¢ f(X)
= f(x) = 0 has no solution in X




Interval arithmetic

Every expression f has an interval extension F' :
r;, € X; = f(ﬁl,...,l‘n) S F(Xl,,Xn)

Reliable range estimates without point sampling

F(X) 2 f(X) = {f(z) : 2 € X}

In particular, even if F(X) 2 f(X):

0¢ F(X) = 0¢ f(X)
= f(x) = 0 has no solution in X

This is a computational proof



Interval arithmetic

Given a system of nonlinear equations

f1<$1,...,33'n) =0

fm($1,...,l‘n) =0

and interval extensions
§ T

there are no solutions in a box X = X7 x --- x X,, CR"™ if

0¢ Fp(X) forsome k

There may be solutions in X if

0€ Fp(X) forall k



Interval arithmetic

Given a system of nonlinear inequalities

f1<$1,...,33'n) Z 0

fm('rla"wxn) >0

and interval extensions
.. Fy,

there are no solutions in a box X = X7 x --- x X,, CR" if
max Fj(X) <0 for some k
There may be solutions in X if

max Fi,(X) >0 forall k



Interval probing of implicit curve
-2 4+2=0

X = [-2,-1]
Y = [12]



Interval probing of implicit curve

—X34+ X



Interval probing of implicit curve

—X34+ X
Y2
Y2 X3+ X



Interval probing of implicit curve

X = [-2,-1]
Y = [1,2]
X3 = [-8,-1]
-X3 = [1,8]
X34+ X = [-1,7] exact = |0, 6]
Y? = [1,4]
YZ-X34+X = [0,11] exact = [1, 10]

Interval estimates not tight, but improve as intervals shrink



Interval probing of implicit curve

X = [-2,-1]
Y = [1,2]
X3 = [-8,-1]
-X3 = [1,8]
X34+ X = [-1,7] exact = |0, 6]
Y? = [1,4]
YZ-X34+X = [0,11] exact = [1, 10]

Interval estimates not tight, but improve as intervals shrink = divide-and-conquer



Interval probing of implicit curve

v -3+ =0

X xY =[-2,—-1] x[1,2]
F(X,Y)=][0,11] maybe

f(X,Y) =[1,10] no
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Interval probing of implicit curve

v -3+ =0

X xY =[-2,—-1] x[1,2]
F(X,Y)=][0,11] maybe

f(X,Y) =[1,10] no




Interval probing of implicit curve

v -3+ =0

X xY =[-2,-1.5] x [1.5,2]

F(X,Y) = [3.625,10.5] no




Interval probing of implicit curve

v -3+ =0

X xY =[-15,—1] x [1.5,2]

F(X,Y) = [1.75,6.375] no




Interval probing of implicit curve

v -3+ =0

X xY =[-2,—-1.5] x [1,1.5]

F(X,Y) = [2.375,8.75] no




Interval probing of implicit curve

v -3+ =0

X xY =[-15,—1] x [1,1.5]

F(X,Y) = [0.5,4.625] no




Interval probing of implicit curve

v -3+ =0

X xY =[-2,—-1] x[1,2]
F(X,Y) = [0.5,10.5] no

f(X,Y) =[1,10] no




Adaptive domain subdivision

Tosolve f(z)=0 in QCR"
call explore(€2)

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) then
output X
else
X1,...,X) < subdivide(X)
for each i do explore(X;)
end
end

Suffern—Fackerell (1991), Snyder (1992)



Adaptive domain subdivision

Tosolve f(z)=0 in QCR"
call explore(€2)

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) then
output X
else
X1,...,Xp < subdivide(X)
for each i do explore(X;)
end
end

Suffern—Fackerell (1991), Snyder (1992)

“When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.”

— Sherlock Holmes in The Sign of Four



Adaptive domain subdivision

Tosolve f(z)=0 in QCR"
call explore(€2)

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) then
output X
else
X1,...,X) < subdivide(X)
for each i do explore(X;)
end
end

Suffern—Fackerell (1991), Snyder (1992)
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Adaptive domain subdivision

Tosolve f(z)=0 in QCR"
call explore(€2)

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) then
output X
else
X1,...,Xp < subdivide(X)
for each i do explore(X;)
end
end

Suffern—Fackerell (1991), Snyder (1992)
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Implicit curves

F inclusion function for f

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) then
output X
else
X1,...,Xj < subdivide(X)
for each i do explore(X;)
end
end

spatial adaption
Suffern—Fackerell (1991), Snyder (1992)



