

Interval methods for computer graphics and geometric modeling

Luiz Henrique de Figueiredo

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$f_1(x_1, \dots, x_n) = 0$$

$$\dots$$

$$f_m(x_1, \dots, x_n) = 0$$

Motivation - rendering an implicit surface with ray casting

Implicit surface

$$h(x, y, z) = 0,$$
 $h: \mathbf{R}^3 \to \mathbf{R}$

Ray

$$r(t) = e + t \cdot v = (x(t), y(t), z(t)), \quad t \in [0, \infty)$$

Ray intersects surface when

$$f(t) = h(r(t)) = 0$$

First intersection occurs at smallest zero of f in $[0,\infty)$

Need all zeros for CSG models

Motivation – rendering an implicit surface with ray casting

Implicit surface

$$h(x, y, z) = 0, \qquad h \colon \mathbf{R}^3 \to \mathbf{R}$$

Ray

$$r(t) = e + t \cdot v = (x(t), y(t), z(t)), \quad t \in [0, \infty)$$

Ray intersects surface when

$$f(t) = h(r(t)) = 0$$

First intersection occurs at smallest zero of f in $[0,\infty)$

Need all zeros for CSG models

dels
$$4(x^4+(y^2+z^2)^2)+17x^2(y^2+z^2)-20(x^2+y^2+z^2)+17=0$$

Motivation – plotting an implicit curve

Implicit curve

$$f(x,y) = 0, \qquad f \colon \mathbf{R}^2 \to \mathbf{R}$$

Motivation – plotting an implicit curve

Implicit curve

$$f(x,y) = 0,$$
 $f: \mathbf{R}^2 \to \mathbf{R}$

$$0.004 + 0.110x - 0.177y - 0.174x^{2} + 0.224xy - 0.303y^{2}$$
$$-0.168x^{3} + 0.327x^{2}y - 0.087xy^{2} - 0.013y^{3} + 0.235x^{4}$$
$$-0.667x^{3}y + 0.745x^{2}y^{2} - 0.029xy^{3} + 0.072y^{4} = 0$$

Motivation – plotting an implicit curve

Implicit curve

$$f(x,y) = 0, \qquad f: \mathbf{R}^2 \to \mathbf{R}$$

$$0.004 + 0.110x - 0.177y - 0.174x^{2} + 0.224xy - 0.303y^{2}$$
$$-0.168x^{3} + 0.327x^{2}y - 0.087xy^{2} - 0.013y^{3} + 0.235x^{4}$$
$$-0.667x^{3}y + 0.745x^{2}y^{2} - 0.029xy^{3} + 0.072y^{4} = 0$$

Motivation – intersecting two parametric surfaces

Parametric surfaces

$$g_1 \colon D_1 \subset \mathbf{R}^2 \to \mathbf{R}^3$$

$$g_2 \colon D_2 \subset \mathbf{R}^2 \to \mathbf{R}^3$$

Intersection

$$g_1(u_1, v_1) - g_2(u_2, v_2) = 0$$

$$x_1(u_1, v_1) - x_2(u_2, v_2) = 0$$
$$y_1(u_1, v_1) - y_2(u_2, v_2) = 0$$

$$z_1(u_1, v_1) - z_2(u_2, v_2) = 0$$

Motivation – intersecting two parametric surfaces

Parametric surfaces

$$g_1 \colon D_1 \subset \mathbf{R}^2 \to \mathbf{R}^3$$

$$g_2 \colon D_2 \subset \mathbf{R}^2 \to \mathbf{R}^3$$

Intersection

$$g_1(u_1, v_1) - g_2(u_2, v_2) = 0$$

$$x_1(u_1, v_1) - x_2(u_2, v_2) = 0$$

 $y_1(u_1, v_1) - y_2(u_2, v_2) = 0$

 $z_1(u_1, v_1) - z_2(u_2, v_2) = 0$

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$f_1(x_1, \dots, x_n) = 0$$

$$\dots$$

$$f_m(x_1, \dots, x_n) = 0$$

Low-dimensional solutions

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$f_1(x_1, \dots, x_n) = 0$$

$$\dots$$

$$f_m(x_1, \dots, x_n) = 0$$

Low-dimensional solutions \implies sampling unreliable

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$f_1(x_1, \dots, x_n) = 0$$

$$\dots$$

$$f_m(x_1, \dots, x_n) = 0$$

Low-dimensional solutions \implies sampling unreliable

Interval methods provide robust solutions

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$f_1(x_1, \dots, x_n) = 0$$

$$\dots$$

$$f_m(x_1, \dots, x_n) = 0$$

Low-dimensional solutions ⇒ sampling unreliable

Interval methods provide robust solutions

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$f_1(x_1, \dots, x_n) = 0$$

$$\dots$$

$$f_m(x_1, \dots, x_n) = 0$$

Low-dimensional solutions \implies sampling unreliable

Interval methods provide robust solutions

2002

interval arithmetic

Introduced to improve reliability of numerical computations through automated a posteriori error analysis of both rounding errors in floating-point arithmetic and measurement errors in input data

