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Possible Solution?

» Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

» Mesh refinement: small triangles = more details
How small? How efficient? Our goal: geometric adaptation!
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Possible Solution?

» Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

» Mesh refinement: small triangles = more details
How small? How efficient? Our goal: geometric adaptation!
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Possible Solution?

» Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

» Mesh refinement: small triangles = more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles level 5 Our Method
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Possible Solution?

» Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

» Mesh refinement: small triangles = more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles level 6 Our Method
#A = 12928 #A = 2431



Possible Solution?

» Curve location: intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

» Mesh refinement: small triangles = more details
How small? How efficient? Our goal: geometric adaptation!

Marching Triangles level 6 Our Method
#A = 12928 #A = 2431
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Numerical Tools

» Numerical oracles

> Is this triangle away from the curve?
> Is the curve approximately flat inside the triangle?

» Self-validated arithmetic methods
> Robust interval estimative for f with guarantee certificate:

F(X) 2 £(X) = {f(x,y) : (x,y) € X}

» 0¢ F(X) = cell X is away from curve
> Interval arithmetic (1A) and affine arithmetic (AA)
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Affine Arithmetic (AA)

» Introduced by Comba and Stolfi in SIBGRAPI'93

» Represents a quantity z with an affine form:
2=20+ z161 + 2262 + - -+ + Zpep

where z; € R and the noise symbols ¢; € [—1, 1] represent
independent sources of uncertainty

» Good alternative to replace IA in graphics applications
AA has ability to handle correlations
AA provides tighter interval estimative

AA provides additional geometric information
Good AA libraries in C/C++ available
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AA Operations

» Affine operations
> Xty= (Xoi}/o) + (Xl :l:}/l)f‘:l + - +(Xn:|:yn)€n
> ax = (axp) + (axi)er + - - - + (axp)en, with o € R

» X+ 8= (x0*x8)+x1e1+ -+ Xp€n, with 5 € R

» We can compute arbitrary formulas on affine forms
» non-affine operations = minimax approximation
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Intervals in Affine Arithmetic

» AA algorithms can input and output intervals

» AA form = IA form
> 2=zntze1t et -tz = 2€ 2] = (20— 06,20 + ]
where 6 = |z1| + - -+ + |z,

» |A form = AA form
» z€[a,b] = 2 =2zy+ z181 where
zp=(a+b)/2
7z =(b—a)/2
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1.5+ 2¢7 + 0.5¢5
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Example with AA

curve: (t) = (t, t?) with t € [0,2]

—Fo14a "

¥ = 1424 (e1)?
1+ 2e1 + (0.5 4 0.5¢2)
= 1.5+42e1 4+ 0.5e
1.5+2¢1£05

Replacing €1 by x — 1:
r:y=2x
s:y=2x-—1
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On axis-aligned rectangles: we need to evaluate f([J) with AA

+d
X =x0+x1e1, xo=(a+b)/2, x1=(b—2a)/2
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X, y=ytye2, yo=(c+d)/2, y»=(d—c)/2
(g7 ¥
AA form of f
L F=fot fier+ hea+ s+ + faey
s b

€3, ..., €p are noise symbols related to non-affine operations
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Bounding Implicit Curves with Strips on []

On axis-aligned rectangles: we need to evaluate f([J) with AA

+d
X =xo+x1£1, x = (a+b)/2, x3 = (b—a)/2
Y2
X, ¥ =yoty2, yo=(ctd)/2, y»=(d—c)/2
(g7 ¥
AA form of f
L f=fy+ fer+ heo + fies
a b

Spatial criteria
0 ¢ [f(O)] = discard(d)
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On axis-aligned rectangles: we need to evaluate f([J) with AA
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On axis-aligned rectangles: we need to evaluate f([J) with AA
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Geometric bounds using the AA form of f

z in cartesian coordinates:
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z=fo+ —(x—x0)+ —(y — yo) £
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On axis-aligned rectangles: we need to evaluate f([J) with AA

\ X —Xo Y —%
g1 = Eo =

X1 Y2

Geometric bounds using the AA form of f
f is zero inside the strip defined by the two parallel lines:

f f
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X1 Y2
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On axis-aligned rectangles: we need to evaluate f([J) with AA

The width between the lines

o W _ 2f5

(4)"+ (&)

Geometric bounds using the AA form of f
f is zero inside the strip defined by the two parallel lines:

f f
0=fo+ —(x—x0)+ —(y —yo) £
X1 Y2
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Bounding Implicit Curves with Strips on []

wide strips = high curvature

Geometric criteria

s w > threshold = subdivide([J)
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Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001
> requires the evaluation Vf using IA and automatic differentiation

