
Flat Surfaces

Marcelo Viana

CIM - Coimbra

Marcelo Viana Flat Surfaces



Main Reference
Interval Exchange Transformations and Teichmüller Flows
www.impa.br/ viana/out/ietf.pdf

Rauzy, Keane, Masur, Veech, Hubbard, Kerckhoff, Smillie,
Kontsevich, Zorich, Eskin, Nogueira, Rudolph, Forni, Avila, . . .

Marcelo Viana Flat Surfaces



Main Reference
Interval Exchange Transformations and Teichmüller Flows
www.impa.br/ viana/out/ietf.pdf

Rauzy, Keane, Masur, Veech, Hubbard, Kerckhoff, Smillie,
Kontsevich, Zorich, Eskin, Nogueira, Rudolph, Forni, Avila, . . .

Marcelo Viana Flat Surfaces



Translation surfaces
Renormalization operators

Geodesic flow

Outline

1 Translation surfaces
Translation surfaces
Geodesic flows
Strata of surfaces

2 Renormalization operators
Interval exchanges
Induction operator
Teichmüller flow
Genus 1 case

3 Geodesic flow
Invariant measures
Unique ergodicity
Asymptotic flag

Marcelo Viana Flat Surfaces



Translation surfaces
Renormalization operators

Geodesic flow

Translation surfaces
Geodesic flows
Strata of surfaces

Outline

1 Translation surfaces
Translation surfaces
Geodesic flows
Strata of surfaces

2 Renormalization operators
Interval exchanges
Induction operator
Teichmüller flow
Genus 1 case

3 Geodesic flow
Invariant measures
Unique ergodicity
Asymptotic flag

Marcelo Viana Flat Surfaces



Translation surfaces
Renormalization operators

Geodesic flow

Translation surfaces
Geodesic flows
Strata of surfaces

Translation surfaces

Consider any planar polygon with even number of sides,
organized in pairs of parallel sides with the same length.
Identify sides in the same pair, by translation.

WE

N

S

Two translation surfaces are the same if they are isometric.
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holomorphic complex differential 1-form αz = dz

flat Riemann metric with a unit parallel vector
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Singularities

Points of the surface arising from the vertices of the polygon
may correspond to (conical) singularities of the metric.

PSfrag replacements
V
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Singularities

In this example the neighborhood of V corresponds to gluing 8
copies of the angular sector of angle 3π/4.

Thus, the total angle of the metric at V is 6π. This singularity
corresponds to a zero of order 3 of the complex 1-form α.
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Geodesics

1

2

2
3

We want to understand the behavior of geodesics with a given
direction. In particular,

When are the geodesics closed ?
When are they dense in the surface ?
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Motivation

A quadratic differential on a Riemann surface assigns to each
point a complex quadratic form from the tangent space,
depending holomorphically on the point.

In local coordinates z, it is given by some ϕ(z)dz2 where ϕ(z)
is a holomorphic function. The expression ψ(w)dw 2 relative to
another local coordinate w satisfies

ψ(w) = ϕ(z)

(

dz
dw

)2

on the intersection of the domains.
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Motivation

Quadratic differentials play a central role in the theory of
Riemann surfaces, in connection with understanding the
deformations of the holomorphic structure.

PSfrag replacements V

H

A vector v is vertical if qz(v) > 0 and it is horizontal if qz(v) < 0.
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Motivation

The square of a holomorphic complex 1-form αz = φ(z)dz is
always a quadratic differential.

Every quadratic differential q is locally the square of a complex
1-form α. Moreover, we may find a two-to-one covering S̃ → S,
ramified over some singularities, such that the lift of q to S̃ is
the square of a complex 1-form α, globally.
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Calculating the genus
PSfrag replacements
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D

2 − 2g = F − A + V
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2 − 2g = 4d − A + V , 2d = # sides
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2 − 2g = 4d − 6d + V , 2d = # sides
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2 − 2g = 4d − 6d + (d + κ+ 1), κ = # singularities
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Calculating the genus
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2g = d − κ+ 1, where 2d = # sides and κ = # singularities.
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Computing the singularities

C

A

C

D E
F

B

G

F E D

B

G

A
PSfrag replacements

V
H

Let m + 1 = 1/2 the number of associated “interior” vertices:

2π(m + 1) = conical angle m = multiplicity of the singularity
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Strata

Let m1, . . . ,mκ be the multiplicities of the singularities:

(m1 + 1) + · · · + (mκ + 1) = d − 1 = 2g + κ− 2.