Introduced to improve reliability of numerical computations through automated a posteriori error analysis of both rounding errors in floating-point arithmetic and measurement errors in input data

For computer graphics and geometric modeling:

IA can probe the global behavior of mathematical functions

IA provides reliable bounds for the values of a function over whole regions of its domain

Avoid costly and unreliable point sampling

Introduced to improve reliability of numerical computations through automated a posteriori error analysis of both rounding errors in floating-point arithmetic and measurement errors in input data

For computer graphics and geometric modeling:

IA can probe the global behavior of mathematical functions IA provides reliable bounds for the values of a function over whole regions of its domain

Avoid costly and unreliable point sampling

2009

Introduced to improve reliability of numerical computations through automated a posteriori error analysis of both rounding errors in floating-point arithmetic and measurement errors in input data

For computer graphics and geometric modeling:

IA can probe the global behavior of mathematical functions IA provides reliable bounds for the values of a function over whole regions of its domain

Avoid costly and unreliable point sampling

2011

Interval arithmetic

Represent quantities as intervals

$$x \sim [a, b] \implies x \in [a, b]$$

Operate with intervals generating other intervals

$$\begin{aligned} &[a,b] + [c,d] &= & [a+c,b+d] \\ &[a,b] \times [c,d] &= & [\min\{ac,ad,bc,bd\}, \max\{ac,ad,bc,bd\}] \\ &[a,b] \, / \, [c,d] &= & [a,b] \times [1/d,1/c] \\ &[a,b]^2 &= & [0,\max(a^2,b^2)] \text{ when } 0 \in [a,b] \\ &\exp{[a,b]} &= & [\exp(a),\exp(b)] \end{aligned}$$

Automatic extensions for complicated expressions with operator overloading

Interval arithmetic

Every expression f has an interval extension F:

$$x_i \in X_i \implies f(x_1, \dots, x_n) \in F(X_1, \dots, X_n)$$

Reliable range estimates without point sampling

$$F(X) \supseteq f(X) = \{f(x) : x \in X\}$$

In particular:

$$\begin{array}{ccc} 0\not\in F(X) & \Longrightarrow & 0\not\in f(X) \\ & \Longrightarrow & f=0 \text{ has no solution in } X \end{array}$$

This is a computational proof!

Interval arithmetic

Given a system of nonlinear equations

$$f_1(x_1, \dots, x_n) = 0$$

$$\dots$$

$$f_m(x_1, \dots, x_n) = 0$$

and interval extensions

$$F_1,\ldots,F_m$$

there are no solutions in a box $X=X_1\times\cdots\times X_n\subseteq {\bf R}^n$ if

