- First Palis-Balzan International Symposium on

Dynamical Systems

Images of Julia sets that you can trust

Luiz Henrique de Figueiredo
IMPA

with
Diego Nehab (IMPA) e Jorge Stolfi (UNICAMP) e Jodo Batista Oliveira (PUCRS)



Can we trust this beautiful image?




Describe the dynamics of f(z) = z2 + ¢ for ¢ € C fixed
71="F(zn), z=f(z), ..., zn="7(zp-1)=""(20)
What happens with the orbit of zg € C under f ?



] unbounded orbits = attraction basin of co A(o0)
M bounded orbits = filled Julia set K



B bounded orbits = filled Julia set

[ ] unbounded orbits = attraction basin of co A(o0)
K
B common boundary = Julia set J



Julia set zoo

¢ =(+0.285, +0.535) ¢ =(-0.125, +0.750) c =(-0.500, +0.563) c = (0.687, +0.312)



Julia set catalog: the Mandelbrot set

ceM = 0e K,

Julia—Fatou dichotomy
c € M = J.is connected
c¢ M = J.is a Cantor set

Paul Bourke



Julia set catalog: the Mandelbrot set demo. ..

ceM = 0e€ K,

Julia—Fatou dichotomy
c € M = J.is connected
c¢ M = J.is a Cantor set

Paul Bourke



Why distrust this beautiful image?




Why distrust this beautiful image?

Escape-time algorithm

for zg in a grid of points in Q2
Z<— 2
n<0
while |z| < R and n < N do
z+ 24 ¢
n<—n+1
paint zy with color n




Why distrust this beautiful image?

Escape-time algorithm

for zg in a grid of points in Q2
Z<— 2
n<0
while |z| < R and n < N do
z+ 24 ¢
n<—n+1
paint zy with color n

escape radius
R = max(|c|,2) J C B(0,R)




Why distrust this beautiful image?

» Spatial sampling
what happens between samples?

Escape-time algorithm

for zg in a grid of points in Q
Z<— 2
n+<20
while |z < R and n < N do
z+ 2+ ¢
n<n+1
paint zy with color n

escape radius

R = max(|c|,2) J C B(0,R)



Why distrust this beautiful image?

Escape-time algorithm

» Spatial sampling for zg in a grid of points in Q

Z<— 2
n+0
while |z| < R and n < N do
» Partial orbits z+ % +c
program cannot run forever n<—n-+1

paint zy with color n

escape radius
R = max(|c|,2) J C B(0,R)



Why distrust this beautiful image?

Escape-time algorithm

> Spatial sampling for zg in a grid of points in Q
Z<— 2
n+<0
while |z < R and n < N do
» Partial orbits z+2°+c
n<—n+1

paint zy with color n

» Floating-point rounding errors
squaring needs double digits escape radius
R = max(|c|,2) J C B(0,R)



Why distrust this beautiful image?

» Spatial sampling
Compute color on grid points
Cannot be sure behaviour at sample points is typical
Finer grid = more detail

» Partial orbits
Can only compute partial orbits
Cannot be sure partial orbits are long enough
Longer orbits = more detail

> Floating-point errors
22 needs twice the number of digits that z needs
Do rounding errors during iteration influence classification of points?
Multiple-precision = more detail (deep zoom)



You can trust our method

» No spatial sampling
> No orbits

» No floating-point errors



You can trust our method

» No spatial sampling
Classify entire rectangles in the complex plane
Spatial resolution limited by available memory
Deeper quadtree = more detail

» No orbits

» No floating-point errors



You can trust our method

» No spatial sampling
Classify entire rectangles in the complex plane
Spatial resolution limited by available memory
Deeper quadtree = more detail

» No orbits
Evaluate f once on each cell using interval arithmetic
Perform no function iteration at all
Use cell mapping and label propagation in graphs

» No floating-point errors



You can trust our method

» No spatial sampling
Classify entire rectangles in the complex plane
Spatial resolution limited by available memory
Deeper quadtree = more detail

» No orbits
Evaluate f once on each cell using interval arithmetic
Perform no function iteration at all
Use cell mapping and label propagation in graphs

» No floating-point errors
All numbers are dyadic fractions with restricted range and precision
Use error-free fixed-point arithmetic
Precision depends only on spatial resolution
Standard double-precision floating-point enough for huge images



Our algorithm

quadtree for
Q =[-R,R]x[-R,R]

> white rectangles
contained in A(o0)

> black rectangles
contained in K

> gray rectangles
contain J




Our algorithm

quadtree for
Q =[-R,R]x[-R,R]

