The dynamics of the Jouannolou foliation Cesar Camacho Luiz Henrique de Figueiredo IMPA-Instituto de Matemática Pura e Aplicada, Brazil to appear in Ergodic Theory and Dynamical Systems #### Introduction PROBLEM (Camacho-Lins-Sad, 1988) Are there foliations of CP(2) with nontrivial minimal sets? Negative answer ≈ Holomorphic Poincaré-Bendixson theorem A minimal set of a foliation is an invariant, closed, nonempty subset of CP(2) such that it is minimal with these three properties. A minimal set is nontrivial if it is not a singular point. ### **Properties of nontrivial minimal sets** If \mathcal{M} is a minimal sets for a foliation \mathcal{F} in CP(2), then: - \mathcal{M} is unique; - there is no \mathcal{F} -invariant transverse measure supported on \mathcal{M} , and so all the leaves in \mathcal{M} have exponential growth; - \mathcal{M} intersects every one-dimensional algebraic subset of CP(2), and thus \mathcal{F} cannot have algebraic leaves. - Moreover, there are leaves in \mathcal{M} with nontrivial linear holonomy #### The Jouannolou foliation Example of Darboux, studied by Jouanolou (1979): $$\mathcal{D}_k: egin{array}{c|ccc} dX & dY & dZ \\ X & Y & Z \\ Y^k & Z^k & X^k \end{array} = 0$$ - \mathcal{D}_k has degree degree k and $N = k^2 + k + 1$ singular points. - \mathcal{D}_k was used to prove that the set of foliations in CP(2) of degree k that do not admit algebraic leaves is open and dense in the space of all foliations of degree k (Jouanolou, 1979; Lins, 1988). #### QUESTION Does \mathcal{D}_k admits a nontrivial minimal set? #### **ANSWER** No, for k = 2, 3, 4, 5. Possibly not for all k. ### Strategy of the proof - 1. Exploit the symmetries associated to \mathcal{D}_k to find small, thin regions of CP(2) that every minimal set of \mathcal{D}_k must cross. We prove that two small sectors of angle π/N of the unit disk on the coordinate planes $C \times 0$ and $0 \times C$ suffice. - 2. Find a sphere centered at the real singular point (1,1) that is transversal to \mathcal{D}_k . Then, every orbit that enters this sphere must accumulate on (1,1). - 3. Show that all orbits starting in the two sectors enter this transversal sphere in finite time. It is enough to consider the *real* flow. We give *reliable computational proofs* of steps 2 and 3 using on interval arithmetic. ## The symmetries of \mathcal{D}_k ### Affine expression: $$\dot{x}=y^k-x^{k+1}$$ $$\dot{y}=1-x^ky$$ $$\mathrm{sing}(\mathcal{D}_k)=\left\{(\zeta^j,\zeta^{-jk}):j=0,\dots,N-1\right\}$$ $$N=k^2+k+1$$ $$\zeta=N\text{-th root of unity}$$ ullet \mathcal{D}_k invariant under $$S(X, Y, Z) = (Y, Z, X)$$ $$T(X, Y, Z) = (\zeta X, \zeta^{-k} Y, Z)$$ • The leaf that contains the origin accumulates on all singularities of \mathcal{D}_k . Because of symmetries, it is enough to consider the real phase space. ## The leaf of the origin accumulates on all singularities k even: the ω -limit set of every point in \mathbb{R}^2 is the singular point (1,1). k odd: the ω -limit set of (0,0) is the singular point (1,1). k even ### **Locating minimal sets** - If \mathcal{M} is a nontrivial minimal set of \mathcal{D}_k , then \mathcal{M} intersects the polydisc $\left\{ (x,y) \in \mathbf{C}^2 : |x| \leq 1, |y| \leq 1 \right\}$. More precisely, \mathcal{M} has a nontrivial intersection either with the disc $D_1 = \left\{ (x,0) \in \mathbf{C}^2 : |x| \leq 1 \right\}$ or with the disc $D_2 = \left\{ (0,y) \in \mathbf{C}^2 : |y| \leq 1 \right\}$ - To prove that a nontrivial minimal set for \mathcal{D}_k does not exist, it is enough to show that the leaves of \mathcal{D}_k passing through $D_1 \cup D_2$ accumulate on the singularities of \mathcal{D}_k . - Since \mathcal{D}_k is invariant by $\tau(x,y)=(\zeta x,\zeta^{-k}y)$ and also by complex conjugation, it is enough to verify this in sectors of D_1 and D_2 of angle π/N . The simplest such sectors are $S_1=S_0\times 0\subseteq D_1$ and $S_2=0\times S_0\subseteq D_2$, where $$S_0 = \{ z \in \mathbb{C}^2 : |z| \le 1, 0 \le \arg(z) \le \pi/N \}.$$ ### A large transversal sphere around the real singularity The sphere in \mathbb{C}^2 of radius R centered at (1,1) is transversal to \mathcal{D}_k . PROOF. We have to show that $$\langle (x-1, y-1), (y^k - x^{k+1}, 1 - x^k y) \rangle_{\mathbf{C}} \neq 0,$$ for all points (x, y) on the boundary of the sphere. We show that $$f(x_1, x_2, y_1, y_2) = \text{Re}\langle (x-1, y-1), (y^k - x^{k+1}, 1 - x^k y) \rangle_{\mathbf{C}} \le M \ll 0$$ by using interval methods for global optimization. The computed values of R and M are: $$k$$ 2 3 4 5 R 1.02 0.57 0.36 0.26 M -0.017 -0.0020 -0.0064 -0.0015 ### All orbits approach the real singularity All orbits starting in the sectors S_1 and S_2 enter the transversal sphere in finite time. #### PROOF. - Cover each sector with a set of rectangles. - Show that each rectangle is mapped into the transversal sphere by the real flow. We used AWA, a program by Rudolf Lohner for the reliable solution of initial value problems. AWA is able to give a reliable bound for the location at a given time of *all* orbits starting in a given box. More precisely, given a box B_0 and a time t_1 , AWA uses interval arithmetic to compute a box B_1 such that every orbit starting in B_0 is inside B_1 at time t_1 (AWA also proves that the solution exists at t_1). ### Covering a sector with rectangles ### Adaptive algorithm Input: Rectangle B covering sector S. Output: List of rectangles covering S such that each rectangle has been proved by AWA to be taken into the transversal sphere. # Covering for k = 2 (x axis) # Covering for k = 2 (y axis) # Coverings for k = 3 ## Coverings for k = 4 ## Coverings for k = 5