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Overview

Problem Setup

Given a planar or surface triangulation T and f : Rd → R, compute a
robust adaptive polygonal approximation of the curve given implicitly by f
on T : C = {x ∈ T : f (x) = 0}.
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+ = ?

C = f −1(0)



Possible Solution?

I Curve location:

intersection between C and the triangles of T
What criteria? Our goal: spatial adaptation!

I Mesh refinement: small triangles ⇒ more details
How small? How efficient? Our goal: geometric adaptation!
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Numerical Tools

I Numerical oracles

I Is this triangle away from the curve?
I Is the curve approximately flat inside the triangle?

I Self-validated arithmetic methods
I Robust interval estimative for f with guarantee certificate:

F (X ) ⊇ f (X ) = {f (x , y) : (x , y) ∈ X}

I 0 /∈ F (X ) ⇒ cell X is away from curve
I Interval arithmetic (IA) and affine arithmetic (AA)
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Affine Arithmetic (AA)

I Introduced by Comba and Stolfi in SIBGRAPI’93

I Represents a quantity z with an affine form:

ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

where zi ∈ R and the noise symbols εi ∈ [−1, 1] represent
independent sources of uncertainty

I Good alternative to replace IA in graphics applications
I AA has ability to handle correlations
I AA provides tighter interval estimative
I AA provides additional geometric information
I Good AA libraries in C/C++ available
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AA Operations

I Affine operations

I x̂ ± ŷ = (x0 ± y0) + (x1 ± y1)ε1 + · · ·+ (xn ± yn)εn

I αx̂ = (αx0) + (αx1)ε1 + · · ·+ (αxn)εn, with α ∈ R
I x̂ ± β = (x0 ± β) + x1ε1 + · · ·+ xnεn, with β ∈ R

I We can compute arbitrary formulas on affine forms

I non-affine operations ⇒ minimax approximation



AA Operations

I Affine operations
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Intervals in Affine Arithmetic

I AA algorithms can input and output intervals

I AA form ⇒ IA form
I ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn

⇒ z ∈ [ẑ ] := [z0 − δ, z0 + δ]

where δ = |z1|+ · · ·+ |zn|

I IA form ⇒ AA form
I z ∈ [a, b]

⇒ ẑ = z0 + z1ε1 where

z0 = (a + b)/2

z1 = (b − a)/2
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I ẑ = z0 + z1ε1 + z2ε2 + · · ·+ znεn ⇒ z ∈ [ẑ ] := [z0 − δ, z0 + δ]
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Example with AA

curve: γ(t) = (t, t2) with t ∈ [0, 2]

x ≈ x̂ = t̂ = 1 + ε1

y ≈ ŷ = (̂t)2 = (1 + ε1)2

ŷ = 1 + 2ε1 + (ε1)2

= 1 + 2ε1 + (0.5 + 0.5ε2)

= 1.5 + 2ε1 + 0.5ε2

= 1.5 + 2ε1 ± 0.5

Replacing ε1 by x − 1:

r : y = 2x

s : y = 2x − 1
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ŷ = y0+y2ε2, y0 = (c+d)/2, y2 = (d−c)/2

AA form of f

f̂ = f0 + f1ε1 + f2ε2 + f3ε3 + · · ·+ fnεn

higher-order terms can be condensed ⇒ f3 = |f3|+ · · ·+ |fn|



Bounding Implicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x   , y )0 0

x1

y2

x̂ = x0+x1ε1, x0 = (a+b)/2, x1 = (b−a)/2
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Bounding Implicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x   , y )0 0

x1

y2

x̂ = x0+x1ε1, x0 = (a+b)/2, x1 = (b−a)/2

ŷ = y0+y2ε2, y0 = (c+d)/2, y2 = (d−c)/2

AA form of f

f̂ = f0 + f1ε1 + f2ε2 + f3ε3

Spatial criteria

0 /∈ [f̂ (�)] ⇒ discard(�)
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On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x   , y )0 0

x1

y2
ε1 =

x − x0
x1

ε2 =
y − y0

y2

Geometric bounds using the AA form of f̂
the graph of z = f (x , y) over � is sandwiched between the planes:

z = f0 + f1ε1 + f2ε2 ± f3
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On axis-aligned rectangles: we need to evaluate f (�) with AA

a b

c

d

(x   , y )0 0

x1

y2
ε1 =

x − x0
x1

ε2 =
y − y0

y2

Geometric bounds using the AA form of f̂
z in cartesian coordinates:

z = f0 +
f1
x1

(x − x0) +
f2
y2

(y − y0) ± f3



Bounding Implicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

ε1 =
x − x0

x1
ε2 =

y − y0
y2

Geometric bounds using the AA form of f̂
f is zero inside the strip defined by the two parallel lines:

0 = f0 +
f1
x1

(x − x0) +
f2
y2

(y − y0) ± f3



Bounding Implicit Curves with Strips on �

On axis-aligned rectangles: we need to evaluate f (�) with AA

w
The width between the lines

w =
2f3√(

f1
x1

)2
+
(

f2
y2

)2

Geometric bounds using the AA form of f̂
f is zero inside the strip defined by the two parallel lines:

0 = f0 +
f1
x1

(x − x0) +
f2
y2

(y − y0) ± f3
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wide strips ⇒ high curvature



Bounding Implicit Curves with Strips on �

x2

6
+ y2 = 1

wide strips ⇒ high curvature

Geometric criteria

w > threshold ⇒ subdivide(�)



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 0 AA



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 1 AA



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 2 AA



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 3 AA



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 4 AA



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 5 AA



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 6 AA



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 7 AA



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 8 AA



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA level 8 AA



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA
#cells visited: 6997

level 8 AA
#cells visited: 1697



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA
#leaves: 341

level 8 AA
#leaves: 221



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA
CPU time: 394 msec

level 8 AA
CPU time: 139 msec



Bounding Implicit Curves with Strips on �

Comparing with IA: method proposed by Lopes et al. in SIBGRAPI 2001

I requires the evaluation ∇f using IA and automatic differentiation

I adaptive quadtree

IA
linear convergence

level 8 AA
quadratic convergence
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On parallelograms:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

(x   , y )0 0

v1

v2

v1 = (x1, y1) v2 = (x2, y2)

x̂ = x0 + x1ε1 + x2ε2 ŷ = y0 + y1ε1 + y2ε2
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On parallelograms:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

(x   , y )0 0

v1

v2

v1 = (x1, y1) v2 = (x2, y2)

x̂ = x0 + x1ε1 + x2ε2 ŷ = y0 + y1ε1 + y2ε2

In matrix form[
ε1
ε2

]
=

[
x1 x2
y1 y2

]−1
·
[

x − x0
y − y0

]

the matrix is invertible ⇐⇒ the parallelogram is not degenerate
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On parallelograms:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x and y

(x   , y )0 0

v1

v2

v1 = (x1, y1) v2 = (x2, y2)

x̂ = x0 + x1ε1 + x2ε2 ŷ = y0 + y1ε1 + y2ε2

In matrix form[
ε1
ε2

]
=

[
x1 x2
y1 y2

]−1
·
[

x − x0
y − y0

]

the matrix is invertible ⇐⇒ the parallelogram is not degenerate
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I evaluate f outside of its domain
I it does not work for surfaces

I split a triangle in three parallelograms
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Bounding Implicit Curves with Strips on 4

On triangles: replace the evaluation of f (4) ⇒ f (♦) with AA

I include a triangle into a parallelogram
I evaluate f outside of its domain
I it does not work for surfaces

I split a triangle in three parallelograms



Bounding Implicit Curves with Strips on 4

(a) decomposition (b) reflection (c) smallest BB (d) AABB

strategy time output visited leaves AA seg

a 33 1445 1805 250 4604 502
b 25 2909 3878 298 3878 298
c 28 3392 4522 318 4522 318
d 25 2882 3842 316 3842 316



Our Adaptive Method

procedure Explore (4)
♦1,♦2,♦3 ← Parallelograms (4)
f̂i ← f (♦i ) with AA
if 0 ∈ [f̂i ] for some i then

wi ← width of f̂ in ♦i
if wi ≤ εuser , for all i then

Approximate (4)
else
4i ← Subdivide (4)
for each i , Explore (4i )

end
end

end
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Our method does not care what mesh subdivision method is used

triangle soup
midpoint splitting

mesh with connecticity√
3, Ja

1 , 4-8 meshes, . . .
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Our Adaptive Method

Our method does not care what mesh subdivision method is used

triangle soup
#4 = 1384

mesh with connecticity
#4 = 779



Our Adaptive Method

The effect of the geometric criteria on the curve in a triangular quadtree

εuser = 0.8 εuser = 0.4 εuser = 0.1

y2 − x3 + x = 0.5
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(x + 1)3(1− x)− 4y4 = 0



