A proof of Oseledets’ theorem

1 Introduction

Let f: M — M be a C! diffeomorphism on some compact finite-dimensional
Riemannian manifold M. We say that © € M is a regular point for f if there
are real numbers A; > --- > A\; and a splitting T,M = E; & --- ® E; of the
tangent space to M at z, such that

1
lim - log ||Df™(z)ul| = A\; for all w € E;\{0} and 1 < j <.

n—=4oo

Observe that {A1,..., A} must coincide with
1
{/\ €eR: A= lim —log|Df™(x)u|l for some u € TZM\{O}}
n—+oo N
and we must also have
1
E; ={ueT,M: - log || D f™(z)ul| = Aj both as n — oo}

so that, when they exist, the reals A1,...,\; and the subspaces F,..., E; are
uniquely determined. We call Ay,...,A; the Lyapounov exponents of f at x. It
easy to see that the set R(f) of regular points of f is invariant under iteration,
ie. f(R(f) = R(f), with E;(f(x)) = Df(x) B;(x) and X;(f(2)) = X;(x) for
every j and all z € R(f).

While it is clear that the periodic points of f are always regular points,
in general the set R(f) is a topologically small subset of M: quite often it
is meager (Baire first category) and it may even be finite. However, from a
measure-theoretical point of view the situation is just opposite :

Theorem A ([O]) The set R(f) total probability in M, that is, it satisfies
w(R(f)) =1 for every f-invariant borelian probability measure in M.

We prove this theorem, following [M], by deriving it from a more abstract
result which we state as follows. Take M to be a compact metric space and
f:M — M to be a homeomorphism. Let n: FF — M be a finite-dimensional
continuous vector bundle over M, endowed with a continuous Riemannian met-
ric. Let L: F — F' be an isomorphism of continuous vector bundles covering f



(i.e. mo L = fom), such that both L and L~! have bounded norms. Denote by
L,, the n-th iterate of L:

Lu(z) = L(f*""(2)) o --- 0 L(f()) o L(x) ifn >0,
Ln(z) = LN (@) 00 L7 (f (@) 0 L~ (2) if n < 0.

For ny,...,n; > 1 define A(ny,...,n;) to be the set of points x € M such that

the fibber F, of F over z admits a splitting F, = E; & --- @ E; such that
dim E; = n; for 1 < j <1 and there are real numbers A; > --- > A satisfying

1
lim - log ||Ln(z)|| = A; for every u € E;\{0} and 1 < j <.

n—+oo
Theorem 1.1 a) For all ny,...,ny, A(ny,...,n;) is a measurable subset of
M. Moreover, for each 1 < j < I, E; is a measurable subbundle of
the restriction of F' to A(n,...,n) and A(na,...,n) 3 = — Aj(z) is a

measurable map.

b) The set of regular points of L, given by R(L) = Uy, ... .n,A(n1,...,n), has
total probability in M.

Clearly, this result contains Theorem A as a particular case: just take F' to
be the tangent bundle of M and L to be the morphism induced by D f.

We prove part a) of Theorem 1.1 in Section 2. Part b) is the crucial statement
and its proof is given in Section 4. It uses preliminary results from Section 3 and
is based on two main lemmas which we prove in Sections 5 and 6, respectively.
In Section 7 we prove the following related result.

Proposition 1.2 For z € R(L) denote E*(z) = @, Ej(z). Then

. 1 n “ .
lim —log|det L"™(x)|E"(z)]| =E,\j(w)>0()\j(m) dim Ej;(x))

n—+ocon

and so, for every f-invariant probability measure u,

[ 10gldet L) B @) disa) = [ x, 015000 (2) dim By () dia).
A result of Ruelle [R] asserts that (for L = D f) this last expression is always
an upper bound for the entropy h,(f) of f with respect to p.
2 Proof of Theorem 1.1: measurability

Let ny,...,n; be fixed. For & > 1 denote by 4; the set of 2l-uples of rational
numbers oy > f1 > --- > o > [ with (aj—ﬂj)<%for1§j§l. For m > 1



and (ai,...,0) € Ak, let A(m,a1,...,0) be the set of points z € M for which
there is a splitting F, = F1 & --- ® F; with dim F; = n; and

exp(nay) [[ull 2 || Ln(z)ul| 2 exp(ns;) [lull (1)

exp(—noy) [|ul| < [|L-n(z)ul| < exp(—nS;) [Jull (2)
foralln >m, 1 < j <I, and u € F}. Observe that such a splitting is uniquely
determined, for each z € A(m, a1, ...,5), by