$$0 \notin F_k(X)$$
 for some k

There may be solutions in X if

$$0 \in F_k(X)$$
 for all k

$$y^{2} - x^{3} + x = 0$$

$$X = [-2, -1]$$

$$Y = [1, 2]$$

$$y^{2} - x^{3} + x = 0$$

$$X = [-2, -1]$$

$$Y = [1, 2]$$

$$X^{3} = [-8, -1]$$

$$-X^{3} = [1, 8]$$

$$-X^{3} + X = [-1, 7]$$

$$y^{2} - x^{3} + x = 0$$

$$X = [-2, -1]$$

$$Y = [1, 2]$$

$$X^{3} = [-8, -1]$$

$$-X^{3} = [1, 8]$$

$$-X^{3} + X = [-1, 7]$$

$$Y^{2} = [1, 4]$$

$$Y^{2} - X^{3} + X = [0, 11]$$

$$y^{2} - x^{3} + x = 0$$

$$X = [-2, -1]$$

$$Y = [1, 2]$$

$$X^{3} = [-8, -1]$$

$$-X^{3} = [1, 8]$$

$$-X^{3} + X = [-1, 7] \quad \text{exact} = [0, 6]$$

$$Y^{2} = [1, 4]$$

$$Y^{2} - X^{3} + X = [0, 11] \quad \text{exact} = [1, 10]$$

Interval estimates not tight, but improve as intervals shrink

$$y^{2} - x^{3} + x = 0$$

$$X = [-2, -1]$$

$$Y = [1, 2]$$

$$X^{3} = [-8, -1]$$

$$-X^{3} = [1, 8]$$

$$-X^{3} + X = [-1, 7] \quad \text{exact} = [0, 6]$$

$$Y^{2} = [1, 4]$$

$$Y^{2} - X^{3} + X = [0, 11] \quad \text{exact} = [1, 10]$$

Interval estimates not tight, but improve as intervals shrink \implies divide-and-conquer

$$y^2-x^3+x=0$$

$$X\times Y=[-2,-1]\times[1,2]$$

$$F(X,Y)=[0,11] \qquad \text{maybe}$$

$$f(X,Y)=[1,10] \qquad \text{no}$$

$$y^2 - x^3 + x = 0$$

$$X \times Y = [-2, -1] \times [1, 2]$$

$$F(X, Y) = [0, 11] \qquad \text{maybe}$$

$$f(X, Y) = [1, 10] \qquad \text{no}$$

$$y^2 - x^3 + x = 0$$

$$X\times Y=[-2,-1]\times [1,2]$$

$$F(X,Y) = [0,11]$$
 mayb $f(X,Y) = [1,10]$ no

$$y^2 - x^3 + x = 0$$

$$X \times Y = [-2, -1.5] \times [1.5, 2]$$

$$F(X,Y) = [3.625, 10.5]$$
 no

no

$$y^2 - x^3 + x = 0$$

$$X \times Y = [-1.5, -1] \times [1.5, 2]$$

$$F(X,Y) = [1.75, 6.375]$$
 no

no

$$y^2 - x^3 + x = 0$$

$$Y \times Y - \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$X \times Y = [-2, -1.5] \times [1, 1.5]$$

$$F(X,Y) = [2.375, 8.75]$$
 no

$$y^2 - x^3 + x = 0$$

$$X \times Y = [-1.5, -1] \times [1, 1.5]$$

F(X,Y) = [0.5, 4.625] no

Adaptive domain subdivision

To solve f(x) = 0 in $\Omega \subset \mathbf{R}^n$ call $explore(\Omega)$

procedure explore(X)

if $0 \notin F(X)$ then

discard X

elseif small(X) then

output X

else

 $X_1, \ldots, X_k \leftarrow subdivide(X)$

for each i **do** explore (X_i) end

end

Adaptive domain subdivision

To solve f(x) = 0 in $\Omega \subseteq \mathbf{R}^n$ call $explore(\Omega)$

 $\begin{array}{l} \textbf{procedure} \ \ explore(X) \\ \textbf{if} \ \ 0 \not\in F(X) \ \ \textbf{then} \\ \qquad \qquad \text{discard} \ \ X \\ \textbf{elseif} \ \ small(X) \ \ \textbf{then} \\ \qquad \qquad \text{output} \ \ X \\ \textbf{else} \\ \qquad \qquad X_1, \dots, X_k \leftarrow \textit{subdivide}(X) \\ \qquad \qquad \textbf{for} \ \ \text{each} \ \ i \ \ \textbf{do} \ \ \text{explore}(X_i) \end{array}$

end end

Suffern-Fackerell (1991), Snyder (1992)

Adaptive domain subdivision

To solve f(x) = 0 in $\Omega \subseteq \mathbf{R}^n$ call $explore(\Omega)$

 $\begin{array}{c} \textbf{procedure} \ \ explore(X) \\ \textbf{if} \ \ 0 \not\in F(X) \ \ \textbf{then} \\ \qquad \qquad \text{discard} \ \ X \\ \textbf{elseif} \ \ small(X) \ \ \textbf{then} \\ \qquad \qquad \text{output} \ \ X \\ \textbf{else} \end{array}$

 $X_1, \dots, X_k \leftarrow \textit{subdivide}(X)$ $\textit{for} \ \mathsf{each} \ i \ \textit{do} \ \mathsf{explore}(X_i)$ end

end

Suffern-Fackerell (1991), Snyder (1992)

Adaptive domain subdivision

To solve f(x) = 0 in $\Omega \subseteq \mathbf{R}^n$ call $explore(\Omega)$

procedure explore(X)if $0 \notin F(X)$ then

 $\mathsf{ut}\ X$

output X

end

 $X_1, \dots, X_k \leftarrow \mathit{subdivide}(X)$ for each i do $\mathit{explore}(X_i)$ end

