impa
p” Interval methods for computer
graphics and geometric modeling

Instituto de Matematica
Pura e Aplicada

Luiz Henrique de Figueiredo



Motivation

Basic problems in computer graphics and geometric modeling
typically reduce to solving systems of nonlinear equations:

fl(:cl,.. .,.%'n) =0

fm(l‘l,.. .,fL‘n) =0



Motivation — rendering an implicit surface with ray casting

Implicit surface

h: R® 5 R

h(l’, Y, Z) =0,
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Ray intersects surface when

First intersection occurs at smallest zero of f in [0, 00)

Need all zeros for CSG models



Motivation — rendering an implicit surface with ray casting

Implicit surface
h(z,y,z) =0, h:R* =R
Ray
rt)=e+t-v=_(x(t),y(t),2(t), tel0,00)

Ray intersects surface when

First intersection occurs at smallest zero of f in [0, 00)

Need all zeros for CSG models

At + (Y2 + 22)?) + 1722 (Y2 + 22) — 20(2? + 92 + 2%) + 17 =0



Motivation — plotting an implicit curve

Implicit curve

f(xmy):()a f:R2_>R



Motivation — plotting an implicit curve

Implicit curve

f(x?y):()a f:R2_>R

0.004 + 0.110z — 0.177y — 0.17422 4 0.224zy — 0.303y>
—0.1682% + 0.3272%y — 0.087zy* — 0.013y> + 0.2352*
—0.6672%y + 0.7452%y* — 0.029zy> + 0.072y* = 0



Motivation — plotting an implicit curve

Implicit curve

f(x7y):07 f:R2_>R

0.004 + 0.110z — 0.177y — 0.17422 4 0.224zy — 0.303y>
—0.1682% + 0.3272%y — 0.087zy* — 0.013y> + 0.2352*
—0.6672%y + 0.7452%y* — 0.029zy> + 0.072y* = 0



Motivation — intersecting two parametric surfaces

Parametric surfaces
g1: D1 C R? -5 R?

g2: Dy C R®? - R?

Intersection

g1(u1,v1) — g2(uz,v2) = 0

z1(u1,v1) — x2(ug, v2)

0
y1(u1,v1) — ya(uz,v2) =0
0

z1(u1,v1) — 22(ug,v2) =



Motivation — intersecting two parametric surfaces

Parametric surfaces

g1: D; c R* > R?

gg:DgCR2—>R3

Intersection

g1(u1,v1) — ga(ug,v2) =0

z1(u1,v1) — x2(ug, v2)

0
y1(u1,v1) — ya(uz,v2) =0
0

z1(u1,v1) — 22(ug, v2)

Hongwei Lin, Yang Qin, Hongwei Liao, Yunyang Xiong
“Affine Arithmetic-Based B-Spline Surface Intersection with GPU Acceleration”
IEEE TVCG, 2014
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Motivation

Basic problems in computer graphics and geometric modeling
typically reduce to solving systems of nonlinear equations:

fl(:cl,.. .,.%'n) =0

fm(ﬂj‘l, e ,ZL‘n) =0
Low-dimensional solutions = sampling unreliable

Interval methods provide robust solutions



Motivation

Basic problems in computer graphics and geometric modeling
typically reduce to solving systems of nonlinear equations:

GENERATIVE MODELING

fl(l‘l,.. .,.%'n) =0

fm(l’l»-- .,LL‘n) =0

Low-dimensional solutions = sampling unreliable

. . OHN M. SNYDER
Interval methods provide robust solutions J

1992



Motivation

Basic problems in computer graphics and geometric modeling
typically reduce to solving systems of nonlinear equations:

filzi,...,zn) =0 g

? ~ Nicholas M. Patrikalakis’
: Takashi Maekawa

fm(x1, ... zn) =0 ~ Shape Interrogation
. for Computer
Low-dimensional solutions == sampling unreliable  Aided Design and
Manufacturing

Interval methods provide robust solutions Léw
-

2002



interval arithmetic



Interval arithmetic Moore (1960)