1L —n(z)ull
[lull

N Ln(2)ul]

< exp(na;) and < exp(—nf;) if n > m}.
Since (1) and (2) are closed conditions and the dimensions of the F} are constant,
we get that A(m,ai,...,0) is closed and A(m,a1,...,5) 3  — Fj(x) is
continuous for every 1 < j < [. In particular, this proves that

Ang,...,m) = ﬂ U U Alm,a1,...,0)

k>1 (ai,..-,01) €A m>1

is a Borel set. To prove that the subbundles E; are measurable on A(nq,...,n;)
it is now sufficient to show that for all z € A(ny,...,n) N A(m, aq,...,5) we
have Ej(x) = Fj(z) for all 1 < j <. Note first that E; must be contained in
some Fy, 1 <k <, because all the vectors in E; generate the same Lyapounov
exponent A;, both for n - 400 and for n -+ —oo. Using o, > Aj > B, and
recalling that \y > --- > N and a3 > 1 > --- > o > [, one sees that k = j.
Since dim E; = n; = dim F}, this proves that E; = Fj}, as we claimed. Finally,
the fact that A;(z) is measurable in A(ny,...,n;) follows immediately from

A(@) = limlog | La(@)|B; @)

n—-+o0

The proof of Theorem 1.1a) is complete.

3 Sub-exponential growth

A measurable function C: M — TR is said to have subexponential growth for a
measure g on M if

1
lim =log(Co f™) =0, U — a.e.
n—too n
In this section we show that certain functions related to the iterates of L, and
which play an important role in the proof of Theorem 1.1, have subexponential
growth for every f-invariant probability measure.



Let p be an f-invariant probability measure, E be an L-invariant measurable
subbundle of F', and A € IR be such that

1
lim sup — log || L (z)ul] < A

n—+4oco T

for all u € E;\{0} and p—a.e. z € M (such a A always exists, since we suppose
[|L|| to be bounded). Define, for € > 0,

| Ln () ull
exp(n(A +¢)) [lull

C’E(a:):sup{ :nZOanduEEw\{O}}.

Proposition 3.1 C. has subexponential growth for .

In the proof of this proposition we use the following criterium for subexpo-
nential growth.

Lemma 3.2 Let f: M — M be a measurable mapping and p be an f-invariant
probability measure on M. Let p: M — TR be a measurable function such that
po f— ¢ is integrable. Then %(go of" =0 pu—ae asn— +oo.

Proof: By Birkhoff’s ergodic theorem applied to (¢ o f — ), the sequence
1 (po f™) converges almost everywhere to some measurable function ¢. On the
other hand, for each fixed § > 0,

1 o -
pl{o s ~lpo fM(@)] > 8}) = w(f " (=nd,n0)") = p(e ™" (—nd,nd) ) — 0,
as n — 400, which means that 1(po f") converges to 0 in measure. Therefore,

nik(cp o f™) — 0 almost everywhere, for some subsequence ny — +o0o0. This
proves that ¢(z) =0 at p —ae. x € M. O

Proof of Proposition 3.1: For u € E;\{0}, let

B |Lo(@)u]
Celmw) = Up Cpnlr + 2) Tl
Then |La(@)u]
n(T)u
Ce(ovu) =max {1, WO (@), Do}
and so

a < CE('Z.7 U)
~ C(f(2), L(z)u)

where a,b > 0 are taken such that

< max{1, b},

(I (2)ull
~exp(A+e) [Jull T



for all x and u € E,. Then, immediately,

Ce(z)
a< ————
~ Ce(f(=))
which ensures that log(C. o f) — log C. and log(C. o f=1) — logC. are both

bounded. In particular, they are integrable and so the proposition results from
Lemma 3.2. O

< max{1,b}

The following consequence of Proposition 3.1 will be used several times in
the proof of Theorem 1.1b).

Proposition 3.3 Let E be an L-invariant measurable subbundle of F', A € R,

and p be an f-invariant probability measure on M. Then

lim sup — 10g||L (z)u]] <X for p—a.e. z€ M and oll u € E;\{0}

n—+oco T

if and only if

lim sup — 10g||L (Z)u]] <A for p—ae. €M and all u € E;\{0}.

n——oo

Moreover, this statement remains true when limsup and < are replaced by
liminf and > (or by lim and =), respectively.

