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Contributions
Yves Meyer was awarded the 2010 Gauss Prize 
for fundamental contributions to number theory, 
operator theory and harmonic analysis, and his 
pivotal role in the development of wavelets and 

multiresolution analysis.  

He also received the 2017 Abel Prize “for his 
pivotal role in the development of the 

mathematical theory of wavelets.”

Stéphane Mallat calls him a “visionary” 
whose work cannot be labelled either 

pure or applied mathematics, nor 
computer science either, but simply 

“amazing”. 

The Scientist
From the mid-1980s, in what he called a 

“second scientific life”, Meyer, together with 
Daubechies and Coifman, brought together 

earlier work on wavelets into a unified picture.

In 1986 Meyer and Pierre Gilles Lemarié-Rieusset 
showed that wavelets may form mutually 

independent sets of mathematical objects called 
orthogonal bases. Coifman, Daubechies and 

Stéphane Mallat went on to develop applications 
to many problems in signal and image processing.

Wavelets

The Meyer Wavelet
• First Non-Trivial Orthogonal Wavelet Basis 

•           Continuously Differentiable 

• Non-Compact Support 

• Defined in Frequency Domain 

• Continuous Wavelet Transform

(1985)

Definition



The Function

• Space Domain

The Next Frontier

• “Big Questions”: 

- How to Discretize the Wavelet Transform? 

- How to Systematically Construct Wavelet Basis? 

• The Answer 

- Multiresolution Analysis 

Multiresolution Analysis

• Yves Meyer and Stephane Mallat  

• Foundations of Modern Signal Processing 

• Many Applications in Science and Engineering

(1988)

Multiresolution Analysis 
and 

Filter Banks

Outline
• Scale Spaces 

• Multiresolution Analysis 

• Dilation Equations 

• Fast Wavelet Transform 
• Two-Channel Filter Banks 

• Matrix Implementation 

• Examples

Scale

Natural  Concept 

• Physical 

Measurements, Data Acquisition 

• Perception 

Focus, Features 

• Applications 

Units, Computation



Scale  Spaces

Vs  :   Space  of  Scale s   
• Scaling Function
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• Basis of Vs

Representation of a Function in VS

• Orthogonal Projection 

• Representation Operator 

• Reconstruction Operator
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Resolution and Multiresolution

Scale ↔ Resolution 

• Data Representation 

Computation - Discrete Elements (Samples) 

Resolution - Samples / Unit of Scale 

• Need for Representation at Multiple Scales 

Different Features - Different Scales 

Efficient Computation - Coarse to Fine Scale

Sequence of Scale Spaces 

1. Inclusion: 

2. Scaling: 

3. Density: 

4. Maximality: 

5. Scale Basis:

( Vj ) ,  j ∈ Z

Multiresolution Analysis

Vj  ⊂ Vj-1

f(x) ∈  Vj     ⇔    f(2 jx) ∈  V0

closure{∪j Vj  } = L2(R)

∩j Vj = { 0 }

∃ φ (x)  s.t.  {φ (x-k) }  basis of  V0 

Two Scale Relation
Axioms 1. and 2.    (Nested Spaces and Dyadic Scaling)

f(x) ∈  Vj                                ⇔                  f(2x) ∈  Vj-1

f ∈  Vj                                     ⇔                    f ∈  Vj-1

Completeness

Axioms 3. and 4.   (complete covering of function space) 

closure{∪j Vj  } = L2(R)

∩j Vj = { 0 }



Multiresolution  Basis

φ j,k (x) = 2 - j/2 φ (2 - j x - k)

Vj+1

Vj

Vj-1

Dilations 

Translations 

Axioms 5. and 2. (basis family generated from a single φ) 

From Multiresolution to Wavelets

Multiresolution Ladder 
• Coarse to Fine 

  
• Fine to Coarse (information loss) 

  

Wavelets: Complementary Subspaces 
Intuition: difference between two consecutive levels 
Wj : Details in Vj-1 that cannot be represented in Vj

f ∈  Vj     ⇒    f ∈  Vj-1

f ∈  Vj-1            f ∉  Vj

Wavelet Spaces

Definition: Orthogonal Complement of Vj in V j-1 

therefore: jjj WVV ⊕=−1
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Wavelet  Basis
Orthogonality of Spaces 
• Decomposition of L2 

• Basis of  Wj

ψj,k (x) = 2 - j/2 ψ (2 - j x - k)

kj WW ⊥
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Multiresolution  Decomposition
• Scale  and Wavelet Spaces 
• Function Decomposition

{0} … ⊂ V1  ⊂ V0 ⊂ V-1  ⊂  ... L2(R) 
       |       |       |       |        | 
      …    

 W1     W0       W-1     
… …

f ∈ V0 

f = ProjW0 ( f ) + ...+ ProjWn ( f ) + ProjVn ( f ) 