Introduced to improve reliability of numerical computations
through automated a posteriori error analysis of both
rounding errors in floating-point arithmetic and
measurement errors in input data
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For computer graphics and geometric modeling:
IA can probe the global behavior of mathematical functions

IA provides reliable bounds for the values of a function over
whole regions of its domain

Avoid costly and unreliable point sampling



Interval arithmetic Moore (1960)

Introduced to improve reliability of numerical computations

through automated a posteriori error analysis of both Introduction to
rounding errors in floating-point arithmetic and INTERVAL ANALYSIS
measurement errors in input data -
For computer graphics and geometric modeling:
IA can probe the global behavior of mathematical functions Ramon E. Moore

R. Baker Kearfott

Michael J. Cloud

IA provides reliable bounds for the values of a function over
whole regions of its domain

2009

Avoid costly and unreliable point sampling



Interval arithmetic Moore (1960)

Introduced to improve reliability of numerical computations
through automated a posteriori error analysis of both
rounding errors in floating-point arithmetic and
measurement errors in input data

For computer graphics and geometric modeling:
IA can probe the global behavior of mathematical functions
IA provides reliable bounds for the values of a function over e

whole regions of its domain
2011

Avoid costly and unreliable point sampling



Interval arithmetic

Represent quantities as intervals
xz ~la,b] = x € [a,D]

Operate with intervals generating other intervals

la,b] + [¢,d] = Ja+c¢,b+d]
a,b] x [e,d] = [min{ac,ad,be,bd}, max{ac, ad, be, bd}]
[a, 6]/ [e;d] = [a,b] x [1/d,1/c]
[a,0)> = [0,max(a? b*)] when 0 € [a,b]
expa,b] = [exp(a),exp(b)]

Automatic extensions for complicated expressions with operator overloading



Interval arithmetic

Every expression f has an interval extension F’ :
€ X; = f(x1,...,2y) € F(Xq,...,Xp)
Reliable range estimates without point sampling
F(X) 2 f(X) = {f(2) : x € X}
In particular:

0¢ F(X) = 0¢f(X)
= f =0 has no solution in X

This is a computational proof!



Interval arithmetic

Given a system of nonlinear equations

f1($1,...,$n) =0

fm(z1, ... 2n) =0

and interval extensions
F,....F,

there are no solutions in a box X = X7 x --- x X, CR"™ if

0¢ Fr(X) forsomek

There may be solutions in X if

0€ Fp(X) forall k



Interval probing of implicit curve
-2 4+2=0

X = [-2,-1]
Y = [19]



Interval probing of implicit curve

—X3+ X



Interval probing of implicit curve

X = [-2,—-1]
Y = [1,2]
X3 = [-8,-1]
-X3 = [1,8]
~X34 X = [-1,7]
YZ = [1,4]
Y2-X34+X = [0,11]



Interval probing of implicit curve

X = [-2,-1]
Y = [1,2]
X3 = [-8,-1]
-X3 = [1,8]
X34+ X = [-1,7] exact = [0, 6]
YZ = [1,4]
Y2-X34+X = [0,11]  exact=[1,10]

Interval estimates not tight, but improve as intervals shrink



Interval probing of implicit curve

X = [-2,-1]
Y = [1,2]
X3 = [-8,-1]
-X3 = [1,8]
X34+ X = [-1,7] exact = [0, 6]
YZ = [1,4]
Y2-X34+X = [0,11]  exact=[1,10]

Interval estimates not tight, but improve as intervals shrink = divide-and-conquer



Interval probing of implicit curve

v -3+ =0

X xY =[-2,—-1] x[1,2]
F(X,Y)=][0,11] maybe

f(X,Y) =[1,10] no
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Interval probing of implicit curve

v -3+ =0

X xY =[-2,—-1] x[1,2]
F(X,Y)=][0,11] maybe

f(X,Y) =[1,10] no




Interval probing of implicit curve

v -3+ =0

X xY =[-2,-1.5] x [1.5,2]