> white rectangles
contained in A(o0)

> black rectangles
contained in K

> gray rectangles
contain J

certified decomposition




Our algorithm

quadtree for
Q =[-R,R]x[-R,R]

> refinement

> cell mapping

> label propagation




Our algorithm

quadtree for
Q =[-R,R]x[-R,R]

» refinement

> cell mapping

> label propagation




Quadtree c=-1 level O




Quadtree c=-1 level 1




Quadtree c=-1 level 2




Quadtree c=-1 level 3




Quadtree c=-1 level 4




Quadtree c=-1 level 5




Quadtree c=-1 level 6




Quadtree c=-1 level 7




Quadtree c=-1 level 8




Quadtree c=-1 level 9




Quadtree c=-1 level 10




Quadtree c=-1 level 11




Quadtree c=-1 level 12




Quadtree c=-1 level 13




Quadtree c=-1 level 14




Adaptive approximation c=-1 level 14




Adaptive approximation c=-1 level O




Adaptive approximation c=-1 level 1




Adaptive approximation c=-1 level 2




Adaptive approximation c=-1 level 3




Adaptive approximation c=-1 level 4




Adaptive approximation c=-1 level 5




Adaptive approximation c=-1 level 6




Adaptive approximation c=-1 level 7




Adaptive approximation c=-1 level 8




Adaptive approximation c=-1 level 9




Adaptive approximation c=-1 level 10




Adaptive approximation c=-1 level 11




Adaptive approximation c=-1 level 12




Adaptive approximation c=-1 level 13




Adaptive approximation c=-1 level 14







Adaptive approximation




Our algorithm

quadtree for
Q =[-R,R]x[-R,R]

> refinement

> cell mapping

> label propagation




Cell mapping

Directed graph on the leaves of the quadtree

» edges emanate from each leaf gray cell g
» color g white if f(q) is outside B(0, R)

» add edge g — t for each leaf cell t that intersects f(q)



Cell mapping

Directed graph on the leaves of the quadtree

» edges emanate from each leaf gray cell g
» color g white if f(q) is outside B(0, R)

» add edge g — t for each leaf cell t that intersects f(q)

Conversative estimate of the dynamics

Avoid point sampling



Cell mapping source cell leaf gray cell




Cell mapping exact image under f

Q@



Cell mapping bounding box interval arithmetic




Cell mapping quadtree traversal




Cell mapping target cells contain exact image




Cell mapping edges
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Cell mapping demo. ..
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Our algorithm

quadtree for
Q =[-R,R]x[-R,R]

