# Approximating Implicit Curves on Triangulations with Affine Arithmetic 

Afonso Paiva<br>ICMC-USP

with
Filipe C. Nascimento (ICMC-USP), Luiz Henrique de Figueiredo (IMPA) and Jorge Stolfi (UNICAMP)

## Overview

## Problem Setup

Given a planar triangulation $\mathcal{T}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, compute a robust adaptive polygonal approximation of the curve given implicitly by $f$ on $\mathcal{T}$ : $\mathcal{C}=\{(x, y) \in \mathcal{T}: f(x, y)=0\}$.

## Overview

## Problem Setup

Given a planar triangulation $\mathcal{T}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, compute a robust adaptive polygonal approximation of the curve given implicitly by $f$ on $\mathcal{T}$ : $\mathcal{C}=\{(x, y) \in \mathcal{T}: f(x, y)=0\}$.


## Possible Solution?

- Curve location:


## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$


## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$



## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria?



## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria?


Marching Triangles

$$
\# \triangle=101
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria?
- Mesh refinement:


Marching Triangles

$$
\# \triangle=101
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria?
- Mesh refinement: small triangles $\Rightarrow$ more details


Marching Triangles

$$
\# \triangle=101
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria?
- Mesh refinement: small triangles $\Rightarrow$ more details How small? How efficient?


Marching Triangles

$$
\# \triangle=101
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria?
- Mesh refinement: small triangles $\Rightarrow$ more details How small? How efficient?


Marching Triangles

$$
\# \triangle=12928
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria? Our goal: spatial adaptation!
- Mesh refinement: small triangles $\Rightarrow$ more details How small? How efficient? Our goal: geometric adaptation!


Marching Triangles

$$
\# \triangle=12928
$$



Our Method

$$
\# \triangle=101
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria? Our goal: spatial adaptation!
- Mesh refinement: small triangles $\Rightarrow$ more details How small? How efficient? Our goal: geometric adaptation!


Marching Triangles

$$
\# \triangle=12928
$$


level 1
Our Method

$$
\# \triangle=376
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria? Our goal: spatial adaptation!
- Mesh refinement: small triangles $\Rightarrow$ more details How small? How efficient? Our goal: geometric adaptation!


Marching Triangles

$$
\# \triangle=12928
$$



Our Method

$$
\# \triangle=612
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria? Our goal: spatial adaptation!
- Mesh refinement: small triangles $\Rightarrow$ more details How small? How efficient? Our goal: geometric adaptation!


Marching Triangles

$$
\# \triangle=12928
$$


level 3
Our Method

$$
\# \triangle=930
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria? Our goal: spatial adaptation!
- Mesh refinement: small triangles $\Rightarrow$ more details How small? How efficient? Our goal: geometric adaptation!


Marching Triangles

$$
\# \triangle=12928
$$

level 4


Our Method

$$
\# \triangle=1314
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria? Our goal: spatial adaptation!
- Mesh refinement: small triangles $\Rightarrow$ more details How small? How efficient? Our goal: geometric adaptation!


Marching Triangles

$$
\# \triangle=12928
$$

level 5


Our Method

$$
\# \triangle=1759
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria? Our goal: spatial adaptation!
- Mesh refinement: small triangles $\Rightarrow$ more details How small? How efficient? Our goal: geometric adaptation!


Marching Triangles

$$
\# \triangle=12928
$$

level 6


Our Method

$$
\# \triangle=2431
$$

## Possible Solution?

- Curve location: intersection between $\mathcal{C}$ and the triangles of $\mathcal{T}$ What criteria? Our goal: spatial adaptation!
- Mesh refinement: small triangles $\Rightarrow$ more details How small? How efficient? Our goal: geometric adaptation!


Marching Triangles

$$
\# \triangle=12928
$$

level 6


Our Method

$$
\# \triangle=2431
$$

## Numerical Tools

- Numerical oracles


## Numerical Tools

- Numerical oracles
- Is this triangle away from the curve?


## Numerical Tools

- Numerical oracles
- Is this triangle away from the curve?
- Is the curve approximately flat inside the triangle?