Proof: We prove the ’only if’ part, the other one being entirely analogous.
Assume that

lim sup — 10g||L (T)ul| < A for py—a.e. z € M and all u € E;\{0}.

n—-+oo

Let C. be as defined above. From
u=Lyp(f"(z))L-n(z)u

we get
llull < C(f"(2)) exp(n(X + €))[| L—p(2)ull
and so

1 1 1
—logllull < —log C(f7"(2)) + (A +€) + ~ log | L—n(2)ull
for all n > 1. By Proposition 3.1 it follows
N
0< lrzg}rrg - log ||L—n(z)u|| + (XA +¢)
and so, since € > 0 is arbitrary,

hmsup—logllL (@)ull < A,

n——oo

as claimed. O



4 Proof of Theorem 1.1: total probability

To prove that R(L) has total probability it suffices to show that u(R(L)) = 1 for
every f-invariant ergodic probability measure on M. In what follows we always
assume p to be ergodic. Let

A1 (L, z) = lim sup%logHLn(x)H and A(L) = /)q(L,:U) du(z).

n—-+o00

Observe that A;(L,z) < sup,cp ||L(2)|| and A (L,z) = A (L) for p —ae. =€
M. Let G be the subbundle of F' defined by

1
G, = {u € F;:liminf — log||L,(z)u|| > A1 (L)}
n——oco n

The next lemma is a main step in the proof of the theorem, its proof will be
given in the next section.

Lemma 4.1 G is a measurable L-invariant subbundle with strictly positive di-
mension and

. 1
Jtim Ltog|iz @l = (1)
for all y— a.e. € M and all u € G,\{0}.

Somewhat more precisely, denoting by A(j) the set of points z for which
dim G, = j, we shall show that these are measurable subsets of M and that
the restriction of G to each A(j) is a measurable subbundle of the restriction
of F' to A(j). Since the dimension of G is an f-invariant function of z and we
assume g to be ergodic, we have pu(A;) =1 for some (necessarily unique) j and
we shall check that j > 1.

We write G = F if G, = F,, for almost every x € M. Note that in this case
the proof of the theorem is complete. If G # F we let G be the orthogonal
of G. Moreover, we let p: F —s G+ be the orthogonal projection and write
L=poL:G+ — G+

A

Lemma 4.2 If F # G then A (L) < A (L).
Proof: Observe first that
1L (@)ull = [Ip(Ln(z)w)|| < || Ln(z)ull,

as a consequence of the invariance of G. Let G be the subbundle of G given
by Lemma 4.1 for L and A;(L) and let v € G;\{0}. Then

ML) =limy oo Llog||Ln(z)ull < liminf, 4o Llog || Ln(z)ull
< limsup,, 1 o 3 10g || Ln(z)ull < Ai(L).



This proves that A (L) < A1 (L) and also that the equality would imply

1
lim - log || Ln(z)u|| = A1(L)

n—+

for u € G, \{0}. Then, by Proposition 3.3, we would have
lim  ~log | Ln(z)ull = (L)
S log | La(2)ull = Ay (L)

This would imply u € G, contradicting the fact that G,NG, = {0}. Therefore,

~

it must be A\ (L) <M\ (L) O

Now we invoke a second main lemma, whose proof is given in Section 6.

Lemma 4.3 If G # F then there is a measurable L-invariant subbundle H of
F such that G® H = F and M\ (L|H) = M (L) < M (L).

Writing E; = G and H; = H, we have shown that there exists an invariant
splitting F' = E; ® H; such that

. 1
nll}riloo - log || Ly (z)u|| = A1 for all w € E1\{0}
and A1 > A1(L|H1). Theorem 1.1b) now follows by repeated use of this pro-
cedure. Given any j > 1, suppose that we have already found an invariant
splitting F' = E; & -- - E; ® H; with

1
lim —log||Ly(z)u|| = A; for all uw € E;\{0} and 1<i<j
n—too n

and Ay > -+ > A; > A\ (L|H;). Then Lemma 4.1 allows us to find an invariant
subbundle E;; of H; such that

) 1
nll}rirrloo - log || Lp(x)u|| = Aix1 = M (L|Hj) for all u € E;\{0}
and Lemma 4.3 yields an invariant splitting H; = FE;y; © Hj;1 such that
M (L|Hj41) < Ajp1. Since the subbundles E; found in this way have posi-
tive dimension, dim Hj is strictly decreasing and so this process must come to
an end after a finite number of steps.

