
Approximating Implicit Curves on
Triangulations with Affine Arithmetic

Afonso Paiva
ICMC-USP

with
Filipe C. Nascimento (ICMC-USP), Luiz Henrique de Figueiredo (IMPA)

and Jorge Stolfi (UNICAMP)

Overview

Problem Setup

Given a planar triangulation T and f : R2 → R, compute a robust
adaptive polygonal approximation of the curve given implicitly by f on T :
C = {(x , y) ∈ T : f (x , y) = 0}.

Overview

Problem Setup

Given a planar triangulation T and f : R2 → R, compute a robust
adaptive polygonal approximation of the curve given implicitly by f on T :
C = {(x , y) ∈ T : f (x , y) = 0}.

+ = ?

C = f −1(0)

Possible Solution?

I Curve location:

intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles Our Method

Possible Solution?

I Curve location: intersection between C and the triangles of T

What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles Our Method

Possible Solution?

I Curve location: intersection between C and the triangles of T

What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles Our Method

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria?

Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles Our Method

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria?

Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 101

Our Method

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria?

Our goal: spatial adaptation!

I Mesh refinement:

small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 101

Our Method

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria?

Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details

How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 101

Our Method

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria?

Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient?

Our goal: geometric adaptation!

Marching Triangles

#4 = 101

Our Method

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria?

Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient?

Our goal: geometric adaptation!

Marching Triangles

#4 = 12928

Our Method

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 12928
level 0 Our Method

#4 = 101

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 12928
level 1 Our Method

#4 = 376

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 12928
level 2 Our Method

#4 = 612

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 12928
level 3 Our Method

#4 = 930

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 12928
level 4 Our Method

#4 = 1314

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 12928
level 5 Our Method

#4 = 1759

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 12928
level 6 Our Method

#4 = 2431

Possible Solution?

I Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles

#4 = 12928
level 6 Our Method

#4 = 2431

Numerical Tools

I Numerical oracles

I Is this triangle away from the curve?
I Is the curve approximately flat inside the triangle?

I Self-validated arithmetic methods
I Robust interval estimative for f with guarantee certificate:

F (X) ⊇ f (X) = {f (x , y) : (x , y) ∈ X}

I 0 /∈ F (X) ⇒ cell X is away from curve
I Interval arithmetic (IA) and affine arithmetic (AA)

Numerical Tools

I Numerical oracles
I Is this triangle away from the curve?

I Is the curve approximately flat inside the triangle?

I Self-validated arithmetic methods
I Robust interval estimative for f with guarantee certificate:

F (X) ⊇ f (X) = {f (x , y) : (x , y) ∈ X}

I 0 /∈ F (X) ⇒ cell X is away from curve
I Interval arithmetic (IA) and affine arithmetic (AA)

Numerical Tools

I Numerical oracles
I Is this triangle away from the curve?
I Is the curve approximately flat inside the triangle?

I Self-validated arithmetic methods
I Robust interval estimative for f with guarantee certificate:

F (X) ⊇ f (X) = {f (x , y) : (x , y) ∈ X}

I 0 /∈ F (X) ⇒ cell X is away from curve
I Interval arithmetic (IA) and affine arithmetic (AA)

Numerical Tools

I Numerical oracles
I Is this triangle away from the curve?
I Is the curve approximately flat inside the triangle?

I Self-validated arithmetic methods

I Robust interval estimative for f with guarantee certificate:

F (X) ⊇ f (X) = {f (x , y) : (x , y) ∈ X}

I 0 /∈ F (X) ⇒ cell X is away from curve
I Interval arithmetic (IA) and affine arithmetic (AA)

Numerical Tools

I Numerical oracles
I Is this triangle away from the curve?
I Is the curve approximately flat inside the triangle?

I Self-validated arithmetic methods
I Robust interval estimative for f with guarantee certificate:

F (X) ⊇ f (X) = {f (x , y) : (x , y) ∈ X}

I 0 /∈ F (X) ⇒ cell X is away from curve
I Interval arithmetic (IA) and affine arithmetic (AA)

Numerical Tools

I Numerical oracles
I Is this triangle away from the curve?
I Is the curve approximately flat inside the triangle?