Suffern-Fackerell (1991), Snyder (1992)

Implicit curves

Implicit curves

Implicit curves

Suffern-Fackerell (1991), Snyder (1992)

```
G inclusion function for grad f
F inclusion function for f
procedure explore(X)
                                                  procedure explore(X)
  if 0 \notin F(X) then
                                                    if 0 \notin F(X) then
       discard X
                                                         discard X
  elseif small(X) then
                                                    elseif small(X) or small(G(X)) then
       output X
                                                         approx(X)
  else
                                                    else
       X_1, \ldots, X_k \leftarrow subdivide(X)
                                                         X_1, \ldots, X_k \leftarrow subdivide(X)
                                                         for each i do explore(X_i)
       for each i do explore(X_i)
  end
                                                    end
end
                                                  end
spatial adaption
                                                  geometric adaption
```

Lopes-Oliveira-Figueiredo (2002)

Implicit curves – spatial adaption

more applications

Implicit regions

GrafEq

Implicit regions

track regions of high curvature

flag regions of possible topological ambiguity

Beam casting implicit surfaces

avoids sampling errors

also Flórez et al (2008)

Ganacim-Figueiredo-Nehab (2011)

Overestimation

- $0.004 + 0.110x 0.177y 0.174x^2 + 0.224xy 0.303y^2$
- $-0.168x^3 + 0.327x^2y 0.087xy^2 0.013y^3 + 0.235x^4$
- $-0.667x^3y + 0.745x^2y^2 0.029xy^3 + 0.072y^4 = 0$

Overestimation

$$0.004 + 0.110x - 0.177y - 0.174x^2 + 0.224xy - 0.303y^2$$

$$-0.168x^3 + 0.327x^2y - 0.087xy^2 - 0.013y^3 + 0.235x^4$$

$$-0.667x^3y + 0.745x^2y^2 - 0.029xy^3 + 0.072y^4 = 0$$

IA can't see correlations between operands

The dependency problem in interval arithmetic

$$f(x) = (10+x)(10-x) \text{ for } x \in [-2,2]$$

$$10+x = [8,12]$$

$$10-x = [8,12]$$

$$(10+x)(10-x) = [64,144] \quad \text{diam} = 80 \quad \text{relative accuracy} = 20$$
 exact range
$$= [96,100] \quad \text{diam} = 4$$

The dependency problem in interval arithmetic

$$f(x) = (10+x)(10-x) \text{ for } x \in [-2,2]$$

$$\begin{array}{rcl} 10+x &=& [10-u,10+u] \\ 10-x &=& [10-u,10+u] \\ (10+x)(10-x) &=& [(10-u)^2,(10+u)^2] & {\rm diam}=40u & {\rm relative\ accuracy}=40/u \\ {\rm exact\ range} &=& [100-u^2,100] & {\rm diam}=u^2 \end{array}$$

affine arithmetic

AA represents a quantity x with an affine form

$$\hat{x} = x_0 + x_1 \varepsilon_1 + \dots + x_n \varepsilon_n$$

noise symbols $arepsilon_i$: independent, vary in [-1,+1] but are otherwise unknown

Can compute arbitrary formulas on affine forms Use affine approximations for non-affine operations New noise symbols created during computation

AA generalizes IA:

$$x \sim \hat{x} \implies x \in [x_0 - \delta, x_0 + \delta] \quad \text{for} \quad \delta = |x_1| + \dots + |x_n|$$

 $x \in [a, b] \implies x \sim \hat{x} = x_0 + x_1 \varepsilon_1 \quad \text{for} \quad x_0 = (b + a)/2, \ x_1 = (b - a)/2$

AA represents a quantity x with an affine form

$$\hat{x} = x_0 + x_1 \varepsilon_1 + \dots + x_n \varepsilon_n$$

noise symbols ε_i : independent, vary in [-1,+1] but are otherwise unknown

Can compute arbitrary formulas on affine forms Use affine approximations for non-affine operations New noise symbols created during computation

AA generalizes IA:

$$x \sim \hat{x} \implies x \in [x_0 - \delta, x_0 + \delta] \quad \text{for} \quad \delta = |x_1| + \dots + |x_n|$$

 $x \in [a, b] \implies x \sim \hat{x} = x_0 + x_1 \varepsilon_1 \quad \text{for} \quad x_0 = (b + a)/2, \ x_1 = (b - a)/2$