Results

level 4

#4in = 940
#4out = 1771

CPU time = 280 msec

(x + 1)3(1− x)− 4y4 = 0
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level 0

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0
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level 4

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0



Results

level 5

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0



Results

level 5

#4in = 126
#4out = 1168

CPU time = 123 msec

y2(0.752 − x2)− (x2 + 1.5y − 0.752)2 = 0



Results

level 0

(x2 + y2 − 1)3 − x2y3 = 0



Results

level 1

(x2 + y2 − 1)3 − x2y3 = 0



Results

level 2

(x2 + y2 − 1)3 − x2y3 = 0



Results

level 3

(x2 + y2 − 1)3 − x2y3 = 0



Results

level 3

#4in = 1424
#4out = 3298

CPU time = 547 msec

(x2 + y2 − 1)3 − x2y3 = 0



Results

level 0

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0



Results

level 1

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0



Results

level 2

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0



Results

level 3

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0



Results

level 4

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0



Results

level 4

#4in = 1006
#4out = 2134

CPU time = 391 msec

(y − x2 + 1)4 + (x2 + y2)4 − 1 = 0



Results

level 0

(xy + cos(x + y))(xy + sin(x + y)) = 0



Results

level 1

(xy + cos(x + y))(xy + sin(x + y)) = 0



Results

level 2

(xy + cos(x + y))(xy + sin(x + y)) = 0



Results

level 3

(xy + cos(x + y))(xy + sin(x + y)) = 0



Results

level 4

(xy + cos(x + y))(xy + sin(x + y)) = 0



Results

level 4

#4in = 1032
#4out = 3897

CPU time = 454 msec

(xy + cos(x + y))(xy + sin(x + y)) = 0



Results

Our method detects the non-manifold region...

y2 = x3 + 3x2

...even when the singularity is not recovered!
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ẑ = z0 + z1ε1 + z2ε2



Bounding Implicit Curves with Strips on Surfaces

On parallelograms in 3D:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x , y and z

(x   , y  , z  )0 0 0

v1

v2

v1 = (x1, y1, z1) v2 = (x2, y2, z2)

x̂ = x0 + x1ε1 + x2ε2

ŷ = y0 + y1ε1 + y2ε2

ẑ = z0 + z1ε1 + z2ε2

In matrix form x
y
z

 =

 x0
y0
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+

 x1 x2
y1 y2
z1 z2

 · [ ε1
ε2
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Bounding Implicit Curves with Strips on Surfaces

On parallelograms in 3D:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x , y and z

(x   , y  , z  )0 0 0

v1

v2

v1 = (x1, y1, z1) v2 = (x2, y2, z2)

x̂ = x0 + x1ε1 + x2ε2

ŷ = y0 + y1ε1 + y2ε2

ẑ = z0 + z1ε1 + z2ε2

In matrix form

[
ε1
ε2

]
=

 x1 x2
y1 y2
z1 z2

+ ·
 x − x0

y − y0
z − z0


B+ = (B>B)−1B> is the pseudoinverse of a matrix B



Bounding Implicit Curves with Strips on Surfaces

On parallelograms in 3D:
evaluate f (♦) with AA ⇒ write ε1 and ε2 in terms of x , y and z

(x   , y  , z  )0 0 0

v1

v2

v1 = (x1, y1, z1) v2 = (x2, y2, z2)

x̂ = x0 + x1ε1 + x2ε2

ŷ = y0 + y1ε1 + y2ε2

ẑ = z0 + z1ε1 + z2ε2

In matrix form

[
ε1
ε2

]
=

 x1 x2
y1 y2
z1 z2

+ ·
 x − x0

y − y0
z − z0


the matrix has full rank ⇐⇒ the parallelogram is not degenerate



Results

y2(3 + 2y)− (x2 − 1)2 = 0



Results

x2 − 48y2 = 8z = 0



Results

xy2(1−
√

xy2) = 0.04



Results

(xy − 2)(x2 + y2 − 1) = 0



Results

a = 0.3 a = 0.5 a = 0.7

(x − a)2 + y2 = a2



Results: implicit × parametric

hyperboloid given implicitly by x2 − y2 − z2 = 1

Klein bottle given parametrically by

x(u, v) = (2.7 + cos(u) sin(v)− sin(u) sin(2v)) cos(u),
y(u, v) = (2.7 + cos(u) sin(v)− sin(u) sin(2v)) sin(u),

z(u, v) = sin(u) sin(v) + cos(u) sin(2v),
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