F(X,Y)=[3.625,10.5]  no




Interval probing of implicit curve

v -3+ =0

X xY =[-15,—1] x [1.5,2]

F(X,Y)=[175,6.375]  no




Interval probing of implicit curve

v -3+ =0

X xY =[-2,—-1.5] x [1,1.5]

F(X,Y)=[2.375,875  no




Interval probing of implicit curve

v -3+ =0

X xY =[-15,—1] x [1,1.5]

F(X,Y)=[0.5,4625]  no




Interval probing of implicit curve

v -3+ =0

X xY =[-2,—-1] x[1,2]
F(X,Y)=[05,105]  no

f(X,Y) =[1,10] no




Adaptive domain subdivision
To solve f(z)=0 in QCR"
call explore(2)

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) then
output X
else
X1, ..., Xk < subdivide(X)
for each i do explore(X;)
end
end



Adaptive domain subdivision
To solve f(z)=0 in QCR"
call explore(2)

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) then
output X
else
X1, ..., Xk < subdivide(X)
for each i do explore(X;)
end
end

Suffern—Fackerell (1991), Snyder (1992)
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Adaptive domain subdivision

To solve f(z)=0 in QCR"

call explore(2)

procedure explore(X)
if 0 ¢ F(X) then

discard X
elseif small(X) then 7

output X i
else Fi

X1, ..., Xk < subdivide(X)
for each i do explore(X;)

end

end -

Suffern—Fackerell (1991), Snyder (1992)




Adaptive domain subdivision
To solve f(z)=0 in QCR"
call explore(2)

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) then
output X
else
X1, ..., Xk < subdivide(X)
for each i do explore(X;)
end
end

Suffern—Fackerell (1991), Snyder (1992)



Implicit curves
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Implicit curves
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Implicit curves
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Implicit curves

F inclusion function for f

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) then
output X
else
X1,..., Xj < subdivide(X)
for each i do explore(X;)
end
end

spatial adaption
Suffern—Fackerell (1991), Snyder (1992)

G inclusion function for grad f

procedure explore(X)
if 0 ¢ F(X) then
discard X
elseif small(X) or small(G(X)) then
approx(X)
else
X1,..., Xk < subdivide(X)
for each i do explore(X;)
end
end

geometric adaption
Lopes—Oliveira—Figueiredo (2002)



Implicit curves — spatial adaption




ImpIICIt curves — geometric adaption Lopes—Oliveira—Figueiredo (2002)
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|mp||C|t curves — geometric adaption Lopes—Oliveira—Figueiredo (2002)




Implicit curves — geometric adaption

N

#7(

Lopes—Oliveira—Figueiredo (2002)



more applications



Implicit regions Tupper (2001)

GrafEq






Im pl icit surfaces Paiva—Lopes—Lewiner—Figueiredo (2006)
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track regions of high curvature



Implicit surfaces Paiva—Lopes—Lewiner—Figueiredo (2006)

flag regions of possible topological ambiguity



Oliveira—Figueiredo (2003)

Offsets of parametric curves

T H

g T




Offsets of parametric curves Oliveira—Figueiredo (2003)




Bisectors of parametric curves Oliveira—Figueiredo (2003)



Medial axis of parametric curves Oliveira—Figueiredo (2003)




Beam Casting |mp||C|t surfaces Ganacim—Figueiredo—Nehab (2011)

TP

» Simulates a beam of rays that
covers one or more pixels

\

§ beam

avoids sampling errors

also Flérez et al (2008)




Overestimation

0.004+0.1102—0.177y—0.1742:>+0.2242y—0.303y>

—0.16823+0.3272%y—0.087zy*—0.013y3+0.2352%
—0.6672%y+0.74522y>—0.0292y°4+0.072y* = 0




Overestimation

0.004+0.1102—0.177y—0.1742:>+0.2242y—0.303y>

—0.16823+0.3272%y—0.087zy*—0.013y3+0.2352%
—0.6672%y+0.74522y>—0.0292y°4+0.072y* = 0

