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The Scientist

Stéphane Mallat calls him a “visionary”
whose work cannot be labelled either
pure or applied mathematics, nor
computer science either, but simply
“amazing”.

The Meyer Wavelet

(1985)

First Non-Trivial Orthogonal Wavelet Basis

C'®® Continuously Differentiable
Non-Compact Support
Defined in Frequency Domain

Continuous Wavelet Transform

Contributions

Yves Meyer was awarded the 2010 Gauss Prize
for fundamental contributions to number theory,
operator theory and harmonic analysis, and his
pivotal role in the development of wavelets and
multiresolution analysis.

He also received the 2017 Abel Prize “for his
pivotal role in the development of the
mathematical theory of wavelets.”

Wavelets

From the mid-1980s, in what he called a
“second scientific life”, Meyer, together with
Daubechies and Coifman, brought together

earlier work on wavelets into a unified picture.

In 1986 Meyer and Pierre Gilles Lemarié-Rieusset
showed that wavelets may form mutually
independent sets of mathematical objects called
orthogonal bases. Coifman, Daubechies and
Stéphane Mallat went on to develop applications
to many problems in signal and image processing.
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The Function The Next Frontier

* “Big Questions”:
- How to Discretize the Wavelet Transform?

- How to Systematically Construct Wavelet Basis?

* The Answer

- Multiresolution Analysis
* Space Domain

Multiresolution Analysis

(1988)

Multiresolution Analysis
* Yves Meyer and Stephane Mallat an d

* Foundations of Modern Signal Processing I:| |ter Baﬂ kS

* Many Applications in Science and Engineering

Outline

Scale Spaces Natural Concept

Multiresolution Analysis « Physical
Dilation E i
llation Equations Measurements, Data Acquisition
Fast Wavelet Transform .
» Perception
Two-Channel Filter Banks
. . Focus, Features
Matrix Implementation -
» Applications
Examples

Units, Computation




Scale Spaces

V, . Space of Scale §
» Scaling Function

pye
¢s<x>=m¢(s)
fq)s(x)dx=1

« Basis of V
0. 10,(x=h0) |

Resolution and Multiresolution

Scale <= Resolution

» Data Representation
Computation - Discrete Elements (Samples)

Resolution - Samples / Unit of Scale

* Need for Representation at Multiple Scales
Different Features - Different Scales

Efficient Computation - Coarse to Fine Scale

Two Scale Relation

Axioms 1. and 2. (Nested Spaces and Dyadic Scaling)
fev

Representation of a Function in Vg

» Orthogonal Projection

Proj, (f) = 2 ([0, )00 ()

(]
* Representation Operator i

c =(f04)= 1 %0 et

(discrete
» Reconstruction Operator sequence)

fi(x) = 2 i, (x)

(continuous function)

Multiresolution Analysis

Sequence of Scale Spaces ( Vj) , JE VA

1. Inclusion: VJ - Vj—]

2 Scaling:  JWE V, < fl2/x)e ¥,

3. Density: closure{Uj V: } = LAR)

4. Maximality: (), V;= {0}

5. Scale Basis: 3 ¢ () st. {Q (x-k) } basisof V),

Completeness

Axioms 3. and 4. (complete covering of function space)

closure{Uj Vi } =LAR)




Multiresolution Basis From Multiresolution to Wavelets

Axioms 5. and 2. (basis family generated from a single ¢)
] ’ Multiresolution Ladder
. — —]/2 -] -
(I)j,k (x) 2 q) (2 X k) » Coarse to Fine
feV, = ferv,

* Fine to Coarse (information loss)

fev, f&v,

Dilations Wavelets: Complementary Subspaces

Translations

Intuition: difference between two consecutive levels
W; : Details in V;_; that cannot be represented in V;

Wavelet Spaces Wavelet Basis

o , Orthogonality of Spaces
Definition: Orthogonal Complement of V;in V', + Decomposition of L2

Via=V;®W, w.lw, Jj=k

therefore:

Proj\/j-l(f) = PrOjVj )+ Projwj f) - Basis of W,

2 —
LR) =W,

Vi

Y, (x) =272 (27 x - k)
Projy; ( )

Multiresolution Decomposition Two-Scale Operators

* Scale and Wavelet Spaces + Transform Representation Sequences
* Function Decomposition

0 .-CVy,C |V0C 1/_, C .-LXR)
|

Discrete Operators
‘ Move Between Consecutive Levels j and j+/
w, W, . * Act on Multiresolution Hierarchy
Fine <= Coarse

SEV,

Fine <= Detail

£=Projyy (f) + =+ Projy, (f) + Projy, (f) Key to Efficient Computation




Dilation Equations
+ Scaling Basis: q)OEVO C V_1

by = §<¢O’¢—l,k>¢_1’k(") = %hkq)_],k(x)