5 Proof of Lemma 4.1

First we prove that G is a measurable subbundle. For the sake of clearness we
divide this into three steps. Throughout we shall use the following elementary
remark. Let (A, A) and (B, B) be measurable spaces and f be any map from A



to B. If there exists a countable covering (A;), of A by measurable sets, such
that f|An: A, — B is measurable map for each n > 1, then f:A — Bis a
measurable map.

Step 1: For k> 1 and x € M let

n—-+0oo

1 1
Gy (k) = {u: Fy:limsup — log || L_p(2)u|| < =1 + = }.
+ n k

Then define My, = {x € M:G,(k) = G;}. It is easy to check that (M})y covers
M up to zero measure. Indeed, for any fixed x € M, (G, (k))x is a decreasing
sequence of subspaces of F, with N{2,G,(k) = G, thus there exists some
ky > 1 for which G (k;) = G;. We also claim that every My is a measurable
set. In order to prove this we introduce the measurable functions

A:M — R, Ai(z) =limsup,_, o + 1og||Ln(z)||
$:F — R,  ¢(z,u) = limsup,_, o 1 log||L_n(z)u]

and we also consider the bundle projection n: FF — M. Clearly,

x & My <= thereis u € F, such that (¢ + A7) (z,u) € (0,1/k]
<=z en((¢+Mm) 1 ((0,1/K])),

that is, My = M\m ((¢ + A7) ~1((0,1/k])). As m maps measurable sets onto
measurable sets, this proves our claim.
Step 2: Now we fix k£ > 1 and, for each z € My, and m > 1, we define

Go(k,m) = {u: Fp: [ Ln(2)ul| < mexp (—n(h — %))IIUII}-

Note that G, (k) = UGz (k,m) for all x € My: the inclusion D is obvious and
C follows from G,(k) = Gz(k + 1). Now define My, = {2z € Mp:G,(k) =
Gz(k,m)} = {z € My:Gy(k,m) = Gg(k,l) for all I > m}. Consider the
measurable function

|L—n(z)ull 1

exp (n(A — 7).

Y (M) — R, Yr(z,u) = sup A

n>0  lull
Clearly

x & My, <= there are u € F;, and [ > m such that m < ¢y (z,u) <1
<= there is [ > m such that z € (¢, *((m,1])),

that is, My, = M\ UR,, 7(¥, ' ((m,1])). This proves that every My, is a
measurable set. In order to show that (M, m)m covers My, let © € My and
{u1,...,us} be an orthogonal basis for G, (k). Take mq,...,ms; > 1 such that
u; € Gy(k,m;), for all 1 < i < s, and let m = max{m4,...,ms}. For every
uw=Y7 aju; € G,(k) and every n > 1 we have

IL-n(@)ull < 357 milai| exp
<mexp (—n(A —

—n(A1 — 1))
) 25:1 |ail -

=~



This gives ||L_n(z)u|| < mexp (—n(A1 — 7))C |lu|l, where C' depends only on
the choice of the norm in F, and we conclude that G,(k) C G, (k,[Cm + 1]),
hence x € My, (cm+1)-

Step 3: Now we claim that G is lower semi-continuous on each My, ,,, that
is, given any sequence (z;); in My, converging to some z € My, ,, we have
lim G, C G,. Indeed, let a sequence u; € G,, i > 1, converge to some u € F,.
Then

1
IL-n(@)uill < mexp (=n(A = 2))ludll,

for all ¢ > 1 and n > 1. Passing to the limit, ||L_n(2)ul| < mexp (—n(\ —
+)) |lull, which implies u € G, and thus proves the claim. It follows that each
Mim,; = {x € Mpm:dimG, > j} is a closed set and that G, varies continu-
ously with = on every My i\ Mk m j+1 = f\(j) N My, m- In view of the remark
at the beginning of the section, this proves that each G|A(j) is a measurable
subbundle of F|A(j).

