

Geisa Martins Faustino Luiz Henrique de Figueiredo

IMPA

SIBGRAPI 2005

Outline

- The problem
- Related work
- Our algorithm
- Results
- Conclusions
- Future work

The problem

The problem

Related work image tools

Paint Shop Pro

Adobe Photoshop

GIMP

original image

mosaic

Hausner (SIGGRAPH 2001)

original image

mosaic

Dobashi et al. (EUROGRAPHICS 2002)

stainedglass effect

mosaic

Mould (EUROGRAPHICS 2003)

original image

segmented image

region outilines

final image

Elber & Wolberg (VISUAL COMPUTER 2003)

original image

final image

Di Blasi & Gallo (VISUAL COMPUTER 2005)

original image

direction lines

final image

Di Blasi & Gallo (VISUAL COMPUTER 2005)

original image

direction lines

final image

- 1. Adaptive sampling of image finding seed points
- 2. Centroidal Voronoi diagram of seed points
- 3. Paint Voronoi regions
- 4. Paint Voronoi edges

- 1. Adaptive sampling of image finding seed points
- 2. Centroidal Voronoi diagram of seed points
- 3. Paint Voronoi regions
- 4. Paint Voronoi edges

- 1. Adaptive sampling of image finding seed points
- 2. Centroidal Voronoi diagram of seed points
- 3. Paint Voronoi regions
- 4. Paint Voronoi edges

- 1. Adaptive sampling of image finding seed points
- 2. Centroidal Voronoi diagram of seed points
- 3. Paint Voronoi regions
- 4. Paint Voronoi edges

- 1. Adaptive sampling of image finding seed points
- 2. Find centroidal Voronoi diagram of seed points
- 3. Paint Voronoi regions
- 4. Paint Voronoi edges

- 1. Adaptive sampling of image finding seed points
- 2. Find centroidal Voronoi diagram of seed points
- 3. Paint Voronoi regions
- 4. Paint Voronoi edges

$$C_{M} = \frac{1}{A_{R}} \sum_{p \in R} I(p)$$

$$E_{cor} = \max_{p \in R} d(I(p), C_M)^2$$

$$C_{M} = \frac{1}{A_{R}} \sum_{p \in R} I(p)$$

$$E_{cor} = \max_{p \in R} d(I(p), C_M)^2$$

$$E_{cor} < \epsilon$$
 or $A_R < L$

$$C_{M} = \frac{1}{A_{R}} \sum_{p \in R} I(p)$$

$$E_{cor} = \max_{p \in R} d(I(p), C_M)^2$$

$$E_{cor} < \epsilon$$
 or $A_R < L$

$$C_{M} = \frac{1}{A_{R}} \sum_{p \in R} I(p)$$

$$E_{cor} = \max_{p \in R} d(I(p), C_{M})^{2}$$

$$E_{cor} < \epsilon$$
 or $A_R < L$

$$C_{M} = \frac{1}{A_{R}} \sum_{p \in R} I(p)$$

$$E_{cor} = \max_{p \in R} d(I(p), C_M)^2$$

$$E_{cor} < \epsilon$$
 or $A_R < L$

$$C_{M} = \frac{1}{A_{R}} \sum_{p \in R} I(p)$$

$$E_{cor} = \max_{p \in R} d(I(p), C_M)^2$$

$$E_{cor} < \epsilon$$
 or $A_R < L$

$$C_{M} = \frac{1}{A_{R}} \sum_{p \in R} I(p)$$

$$E_{cor} = \max_{p \in R} d(I(p), C_M)^2$$

$$E_{cor} < \epsilon$$
 or $A_R < L$


```
•
  - ::
 --
- 11
--
....
 ----
      .........
      _____
```


sites

Voronoi diagram

Lloyd relaxation

Centroidal Voronoi diagram

Why centroidal Voronoi diagrams?

Why centroidal Voronoi diagrams?

Density function is Euclidean norm of gradient of luminance

original image

luminance

density

Paint Voronoi cells

center color

average color

Paint Voronoi edges

black - stained-glass

background - mosaic

Visual effects synthetic illumination

Visual effects glass texture

Results

Original image

Painting effect

Mosaic effect

Mosaic effect

Stained-glass effect

Stained-glass effect

Quilt effect

Original image

Painting effect

Stained-glass effect

Stained-glass effect

Quilt effect

Original image

Painting effect

Mosaic effect

Mosaic effect

Stained-glass effect

Stained-glass effect

Quilt effect

Original image

Painting effect

Mosaic effect

Mosaic effect

Stained-glass effect

Stained-glass effect

Quilt effect

Original image

Painting effect

Stained-glass effect

Stained-glass effect

Quilt effect

Original image

Painting effect

Mosaic effect

Mosaic effect

Stained-glass effect

Stained-glass effect

Quilt effect

Original image

Painting effect

Mosaic effect

Mosaic effect

Stained-glass effect

Stained-glass effect

Quilt effect

Original image

Painting effect

Mosaic effect

Mosaic effect

Stained-glass effect

Stained-glass effect

Quilt effect

Conclusion

Our algorithm

- ✓ is simple to implement
- ✓ produces locally adaptive mosaics that look nice
- ✓ needs little user intervention
- ✓ does not need special hardware

Future work

- ✓ test other sampling strategies
- ✓ test other density functions
- ✓ reduce blur effect near edges

The End