I Self-validated arithmetic methods
I Robust interval estimative for f with guarantee certificate:

F (X) ⊇ f (X) = {f (x , y) : (x , y) ∈ X}

I 0 /∈ F (X) ⇒ cell X is away from curve

I Interval arithmetic (IA) and affine arithmetic (AA)

Numerical Tools

I Numerical oracles
I Is this triangle away from the curve?
I Is the curve approximately flat inside the triangle?

I Self-validated arithmetic methods
I Robust interval estimative for f with guarantee certificate:

F (X) ⊇ f (X) = {f (x , y) : (x , y) ∈ X}

I 0 /∈ F (X) ⇒ cell X is away from curve
I Interval arithmetic (IA) and affine arithmetic (AA)

Affine Arithmetic

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I We can compute arbitrary formulas on affine forms

I Good alternative to replace IA in graphics applications
I AA has ability to handle correlations
I AA provides tighter interval estimative
I AA provides additional geometric information
I Good AA libraries in C/C++ available

Affine Arithmetic

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I We can compute arbitrary formulas on affine forms

I Good alternative to replace IA in graphics applications
I AA has ability to handle correlations
I AA provides tighter interval estimative
I AA provides additional geometric information
I Good AA libraries in C/C++ available

Affine Arithmetic

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I We can compute arbitrary formulas on affine forms

I Good alternative to replace IA in graphics applications
I AA has ability to handle correlations
I AA provides tighter interval estimative
I AA provides additional geometric information
I Good AA libraries in C/C++ available

Affine Arithmetic

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I We can compute arbitrary formulas on affine forms

I Good alternative to replace IA in graphics applications

I AA has ability to handle correlations
I AA provides tighter interval estimative
I AA provides additional geometric information
I Good AA libraries in C/C++ available

Affine Arithmetic

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I We can compute arbitrary formulas on affine forms

I Good alternative to replace IA in graphics applications
I AA has ability to handle correlations

I AA provides tighter interval estimative
I AA provides additional geometric information
I Good AA libraries in C/C++ available

Affine Arithmetic

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I We can compute arbitrary formulas on affine forms

I Good alternative to replace IA in graphics applications
I AA has ability to handle correlations
I AA provides tighter interval estimative

I AA provides additional geometric information
I Good AA libraries in C/C++ available

Affine Arithmetic

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I We can compute arbitrary formulas on affine forms

I Good alternative to replace IA in graphics applications
I AA has ability to handle correlations
I AA provides tighter interval estimative
I AA provides additional geometric information

I Good AA libraries in C/C++ available

Affine Arithmetic

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I We can compute arbitrary formulas on affine forms

I Good alternative to replace IA in graphics applications
I AA has ability to handle correlations
I AA provides tighter interval estimative
I AA provides additional geometric information
I Good AA libraries in C/C++ available

Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form
I ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

⇒ z ∈ [ẑ] := [z0 − δ, z0 + δ]

where δ = |z1|+ · · ·+ |zn|

I IA form ⇒ AA form
I z ∈ [a, b]

⇒ ẑ = z0 + z1ε1 where

z0 = (a + b)/2

z1 = (b − a)/2

Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form

I ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

⇒ z ∈ [ẑ] := [z0 − δ, z0 + δ]

where δ = |z1|+ · · ·+ |zn|

I IA form ⇒ AA form
I z ∈ [a, b]

⇒ ẑ = z0 + z1ε1 where

z0 = (a + b)/2

z1 = (b − a)/2

Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form
I ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

⇒ z ∈ [ẑ] := [z0 − δ, z0 + δ]

where δ = |z1|+ · · ·+ |zn|

I IA form ⇒ AA form
I z ∈ [a, b]

⇒ ẑ = z0 + z1ε1 where

z0 = (a + b)/2

z1 = (b − a)/2

Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form
I ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn ⇒ z ∈ [ẑ] := [z0 − δ, z0 + δ]

where δ = |z1|+ · · ·+ |zn|

I IA form ⇒ AA form
I z ∈ [a, b]

⇒ ẑ = z0 + z1ε1 where

z0 = (a + b)/2

z1 = (b − a)/2

Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form
I ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn ⇒ z ∈ [ẑ] := [z0 − δ, z0 + δ]

where δ = |z1|+ · · ·+ |zn|

I IA form ⇒ AA form

I z ∈ [a, b]