* Wavelet Basis: onWO - V—l

P, = g@) 0Dk )0y (0= S804

Shape of ¢ and

) Y (x)

g9, g9 &b

Fine to Detail: Operator G

* Recursive Computation of Inner Products with v

(S j,k>=<f’z gn—2k¢j—l,k>

=Y 8n-2k <f,¢j—1,k>
+ Discrete Convolution and Decimation
J_ G o]

d’ - (2)G *c/

« Change of Representation Wj C Vj_1

Expression of ¢ and

» Reflexive Definition

¢(x)=ﬁ2hkq)(2x—k)
3

« 1 defined in terms of ¢

Lp(x)=ﬁ2gk¢(2x-k)
k

Fine to Coarse: Operator H
» Recursive Computation of Inner Products with ¢
<f’q)j,k> = <f>§ En—2k¢j—l,k>
= E En—Zk <fa¢_j—1,k >

n
» Discrete Convolution and Decimation

. —
¢/ =(2)H =c/

» Change of Representation Vj C Vj_1

Cj Lcj_l
n n

Wavelet Decomposition
* Assume: fievi
» Start with: C’J1'=<f’¢j’k>
» Decomposition Scheme
H cj+l H Cj+2
n n

G
dj+1 . dj+2

n n




Coarse and Detail to Fine Wavelet Reconstruction
* Recover ¢/ from ¢/ and d/
¢ =<f j_laq’j—l,n>
=(S 0+ SdM 110, )
=3¢l (0,405 + SAW 0,10)

=y byl + Egn—2kd1g
Reconstruction Operator ( Expansion and Convolution )

. Start with: ej+m’dj+m’.”’dj+1)

» Decomposition Scheme

il _H G
n n

¢/ Hx(12)c! +G*(12)d/

Wavelets and Filters Low-Pass Filter

A Look in Frequency Domain Discrete Operator H

* Operators H and G * Impulse Response

Discrete Filters (hk)=( h | ho hl J
» Fast Wavelet Transform

Sub-band Filtering .
+ Transfer Function
« Signal Processing Framework Hw)= Ehke"’k‘”
k

Filter Design Techniques

_ H is 2w -Periodic
Implementation Scheme

High-Pass Filter Multiresolution in Frequency Domain

Discrete Operator G
* Impulse Response

(gk)=(--,g_1,go,g1,...}

f,€V,= 7 El-aya)]

* Transfer Function fia€l-a,,0,,]
G((JJ) - gke—zkoo
?

JV[a

G 1S 2;t -Periodic ‘ €l-a,-a,,,




Two Channel Filter Banks Tree-Structured Filter Bank

+ One-Level Transform: Sub-band Filtering Wavelet Transform

Perfect Reconstruction . T
» Recursive Filtering

» Same Filters (invariance: dyadic scale, integer shift)

H

G

Analysis Synthesis
Bank Bank

Frequency Splitting Matrix Implementation of FWT

* Recursive Filtering
Dyadic Bands
Energy Preservation

* Filtering with Subsampling
» Two Channel Filter Bank

» Tree-Structured Filter Banks

Filtering with Subsampling Two-Channel Filter Bank

« Convolution and Decimation: y = ({2)F x Analysis Bank

fo - fi M=((J,2)H .

)G
Yo\_(1 0 0 OV fi fo Analysis Matrix )
w)loo 10 A

* Filter Matrix: y= |Fx
%o
d,
Yol _ Jo M\ Synthesis Bank
B I R S/ X S=M-1=MT
X3 Critical Sampling




Tree-Structured Filter Bank FWT Matrix Computation

» Decomposition and Reconstruction Matrices for Level j » Data Vector

D_z(Mk 0 J - D_]={M; 0 ] v = (@)
J 0 I Jo 0 I,

n-k

* Direct Transform (Analysis Bank)
v =Dy
J
vit=D .--DDc”
* Inverse Transform (Synthesis Bank)
v/ =R v/
J

0 L m+1
G —RORl Rmv

with k= N/2/
» Example of Decomposition Sequence

E(j_Mz M,
Al e

Sodouofoloriocde

Example Haar Wavelets

Haar: Simplest Case + Scaling Function and Wavelet

Scaling Function and Wavelet

Transform Scheme

Matrix Computation q)
Function Decomposition

Change of Basis * Low / High Pass Filters

L G=-Lq -1

=5 A

Haar Transform Haar Decomposition

* Input: f=(cf,c,cd,cd) Representation Projection

0

O
1

Edo
1
0

¢! SO =(cg-else3-c}

¢?

7 o'=(d},d))

x d f1=(ch.ch
02 =(d?)

* output: 7= (c2,d2,d} d) f2=(c})




Haar Matrix Computation Change of Basis Interpretation

+ Wavelet Matrix: (H and G) » Scale Representation

Second Level First Level 9 1

0 0
0 0
+0
1 0
0 1

* Multiresolution Representation
1 1

=3

9
1
2
0

1
1
* Normalization: p = 1/\/5 1

Representation in the Two Bases

Scale Basis Multiresolution
Basis

Bi-Orthogonal Wavelets

Bi-Orthonormal Basis Meyer Bi-orthogonal Wavelets
« Dual Basis
(s, f5) = 0,0 # j
(ess fiy =1

* Represent with one Basis, Reconstruct with the Other

n n

v=> (v,e)fi =D (v, file;

g=il g=i

* Computationally Similar to Orthonormal Basis

* More Degrees of Freedom to Construct Basis




Discrete Filter Pairs

Conclusions

Computational Scheme for Wavelets
» Multiresolution Analysis
Non-Redundant Wavelets
Two-Channel Filter Banks
Function Decompostion
Wavelet Transform as a Basis Change

Bi-Orthogonal Wavelets