## Numerical Tools

- Numerical oracles
- Is this triangle away from the curve?
- Is the curve approximately flat inside the triangle?
- Self-validated arithmetic methods


## Numerical Tools

- Numerical oracles
- Is this triangle away from the curve?
- Is the curve approximately flat inside the triangle?
- Self-validated arithmetic methods
- Robust interval estimative for $f$ with guarantee certificate:

$$
F(X) \supseteq f(X)=\{f(x, y):(x, y) \in X\}
$$

## Numerical Tools

- Numerical oracles
- Is this triangle away from the curve?
- Is the curve approximately flat inside the triangle?
- Self-validated arithmetic methods
- Robust interval estimative for $f$ with guarantee certificate:

$$
F(X) \supseteq f(X)=\{f(x, y):(x, y) \in X\}
$$

- $0 \notin F(X) \Rightarrow$ cell $X$ is away from curve


## Numerical Tools

- Numerical oracles
- Is this triangle away from the curve?
- Is the curve approximately flat inside the triangle?
- Self-validated arithmetic methods
- Robust interval estimative for $f$ with guarantee certificate:

$$
F(X) \supseteq f(X)=\{f(x, y):(x, y) \in X\}
$$

- $0 \notin F(X) \Rightarrow$ cell $X$ is away from curve
- Interval arithmetic (IA) and affine arithmetic (AA)


## Affine Arithmetic

- Introduced by Comba and Stolfi in SIBGRAPI'93


## Affine Arithmetic

- Introduced by Comba and Stolfi in SIBGRAPI'93
- Represents a quantity $z$ with an affine form:

$$
\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n}
$$

where $z_{i} \in \mathbb{R}$ and the noise symbols $\varepsilon_{i} \in[-1,1]$ represent independent sources of uncertainty

## Affine Arithmetic

- Introduced by Comba and Stolfi in SIBGRAPI'93
- Represents a quantity $z$ with an affine form:

$$
\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n}
$$

where $z_{i} \in \mathbb{R}$ and the noise symbols $\varepsilon_{i} \in[-1,1]$ represent independent sources of uncertainty

- We can compute arbitrary formulas on affine forms


## Affine Arithmetic

- Introduced by Comba and Stolfi in SIBGRAPI'93
- Represents a quantity $z$ with an affine form:

$$
\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n}
$$

where $z_{i} \in \mathbb{R}$ and the noise symbols $\varepsilon_{i} \in[-1,1]$ represent independent sources of uncertainty

- We can compute arbitrary formulas on affine forms
- Good alternative to replace IA in graphics applications


## Affine Arithmetic

- Introduced by Comba and Stolfi in SIBGRAPI'93
- Represents a quantity $z$ with an affine form:

$$
\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n}
$$

where $z_{i} \in \mathbb{R}$ and the noise symbols $\varepsilon_{i} \in[-1,1]$ represent independent sources of uncertainty

- We can compute arbitrary formulas on affine forms
- Good alternative to replace IA in graphics applications
- AA has ability to handle correlations


## Affine Arithmetic

- Introduced by Comba and Stolfi in SIBGRAPI'93
- Represents a quantity $z$ with an affine form:

$$
\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n}
$$

where $z_{i} \in \mathbb{R}$ and the noise symbols $\varepsilon_{i} \in[-1,1]$ represent independent sources of uncertainty

- We can compute arbitrary formulas on affine forms
- Good alternative to replace IA in graphics applications
- AA has ability to handle correlations
- AA provides tighter interval estimative


## Affine Arithmetic

- Introduced by Comba and Stolfi in SIBGRAPI'93
- Represents a quantity $z$ with an affine form:

$$
\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n}
$$

where $z_{i} \in \mathbb{R}$ and the noise symbols $\varepsilon_{i} \in[-1,1]$ represent independent sources of uncertainty

- We can compute arbitrary formulas on affine forms
- Good alternative to replace IA in graphics applications
- AA has ability to handle correlations
- AA provides tighter interval estimative
- AA provides additional geometric information


## Affine Arithmetic

- Introduced by Comba and Stolfi in SIBGRAPI'93
- Represents a quantity $z$ with an affine form:

$$
\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n}
$$

where $z_{i} \in \mathbb{R}$ and the noise symbols $\varepsilon_{i} \in[-1,1]$ represent independent sources of uncertainty

- We can compute arbitrary formulas on affine forms
- Good alternative to replace IA in graphics applications
- AA has ability to handle correlations
- AA provides tighter interval estimative
- AA provides additional geometric information
- Good AA libraries in C/C++ available


## Intervals in Affine Arithmetic

- AA algorithms can input and output intervals


## Intervals in Affine Arithmetic

- AA algorithms can input and output intervals
- AA form $\Rightarrow \mathrm{IA}$ form