Implicit curves

F inclusion function for f

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) then
output X
else
X1,...,Xj < subdivide(X)
for each i do explore(X;)
end
end

spatial adaption
Suffern—Fackerell (1991), Snyder (1992)

G inclusion function for grad f

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) or small(G(X)) then
approx(X)
else
X1,..., Xk < subdivide(X)
for each i do explore(X;)
end
end

geometric adaption
Lopes—Oliveira—Figueiredo (2002)



Implicit curves — spatial adaption




ImpIICIt curves — geometric adaption Lopes—Oliveira—Figueiredo (2002)
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|mp||C|t curves — geometric adaption Lopes—Oliveira—Figueiredo (2002)




Implicit curves — geometric adaption

N

#7(

Lopes—Oliveira—Figueiredo (2002)



more applications



Implicit regions

Given by systems of nonlinear inequalities

fl(xay) > 0

Jm(z,y) >0



Implicit regions

Given by systems of nonlinear inequalities procedure explore(X)
if max /'(X) < 0 then
fi(z,y) >0 discard X
elseif small(X) then
fm(xa y) > 0 output X
else

X1,..., Xk < subdivide(X)
for each i do explore(X;)
end
end



Implicit manifolds

Given by systems of nonlinear equations procedure explore(X)
if 0 ¢ F(X) then
filz,y) =0 discard X
elseif small(X) then
fm(z,y) =0 output X
else

X1,..., Xk < subdivide(X)
for each i do explore(X;)
end
end



Implicit regions Tupper (2001)







Im pl icit surfaces Paiva—Lopes—Lewiner—Figueiredo (2006)
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Implicit surfaces Paiva—Lopes—Lewiner—Figueiredo (2006)

flag regions of possible topological ambiguity



Implicit surfaces in 4D Bordignon—Sa—Lopes—Pesco—Figueiredo (2013)

seed points for point-based rendering



Offsets of parametric curves Oliveira—Figueiredo (2003)




Oliveira—Figueiredo (2003)

Offsets of parametric curves
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Offsets of parametric curves Oliveira—Figueiredo (2003)




Bisectors of parametric curves Oliveira—Figueiredo (2003)



Medial axis of parametric curves Oliveira—Figueiredo (2003)




Beam casting implicit surfaces

TP

» Simulates a beam of rays that
covers one or more pixels

\

§ beam

Avoids sampling errors

also Flérez et al. (2008)

Ganacim—Figueiredo—Nehab (2011)



Beam Casting |mp||C|t surfaces Ganacim—Figueiredo—Nehab (2011)

TP

» Simulates a beam of rays that
covers one or more pixels

\

§ beam

Avoids sampling errors

also Flérez et al. (2008)




Fractals Paiva—Figueiredo—Stolfi (2006)

Hénon attractor




Julia sets Fig—Nehab—Oliveira-Stolfi (2016)




Julia sets Fig—Nehab—Oliveira-Stolfi (2016)




Julia sets Fig—Nehab—Oliveira-Stolfi (2016)




but ...



Overestimation

0.004+0.1102—0.177y—0.1742:>+0.2242y—0.303y>

—0.16823+0.3272%y—0.087zy*—0.013y3+0.2352%
—0.6672%y+0.74522y>—0.0292y°4+0.072y* = 0




Overestimation

0.004+0.1102—0.177y—0.1742:>+0.2242y—0.303y>

—0.16823+0.3272%y—0.087zy*—0.013y3+0.2352%
—0.6672%y+0.74522y>—0.0292y°4+0.072y* = 0

IA can't see correlations between operands




The dependency problem in interval arithmetic

f(z) = (104 z)(10 — z) for x € [—2, 2]

104+ =

10—z

(10 + z)(10 — )
exact range

8,12]

8,12

= [64,144]  diam = 80
(96,100]  diam = 4




The dependency problem in interval arithmetic

f(z) = (104 x)(10 — z) for x € [—u, u]

10+2z = [10—wu,10+ u]
10—z = [10 —u,10+ u]
(10 4+ 2)(10 —z) = [(10 — u) (10 +u)?]  diam = 40u
exact range = [100 — u2,100] diam = v?




