Yves Meyer \sim Wavelets

Luiz Velho IMPA

Contributions

Yves Meyer was awarded the 2010 Gauss Prize for fundamental contributions to number theory, operator theory and harmonic analysis, and his pivotal role in the development of wavelets and multiresolution analysis.

He also received the 2017 Abel Prize "for his pivotal role in the development of the mathematical theory of wavelets."

The Scientist

Stéphane Mallat calls him a "visionary" whose work cannot be labelled either pure or applied mathematics, nor computer science either, but simply "amazing".

Wavelets

From the mid-1980s, in what he called a "second scientific life", Meyer, together with Daubechies and Coifman, brought together earlier work on wavelets into a unified picture.

In 1986 Meyer and Pierre Gilles Lemarié-Rieusset showed that wavelets may form mutually independent sets of mathematical objects called orthogonal bases. Coifman, Daubechies and Stéphane Mallat went on to develop applications to many problems in signal and image processing.

The Meyer Wavelet

(1985)

- First Non-Trivial Orthogonal Wavelet Basis
- C^{∞} Continuously Differentiable
- Non-Compact Support
- Defined in Frequency Domain
- Continuous Wavelet Transform

Definition

 $\mathcal{V}_{me_{1}}(w) = \begin{cases} \frac{1}{\sqrt{2\pi}} \sin\left(\frac{\pi}{2}\upsilon\left(\frac{3|w|}{2\pi}-1\right)\right)e^{\frac{\pi}{2}} & \text{if } -\frac{2\pi}{3} \le |w| \le \frac{4\pi}{3}\\ \frac{1}{\sqrt{2\pi}} \cos\left(\frac{\pi}{2}\upsilon\left(\frac{3|w|}{4\pi}-1\right)\right)e^{\frac{\pi}{2}} & \text{if } -\frac{4\pi}{3} \le |w| \le \frac{8\pi}{3}\\ 0 & otherwise \end{cases}$

The Next Frontier

- "Big Questions":
 - How to Discretize the Wavelet Transform?
 - How to Systematically Construct Wavelet Basis?
- The Answer
 - Multiresolution Analysis

Multiresolution Analysis

(1988)

- Yves Meyer and Stephane Malla
- Foundations of Modern Signal Processing
- Many Applications in Science and Engineering

Multiresolution Analysis and Filter Banks

Outline

- Scale Spaces
- Multiresolution Analysis
- Dilation Equations
- Fast Wavelet Transform
- Two-Channel Filter Banks
- Matrix Implementation
- Examples

Scale

Natural Concept

- Physical
 - Measurements, Data Acquisition
- Perception
 - Focus, Features
- Applications
 - Units, Computation

 V_s : Space of Scale *s* • Scaling Function

$$\phi_{s}(x) = \frac{1}{\sqrt{|s|}} \phi\left(\frac{x}{s}\right)$$
$$\int \phi_{s}(x) dx = 1$$

• Basis of V_s $\left\{ \phi_{s,k} \, | \, \phi_s(x-k) \right\}$

Resolution and Multiresolution

Scale ↔ Resolution

- Data Representation
 Computation Discrete Elements (Samples)
 Resolution Samples / Unit of Scale
- Need for Representation at <u>Multiple</u> Scales
 Different Features Different Scales
 Efficient Computation Coarse to Fine Scale

Multiresolution Analysis

Sequence of Scale Spaces (V_j) , $j \in Z$

- 1. Inclusion: $V_j \subset V_{j-1}$
- 2. Scaling: $f(x) \in V_j \iff f(2^j x) \in V_0$
- 3. Density: $\operatorname{closure}\left\{\bigcup_{j} V_{j}\right\} = L^{2}(\mathbf{R})$
- 4. Maximality: $\bigcap_i V_i = \{ 0 \}$
- 5. Scale Basis: $\exists \phi(x)$ s.t. { $\phi(x-k)$ } basis of V_0

Completeness

Axioms 3. and 4. (complete covering of function space) $\operatorname{closure}\left\{\bigcup_{j}V_{j}\right\} = L^{2}(\mathbf{R})$

From Multiresolution to Wavelets

Wavelet Spaces

Definition: Orthogonal Complement of V_j in V_{j-1} therefore: $V_{j-1} = V_j \oplus W_j$