## Intervals in Affine Arithmetic

- AA algorithms can input and output intervals
- AA form $\Rightarrow$ IA form
- $\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n}$


## Intervals in Affine Arithmetic

- AA algorithms can input and output intervals
- AA form $\Rightarrow \mathrm{IA}$ form
- $\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n} \Rightarrow z \in[\hat{z}]:=\left[z_{0}-\delta, z_{0}+\delta\right]$ where $\delta=\left|z_{1}\right|+\cdots+\left|z_{n}\right|$


## Intervals in Affine Arithmetic

- AA algorithms can input and output intervals
- AA form $\Rightarrow \mathrm{IA}$ form
- $\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n} \Rightarrow z \in[\hat{z}]:=\left[z_{0}-\delta, z_{0}+\delta\right]$ where $\delta=\left|z_{1}\right|+\cdots+\left|z_{n}\right|$
- IA form $\Rightarrow A A$ form


## Intervals in Affine Arithmetic

- AA algorithms can input and output intervals
- AA form $\Rightarrow \mathrm{IA}$ form
- $\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n} \Rightarrow \quad z \in[\hat{z}]:=\left[z_{0}-\delta, z_{0}+\delta\right]$ where $\delta=\left|z_{1}\right|+\cdots+\left|z_{n}\right|$
- IA form $\Rightarrow$ AA form
- $z \in[a, b]$


## Intervals in Affine Arithmetic

- AA algorithms can input and output intervals
- AA form $\Rightarrow \mathrm{IA}$ form
- $\hat{z}=z_{0}+z_{1} \varepsilon_{1}+z_{2} \varepsilon_{2}+\cdots+z_{n} \varepsilon_{n} \Rightarrow \quad z \in[\hat{z}]:=\left[z_{0}-\delta, z_{0}+\delta\right]$ where $\delta=\left|z_{1}\right|+\cdots+\left|z_{n}\right|$
- IA form $\Rightarrow$ AA form
v $z \in[a, b] \Rightarrow \hat{z}=z_{0}+z_{1} \varepsilon_{1}$ where

$$
\begin{aligned}
& z_{0}=(a+b) / 2 \\
& z_{1}=(b-a) / 2
\end{aligned}
$$

## Bounding limplicit Curves with Strips on $\square$

## On axis-aligned rectangles:

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


$$
\begin{aligned}
& \hat{x}=x_{0}+x_{1} \varepsilon_{1}, \quad x_{0}=(a+b) / 2, \quad x_{1}=(b-a) / 2 \\
& \hat{y}=y_{0}+y_{2} \varepsilon_{2}, \quad y_{0}=(c+d) / 2, \quad y_{2}=(d-c) / 2 \\
& \text { AA form of } f \\
& \quad \hat{f}=f_{0}+f_{1} \varepsilon_{1}+f_{2} \varepsilon_{2}+f_{3} \varepsilon_{3}+\cdots+f_{n} \varepsilon_{n}
\end{aligned}
$$

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


$$
\begin{aligned}
& \hat{x}=x_{0}+x_{1} \varepsilon_{1}, \quad x_{0}=(a+b) / 2, \quad x_{1}=(b-a) / 2 \\
& \hat{y}=y_{0}+y_{2} \varepsilon_{2}, \quad y_{0}=(c+d) / 2, \quad y_{2}=(d-c) / 2 \\
& \text { AA form of } f \\
& \quad \hat{f}=f_{0}+f_{1} \varepsilon_{1}+f_{2} \varepsilon_{2}+f_{3} \varepsilon_{3}+\cdots+f_{n} \varepsilon_{n}
\end{aligned}
$$

$\varepsilon_{3}, \ldots, \varepsilon_{n}$ are noise symbols related to non-affine operations

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


$$
\begin{aligned}
& \hat{x}=x_{0}+x_{1} \varepsilon_{1}, \quad x_{0}=(a+b) / 2, \quad x_{1}=(b-a) / 2 \\
& \hat{y}=y_{0}+y_{2} \varepsilon_{2}, \quad y_{0}=(c+d) / 2, \quad y_{2}=(d-c) / 2 \\
& \text { AA form of } f \\
& \quad \hat{f}=f_{0}+f_{1} \varepsilon_{1}+f_{2} \varepsilon_{2}+f_{3} \varepsilon_{3}+\cdots+f_{n} \varepsilon_{n}
\end{aligned}
$$

higher-order terms can be condensed $\Rightarrow f_{3}=\left|f_{3}\right|+\cdots+\left|f_{n}\right|$