AA automatically exploits first-order correlations in complex expressions

AA represents a quantity x with an affine form

$$\hat{x} = x_0 + x_1 \varepsilon_1 + \dots + x_n \varepsilon_n$$

noise symbols $arepsilon_i$: independent, vary in [-1,+1] but are otherwise unknown

Can compute arbitrary formulas on affine forms Use affine approximations for non-affine operations New noise symbols created during computation

AA generalizes IA:

$$x \sim \hat{x} \implies x \in [x_0 - \delta, x_0 + \delta] \quad \text{for} \quad \delta = |x_1| + \dots + |x_n|$$

 $x \in [a, b] \implies x \sim \hat{x} = x_0 + x_1 \varepsilon_1 \quad \text{for} \quad x_0 = (b + a)/2, \ x_1 = (b - a)/2$

AA automatically exploits first-order correlations in complex expressions

⇒ better interval estimates!

The dependency problem in interval arithmetic – with AA

$$\begin{split} f(x) &= (10+x)(10-x) \text{ for } x \in [-u,u], & x = 0 + u \, \varepsilon_1 \\ 10+x &= 10 - u \, \varepsilon_1 \\ 10-x &= 10 + u \, \varepsilon_1 \\ (10+x)(10-x) &= 100 - u^2 \, \varepsilon_2 \\ &\text{range} &= [100-u^2,100+u^2] & \text{diam} = 2u^2 \\ \text{exact range} &= [100-u^2,100] & \text{diam} = u^2 \end{split}$$

AA

The dependency problem in interval arithmetic – with AA

$$\begin{split} f(x) &= (10+x)(10-x) \text{ for } x \in [-u,u], & x = 0+u\,\varepsilon_1 \\ 10+x &= 10-u\,\varepsilon_1 \\ 10-x &= 10+u\,\varepsilon_1 \\ (10+x)(10-x) &= 100-u^2\,\varepsilon_2 \\ &\text{range} &= [100-u^2,100+u^2] & \text{diam} = 2u^2 \\ &\text{exact range} &= [100-u^2,100] & \text{diam} = u^2 \end{split}$$

replacing IA with AA

IA: 246 exact: 66 AA: 70

Interval method for intersecting two parametric surfaces

Parametric surfaces

$$g_1 \colon D_1 \subset \mathbf{R}^2 \to \mathbf{R}^3$$

$$g_2 \colon D_2 \subset \mathbf{R}^2 \to \mathbf{R}^3$$

Intersection

$$g_1(u_1, v_1) - g_2(u_2, v_2) = 0$$

Interval test

$$G_1(U_1, V_1) \cap G_2(U_2, V_2) \neq \emptyset$$

Gleicher–Kass (1992):
intersect bounding boxes in space
discard if no intersection
subdivide until tolerance

string boxes into curves

Replacing IA with AA for surface intersection

Tensor product Bézier surfaces of degree (p,q):

$$s(u,v) = \sum_{i=0}^{p} \sum_{j=0}^{q} a_{ij} B_i^p(u) B_j^q(v), \quad B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}, \quad u,v \in [0,1]$$

(2,1) (3,3)

IA

AA

exploiting geometry in AA

Geometry of affine forms

Affine forms that share noise symbols are not independent:

$$\hat{x} = x_0 + x_1 \varepsilon_1 + \dots + x_n \varepsilon_n$$

$$\hat{y} = y_0 + y_1 \varepsilon_1 + \dots + y_n \varepsilon_n$$

Joint range is a zonotope: centrally symmetric convex polygon Image of hypercube $[-1,1]^n$ under affine transformation

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} x_0 \\ y_0 \end{array}\right] + \left[\begin{array}{ccc} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \end{array}\right] \cdot \left[\begin{array}{c} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{array}\right]$$

Minkowski sum of point and line segments

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} x_0 \\ y_0 \end{array}\right] + \left[\begin{array}{c} x_1 \\ y_1 \end{array}\right] \varepsilon_1 + \cdots \left[\begin{array}{c} x_n \\ y_n \end{array}\right] \varepsilon_n$$

Geometry of affine forms

Affine forms that share noise symbols are not independent:

$$\hat{x} = x_0 + x_1 \varepsilon_1 + \dots + x_n \varepsilon_n$$

$$\hat{y} = y_0 + y_1 \varepsilon_1 + \dots + y_n \varepsilon_n$$

Joint range is a zonotope: centrally symmetric convex polygon Image of hypercube $[-1,1]^n$ under affine transformation