> adaptive quadtree
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Comparing with 1A: method proposed by Lopes et al. in SIBGRAPI 2001
> requires the evaluation Vf using IA and automatic differentiation

> adaptive quadtree
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Comparing with 1A: method proposed by Lopes et al. in SIBGRAPI 2001
> requires the evaluation Vf using IA and automatic differentiation

> adaptive quadtree
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Comparing with 1A: method proposed by Lopes et al. in SIBGRAPI 2001
> requires the evaluation Vf using IA and automatic differentiation

> adaptive quadtree

T T
g

AE ]

=

[

"
T
T
=

SEEEmm W

1A level 8 AA
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Comparing with 1A: method proposed by Lopes et al. in SIBGRAPI 2001
> requires the evaluation Vf using IA and automatic differentiation

> adaptive quadtree
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Comparing with 1A: method proposed by Lopes et al. in SIBGRAPI 2001
> requires the evaluation Vf using IA and automatic differentiation

> adaptive quadtree
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Comparing with 1A: method proposed by Lopes et al. in SIBGRAPI 2001
> requires the evaluation Vf using IA and automatic differentiation

> adaptive quadtree
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Bounding Implicit Curves with Strips on []

Comparing with 1A: method proposed by Lopes et al. in SIBGRAPI 2001
> requires the evaluation Vf using IA and automatic differentiation

> adaptive quadtree
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Bounding Implicit Curves with Strips on ¢

On parallelograms:



Bounding Implicit Curves with Strips on ¢

On parallelograms:
evaluate (Q) with AA = write £1 and &3 in terms of x and y



Bounding Implicit Curves with Strips on ¢

On parallelograms:
evaluate (Q) with AA = write £1 and &3 in terms of x and y



Bounding Implicit Curves with Strips on ¢

On parallelograms:
evaluate (Q) with AA = write £1 and &3 in terms of x and y

vi = (x1,¥1) va = (x2,y2)



Bounding Implicit Curves with Strips on ¢

On parallelograms:
evaluate (Q) with AA = write £1 and &3 in terms of x and y

vi = (x1,¥1) va = (x2,y2)

X = Xg + x1€1 + X062 V= Y0+ y1e1 + yoe2



Bounding Implicit Curves with Strips on ¢

On parallelograms:
evaluate (Q) with AA = write £1 and &3 in terms of x and y

vi = (x1,¥1) va = (x2,y2)

X = Xg + x1€1 + X062 V= Y0+ y1e1 + yoe2

In matrix form

MR



Bounding Implicit Curves with Strips on ¢

On parallelograms:
evaluate (Q) with AA = write £1 and &3 in terms of x and y

vi = (x1,¥1) va = (x2,y2)

X = Xg + x1€1 + X062 V= Y0+ y1e1 + yoe2

In matrix form

2= B
€2 yi y2 Y=Y



Bounding Implicit Curves with Strips on ¢

On parallelograms:
evaluate (Q) with AA = write £1 and &3 in terms of x and y

vi = (x1,¥1) va = (x2,y2)
X = xg + X161 + X262 V=yo+ yie1 + yee2
In matrix form
-1
€1 o X1 X2 . X — X0
[62] [yl )/2] [y—yo]

the matrix is invertible <= the parallelogram is not degenerate
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Bounding Implicit Curves with Strips on A

On triangles: replace the evaluation of f(A) = f(0) with AA

» include a triangle into a parallelogram

» evaluate f outside of its domain
» it does not work for surfaces

vy

> split a triangle in three parallelograms

[ [ 0 2>




Bounding Implicit Curves with Strips on A

(a) decomposition (b) reflection (c) smallest BB (d) AABB

strategy | time [ output [ visited | leaves [ AA [ seg

a| 33 | 1445 | 1805 | 250 | 4604 | 502
b| 25 2909 3878 298 | 3878 | 298
c| 28 3392 4522 318 | 4522 | 318
d| 25 2882 3842 316 | 3842 | 316