affine arithmetic



Affine arithmetic and its applications to computer graphics
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Abstract. We describe a new method for numeric computations, which we call affine arithmetic
(AA). ‘This model is similar to standard interval arithmetic, to the extent that it automatically
keep track of rounding and truncation erors fo each computed value. However, by takin into

account correl d Al is able tighter bounds
for the computed quantities, with errors that are approximately quadratic in the uncertainty of the
input variables. We sl describe two applications of AA. 1o computer graphics probleme, whene

hisfetare i particularly valuabi: namely,ry tracng andthe constructionofotresfo implicit

computations are not uncommon in the computer
graphics applications menti

1 Introduction

i o ot it i o o1 i e, e propne b
fo e o e model for umericl computaion, which we al ffine
8 arithmetic (AA). Like standard IA, AA keeps track

point numbers. Those intervals are added, subtracte
multiplied, ete. in such a way that each computed in
(unknown) value

automatcaly of the round-ofand runcation erors
aflectng each compuied quantity. I addiion, AA

odctioninthe60's by R_E. Moore,
IA bcane idly sppreited ot s i v "
ipulae impreciss data, kcp track automalicaly of OTPUlaton chains ;
truncation and round-off errors, and probe the be- As ome may expect, the AA model s mors com-
havior of functions ‘mm.,n, and reliably over whole plex and expensive than ordinary interval arithmetic
i o facions e Howeve, we bl that s Nigher accuracy ill be
e e 1t ch e 0 nm;“‘,.h cost in many applications,mcuding
tention of computer snpmn researchers, who put it “™PUter graphics.
to good use in ray tracing (de urface. n 2 of the paper . S
o o e i 1o Lacing (determining oy o g X e tin o, Secton 3
g ]‘ " 6.7) defines affine forms, the representation of quantities
n the AA model. Section 4 gives the base princt
ple for compating with aline forms, and sppis it

ief review of stan.

conservatve: the interval it produces are ofien !
much wider than the true range of the corresponding ' o .
i, o o e ot of bt cation, and square root). Section 5 deseribes some
problem is particularly severe in long ai
chain,wher he inervals computeda o e wage e
nputs for the next stage. Unfortunately,such -decp"

computer graphics.

Comba-Stolfi (1993)



Affine arithmetic Comba-Stolfi (1993)

AA represents a quantity = with an affine form

Noise symbols ¢; : independent, vary in [—1,+1] but are otherwise unknown

Can compute arbitrary formulas on affine forms
Use affine approximations for non-affine operations
New noise symbols created during computation

AA generalizes 1A:

r~% = x€lrg—0, x0+3d] for O6=|xi|+ -+ |z
z€la,b)] = z~&=x0+m61 for 9= (b+a)/2, z1=(b—a)/2



Affine arithmetic Comba-Stolfi (1993)

AA represents a quantity = with an affine form
T=mxo+x161 + -+ TpEn
Noise symbols ¢; : independent, vary in [—1,+1] but are otherwise unknown

Can compute arbitrary formulas on affine forms
Use affine approximations for non-affine operations
New noise symbols created during computation

AA generalizes 1A:

r~% = x€lrg—0, x0+3d] for O6=|xi|+ -+ |z
z€la,b)] = z~&=x0+m61 for 9= (b+a)/2, z1=(b—a)/2

AA automatically exploits first-order correlations in complex expressions



Affine arithmetic Comba-Stolfi (1993)

AA represents a quantity = with an affine form
T=mxo+x161 + -+ TpEn
Noise symbols ¢; : independent, vary in [—1,+1] but are otherwise unknown

Can compute arbitrary formulas on affine forms
Use affine approximations for non-affine operations
New noise symbols created during computation

AA generalizes 1A:

r~% = x€lrg—0, x0+3d] for O6=|xi|+ -+ |z
z€la,b)] = z~&=x0+m61 for 9= (b+a)/2, z1=(b—a)/2

AA automatically exploits first-order correlations in complex expressions
= better interval estimates!



The dependency problem in interval arithmetic — with AA

f(z) = (104 z)(10 — z) for x € [—u, u],

10+ =

10—z

(104 z)(10 — 2)
range

exact range

10 —ueg

10+ ue;

100 — u? &9

[100 — u?,100 + u?]
[100 — u?,100]

r=0+ue;

diam = 2u?

diam = 2

' AA




The dependency problem in interval arithmetic — with AA

f(z) = (104 2)(10 — z) for x € [~u,u], =z=0+ue;
10042 = 10—wue;

100—x = 104+ue
(104 2)(10 —z) = 100 —u*ey
range = [100 — 4% 100 4+ v?]  diam = 2u?
exact range = [100 — u?,100] diam = v?
T




replacing |A with AA



IA versus AA for plotting implicit curves Comba-Stolfi (1993)
2? +y* +ay — (zy)?/2-1/4=0