IA can't see correlations between operands




The dependency problem in interval arithmetic
f(z) = (104 z)(10 — z) for x € [—2, 2]

10+2 = [8,12]
10—z = [8,12]
(104 2)(10 —z) = [64,144] diam = 80 relative accuracy = 20
exact range = [96, 100] diam =4




The dependency problem in interval arithmetic

relative accuracy = 40/u

f(z) = (104 z)(10 — z) for x € [—2, 2]
10+ [10 — u, 10 + u]
10 —z [10 — u, 10 + u]
(10 4 2)(10 — ) [(10—u) (10+u)?  diam = 40u
exact range [100 — u2,100] diam = u?
g RN




affine arithmetic



Affine arithmetic Comba-Stolfi (1993)

AA represents a quantity x with an affine form
T=zo+x1€1 + - + Tnén

noise symbols ¢; : independent, vary in [—1,+1] but are otherwise unknown

Can compute arbitrary formulas on affine forms
Use affine approximations for non-affine operations
New noise symbols created during computation

AA generalizes |A:

rT~F = w€lrg—0,mo+3d] for &= |x1|+ -+ |y
z€la,b)] = z~t=x0+mE1 for zo=(b+a)/2, z1=(b—a)/2
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AA automatically exploits first-order correlations in complex expressions



Affine arithmetic Comba-Stolfi (1993)

AA represents a quantity x with an affine form
T=zo+x1€1 + - + Tnén

noise symbols ¢; : independent, vary in [—1,+1] but are otherwise unknown

Can compute arbitrary formulas on affine forms
Use affine approximations for non-affine operations
New noise symbols created during computation

AA generalizes |A:
rT~F = w€lrg—0,mo+3d] for &= |x1|+ -+ |y

z€la,b)] = z~t=x0+mE1 for zo=(b+a)/2, z1=(b—a)/2

AA automatically exploits first-order correlations in complex expressions
= better interval estimates!



The dependency problem in interval arithmetic — with AA

f(z) = (104 2)(10 — z) for x € [—u, u], r=0+ue
10042 = 10— wue
100—x = 104+ue
(10 +2)(10 —z) = 100 —u’ey
range = [100 —u?,100 +w?]  diam = 2u?
exact range = [100 — u?,100] diam = u?




The dependency problem in interval arithmetic — with AA

f(z) = (104 2)(10 — z) for x € [—u, u], r=0+ue
10042 = 10— wue
100—x = 104+ue
(104 2)(10 —z) = 100 —u*ey
range = [100 — 4% 100 4+ v?]  diam = 2u?
exact range = [100 — u?,100] diam = v?
T




replacing |A with AA



IA versus AA for plotting implicit curves
2 +y* +ay — (zy)?/2-1/4=0

Comba-Stolfi (1993)

s

I

-

===

IA: 246

exact: 66

AA: 70



Interval method for intersecting two parametric surfaces

Parametric surfaces
g1: Di c R®* -5 R?

g2: Dy C R® - R?

Intersection
g1(u1,v1) — g2(u2,v2) =0

Interval test
G1(U1, V1) N Ga (U, V) # @

Gleicher—Kass (1992):
intersect bounding boxes in space
discard if no intersection
subdivide until tolerance
string boxes into curves



Replacing IA with AA for surface intersection
Tensor product Bézier surfaces of degree (p, q):

s(u,v) = . ZaijBf(u)B;l(v), B(t) = (n> 1 —0)"" wovel01]
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Replacing IA with AA for surface intersection Figueiredo (1996)
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Replacing IA with AA for surface intersection Figueiredo (1996)




Replacing IA with AA for surface intersection Figueiredo (1996)

AA




Sampling procedural shaders Heidrich—Slusallek-Seidel (1998)

ﬁ?‘ A /




exploiting geometry in AA



Geometry of affine forms

Affine forms that share noise symbols are not independent:
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Image of hypercube [—1, 1]™ under affine transformation
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Geometry of affine forms

Affine forms that share noise symbols are not independent:

>
|

To+ X161+ -+ TpeEn

y0+y151+"'+yn5n

<>
Il

Joint range is a zonotope: centrally symmetric convex polygon

Image of hypercube [—1, 1]™ under affine transformation

MR
Y Yo Yy - Un
Minkowski sum of point and line segments

MR E
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Approximating parametric curves

Parametric curve
C=~(1), v: I — R?
Compute good bounding rectangle for

P =~(T), TCI



Approximating parametric curves

Parametric curve
C=~(I), ~:1—-R?
Compute good bounding rectangle for

P =~(T), TCI



Approximating parametric curves

Parametric curve
C=~(I), ~:1—-R?
Compute good bounding rectangle for

P =~(T), TCI



Approximating parametric curves

Parametric curve
C=~(1), v: I — R?
Compute good bounding rectangle for
P =~(T), TCI

Write

Find joint range of (%) and (f) with AA



Approximating parametric curves

Parametric curve
C=~(1), v: I — R?
Compute good bounding rectangle for
P =~(T), TCI

Write

Find joint range of (%) and (f) with AA

Use bounding rectangle of zonotope



Approximating parametric curves Figueiredo-Stolfi-Velho (2003)



(2003)

eiredo—Stolfi-Velho

Figu

Approximating parametric curves




Figueiredo—Stolfi-Velho (2003)

Approximating parametric curves




Approximating parametric curves Figueiredo-Stolfi-Velho (2003)




Distance fields for parametric curves Figueiredo—Stolfi-Velho (2003)




Ray casting implicit surfaces

Implicit surface

h: RP - R

h(z,y,z) =0,

P
P
o

Ray

o
S
g

8
=)
w
-~

r(t) =e+t-v=(2(t),y), (1)),

Ray intersects surface when

First intersection occurs at smallest zero of f in [0, 00)



Ray casting implicit surfaces

procedure interval-bisection(|a, b))
if 0 € F([a,b]) then

c« (a+b)/2

if (b—a) < e then
return c¢

else
interval-bisection([a, c|) <+ try left half first!
interval-bisection([c, b])

end

end
end

Call interval-bisection([0, t~]) to find the first zero.



Ray casting |mp||C|t surfaces Custatis—Figueiredo—Gattass (1999)

AA exploits linear correlations in

h(r(#))

kﬁ

—~
~~
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Il




Ray casting implicit surfaces

Custatis—Figueiredo—Gattass (1999)

AA exploits linear correlations in

f(t) = h(r(t))
T’(t) - (m(t),y(t),z(t))

root must lie in smaller interval

A




Ray casting implicit surfaces

quadratic convergence

Custatis—Figueiredo—Gattass (1999)

AA exploits linear correlations in

root must lie in smaller interval

A




Natural domains

Y2

(g1 Yp)

AA

(#,9) = (0, y0) + vie1 + v2e2



AA on triangles

(Z,9) = (z0,y0)+vie1+v2e2



AA on triangles
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AA on triangles
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AA on triangles

(Z,9) = (z0,y0)+vie1+v2e2



AA on triangles

(Z,9) = (z0,y0)+vie1+v2e2



Implicit curves on triangles Nascimento-Paiva—Figueiredo-Stolfi (2014)




Implicit curves on triangulations Nascimento—Paiva-Figueiredo-Stolfi (2014)




Implicit curves on triangulations Nascimento—Paiva—Figueiredo-Stolfi (2014)




Implicit curves on triangulations Nascimento—Paiva-Figueiredo-Stolfi (2014)




Implicit curves on triangulations Nascimento—Paiva-Figueiredo-Stolfi (2014)




Conclusion

Interval methods

e can reliably probe the global behavior of functions without sampling
e lead naturally to robust, adaptive algorithms
e useful in many domains

Affine arithmetic is a useful tool for interval methods

AA can replace IA transparently

AA more accurate than IA

AA locally more expensive than |IA but globally more efficient
AA provides geometric information that can be exploited

Lots more to be done!
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