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA

higher-order terms can be condensed $\Rightarrow f_{3}=\left|f_{3}\right|+\cdots+\left|f_{n}\right|$

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


Spatial criteria
$0 \notin[\hat{f}(\square)] \Rightarrow \operatorname{discard}(\square)$

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


Geometric bounds using the AA form of $\hat{f}$

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


$$
\begin{array}{lll}
\hat{x}=x_{0}+x_{1} \varepsilon_{1}, & x_{0}=(a+b) / 2, & x_{1}=(b-a) / 2 \\
\hat{y}=y_{0}+y_{2} \varepsilon_{2}, & y_{0}=(c+d) / 2, & y_{2}=(d-c) / 2
\end{array}
$$

AA form of $f$

$$
\hat{f}=f_{0}+f_{1} \varepsilon_{1}+f_{2} \varepsilon_{2}+f_{3} \varepsilon_{3}
$$

Geometric bounds using the AA form of $\hat{f}$ the graph of $z=f(x, y)$ over $\square$ is sandwiched between the planes:

$$
z=f_{0}+f_{1} \varepsilon_{1}+f_{2} \varepsilon_{2} \pm f_{3}
$$

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


$$
\varepsilon_{1}=\frac{x-x_{0}}{x_{1}} \quad \varepsilon_{2}=\frac{y-y_{0}}{y_{2}}
$$

Geometric bounds using the AA form of $\hat{f}$ the graph of $z=f(x, y)$ over $\square$ is sandwiched between the planes:

$$
z=f_{0}+f_{1} \varepsilon_{1}+f_{2} \varepsilon_{2} \pm f_{3}
$$

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


$$
\varepsilon_{1}=\frac{x-x_{0}}{x_{1}} \quad \varepsilon_{2}=\frac{y-y_{0}}{y_{2}}
$$

Geometric bounds using the AA form of $\hat{f}$
$z$ in cartesian coordinates:

$$
z=f_{0}+\frac{f_{1}}{x_{1}}\left(x-x_{0}\right)+\frac{f_{2}}{y_{2}}\left(y-y_{0}\right) \pm f_{3}
$$

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


$$
\varepsilon_{1}=\frac{x-x_{0}}{x_{1}} \quad \varepsilon_{2}=\frac{y-y_{0}}{y_{2}}
$$

Geometric bounds using the AA form of $\hat{f}$
$f$ is zero inside the strip defined by the two parallel lines:

$$
0=f_{0}+\frac{f_{1}}{x_{1}}\left(x-x_{0}\right)+\frac{f_{2}}{y_{2}}\left(y-y_{0}\right) \pm f_{3}
$$

## Bounding limplicit Curves with Strips on $\square$

On axis-aligned rectangles: we need to evaluate $f(\square)$ with AA


The width between the lines

$$
w=\frac{2 f_{3}}{\sqrt{\left(\frac{f_{1}}{x_{1}}\right)^{2}+\left(\frac{f_{2}}{y_{2}}\right)^{2}}}
$$

Geometric bounds using the AA form of $\hat{f}$ $f$ is zero inside the strip defined by the two parallel lines:

$$
0=f_{0}+\frac{f_{1}}{x_{1}}\left(x-x_{0}\right)+\frac{f_{2}}{y_{2}}\left(y-y_{0}\right) \pm f_{3}
$$

## Bounding Implicit Curves with Strips on $\square$



$$
\frac{x^{2}}{6}+y^{2}=1
$$

## Bounding Implicit Curves with Strips on $\square$


wide strips $\Rightarrow$ high curvature

$$
\frac{x^{2}}{6}+y^{2}=1
$$

## Bounding Implicit Curves with Strips on $\square$


wide strips $\Rightarrow$ high curvature

Geometric criteria

$$
w>\text { threshold } \Rightarrow \text { subdivide( } \square)
$$

$$
\frac{x^{2}}{6}+y^{2}=1
$$

## Bounding Implicit Curves with Strips on $\square$

## Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation


## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree



AA

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA


AA

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA


AA

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA


AA

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA

level 4

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA

level 5

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA


AA

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA


AA

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA


AA

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA


AA

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA
\#cells visited: 6997

level 8
AA
\#cells visited: 1697

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA
\#leaves: 341


AA
\#leaves: 221

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA
CPU time: 394 msec


AA
CPU time: 139 msec

## Bounding Implicit Curves with Strips on $\square$

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

- requires the evaluation $\nabla f$ using IA and automatic differentiation
- adaptive quadtree