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} x_0 \\ y_0 \end{array}\right] + \left[\begin{array}{ccc} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \end{array}\right] \cdot \left[\begin{array}{c} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{array}\right]$$

Minkowski sum of point and line segments

$$\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} x_0 \\ y_0 \end{array}\right] + \left[\begin{array}{c} x_1 \\ y_1 \end{array}\right] \varepsilon_1 + \cdots \left[\begin{array}{c} x_n \\ y_n \end{array}\right] \varepsilon_n$$

Parametric curve

$$C = \gamma(I), \qquad \gamma \colon I \to \mathbf{R}^2$$

Compute good bounding rectangle for

$$\mathcal{P} = \gamma(T), \qquad T \subseteq I$$

Parametric curve

$$C = \gamma(I), \qquad \gamma \colon I \to \mathbf{R}^2$$

Compute good bounding rectangle for

$$\mathcal{P} = \gamma(T), \qquad T \subseteq I$$

Parametric curve

$$C = \gamma(I), \qquad \gamma \colon I \to \mathbf{R}^2$$

Compute good bounding rectangle for

$$\mathcal{P} = \gamma(T), \qquad T \subseteq I$$

Parametric curve

$$\mathcal{C} = \gamma(I), \qquad \gamma \colon I \to \mathbf{R}^2$$

Compute good bounding rectangle for

$$\mathcal{P} = \gamma(T), \qquad T \subseteq I$$

Write

$$\gamma(t) = (x(t), y(t))$$

Find joint range of $\hat{x}(\hat{t})$ and $\hat{y}(\hat{t})$ with AA

Parametric curve

$$\mathcal{C} = \gamma(I), \qquad \gamma \colon I \to \mathbf{R}^2$$

Compute good bounding rectangle for

$$\mathcal{P} = \gamma(T), \qquad T \subseteq I$$

Write

$$\gamma(t) = (x(t), y(t))$$

Find joint range of $\hat{x}(\hat{t})$ and $\hat{y}(\hat{t})$ with AA

Use bounding rectangle of zonotope

Ray casting implicit surfaces

Implicit surface

$$h(x, y, z) = 0,$$
 $h: \mathbf{R}^3 \to \mathbf{R}$

Ray

$$r(t) = e + t \cdot v = (x(t), y(t), z(t)), \quad t \in [0, \infty)$$

Ray intersects surface when

$$f(t) = h(r(t)) = 0$$

First intersection occurs at smallest zero of f in $[0,\infty)$

Ray casting implicit surfaces

```
procedure interval-bisection([a, b])
  if 0 \in F([a,b]) then
        c \leftarrow (a+b)/2
        if (b-a) < \varepsilon then
             return c
        else
             interval-bisection([a, c]) \leftarrow try left half first!
             interval-bisection([c, b])
        end
  end
end
```

Call interval-bisection($[0, t_{\infty}]$) to find the first zero.

AA exploits linear correlations in

$$f(t) = h(r(t))$$

$$r(t) = (x(t), y(t), z(t))$$

AA exploits linear correlations in

$$f(t) = h(r(t))$$

$$r(t) = (x(t), y(t), z(t))$$

root must lie in smaller interval

quadratic convergence

AA exploits linear correlations in

$$f(t) = h(r(t))$$

$$r(t) = (x(t), y(t), z(t))$$

root must lie in smaller interval

Natural domains

$$(\hat{x}, \hat{y}) = (x_0, y_0) + v_1 \varepsilon_1 + v_2 \varepsilon_2$$

$$(\hat{x}, \hat{y}) = (x_0, y_0) + v_1 \varepsilon_1 + v_2 \varepsilon_2$$

$$(\hat{x}, \hat{y}) = (x_0, y_0) + v_1 \varepsilon_1 + v_2 \varepsilon_2$$

$$(\hat{x}, \hat{y}) = (x_0, y_0) + v_1 \varepsilon_1 + v_2 \varepsilon_2$$

Conclusion

Interval methods

- can reliably probe the global behavior of functions without sampling
- lead naturally to robust, adaptive algorithms
- useful in many domains

Affine arithmetic is a useful tool for interval methods

- AA can replace IA transparently
- AA more accurate than IA
- AA locally more expensive than IA but globally more efficient
- AA provides geometric information that can be exploited

Lots more to be done!

Interval methods for computer graphics and geometric modeling

Luiz Henrique de Figueiredo