 $\operatorname{Proj}_{V_{j-1}}(f) = \operatorname{Proj}_{V_j}(f) + \operatorname{Proj}_{W_j}(f)$

Wavelet Basis
Orthogonality of Spaces
• Decomposition of L^2
$W_j \perp W_k \qquad j \neq k$
• Basis of W_j $L^2(\mathbf{R}) = \bigoplus_{j \in \mathbb{Z}} W_j$
$\Psi_{j,k}(x) = 2 \cdot j/2 \Psi (2 \cdot j x \cdot k)$

Multiresolution Decomposition

- Scale and Wavelet Spaces
- Function Decomposition

 $f \in V_0$

$$f = \operatorname{Proj}_{W0}(f) + \dots + \operatorname{Proj}_{Wn}(f) + \operatorname{Proj}_{Vn}(f)$$

Two-Scale Operators
Transform Representation Sequences

Discrete Operators
Move Between Consecutive Levels *j* and *j*+1

Act on Multiresolution Hierarchy

Fine ↔ Coarse
Fine ↔ Detail

Key to Efficient Computation

Dilation Equations

• Scaling Basis: $\phi_0 \in V_0 \subset V_{-1}$ $\phi_0 = \sum_k \langle \phi_0, \phi_{-1,k} \rangle \phi_{-1,k}(x) = \sum_k h_k \phi_{-1,k}(x)$ • Wavelet Basis: $\psi_0 \in W_0 \subset V_{-1}$ $\psi_0 = \sum_k \langle \psi_0, \phi_{-1,k} \rangle \phi_{-1,k}(x) = \sum_k g_k \phi_{-1,k}(x)$

Expression of φ and ψ

• Reflexive Definition

$$\Phi(x) = \sqrt{2} \sum_{k} h_k \Phi(2x - k)$$

• ψ defined in terms of ϕ

$$\Psi(x) = \sqrt{2} \sum_{k} g_{k} \Phi(2x - k)$$

Fine to Detail: Operator G

+ Recursive Computation of Inner Products with $\boldsymbol{\psi}$

$$\left\langle f \psi_{j,k} \right\rangle = \left\langle f, \sum_{n} \overline{g}_{n-2k} \phi_{j-1,k} \right\rangle$$
$$= \sum \overline{g}_{n-2k} \left\langle f, \phi_{j-1,k} \right\rangle$$

- Discrete Convolution and Decimation $d_n^{j} = (\downarrow 2)\overline{G} * C_n^{j-1}$
- Change of Representation $W \subset V$.

$$d_n^j \leftarrow \overline{G} - c_n^{j-1}$$

Wavelet Decomposition

- Assume: $f^j \in V$
- Start with: $c_n^j = \langle f, \phi_{j,k} \rangle$
- Decomposition Scheme

$$c_n^{j} \xrightarrow{\overline{H}} c_n^{j+1} \xrightarrow{\overline{H}} c_n^{j+2} \cdots$$

 $\overbrace{G}^{\overline{G}} d_n^{j+1} \xrightarrow{\overline{G}} d_n^{j+2} \cdots$

Coarse and Detail to Fine

• Recover
$$c^{j-1}$$
 from c^{j} and d^{j}
 $c_{n}^{j-1} = \langle f^{j-1}, \phi_{j-1,n} \rangle$
 $= \langle \sum c_{k}^{j} \phi_{j,k} + \sum d_{k}^{j} \psi_{j,k}, \phi_{j-1,n} \rangle$
 $= \sum c_{k}^{j} \langle \phi_{j,k}, \phi_{j-1,n} \rangle + \sum d_{k}^{j} \langle \psi_{j,k}, \phi_{j-1,n} \rangle$
 $= \sum h_{n-2k} c_{k}^{j} + \sum g_{n-2k} d_{k}^{j}$
• Reconstruction Operator (*Expansion and Convolution*
 $c_{n}^{j-1} = H * (\uparrow 2) c_{n}^{j} + G * (\uparrow 2) d_{n}^{j}$

Wavelet Reconstruction

i+1)