IA
linear convergence


AA
quadratic convergence

## Bounding Implicit Curves with Strips on $\diamond$

## On parallelograms:

## Bounding Implicit Curves with Strips on $\diamond$

On parallelograms: evaluate $f(\diamond)$ with $A A \Rightarrow$ write $\varepsilon_{1}$ and $\varepsilon_{2}$ in terms of $x$ and $y$

## Bounding Implicit Curves with Strips on $\diamond$

On parallelograms:
evaluate $f(\diamond)$ with $A A \Rightarrow$ write $\varepsilon_{1}$ and $\varepsilon_{2}$ in terms of $x$ and $y$


## Bounding Implicit Curves with Strips on $\diamond$

On parallelograms:
evaluate $f(\diamond)$ with $\mathrm{AA} \Rightarrow$ write $\varepsilon_{1}$ and $\varepsilon_{2}$ in terms of $x$ and $y$


$$
v_{1}=\left(x_{1}, y_{1}\right) \quad v_{2}=\left(x_{2}, y_{2}\right)
$$

## Bounding Implicit Curves with Strips on $\diamond$

On parallelograms: evaluate $f(\diamond)$ with $\mathrm{AA} \Rightarrow$ write $\varepsilon_{1}$ and $\varepsilon_{2}$ in terms of $x$ and $y$


$$
\begin{gathered}
v_{1}=\left(x_{1}, y_{1}\right) \\
v_{2}=\left(x_{2}, y_{2}\right) \\
\hat{x}=x_{0}+x_{1} \varepsilon_{1}+x_{2} \varepsilon_{2} \quad \hat{y}=y_{0}+y_{1} \varepsilon_{1}+y_{2} \varepsilon_{2}
\end{gathered}
$$

## Bounding Implicit Curves with Strips on $\diamond$

On parallelograms: evaluate $f(\diamond)$ with $\mathrm{AA} \Rightarrow$ write $\varepsilon_{1}$ and $\varepsilon_{2}$ in terms of $x$ and $y$


$$
\begin{gathered}
v_{1}=\left(x_{1}, y_{1}\right) \quad v_{2}=\left(x_{2}, y_{2}\right) \\
\hat{x}=x_{0}+x_{1} \varepsilon_{1}+x_{2} \varepsilon_{2} \quad \hat{y}=y_{0}+y_{1} \varepsilon_{1}+y_{2} \varepsilon_{2} \\
\text { In matrix form } \\
\qquad\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]+\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2}
\end{array}\right]
\end{gathered}
$$

## Bounding Implicit Curves with Strips on $\diamond$

On parallelograms: evaluate $f(\diamond)$ with $\mathrm{AA} \Rightarrow$ write $\varepsilon_{1}$ and $\varepsilon_{2}$ in terms of $x$ and $y$


$$
\begin{aligned}
& \qquad v_{1}=\left(x_{1}, y_{1}\right) \quad v_{2}=\left(x_{2}, y_{2}\right) \\
& \hat{x}=x_{0}+x_{1} \varepsilon_{1}+x_{2} \varepsilon_{2} \quad \hat{y}=y_{0}+y_{1} \varepsilon_{1}+y_{2} \varepsilon_{2} \\
& \text { In matrix form } \\
& \qquad\left[\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
x-x_{0} \\
y-y_{0}
\end{array}\right]
\end{aligned}
$$

## Bounding Implicit Curves with Strips on $\diamond$

On parallelograms: evaluate $f(\diamond)$ with $A A \Rightarrow$ write $\varepsilon_{1}$ and $\varepsilon_{2}$ in terms of $x$ and $y$

the matrix is invertible $\Longleftrightarrow$ the parallelogram is not degenerate

## Bounding Implicit Curves with Strips on $\triangle$

## On triangles:

## Bounding Implicit Curves with Strips on $\triangle$

On triangles: replace the evaluation of $f(\triangle) \Rightarrow f(\diamond)$ with AA

## Bounding Implicit Curves with Strips on $\triangle$

On triangles: replace the evaluation of $f(\triangle) \Rightarrow f(\diamond)$ with AA

- include a triangle into a parallelogram


## Bounding Implicit Curves with Strips on $\triangle$

On triangles: replace the evaluation of $f(\triangle) \Rightarrow f(\diamond)$ with AA