Now we proceed to the second part of the proof, where we show that
dimG, > 0 for y —a.e. £ € M. In order to do this it suffices to check that
for all £ > 1 one has G,(k) # {0} at p —a.e. z € M. Let k > 1 be fixed
and, for m > 1, define Y,, to be the set of points © € M such that there exists
u € F,\{0} satisfying ||L_n(z)u|| < exp(—n(A — ) |lul| for 1 <n < m. We
claim that there is 6 > 0 such that

w(Ym) > 6, for every m > 1. (3)

Note that this implies that the set ¥ = NS°_,Y,, has positive measure and
hence {z € M:dim G, (k) > 0} has total measure (because it is an f-invariant
set containing Y'), as we wanted to prove. Therefore, we are reduced to proving
the claim above.
A main ingredient in the proof is the following result of Pliss.

Lemma 5.1 ([P]) Given A € R, ¢ >0, and A > 0, there is § = 6(A\, g, A) > 0
such that given any finite sequence ag, .. .,an_1 in IR, with Zg:_ol ar < NX and
ar < Aforall0< k< N-1, thereeristl > N and 0 <ny < ---<my < N-—1,
such that

n;—1

Zajg(ni—n)()\—}—e), forall0<n<mn;and1<i<I.
j=n

Proof: Denote S(n) = Z;-V:_nl(aj — (A +¢€)) and take ny < --- < ny to be the
elements of {0,..., N — 1} which satisfy

S(n) < S(n;) for all 0 < n < n;. (4)
Then, for 0 < n < n;,

n;—1

S a5 = (8(n) = S(n0)) + (ni = )\ +¢) < (s = m)(A+2).



Therefore, we are left to estimate the value of . To do this we observe first that
S(ni—1) > S(n; —1) for all ¢ > 1: otherwise there would be n;—1 < m < n; such
that S(n) < S(m) for all 1 < n < m, contradicting the definition of {ny,...,n;}.
Then

S(ni—1) > S(n;) + (an; — (A +¢€)) > S(n;) — (A + 2+ A)

for all ¢ > 1, and so

S(n1) > S(my) — (1 = D)(|A| + £ + A).

Since
N-1

S(n1) = 5(0) = Z ar—N(A+€) < —Ne and S(n;) > S(N-1) = any—_1—(A+¢)
k=0

(because n; is the largest element of {0,..., N — 1} satisfying (4) ), it follows
that

—Ne>an 1—(A+e)— (1 —-D(MN+e+ A) > I\ + e+ A).
Therefore, we may take § =¢/(|\| +e+ A). O

Starting the proof of (3), let w € F, and N > 1 (large) be such that
ILn (@)ull > exp (N (A1 = 5)) [lull, and define

a; = 1o
e Loy (z)ul]

‘L‘l(f”l(:v))( i41(2 )H for0<i<N-—1.

Note that |a;| < log|L~"| and

N-1
Z%—Zl'w g v )
Z eyl ~ 8 [Ln @l 2%

Using Lemma 5.1, for A = =\ + 5, € = 5, and A = log||L7|, we get

0<ni <---<ny <N -1, with [ > N§, such that

-1
|Ln(z)ul] S 1

1 .

Og||L z)u| Z aj < (ni —n)(=h k)

for all 0 < n < n;. Denoting v; = Ly, (z)u € Fpni(,), the last relation can be
written

1
[|Ln—n; (z)v;]] < exp((n —n;)(A1 — E)), for 1 <n; —n < n;,

and this implies f™(z) € Y,,. Observing that Y, C Y,, when n; > m, we
conclude that

%#{0§j<N:fJ( ) € Vi }>T>5

z,| 3

10



Taking N arbitrarily large, and using the ergodicity of u, this gives that u(Y,,) >
d, proving our claim.
Finally, we note that

1
liI:E - log||Ln(z)u|| = A1, for all w € G,\{0}

n—

is a direct consequence of Proposition 3.3, limsup,,_, . L log||Ln(z)ul| < A1
for all u € F,\{0}, and liminf,_,_o Llog||Ln(z)ul| > A1, for all u € G,\{0}.
The proof of Lemma, 4.1 is complete.

6 Proof of Lemma 4.3

Let ¥ be the space of morphisms of measurable vector bundles G+ — G. We
shall construct A € ¥ such that H = graph(A) = {u+ Au:u € G} is as in the
statement of the lemma.

Let ®: ¥ — ¥ be the graph transform, defined by ®(4) = L='o Ao L, and
let P = (L|GL — L): G+ — G. Given u € G+,

L(u+Au) = Lu+LAu = Lu+Pu+LAu = Lu+A(Lu)+L(A—L 'AL+L 'P)u.

