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Overview

Problem Setup

Given a planar triangulation T and f : R2 → R, compute a robust
adaptive polygonal approximation of the curve given implicitly by f on T :
C = {(x , y) ∈ T : f (x , y) = 0}.
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+ = ?

C = f −1(0)



Possible Solution?

I Curve location:

intersection between C and the triangles of T
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I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!
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Numerical Tools

I Numerical oracles

I Is this triangle away from the curve?
I Is the curve approximately flat inside the triangle?

I Self-validated arithmetic methods
I Robust interval estimative for f with guarantee certificate:

F (X ) ⊇ f (X ) = {f (x , y) : (x , y) ∈ X}

I 0 /∈ F (X ) ⇒ cell X is away from curve
I Interval arithmetic (IA) and affine arithmetic (AA)
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Affine Arithmetic

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I We can compute arbitrary formulas on affine forms

I Good alternative to replace IA in graphics applications
I AA has ability to handle correlations
I AA provides tighter interval estimative
I AA provides additional geometric information
I Good AA libraries in C/C++ available
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ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I We can compute arbitrary formulas on affine forms

I Good alternative to replace IA in graphics applications
I AA has ability to handle correlations
I AA provides tighter interval estimative
I AA provides additional geometric information

I Good AA libraries in C/C++ available



Affine Arithmetic

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:
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Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form
I ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

⇒ z ∈ [ẑ ] := [z0 − δ, z0 + δ]

where δ = |z1|+ · · ·+ |zn|

I IA form ⇒ AA form
I z ∈ [a, b]

⇒ ẑ = z0 + z1ε1 where

z0 = (a + b)/2

z1 = (b − a)/2



Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form
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⇒ ẑ = z0 + z1ε1 where

z0 = (a + b)/2

z1 = (b − a)/2



Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form
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where δ = |z1|+ · · ·+ |zn|

I IA form ⇒ AA form
I z ∈ [a, b]
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ε3, . . ., εn are noise symbols related to non-affine operations
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0 /∈ [f̂ (�)] ⇒ discard(�)
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On axis-aligned rectangles: we need to evaluate f (�) with AA
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On axis-aligned rectangles: we need to evaluate f (�) with AA

w
The width between the lines

w =
2f3√(

f1
x1

)2
+
(

f2
y2

)2

Geometric bounds using the AA form of f̂
f is zero inside the strip defined by the two parallel lines:

0 = f0 +
f1
x1

(x − x0) +
f2
y2

(y − y0) ± f3
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x2

6
+ y2 = 1

wide strips ⇒ high curvature

Geometric criteria

w > threshold ⇒ subdivide(�)
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Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree
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Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA
CPU time: 394 msec

level 8 AA
CPU time: 139 msec
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Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA
linear convergence

level 8 AA
quadratic convergence
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I include a triangle into a parallelogram
I evaluate f outside of its domain
I it does not work for surfaces

I split a triangle in three parallelograms
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On triangles: replace the evaluation of f (4) ⇒ f (♦) with AA
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Our Adaptive Method

procedure Explore (4)
♦1,♦2,♦3 ← Parallelograms (4)
f̂i ← f (♦i ) with AA
if 0 ∈ [f̂i ] for some i then

wi ← width of f̂ in ♦i
if wi ≤ εuser , for all i then

Approximate (4)
else
4i ← Subdivide (4)
for each i , Explore (4i )

end
end

end
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Our method does not care what mesh subdivision method is used

triangle soup
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mesh with connecticity√
3, Ja

1 , 4-8 meshes, . . .
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Our method does not care what mesh subdivision method is used

triangle soup
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mesh with connecticity
#4 = 779



Our Adaptive Method

The effect of the geometric criteria on the curve in a triangular quadtree

εuser = 1 εuser = 0.1 εuser = 0.01
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level 0

(x + 1)3(1− x)− 4y4 = 0
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Results

level 4

#4in = 940
#4out = 1771

CPU time = 280 msec

(x + 1)3(1− x)− 4y4 = 0
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level 0
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level 2

x3 + x − y2 = 0
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level 3

x3 + x − y2 = 0



Results

level 3

#4in = 3530
#4out = 4142

CPU time = 333 msec

x3 + x − y2 = 0
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level 0

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0
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Results

level 5

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0



Results

level 5

#4in = 126
#4out = 1168

CPU time = 123 msec

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0



Results

level 0

(x2 + y2 − 1)3 − x2y3 = 0
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level 1

(x2 + y2 − 1)3 − x2y3 = 0
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level 2

(x2 + y2 − 1)3 − x2y3 = 0
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level 3

(x2 + y2 − 1)3 − x2y3 = 0



Results

level 3

#4in = 1424
#4out = 3298

CPU time = 547 msec

(x2 + y2 − 1)3 − x2y3 = 0
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level 0

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0



Results

level 1
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level 4

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0



Results

level 4

#4in = 1006
#4out = 2134

CPU time = 391 msec

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0
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level 2
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(xy + cos(x + y))(xy + sin(x + y)) = 0
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level 4

(xy + cos(x + y))(xy + sin(x + y)) = 0



Results

level 4

#4in = 1032
#4out = 3897

CPU time = 454 msec

(xy + cos(x + y))(xy + sin(x + y)) = 0



Work in Progress

Implicit curves on surfaces

curve given implicitly by x2 + y2 + z2 = 1 on bitorus mesh



Approximating Implicit Curves on Triangulations
with Affine Arithmetic

Thanks!