- include a triangle into a parallelogram



## Bounding Implicit Curves with Strips on $\triangle$

On triangles: replace the evaluation of $f(\triangle) \Rightarrow f(\diamond)$ with AA

- include a triangle into a parallelogram
- evaluate $f$ outside of its domain



## Bounding Implicit Curves with Strips on $\triangle$

On triangles: replace the evaluation of $f(\triangle) \Rightarrow f(\diamond)$ with AA

- include a triangle into a parallelogram
- evaluate $f$ outside of its domain
- it does not work for surfaces



## Bounding Implicit Curves with Strips on $\triangle$

On triangles: replace the evaluation of $f(\triangle) \Rightarrow f(\diamond)$ with AA

- include a triangle into a parallelogram
- evaluate $f$ outside of its domain
- it does not work for surfaces

- split a triangle in three parallelograms


## Bounding Implicit Curves with Strips on $\triangle$

On triangles: replace the evaluation of $f(\triangle) \Rightarrow f(\diamond)$ with AA

- include a triangle into a parallelogram
- evaluate $f$ outside of its domain
- it does not work for surfaces

- split a triangle in three parallelograms



## Our Adaptive Method

procedure Explore $(\triangle)$
$\diamond_{1}, \diamond_{2}, \diamond_{3} \leftarrow$ Parallelograms $(\triangle)$
$\hat{f}_{i} \leftarrow f\left(\diamond_{i}\right)$ with AA
if $0 \in\left[\hat{f}_{i}\right]$ for some $i$ then
$w_{i} \leftarrow$ width of $\hat{f}$ in $\diamond_{i}$
if $w_{i} \leq \epsilon_{\text {user }}$, for all $i$ then
Approximate $(\triangle)$
else
$\triangle_{i} \leftarrow$ Subdivide $(\triangle)$ for each $i$, Explore $\left(\triangle_{i}\right)$
end
end
end

## Our Adaptive Method

procedure Explore $(\triangle)$
$\diamond_{1}, \diamond_{2}, \diamond_{3} \leftarrow$ Parallelograms $(\triangle)$
$\hat{f}_{i} \leftarrow f\left(\diamond_{i}\right)$ with AA
if $0 \in\left[\hat{f}_{i}\right]$ for some $i$ then $w_{i} \leftarrow$ width of $\hat{f}$ in $\diamond_{i}$
if $w_{i} \leq \epsilon_{\text {user }}$, for all $i$ then
 Approximate $(\triangle)$ else
$\triangle_{i} \leftarrow$ Subdivide $(\triangle)$ for each $i$, Explore $\left(\triangle_{i}\right)$
end
end
end

## Our Adaptive Method

procedure Explore $(\triangle)$
$\diamond_{1}, \Delta_{2}, \diamond_{3} \leftarrow$ Parallelograms $(\triangle)$
$\hat{f}_{i} \leftarrow f\left(\diamond_{i}\right)$ with AA
if $0 \in\left[\hat{f}_{i}\right]$ for some $i$ then $w_{i} \leftarrow$ width of $\hat{f}$ in $\diamond_{i}$
if $w_{i} \leq \epsilon_{\text {user }}$, for all $i$ then Approximate $(\triangle)$
else
$\triangle_{i} \leftarrow$ Subdivide $(\triangle)$ for each $i$, Explore $\left(\triangle_{i}\right)$
end
end
end


## Our Adaptive Method

procedure Explore $(\triangle)$
$\diamond_{1}, \nabla_{2}, \nabla_{3} \leftarrow$ Parallelograms $(\triangle)$ $\left.\hat{f}_{i} \leftarrow f( \rangle_{i}\right)$ with AA
if $0 \in\left[\hat{f}_{i}\right]$ for some $i$ then $w_{i} \leftarrow$ width of $\hat{f}$ in $\diamond_{i}$
if $w_{i} \leq \epsilon_{\text {user }}$, for all $i$ then Approximate $(\triangle)$
else
$\triangle_{i} \leftarrow$ Subdivide $(\triangle)$ for each $i$, Explore $\left(\triangle_{i}\right)$
end
end
end


## Our Adaptive Method

procedure Explore $(\triangle)$
$\diamond_{1}, \nabla_{2}, \diamond_{3} \leftarrow$ Parallelograms $(\triangle)$ $\hat{f}_{i} \leftarrow f\left(\diamond_{i}\right)$ with AA
if $0 \in\left[\hat{f}_{i}\right]$ for some $i$ then $w_{i} \leftarrow$ width of $\hat{f}$ in $\diamond_{i}$ if $w_{i} \leq \epsilon_{\text {user }}$, for all $i$ then Approximate $(\triangle)$
else
$\triangle_{i} \leftarrow$ Subdivide $(\triangle)$ for each $i$, Explore $\left(\triangle_{i}\right)$
end
end
end