Observe that the first term on the righthand side belongs in G+, while the last
two belong in G. Hence, H is L-invariant if and only if

A—-®A) =-L"'P. (5)

Let B = —L71P. We shall show that there are A < 0 and a measurable
function C: M — R such that ||®"(B)z|| < C(x)e*" for alln > 0 and p —a.e..
This ensures that > - ) ®"(B) is convergent 1 — a.e. and it is easy to see that
A=3%  ®"(B) satisfies (5).

In order to find A and C,| let

_ Ln@l o — sup . IETHG), @)
Kl =y O = s G
Then
18" B)@| = (L~!G)n(f"2)B(f"2) Lu(@)|

;C( (@) 1Bl K- (z) exp (n(A1 (L) + A (L71|G) + 2¢)).

The methods in Section 3 show that C. has subexponential growth, hence

_ C.(f"x)
De() = ig?) exp (ne)

is finite and

12"(B) (@)l < Bl D:(2) K. (z) exp (n(A (L) = A1 (L) + 3¢)).-

11



Hence, it suffices to take A = A (L) — A1 (L) + 3¢ and C(z) = || B|| D.(2)K:(z),
where is £ > is assumed to be small enough so that A <0

We are left to prove that Ay (L|H) = A (L [). In order to do that we take
A:Gct — H given by Au = u + Au. By construction Lo A = Ao L that is,
(L|H)(z) = A(fz)L(2)(A) " (z). Therefore,

Mi(L|H, z) —11msupn_>+oon10g||(LlH) (@)l

= limsup, 4o & 108 |A(F2) L (x)(A) " (@)]
< lmsup, , | o,  log [[A(f"2)|| + limsup, , .o, £ log | En(a)]
+limsup,,_, o & log||(A) "L (@)]].

Clearly, the second term on the righthand side is equal to A\; (ﬁ), while the third
one is null. Moreover,

timsup *1og | A(f")] = 0. (6)
n—+4o0o
Indeed,

C(f"z)
1—er’

1< [lid]| < [JA(f @)l = llid + A(f"2)l| < 1+ A 2)| < 1+

Using the same arguments as in Section 3 one sees that D.(z) and K, (z) have
subexponential growth, hence the same holds for C.(z). Combined with the
last inequality, this proves (6) and it follows that Ay (L|H ) < A1 (L). The reverse
inequality is proved in the same way, usmg L(z) = (A)~"(fz)(L|H)(z)A(z) and
also ||(A)~']| <1 p — a.e. (because (A)~' = n|H: H — G™. The proof of the
lemma is complete.

Remark: In general, || 4] is not a bounded function, which means that the angle
L(G, H) between the bundles G and H is not bounded away from zero. On the
other hand, the previous estimates show that /(G, H) always has subexponential
growth (because ||A|| does).

7 Growth of the Jacobian

We conclude by proving Proposition 1.2.

Given a finite-dimensional Hilbert space E, we define the distortion of a
splitting E = E1 ®---® Ey, to be § = |detid: F — E|, where F = Ey L --- L E},
is the orthogonal sum of the E;. Note that if L is an isomorphism then the
distortion §; of the splitting E = L(E;) @ --- ® L(Ey) is given by

|det L|
———————.
[Ti=y |det LI E;|

1=

12



Denote by d(z) the distortion of the decomposition E*(z) = Eq1(z) @ - - - E(x),
where the Ej;(z) are ordered in such a way that A;(z) > --- > Ag(2) > 0. Then

§(fz) _ |det L|E"(x)]
o(z)  [IL, |det L|E;(z)|

Using the fact that L and L~ are bounded (together with elementary relations
between det and ||-||), we conclude that §(fz)/d(x) is bounded away from zero
and infinity. It follows, by the same arguments as in Section 3, that

1
lim —logd(f"z) =0, p—ae z€M

n—+oco n

that is, the distortion has subexponential growth for the measure p. Then, from
|det Ly | E*(z)| = (6(f"2)/8(x)) [Ti-y |det Ln| Es(z)| we get

n—-+4oo

k
1 1
lim —log|det L, |E" = lim —log|det L, |E; .
i 10gldet Lol B*(a)| = 35l og det L (o)

Moreover, lim,,_, 1o L 10g [|Ln(z)ul| = X; for all u € E;(z)\{0} is easily seen
to imply lim,, 4 %log |det L |E;(x)| = A; dim E;(z) and this proves the first
statement in the proposition. The second one is now a direct consequence of
Birkhofl’s ergodic theorem.
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