> refinement

> cell mapping

> label propagation




Label propagation

Propagate white and black to gray cells

» new white cells
gray cells for which all paths end in white cells

> new black cells
gray cells for which no path ends in a white cell



Label propagation

Propagate white and black to gray cells

» new white cells
gray cells for which all paths end in white cells

> new black cells
gray cells for which no path ends in a white cell

Graph traversals replace function iteration

Avoid floating-point errors



Adaptive approximation

more examples




Adaptive approximation c=0.12+0.30/ level 0




Adaptive approximation c=0.12+0.30/ levell




Adaptive approximation c=0.12+0.30/ level 2




Adaptive approximation c=0.12+0.30/ level 3




Adaptive approximation c=0.12+0.30/ level 4




Adaptive approximation c=0.12+0.30/ level 5




Adaptive approximation c=0.12+0.30/ level 6




Adaptive approximation c=0.12+0.30/ level 7




Adaptive approximation c=0.12+0.30/ level 8




Adaptive approximation c=0.12+0.30/ level 9




Adaptive approximation c=0.12+0.30/ level 10



















Adaptive approximation c=0.12+0.30/



Adaptive approximation c=—-0.12+0.60/ level 0




Adaptive approximation c=—-0.12+0.60/ level 1




Adaptive approximation c=—-0.12+0.60/ level 2




Adaptive approximation c=-0.12+0.60/ level 3




Adaptive approximation c=—-0.12+0.60/ level 4




Adaptive approximation c=—-0.12+0.60/ level 5




Adaptive approximation c=—-0.12+0.60/ level 6




Adaptive approximation c=—-0.12+0.60/ level 7




Adaptive approximation c=—-0.12+0.60/ level 8




Adaptive approximation c=—-0.12+0.60/ level 9




Adaptive approximation c=-0.12+0.60/ level 10




Adaptive approximation c=-0.12+0.60/ level 11




Adaptive approximation c=-0.12+0.60/ level 12




Adaptive approximation c=-0.12+0.60/ level 13




Adaptive approximation c=-0.12+0.60/ level 14







Adaptive approximation c=-0.12+0.60/



Adaptive approximation c=-012+0.74; level 0




Adaptive approximation c=-0.12+0.74/; level 1




Adaptive approximation c=-0.12+0.74; level 2




Adaptive approximation c=-012+0.74/ level 3




Adaptive approximation c=-0.12+0.74; level 4




Adaptive approximation c=-0.12+0.74/ level 5




Adaptive approximation c=-0.12+0.74/ level 6




Adaptive approximation c=-012+0.74; level 7




Adaptive approximation c=-0.12+0.74/ level 8




Adaptive approximation c=-0.12+0.74/ level 9




Adaptive approximation c=-0.12+0.74/; level 10




Adaptive approximation c=-0.12+0.74; level 11




Adaptive approximation c=-0.12+0.74; level 12




Adaptive approximation c=-0.12+0.74/; level 13




Adaptive approximation c=-0.12+0.74; level 14







Adaptive approximation c=-0.12+0.74/




Adaptive approximation c=1i level0




Adaptive approximation c=1 levell




Adaptive approximation c=1 level2




Adaptive approximation c=1i level3




Adaptive approximation c=1 level 4




Adaptive approximation c=1i level5




Adaptive approximation c=1i level 6




Adaptive approximation c=1 level 7




Adaptive approximation c=1i level 8




Adaptive approximation c=1i level9




Adaptive approximation c=1i level 10




Adaptive approximation c=1 level 11



Adaptive approximation c=1 level 12



Adaptive approximation c=1i level 13




Adaptive approximation c=1 level 14



Adaptive approximation




Adaptive approximation




Adaptive approximation c=-025+0.74; level 0




Adaptive approximation c=-025+0.74/; level 1




Adaptive approximation c=-025+0.74i level 2




Adaptive approximation c=-025+0.74; level 3




Adaptive approximation c=-025+0.74/ level 4




Adaptive approximation c=-025+0.74/ level 5




Adaptive approximation c=-025+0.74/ level 6




Adaptive approximation c=-025+0.74/ level 7




Adaptive approximation c=-025+0.74/ level 8




Adaptive approximation c=-025+0.74/ level 9




Adaptive approximation c=-025+0.74; level 10




Adaptive approximation c=-025+0.74; level 11




Adaptive approximation c=-025+0.74; level 12




level 13

c=—-025+0.74i
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Adaptive approximation c=-025+0.74i level 14



Adaptive approximation c=-025+0.74/




Adaptive approximation c=-025+0.74/




Applications

Image generation

v

Point and box classification

v

Fractal dimension of Julia set

v

Area of filled Julia set

v

Diameter of Julia set

v



Applications certified numerical results

» Image generation
large images
smaller images with anti-aliasing

» Point and box classification
quadtree traversal + one function evaluation if gray

» Fractal dimension of Julia set (Ruelle)
2
upper bound dimy =1+ 4‘|Z‘gz +--
> Area of filled Julia set (Milnor)
lower and upper bounds 7(1 = |p1(c))? = 3|pa(c)> = 5|pi(c) > —---)

» Diameter of Julia set
lower and upper bounds



Area of filled Julia set after Milnor

(3N

-2 -1 0 g
Figure 45. Upper bounds for the area of the filled Julia
set for f.(z) = 22 +c in the range —2 < c < .25. =






Area of filled Juliaset —1.25<¢<0.25 level 19
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Area of filled Juliaset —1.25<¢<0.25 level 19
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» Memory
» Need to explore Q O [-R,R] x [-R, R]

» No proof of convergence



» Memory
depth of quadtree and size of cell graph limited by available memory
currently spatial resolution ~ 4 x 107°
cannot reach 20 levels

» Need to explore Q O [-R,R] x [-R, R]
even if region of interest is smaller
limited amount of zoom
limitation inherent to using cell mapping because f is transitive on J

» No proof of convergence
do approximations for J always decrease with the resolution?



» Julia sets for other polynomials

» Julia sets for Newton's method



» Julia sets for other polynomials
1+ |ag|+ -+ |ao

R—
EM

is an escape radius for f(z) = agz?d + -+ ag (Douady)

» Julia sets for Newton’s method
no escape radius
need to find explicit attracting regions around zeros



Julia set panorama

http://monge.visgraf.impa.br/panorama/julia-256GP/julia.htm


http://monge.visgraf.impa.br/panorama/julia-256GP/julia.htm

Thanks!
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of filled Julia set —1.25<¢<0.25 level 19
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