Two-Scale Operators

• Transform  Representation Sequences 

Discrete Operators 

Move Between Consecutive Levels  j  and  j+1 

• Act on Multiresolution Hierarchy 

Fine ↔ Coarse 

Fine ↔ Detail 

Key to Efficient Computation



Dilation Equations
• Scaling Basis:

100 −
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• Wavelet Basis:

Expression  of  φ and ψ

• Reflexive Definition

•  ψ defined in terms of φ
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Shape  of  φ and ψ
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Fine to Coarse: Operator H
• Recursive Computation of Inner Products with φ
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• Discrete Convolution and Decimation

• Change of Representation
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Fine to Detail: Operator G
• Recursive Computation of Inner Products with ψ
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n

knkj gff ,12, ,, −−∑= φψ

∑= −−
n

kjkn fg ,12 ,φ

( ) 1 2 −↓= ∗ j
n

j
n cGd

• Discrete Convolution and Decimation

• Change of Representation
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Wavelet Decomposition

• Assume:  
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• Decomposition Scheme 
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Coarse and Detail to Fine
• Recover c j-1 from c j and d j 
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• Reconstruction Operator ( Expansion and Convolution )
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Wavelet  Reconstruction
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• Decomposition Scheme 

)

Wavelets and Filters

A Look in Frequency Domain 

• Operators H and G 

Discrete Filters 

• Fast Wavelet Transform 

Sub-band Filtering 

• Signal Processing Framework 

Filter Design Techniques 

Implementation Scheme

Low-Pass Filter
Discrete Operator H 

• Impulse Response 

• Transfer Function
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Periodic-2  is  πH

High-Pass Filter

Discrete Operator G 
• Impulse Response 

• Transfer Function
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Multiresolution  in  Frequency Domain
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Two Channel Filter Banks

• One-Level Transform: Sub-band Filtering  
Perfect Reconstruction

c cj j

  j+1
H H

G G↓2 ↑2

↑2↓2 c

  j+1d

Analysis 
Bank

Synthesis 
Bank

Tree-Structured Filter Bank

Wavelet Transform 

• Recursive Filtering 
• Same Filters (invariance:  dyadic scale, integer shift)

c cj j

  j+2

H
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Frequency  Splitting
• Recursive Filtering 

Dyadic Bands 
Energy Preservation

0G
1G

π

2H 2G

2π4π

Matrix Implementation of FWT

• Filtering with Subsampling 

• Two Channel Filter Bank 

• Tree-Structured Filter Banks

c j

  j+2
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Filtering with Subsampling

• Convolution and Decimation:  y = (↓2)F x

• Filter Matrix :  y = ↓F x
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Two-Channel Filter Bank

• Analysis Bank

• Analysis Matrix

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
3

0
2

0
1

0
0

01

10

01

10

1
1

1
0

1
1

1
0

c
c
c
c

gg
gg

hh
hh

d
d
c
c

!
!

!
!

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
↓
↓

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
↓
↓

=
G
H

G
HM
)2(
)2(

• Synthesis Bank
T1 MMS == −

* Critical Sampling



Tree-Structured Filter Bank

• Decomposition and Reconstruction Matrices for Level j

• Example of Decomposition Sequence
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FWT  Matrix  Computation

• Direct Transform   (Analysis Bank)

• Inverse Transform   (Synthesis Bank)

• Data Vector
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Example

Haar: Simplest Case 

• Scaling Function and Wavelet 

• Transform Scheme 

• Matrix Computation 
• Function Decomposition 

• Change of Basis

Haar Wavelets

• Scaling Function and Wavelet

• Low / High Pass Filters
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Haar  Transform

• Input:
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Haar  Decomposition

Projection
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Haar  Matrix  Computation

• Normalization:
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First LevelSecond Level

• Wavelet Matrix: (H and G)

Change  of  Basis  Interpretation
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• Scale  Representation

• Multiresolution  Representation

Representation in the Two Bases

Scale  Basis

0V
2V

2W

1W

Multiresolution  
Basis

Bi-Orthogonal Wavelets 

• Represent with one Basis, Reconstruct with the Other 

Bi-Orthonormal Basis
• Dual Basis 

• Computationally Similar to Orthonormal Basis 

• More Degrees of Freedom to Construct Basis

Meyer Bi-orthogonal Wavelets



Discrete Filter Pairs Conclusions

Computational Scheme for Wavelets 

• Multiresolution Analysis 
• Non-Redundant Wavelets 

• Two-Channel Filter Banks 

• Function Decompostion 

• Wavelet Transform as a Basis Change 

• Bi-Orthogonal Wavelets