Gauss-Bonnet formula
m1 + . . .+ mκ = 2g − 2

Ag(m1, . . . ,mκ) denotes the space of all translation surfaces
with κ singularities, having multiplicities mi .
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Strata

Each stratum Ag(m1, . . . ,mκ) is an orbifold of dimension
2d = 4g + 2κ− 2. Local coordinates:PSfrag replacements

ζA

ζB
ζC

ζD

ζA

ζB
ζC

ζD

ζα = (λα, τα) together with π = combinatorics of pairs of sides
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Cross-sections to vertical flow
PSfrag replacements

ζA
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ζD

ζA

ζB
ζC

ζD

The return map of the vertical geodesic flow to some
cross-section is an interval exchange transformation.

To analyze the behavior of longer and longer geodesics, we
consider return maps to shorter and shorter cross-sections.
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Shortening the cross-section
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Interval exchangesPSfrag replacements

A
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E

E

Interval exchanges are described by combinatorial data

π =

(

A B C D E
E D C B A

)

and metric data λ = (λA, λB , λC , λD, λE ).
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Rauzy induction
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π =

(

A B C D
C B D A

)

λ = (λA, λB , λC , λD)
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Rauzy induction
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A

A

A
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B

B

B

B

C

C

C

C

D

D

D

π =

(

A B C D
C B D A

)

λ = (λA, λB , λC , λD)

This is a “bottom” case: of the two rightmost intervals, the
bottom one is longest.
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The Rauzy Algorithm
PSfrag replacements
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A
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B

B
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C

C
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D
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D

π =

(

A B C D
C B D A

)

λ = (λA, λB , λC , λD)

π′ =

(

A D B C
C B D A

)

λ′ = (λA − λD, λB , λC , λD)
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Teichm üller flow

The Teichmüller flow is the action induced on the stratum by the
diagonal subgroup of SL(2,R). In coordinates:

(π, λ, τ) 7→ (π,etλ,e−tτ)

t

Both the Teichmüller flow and the induction operator preserve
the area. We always suppose area 1.
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Rauzy renormalization

The Rauzy renormalization operator is the composition of

the Rauzy induction (this reduces the width of the
surface/length of the cross-section)

the Teichmüller (the right time to restore the width of the
surface/length of the cross-section back to the initial value)

It is defined both on the space of translation surfaces

R : (π, λ, τ) 7→ (π′′, λ′′, τ ′′)

and on the space of interval exchange transformations

R : (π, λ) 7→ (π′′, λ′′).
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Flat torus

PSfrag replacements

A

A

B

B

d = 2 κ = 1 m = 0 (removable!) g = 1
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Exchanges of two intervals
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Renormalization for d = 2

R(x) =

{

x/(1 − x) for x ∈ (0,1/2)
2 − 1/x for x ∈ (1/2,1).

PSfrag replacements

0 11/2
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Invariant measures

Theorem (Masur, Veech, 1982)

There is a natural finite volume measure on each stratum,
invariant under the Teichmüller flow. This measure is ergodic
(restricted to the hypersurface of surfaces with unit area).

Ergodic means that almost every orbit spends in each subset of
the stratum a fraction of the time equal to the volume of the
subset.

In particular, almost every orbit is dense in the stratum.
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Invariant measures

In coordinates, this invariant volume measure is given by
dπdλdτ where dπ is the counting measure

Theorem (Veech, 1982)

The renormalization operator R admits an absolutely
continuous invariant measure absolutely continuous with
respect to dλ. This measure is ergodic and unique up to
rescaling.
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An example

For d = 2, the operator R is given by

PSfrag replacements

0 11/2

The absolutely continuous invariant measure is infinite!
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Minimality

Theorem (Keane, 1975)

If λ is rationally independent then the interval exchange defined
by (π, λ) is minimal: every orbit is dense.
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Keane conjecture

Theorem (Masur, Veech, 1982)

For every π and almost every λ, the interval exchange defined
by (π, λ) is uniquely ergodic: it admits a unique invariant
probability.

This result is a consequence of the ergodicity of the
renormalization operator.
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Unique ergodicity

Theorem (Kerckhoff, Masur, Smillie, 1986)

For every polygon, and almost every direction, the (translation)
geodesic flow in that direction is uniquely ergodic.
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Linear cocycles
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