L1
T
\

-

1A: 246 exact: 66 AA: 70



Interval method for intersecting two parametric surfaces Gleicher—Kass (1992)

Parametric surfaces

Intersection

Interval test

Intersect bounding boxes in space

Discard if no intersection
Subdivide until tolerance
String boxes into curves

g1: D c R®? - R?
g2: Dy C R® - R?

g1(u1,v1) — g2(uz,v2) =0

G1(U1, Vi) N Go(Ua, Vo) # @




Replacing IA with AA for surface intersection
tensor product Bézier surfaces of degree (p, q)

s(u,v) = ZZawa(u)B;}(v), an( ) =

i=0 j=0
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Replacing IA with AA for surface intersection Figueiredo (1996)
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Replacing IA with AA for surface intersection Figueiredo (1996)




Replacing IA with AA for surface intersection Figueiredo (1996)

AA




exploiting geometry in AA



Geometry of affine forms

Affine forms that share noise symbols are not independent:
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Approximating parametric curves

Parametric curve
C=~(1), v: T —R?2
Compute good bounding rectangle for

P=~(T), TCI
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Approximating parametric curves

Parametric curve
C=~(1), v: T —R?2
Compute good bounding rectangle for
P =~(T), TCI

Write

Find joint range of #(f) and §(f) with AA



Approximating parametric curves

Parametric curve
C=~(1), v: T —R?2
Compute good bounding rectangle for
P =~(T), TCI

Write

Find joint range of #(f) and §(f) with AA

Use bounding rectangle of zonotope



Approximating parametric curves Figueiredo-Stolfi-Velho (2003)



(2003)

eiredo—Stolfi-Velho

Figu

Approximating parametric curves




Figueiredo—Stolfi-Velho (2003)

Approximating parametric curves




Approximating parametric curves Figueiredo-Stolfi-Velho (2003)




Distance fields for parametric curves Figueiredo—Stolfi-Velho (2003)




Ray casting implicit surfaces

Implicit surface

h: RP - R

h(z,y,z) =0,

P
P
o

Ray

o
S
g

8
=)
w
-~

r(t) =e+t-v=(2(t),y), (1)),

Ray intersects surface when

First intersection occurs at smallest zero of f in [0, 00)



Ray casting implicit surfaces

procedure interval-bisection([a, b))
if 0 € F([a,b]) then

c« (a+b)/2

if (b—a) < e then
return c¢

else
interval-bisection([a, ]) « try left half first!
interval-bisection([c, b])

end

end
end

Call interval-bisection([0, t]) to find the first zero



Ray casting |mp||C|t surfaces Custatis—Figueiredo—Gattass (1999)

AA exploits linear correlations in

h(r(#))

kﬁ
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Il




Ray Casting |mp||C|t surfaces Custatis—Figueiredo—Gattass (1999)

AA exploits linear correlations in

LT

root must lie in smaller interval




Ray Casting |mp||C|t surfaces Custatis—Figueiredo—Gattass (1999)

AA exploits linear correlations in

T

root must lie in smaller interval

quadratic convergence




Natural domains

Y2

(X7 Y

IA - . AA

(#,9) = (0, ¥0) + vie1 + v2e2



AA on triangles

(#,9) = (zo0,y0) + vie1 + v2c2



AA on triangles
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AA on triangles
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AA on triangles

(2,9) = (20, y0) + vie1 + v2g2



Implicit curves on triangles Nascimento-Paiva—Figueiredo-Stolfi (2014)




Implicit curves on triangulations Nascimento—Paiva-Figueiredo-Stolfi (2014)




Implicit curves on triangulations Nascimento—Paiva—Figueiredo-Stolfi (2014)




Implicit curves on triangulations Nascimento-Paiva—Figueiredo-Stolfi (2014)
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Conclusion

Interval methods

e can reliably probe the global behavior of functions without sampling
e l|ead naturally to robust adaptive algorithms
e useful in many domains

Affine arithmetic is a useful tool for interval methods

AA can replace IA transparently

AA more accurate than IA

AA locally more expensive than |IA but globally more efficient
AA provides geometric information that can be exploited

AA can be used on triangles



Conclusion

Interval methods

e can reliably probe the global behavior of functions without sampling
e l|ead naturally to robust adaptive algorithms
e useful in many domains

Affine arithmetic is a useful tool for interval methods

AA can replace IA transparently

AA more accurate than IA

AA locally more expensive than |IA but globally more efficient
AA provides geometric information that can be exploited

AA can be used on triangles

Lots more to be done!
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