Our Adaptive Method

procedure Explore (/)
01, 02, O3 < Parallelograms (A)
fi « F(O;) with AA
if 0 € [f;] for some i then
w; < width of f in O;
if w; < eyser, for all i then
Approximate (A)
else
A; < Subdivide (A)
for each i, Explore(/\;)
end
end
end
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Our Adaptive Method

procedure Explore (/)
01, 02, O3 < Parallelograms (A)
fi « F(O;) with AA
if 0 € [f;] for some i then
w; < width of f in O;
if w; < eyser, for all i then
Approximate (1)
else
A; < Subdivide (A)
for each i, Explore(/\;)
end
end
end
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procedure Explore (/)
01, 02, O3 < Parallelograms (A)
fi  £(0;) with AA
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w; < width of f in ¢
if w; < eyser, for all i then
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Our Adaptive Method

procedure Explore (/)
01, 02, O3 < Parallelograms (A)
fi  £(0;) with AA
if 0 € [f;] for some i then
w; < width of f in ¢
if w; < eyser, for all i then

Approximate (1)
else
A < Subdivide (A)
for each i, Explore(/\;) X N
end
end I ] S

end
linear interpolation bissection method
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Our Adaptive Method

Our method does not care what mesh subdivision method is used
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SRR
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triangle soup mesh with connecticity
midpoint splitting V3, Ji, 4-8 meshes, ...
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Our method does not care what mesh subdivision method is used

triangle soup mesh with connecticity
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Our method does not care what mesh subdivision method is used

triangle soup mesh with connecticity
H#A =922 #/\ =574



Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup mesh with connecticity
#A = 1384 #A =T79



Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup mesh with connecticity
#A = 1384 H#A =779



Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup mesh with connecticity
#A = 1384 H#A =779



Our Adaptive Method

The effect of the geometric criteria on the curve in a triangular quadtree

€user = 0.8 €user = 0.4 €user = 0.1

y2—x34x=05



level O

(x+1)3(1—x)—4y*=0
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level 2

(x+1)3(1—x)—4y*=0
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level 4

H /N = 940
#Aout = 1771

CPU time = 280 msec

(x+1)3(1—x)—4y*=0



level O

y2(0.75% — x2) — (x> + 1.5y — 0.75%)> = 0
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y2(0.75% — x2) — (x> + 1.5y — 0.75%)> = 0



level 3
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y2(0.75% — x2) — (x> + 1.5y — 0.75%)> = 0



level 5

y2(0.75% — x2) — (x> + 1.5y — 0.75%)> = 0



level 5

# N = 126
H# o = 1168

CPU time = 123 msec




level 0

SNATN
oA

1
DDA
K»%ﬁ“&%ﬁ&

N




level 1

k
WA




o
o

>
<




level 3




level 3
= 1424

#Ain

9}

Q

(%2}

g

(90} <

T9]

I I

3 Q
o

g E

)

¥ )

[a

)]




9%




level 1

(v =+ 1)+ (P +y?) —1=0
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level 4

#N\;, = 1006
#Aout = 2134

CPU tlme = 391 msec
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level 4
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CPU time = 454 msec

(xy + cos(x 4 y))(xy +sin(x +y)) =0



Our method detects the non-manifold region...

e

W&AM &

y2 = x3 4 3x2

...even when the singularity is not recovered!
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Bounding Implicit Curves with Strips on Surfaces

On parallelograms in 3D:
evaluate f(Q) with AA = write £1 and &3 in terms of x, y and z

vi = (x1,¥1,21) Vo = (x2,¥2,22)
X = xo + x161 + x2€2

V=0 +yi1e1 + y22
2 =20+ z161 + 262

In matrix form

+
x| Xo X — Xg
€1
= yi ye . Y=Y
€2
z1 2 zZ— 2

BT = (B'B)!B' is the pseudoinverse of a matrix B



Bounding Implicit Curves with Strips on Surfaces

On parallelograms in 3D:
evaluate f(Q) with AA = write £1 and &3 in terms of x, y and z

Vi = (X17y17zl) Vo = (X27}/2722)
X = xg + x161 + x0e2
¥ =y0+xie1 + y2e2
Z =2y + z161 + 2062
In matrix form
+
X1 Xo X — Xo
€1
|: :| = yi Yy : Yy —Y
&2
zZ1 2o z— z9

the matrix has full rank <= the parallelogram is not degenerate
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Results: implicit X parametric

X4
20X

hyperboloid given implicitly by x> — y? — 22 =1

Klein bottle given parametrically by
x(u, v) = (2.7 4 cos(u) sin(v) — sin(u) sin(2v)) cos(u),
y(u,v) = (2.7 4 cos(u) sin(v) — sin(u) sin(2v)) sin(u),
z(u,v) = sin(u)sin(v) + cos(u) sin(2v),



Approximating Implicit Curves on Plane and
Surface Triangulations with Affine Arithmetic

% Wwww.icmc.usp.br/pessoas/apneto/

apneto @ icmc.usp.br

Questions? Thanks!