⇒ ẑ = z0 + z1ε1 where

z0 = (a + b)/2

z1 = (b − a)/2

Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form
I ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn ⇒ z ∈ [ẑ] := [z0 − δ, z0 + δ]

where δ = |z1|+ · · ·+ |zn|

I IA form ⇒ AA form
I z ∈ [a, b]

⇒ ẑ = z0 + z1ε1 where

z0 = (a + b)/2

z1 = (b − a)/2

Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form
I ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn ⇒ z ∈ [ẑ] := [z0 − δ, z0 + δ]

where δ = |z1|+ · · ·+ |zn|

I IA form ⇒ AA form
I z ∈ [a, b] ⇒ ẑ = z0 + z1ε1 where

z0 = (a + b)/2

z1 = (b − a)/2

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles:

we need to evaluate f (�) with AA

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2

x̂ = x0+x1ε1, x0 = (a+b)/2, x1 = (b−a)/2

ŷ = y0+y2ε2, y0 = (c+d)/2, y2 = (d−c)/2

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2

x̂ = x0+x1ε1, x0 = (a+b)/2, x1 = (b−a)/2

ŷ = y0+y2ε2, y0 = (c+d)/2, y2 = (d−c)/2

AA form of f

f̂ = f0 + f1ε1 + f2ε2 + f3ε3 + · · ·+ fnεn

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2

x̂ = x0+x1ε1, x0 = (a+b)/2, x1 = (b−a)/2

ŷ = y0+y2ε2, y0 = (c+d)/2, y2 = (d−c)/2

AA form of f

f̂ = f0 + f1ε1 + f2ε2 + f3ε3 + · · ·+ fnεn

ε3, . . ., εn are noise symbols related to non-affine operations

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2

x̂ = x0+x1ε1, x0 = (a+b)/2, x1 = (b−a)/2

ŷ = y0+y2ε2, y0 = (c+d)/2, y2 = (d−c)/2

AA form of f

f̂ = f0 + f1ε1 + f2ε2 + f3ε3 + · · ·+ fnεn

higher-order terms can be condensed ⇒ f3 = |f3|+ · · ·+ |fn|

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2

x̂ = x0+x1ε1, x0 = (a+b)/2, x1 = (b−a)/2

ŷ = y0+y2ε2, y0 = (c+d)/2, y2 = (d−c)/2

AA form of f

f̂ = f0 + f1ε1 + f2ε2 + f3ε3

higher-order terms can be condensed ⇒ f3 = |f3|+ · · ·+ |fn|

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2

x̂ = x0+x1ε1, x0 = (a+b)/2, x1 = (b−a)/2

ŷ = y0+y2ε2, y0 = (c+d)/2, y2 = (d−c)/2

AA form of f

f̂ = f0 + f1ε1 + f2ε2 + f3ε3

Spatial criteria

0 /∈ [f̂ (�)] ⇒ discard(�)

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2

x̂ = x0+x1ε1, x0 = (a+b)/2, x1 = (b−a)/2

ŷ = y0+y2ε2, y0 = (c+d)/2, y2 = (d−c)/2

AA form of f

f̂ = f0 + f1ε1 + f2ε2 + f3ε3

Geometric bounds using the AA form of f̂

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2

x̂ = x0+x1ε1, x0 = (a+b)/2, x1 = (b−a)/2

ŷ = y0+y2ε2, y0 = (c+d)/2, y2 = (d−c)/2

AA form of f

f̂ = f0 + f1ε1 + f2ε2 + f3ε3

Geometric bounds using the AA form of f̂
the graph of z = f (x , y) over � is sandwiched between the planes:

z = f0 + f1ε1 + f2ε2 ± f3

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2
ε1 =

x − x0
x1

ε2 =
y − y0

y2

Geometric bounds using the AA form of f̂
the graph of z = f (x , y) over � is sandwiched between the planes:

z = f0 + f1ε1 + f2ε2 ± f3

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x , y)0 0

x1

y2
ε1 =

x − x0
x1

ε2 =
y − y0

y2

Geometric bounds using the AA form of f̂
z in cartesian coordinates:

z = f0 +
f1
x1

(x − x0) +
f2
y2

(y − y0) ± f3

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

ε1 =
x − x0

x1
ε2 =

y − y0
y2

Geometric bounds using the AA form of f̂
f is zero inside the strip defined by the two parallel lines:

0 = f0 +
f1
x1

(x − x0) +
f2
y2

(y − y0) ± f3

Bounding Iimplicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

w
The width between the lines

w =
2f3√(

f1
x1

)2
+
(

f2
y2

)2

Geometric bounds using the AA form of f̂
f is zero inside the strip defined by the two parallel lines:

0 = f0 +
f1
x1

(x − x0) +
f2
y2

(y − y0) ± f3

Bounding Implicit Curves with Strips on �

x2

6
+ y2 = 1

Bounding Implicit Curves with Strips on �

x2

6
+ y2 = 1

wide strips ⇒ high curvature

Bounding Implicit Curves with Strips on �

x2

6
+ y2 = 1

wide strips ⇒ high curvature

Geometric criteria

w > threshold ⇒ subdivide(�)

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 0 AA

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 1 AA

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 2 AA

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 3 AA

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 4 AA

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 5 AA

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 6 AA

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 7 AA

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 8 AA

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 8 AA

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA
#cells visited: 6997

level 8 AA
#cells visited: 1697

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA
#leaves: 341

level 8 AA
#leaves: 221

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA
CPU time: 394 msec

level 8 AA
CPU time: 139 msec

Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA
linear convergence

level 8 AA
quadratic convergence

Bounding Implicit Curves with Strips on ♦

On parallelograms:

evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

the matrix is invertible ⇐⇒ the parallelogram is not degenerate

Bounding Implicit Curves with Strips on ♦

On parallelograms:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

the matrix is invertible ⇐⇒ the parallelogram is not degenerate

Bounding Implicit Curves with Strips on ♦

On parallelograms:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

(x , y)0 0

v1

v2

the matrix is invertible ⇐⇒ the parallelogram is not degenerate

Bounding Implicit Curves with Strips on ♦

On parallelograms:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

(x , y)0 0

v1

v2

v1 = (x1, y1) v2 = (x2, y2)

the matrix is invertible ⇐⇒ the parallelogram is not degenerate

Bounding Implicit Curves with Strips on ♦

On parallelograms:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

(x , y)0 0

v1

v2

v1 = (x1, y1) v2 = (x2, y2)

x̂ = x0 + x1ε1 + x2ε2 ŷ = y0 + y1ε1 + y2ε2

the matrix is invertible ⇐⇒ the parallelogram is not degenerate

Bounding Implicit Curves with Strips on ♦

On parallelograms:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

(x , y)0 0

v1

v2

v1 = (x1, y1) v2 = (x2, y2)

x̂ = x0 + x1ε1 + x2ε2 ŷ = y0 + y1ε1 + y2ε2

In matrix form[
x
y

]
=

[
x0
y0

]
+

[
x1 x2
y1 y2

]
·
[
ε1
ε2

]

the matrix is invertible ⇐⇒ the parallelogram is not degenerate

Bounding Implicit Curves with Strips on ♦

On parallelograms:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

(x , y)0 0

v1

v2

v1 = (x1, y1) v2 = (x2, y2)

x̂ = x0 + x1ε1 + x2ε2 ŷ = y0 + y1ε1 + y2ε2

In matrix form[
ε1
ε2

]
=

[
x1 x2
y1 y2

]−1

·
[

x − x0
y − y0

]

the matrix is invertible ⇐⇒ the parallelogram is not degenerate

Bounding Implicit Curves with Strips on ♦

On parallelograms:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

(x , y)0 0

v1

v2

v1 = (x1, y1) v2 = (x2, y2)

x̂ = x0 + x1ε1 + x2ε2 ŷ = y0 + y1ε1 + y2ε2

In matrix form[
ε1
ε2

]
=

[
x1 x2
y1 y2

]−1

·
[

x − x0
y − y0

]

the matrix is invertible ⇐⇒ the parallelogram is not degenerate

Bounding Implicit Curves with Strips on 4

On triangles:

replace the evaluation of f (4) ⇒ f (♦) with AA

I include a triangle into a parallelogram
I evaluate f outside of its domain
I it does not work for surfaces