• Start with:
$$(c^{j+m}, d^{j+m}, \dots, d^{j})$$

• Decomposition Scheme

Wavelets and Filters

- A Look in Frequency Domain
- Operators H and G
 Discrete Filters
- Fast Wavelet Transform
 Sub-band Filtering
- Signal Processing Framework
 Filter Design Techniques
 Implementation Scheme

Tree-Structured Filter Bank

Wavelet Transform

- Recursive Filtering
 Same Filters (*invariance: dyadic scale, integer shift*)

Filtering with Subsampling

 $\begin{pmatrix} y_0 \\ y_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix} \begin{bmatrix} y_0 & & & y_1 \\ f_1 & f_0 & & \cdots \\ \cdots & f_1 & f_0 & & \\ \cdots & f_1 & f_0 & & \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$ • Filter Matrix : $y = \downarrow F x$

Tree-Structured Filter Bank

• Decomposition and Reconstruction Matrices for Level *j*

$$= \begin{pmatrix} M_k & 0\\ 0 & I_{n-k} \end{pmatrix} \qquad \qquad R_j = D_j^{-1} = \begin{pmatrix} M_k^{\mathrm{T}} & 0\\ 0 & I_{n-k} \end{pmatrix}$$

with $k = N/2^{j}$

• Example of Decomposition Sequence

$$\begin{pmatrix} c_{0}^{2} \\ d_{0}^{2} \\ d_{0}^{2} \\ d_{0}^{2} \\ d_{0}^{1} \\ d_{1}^{1} \\ d_{1}^{1} \\ d_{1}^{2} \\ d_{3}^{2} \end{pmatrix} = \begin{pmatrix} M_{2} \\ I_{6} \end{pmatrix} \begin{pmatrix} M_{4} \\ I_{4} \end{pmatrix} \begin{pmatrix} M_{8} \\ M_{8} \end{pmatrix} \begin{pmatrix} c_{0}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{1}^{0} \\ c_{2}^{0} \\ c_{1}^{0} \\ c_{$$

FWT Matrix Computation

Data Vector
$$v^{j} = \left(c^{j}\right)\left(d^{j}\right)\cdots\left(d^{j-m}\right)$$

• Direct Transform (Analysis Bank) $v^{j+1} = D_i v^j$

$$\mathcal{P}^{m+1} = D_m \cdots D_1 D_0 c^0$$

Inverse Transform (Synthesis Bank)

$$v^{j} = R_{j} v^{j+1}$$
$$c^{0} = R_{0} R_{1} \cdots R_{m} v^{m}$$

Example

Haar: Simplest Case

- Scaling Function and Wavelet
- Transform Scheme
- Matrix Computation
- Function Decomposition
- Change of Basis

Haar Transform

• Input: $f = (c_0^0, c_1^0, c_2^0, c_3^0)$

Haar Decomposition

• output: $\bar{f} = (c_0^2, d_0^2, d_0^1, d_1^1)$

Change of Basis Interpretation

• Scale Representation

$$f = \begin{pmatrix} 9\\1\\2\\0 \end{pmatrix} = 9 \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + 1 \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} + 2 \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} + 0 \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$

• Multiresolution Representation

$$f = \begin{pmatrix} 9\\1\\2\\0 \end{pmatrix} = 3 \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix} + 2 \begin{pmatrix} 1\\1\\-1\\-1\\-1 \end{pmatrix} + 4 \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix} + 1 \begin{pmatrix} 0\\0\\1\\-1 \end{pmatrix}$$

Bi-Orthonormal Basis

Dual Basis

 $\langle e_i, f_j \rangle = 0, i \neq j$ $\langle e_i, f_i \rangle = 1$

Represent with one Basis, Reconstruct with the Other

$$v = \sum_{j=1}^{n} \langle v, e_j \rangle f_j = \sum_{j=1}^{n} \langle v, f_j \rangle e_j$$

- Computationally Similar to Orthonormal Basis
- More Degrees of Freedom to Construct Basis

Conclusions

Computational Scheme for Wavelets

- Multiresolution Analysis
- Non-Redundant Wavelets
- Two-Channel Filter Banks
- Function Decompositon
- Wavelet Transform as a Basis Change
- Bi-Orthogonal Wavelets