## Our Adaptive Method

procedure Explore $(\triangle)$
$\diamond_{1}, \diamond_{2}, \diamond_{3} \leftarrow$ Parallelograms $(\triangle)$
$\hat{f}_{i} \leftarrow f\left(\diamond_{i}\right)$ with AA
if $0 \in\left[\hat{f}_{i}\right]$ for some $i$ then $w_{i} \leftarrow$ width of $\hat{f}$ in $\diamond_{i}$
if $w_{i} \leq \epsilon_{\text {user }}$, for all $i$ then
 Approximate $(\triangle)$
else
$\triangle_{i} \leftarrow$ Subdivide $(\triangle)$ for each $i$, Explore $\left(\triangle_{i}\right)$
end
end
end

## Our Adaptive Method

procedure Explore $(\triangle)$
$\diamond_{1}, \diamond_{2}, \diamond_{3} \leftarrow$ Parallelograms $(\triangle)$ $\hat{f}_{i} \leftarrow f\left(\diamond_{i}\right)$ with AA
if $0 \in\left[\hat{f}_{i}\right]$ for some $i$ then $w_{i} \leftarrow$ width of $\hat{f}$ in $\rangle_{i}$
if $w_{i} \leq \epsilon_{\text {user }}$, for all $i$ then


Approximate $(\triangle)$
else
$\triangle_{i} \leftarrow$ Subdivide $(\triangle)$ for each $i$, Explore $\left(\triangle_{i}\right)$ end
end
end

linear interpolation bissection method

## Our Adaptive Method

procedure Explore $(\triangle)$
$\diamond_{1}, \diamond_{2}, \diamond_{3} \leftarrow$ Parallelograms $(\triangle)$ $\hat{f}_{i} \leftarrow f\left(\diamond_{i}\right)$ with AA
if $0 \in\left[\hat{f}_{i}\right]$ for some $i$ then $w_{i} \leftarrow$ width of $\hat{f}$ in $\nabla_{i}$
if $w_{i} \leq \epsilon_{\text {user }}$, for all $i$ then
 Approximate $(\triangle)$
else
$\triangle_{i} \leftarrow$ Subdivide $(\triangle)$ for each $i$, Explore $\left(\triangle_{i}\right)$ end
end
end

linear interpolation bissection method

## Our Adaptive Method

Our method does not care what mesh subdivision method is used

## Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup

mesh with connecticity

## Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup midpoint splitting

mesh with connecticity $\sqrt{3}, J_{1}^{a}, 4-8$ meshes, ...

## Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup

$$
\# \triangle=193
$$


mesh with connecticity

$$
\# \triangle=193
$$

## Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup

$$
\# \triangle=307
$$


mesh with connecticity

$$
\# \triangle=325
$$

## Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup

$$
\# \triangle=512
$$


mesh with connecticity

$$
\# \triangle=427
$$

## Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup

$$
\# \triangle=922
$$


mesh with connecticity

$$
\# \triangle=574
$$

## Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
$\# \triangle=1384$

mesh with connecticity

$$
\# \triangle=779
$$

## Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
$\# \triangle=1384$

mesh with connecticity

$$
\# \triangle=779
$$

## Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup $\# \triangle=1384$

mesh with connecticity

$$
\# \triangle=779
$$

## Our Adaptive Method

The effect of the geometric criteria on the curve in a triangular quadtree


## Results


level 0

$$
(x+1)^{3}(1-x)-4 y^{4}=0
$$

## Results


level 1

$$
(x+1)^{3}(1-x)-4 y^{4}=0
$$

## Results


level 2

$$
(x+1)^{3}(1-x)-4 y^{4}=0
$$

## Results


level 3

$$
(x+1)^{3}(1-x)-4 y^{4}=0
$$

## Results


level 4

$$
(x+1)^{3}(1-x)-4 y^{4}=0
$$

## Results



$$
\begin{gathered}
\text { level } 4 \\
\# \triangle_{\text {in }}=940 \\
\# \triangle_{\text {out }}=1771
\end{gathered}
$$