I split a triangle in three parallelograms

Bounding Implicit Curves with Strips on 4

On triangles: replace the evaluation of f (4) ⇒ f (♦) with AA

I include a triangle into a parallelogram
I evaluate f outside of its domain
I it does not work for surfaces

I split a triangle in three parallelograms

Bounding Implicit Curves with Strips on 4

On triangles: replace the evaluation of f (4) ⇒ f (♦) with AA

I include a triangle into a parallelogram

I evaluate f outside of its domain
I it does not work for surfaces

I split a triangle in three parallelograms

Bounding Implicit Curves with Strips on 4

On triangles: replace the evaluation of f (4) ⇒ f (♦) with AA

I include a triangle into a parallelogram

I evaluate f outside of its domain
I it does not work for surfaces

I split a triangle in three parallelograms

Bounding Implicit Curves with Strips on 4

On triangles: replace the evaluation of f (4) ⇒ f (♦) with AA

I include a triangle into a parallelogram
I evaluate f outside of its domain

I it does not work for surfaces

I split a triangle in three parallelograms

Bounding Implicit Curves with Strips on 4

On triangles: replace the evaluation of f (4) ⇒ f (♦) with AA

I include a triangle into a parallelogram
I evaluate f outside of its domain
I it does not work for surfaces

I split a triangle in three parallelograms

Bounding Implicit Curves with Strips on 4

On triangles: replace the evaluation of f (4) ⇒ f (♦) with AA

I include a triangle into a parallelogram
I evaluate f outside of its domain
I it does not work for surfaces

I split a triangle in three parallelograms

Bounding Implicit Curves with Strips on 4

On triangles: replace the evaluation of f (4) ⇒ f (♦) with AA

I include a triangle into a parallelogram
I evaluate f outside of its domain
I it does not work for surfaces

I split a triangle in three parallelograms

Our Adaptive Method

procedure Explore (4)
♦1,♦2,♦3 ← Parallelograms (4)
f̂i ← f (♦i) with AA
if 0 ∈ [f̂i] for some i then

wi ← width of f̂ in ♦i
if wi ≤ εuser , for all i then

Approximate (4)
else
4i ← Subdivide (4)
for each i , Explore (4i)

end
end

end

Our Adaptive Method

procedure Explore (4)
♦1,♦2,♦3 ← Parallelograms (4)
f̂i ← f (♦i) with AA
if 0 ∈ [f̂i] for some i then

wi ← width of f̂ in ♦i
if wi ≤ εuser , for all i then

Approximate (4)
else
4i ← Subdivide (4)
for each i , Explore (4i)

end
end

end

Our Adaptive Method

procedure Explore (4)
♦1,♦2,♦3 ← Parallelograms (4)
f̂i ← f (♦i) with AA
if 0 ∈ [f̂i] for some i then

wi ← width of f̂ in ♦i
if wi ≤ εuser , for all i then

Approximate (4)
else
4i ← Subdivide (4)
for each i , Explore (4i)

end
end

end

Our Adaptive Method

procedure Explore (4)
♦1,♦2,♦3 ← Parallelograms (4)
f̂i ← f (♦i) with AA
if 0 ∈ [f̂i] for some i then

wi ← width of f̂ in ♦i
if wi ≤ εuser , for all i then

Approximate (4)
else
4i ← Subdivide (4)
for each i , Explore (4i)

end
end

end

Our Adaptive Method

procedure Explore (4)
♦1,♦2,♦3 ← Parallelograms (4)
f̂i ← f (♦i) with AA
if 0 ∈ [f̂i] for some i then

wi ← width of f̂ in ♦i
if wi ≤ εuser , for all i then

Approximate (4)
else
4i ← Subdivide (4)
for each i , Explore (4i)

end
end

end

Our Adaptive Method

procedure Explore (4)
♦1,♦2,♦3 ← Parallelograms (4)
f̂i ← f (♦i) with AA
if 0 ∈ [f̂i] for some i then

wi ← width of f̂ in ♦i
if wi ≤ εuser , for all i then

Approximate (4)
else
4i ← Subdivide (4)
for each i , Explore (4i)

end
end

end

Our Adaptive Method

procedure Explore (4)
♦1,♦2,♦3 ← Parallelograms (4)
f̂i ← f (♦i) with AA
if 0 ∈ [f̂i] for some i then

wi ← width of f̂ in ♦i
if wi ≤ εuser , for all i then

Approximate (4)
else
4i ← Subdivide (4)
for each i , Explore (4i)

end
end

end
linear interpolation bissection method

Our Adaptive Method

procedure Explore (4)
♦1,♦2,♦3 ← Parallelograms (4)
f̂i ← f (♦i) with AA
if 0 ∈ [f̂i] for some i then

wi ← width of f̂ in ♦i
if wi ≤ εuser , for all i then

Approximate (4)
else
4i ← Subdivide (4)
for each i , Explore (4i)

end
end

end
linear interpolation bissection method

Our Adaptive Method

Our method does not care what mesh subdivision method is used

Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup mesh with connecticity

Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
midpoint splitting

mesh with connecticity√
3, Ja

1 , 4-8 meshes, . . .

Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
#4 = 193

mesh with connecticity
#4 = 193

Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
#4 = 307

mesh with connecticity
#4 = 325

Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
#4 = 512

mesh with connecticity
#4 = 427

Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
#4 = 922

mesh with connecticity
#4 = 574

Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
#4 = 1384

mesh with connecticity
#4 = 779

Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
#4 = 1384

mesh with connecticity
#4 = 779

Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
#4 = 1384

mesh with connecticity
#4 = 779

Our Adaptive Method

The effect of the geometric criteria on the curve in a triangular quadtree

εuser = 1 εuser = 0.1 εuser = 0.01

Results

level 0

(x + 1)3(1− x)− 4y4 = 0

Results

level 1

(x + 1)3(1− x)− 4y4 = 0

Results

level 2

(x + 1)3(1− x)− 4y4 = 0

Results

level 3

(x + 1)3(1− x)− 4y4 = 0

Results

level 4

(x + 1)3(1− x)− 4y4 = 0

Results

level 4

#4in = 940
#4out = 1771

CPU time = 280 msec

(x + 1)3(1− x)− 4y4 = 0

Results

level 0

x3 + x − y2 = 0

Results

level 1

x3 + x − y2 = 0

Results

level 2

x3 + x − y2 = 0

Results

level 3

x3 + x − y2 = 0

Results

level 3

#4in = 3530
#4out = 4142

CPU time = 333 msec

x3 + x − y2 = 0

Results

level 0

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0

Results

level 1

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0

Results

level 2

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0

Results

level 3

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0

Results

level 4

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0

Results

level 5

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0

Results

level 5

#4in = 126
#4out = 1168

CPU time = 123 msec

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0

Results

level 0

(x2 + y2 − 1)3 − x2y3 = 0

Results

level 1

(x2 + y2 − 1)3 − x2y3 = 0

Results

level 2

(x2 + y2 − 1)3 − x2y3 = 0

Results

level 3

(x2 + y2 − 1)3 − x2y3 = 0

Results

level 3

#4in = 1424
#4out = 3298

CPU time = 547 msec

(x2 + y2 − 1)3 − x2y3 = 0

Results

level 0

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0

Results

level 1

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0

Results

level 2

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0

Results

level 3

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0

Results

level 4

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0

Results

level 4

#4in = 1006
#4out = 2134

CPU time = 391 msec

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0

Results

level 0

(xy + cos(x + y))(xy + sin(x + y)) = 0

Results

level 1

(xy + cos(x + y))(xy + sin(x + y)) = 0

Results

level 2

(xy + cos(x + y))(xy + sin(x + y)) = 0

Results

level 3

(xy + cos(x + y))(xy + sin(x + y)) = 0

Results

level 4

(xy + cos(x + y))(xy + sin(x + y)) = 0

Results

level 4

#4in = 1032
#4out = 3897

CPU time = 454 msec

(xy + cos(x + y))(xy + sin(x + y)) = 0

Work in Progress

Implicit curves on surfaces

curve given implicitly by x2 + y2 + z2 = 1 on bitorus mesh

Approximating Implicit Curves on Triangulations
with Affine Arithmetic

Thanks!