CPU time $=280 \mathrm{msec}$

$$
(x+1)^{3}(1-x)-4 y^{4}=0
$$

## Results



## Results

$$
x^{3}+x-y^{2}=0
$$

level 1

## Results



## Results



## Results



$$
\begin{gathered}
\text { level } 3 \\
\# \triangle_{\text {in }}=3530 \\
\# \triangle_{\text {out }}=4142
\end{gathered}
$$

CPU time $=333 \mathrm{msec}$

$$
x^{3}+x-y^{2}=0
$$

## Results

$$
y^{2}\left(0.75^{2}-x^{2}\right)-\left(x^{2}+1.5 y-0.75^{2}\right)^{2}=0
$$

level 0

## Results

$$
y^{2}\left(0.75^{2}-x^{2}\right)-\left(x^{2}+1.5 y-0.75^{2}\right)^{2}=0
$$

level 1

## Results

$$
y^{2}\left(0.75^{2}-x^{2}\right)-\left(x^{2}+1.5 y-0.75^{2}\right)^{2}=0
$$

level 2

## Results

$$
y^{2}\left(0.75^{2}-x^{2}\right)-\left(x^{2}+1.5 y-0.75^{2}\right)^{2}=0
$$

level 3

## Results

$$
y^{2}\left(0.75^{2}-x^{2}\right)-\left(x^{2}+1.5 y-0.75^{2}\right)^{2}=0
$$

level 4

## Results

$$
y^{2}\left(0.75^{2}-x^{2}\right)-\left(x^{2}+1.5 y-0.75^{2}\right)^{2}=0
$$

level 5

## Results


level 5

$$
\begin{aligned}
\# \triangle_{\text {in }} & =126 \\
\# \triangle_{\text {out }} & =1168
\end{aligned}
$$

CPU time $=123 \mathrm{msec}$

$$
y^{2}\left(0.75^{2}-x^{2}\right)-\left(x^{2}+1.5 y-0.75^{2}\right)^{2}=0
$$

## Results


level 0

## Results

$$
\left(x^{2}+y^{2}-1\right)^{3}-x^{2} y^{3}=0
$$

level 1

## Results

$$
\left(x^{2}+y^{2}-1\right)^{3}-x^{2} y^{3}=0
$$

level 2

## Results

$$
\left(x^{2}+y^{2}-1\right)^{3}-x^{2} y^{3}=0
$$

level 3

## Results



## Results


level 0

$$
\left(y-x^{2}+1\right)^{4}+\left(x^{2}+y^{2}\right)^{4}-1=0
$$

## Results


level 1

$$
\left(y-x^{2}+1\right)^{4}+\left(x^{2}+y^{2}\right)^{4}-1=0
$$

## Results


level 2

$$
\left(y-x^{2}+1\right)^{4}+\left(x^{2}+y^{2}\right)^{4}-1=0
$$

## Results


level 3

$$
\left(y-x^{2}+1\right)^{4}+\left(x^{2}+y^{2}\right)^{4}-1=0
$$

## Results


level 4

$$
\left(y-x^{2}+1\right)^{4}+\left(x^{2}+y^{2}\right)^{4}-1=0
$$

## Results


level 4

$$
\begin{gathered}
\# \triangle_{\text {in }}=1006 \\
\# \triangle_{\text {out }}=2134
\end{gathered}
$$

CPU time $=391 \mathrm{msec}$

$$
\left(y-x^{2}+1\right)^{4}+\left(x^{2}+y^{2}\right)^{4}-1=0
$$

## Results

$$
(x y+\cos (x+y))(x y+\sin (x+y))=0
$$

level 0

## Results


level 1

$$
(x y+\cos (x+y))(x y+\sin (x+y))=0
$$

## Results


level 2

$$
(x y+\cos (x+y))(x y+\sin (x+y))=0
$$

## Results


level 3

$$
(x y+\cos (x+y))(x y+\sin (x+y))=0
$$

## Results


level 4

$$
(x y+\cos (x+y))(x y+\sin (x+y))=0
$$

## Results



$$
\begin{gathered}
\text { level } 4 \\
\# \triangle_{\text {in }}=1032 \\
\# \triangle_{\text {out }}=3897 \\
\text { CPU time }=454 \mathrm{msec}
\end{gathered}
$$

$$
(x y+\cos (x+y))(x y+\sin (x+y))=0
$$

## Work in Progress

Implicit curves on surfaces

curve given implicitly by $x^{2}+y^{2}+z^{2}=1$ on bitorus mesh

## Approximating Implicit Curves on Triangulations with Affine Arithmetic



