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Let f : Mn →
� N be an isometric immersion of a riemannian manifold

into euclidean space. A normal vector field η to f is called a principal cur-
vature normal of f if η(x) is a principal curvature normal at any x ∈ Mn,
i.e., the conformal nullity subspace Eη(x) ⊂ TxM associated to η given by

Eη(x) = {T ∈ TxM : αf(T,X) = 〈T,X〉η, for all X ∈ TxM},

is at least one-dimensional. Here αf :TM × TM → T⊥
f M stands for the

second fundamental form of f with values in the normal bundle. If, in addi-
tion, Eη has constant dimension q everywhere, then η is said to be proper of
multiplicity q. We call a proper principal curvature normal η parallel when
it is parallel in the normal connection of f along Eη. It is well known that
the parallelism condition is automatic for multiplicity q ≥ 2 (cf. [Re] or
Proposition 8 below). Moreover, it is a standard fact that if η is a nonva-
nishing parallel principal curvature normal of multiplicity q, then Eη is an
involutive distribution whose leaves are round q-dimensional spheres in

� N .
For hypersurfaces, admitting a parallel principal curvature normal reduces to
having a principal curvature of constant multiplicity which is constant along
the leaves of the corresponding eigenbundle.

Isometric immersions f : Mn →
� N carrying principal curvature normals

arise in several different geometric situations. For instance, it is a well-known
fact (see [Re]) that f has flat normal bundle at x ∈ Mn if and only if there
exist principal curvature normals η1, . . . , η` at x such that the tangent space
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TxM decomposes as an orthogonal direct sum of Eη1
, . . . , Eη`

. Another impor-
tant example occurs when Mn is conformally flat, n ≥ 4 and N ≤ 2n− 3. In
this case, it was shown in [Mo] that there is an open dense subset of Mn so
that each connected component carries a proper principal curvature normal
of multiplicity at least 2n−N . For other geometric conditions implying the
existence of principal curvature normals we refer to [Ca], [CD], [AD], [DF]
and [DT].

In this paper we classify euclidean submanifolds carrying a parallel prin-
cipal curvature normal η under the intrinsic additional assumption that the
(conformal) conullity E⊥

η associated to η is involutive and the leaves are ex-
trinsic spheres in Mn in the sense of Nomizu ([Nm]). Our classification is
conformal in nature, i.e., up to conformal transformations of the ambient
space

� N . A result due to Nolker ([No]) implies that the submanifold is ro-
tational under the stronger hypothesis that the conullity is totally geodesic
in the manifold.

Our result implies Cecil’s local conformal classification of the Cyclides
of Dupin, cf. [Ce1] or [Ce2]. In fact, it improves Cecil’s result in that,
for hypersurfaces with a principal curvature of multiplicity n− 1 (which are
precisely the conformally flat hypersurfaces when n ≥ 4), we only require the
curvature lines correspondent to the principal curvature of multiplicity one
to be circles in Mn, that is, one-dimensional extrinsic spheres. Moreover,
in contrast to Cecil’s proof, which is based on Pinkall’s local Lie geometric
classification of the Cyclides of Dupin (cf. [Pi]) and thus uses the framework
of Lie sphere geometry, ours is entirely done within euclidean geometry.

Among other applications, we show that a “generic” conformally flat eu-
clidean submanifold in codimension two with nowhere flat normal bundle and
integrable conullity E⊥

η must be rotational. Here, η is the principal curvature
normal given by the aforementioned result in [Mo]. We also give a complete
description of the profiles of conformally flat rotational submanifolds of arbi-
trary codimension. Another application of our main result is a classification
of the three–dimensional conformally flat hypersurfaces of euclidean space
with three distinct principal curvatures whose curvature lines of one family
are segments of circles or straight lines.
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§1 The results.

A smooth distribution U on an n-dimensional riemannian manifold Mn

is said to be totally umbilical if there exists a vector field δ in U⊥ such that

∇h
TS = 〈T, S〉δ, for all T, S ∈ U ,

where we write Z = Zv + Zh according to the decomposition TM = U ⊕U⊥.
In this case, δ is called the mean curvature of U . If δ vanishes identically,
then U is said to be totally geodesic. The distribution is called spherical if
it is totally umbilical and its mean curvature δ satisfies

∇h
T δ = 0, for all T ∈ U .

If U is totally geodesic, totally umbilical or spherical, then it is involutive
and the leaves are, respectively, totally geodesic, totally umbilical or extrinsic
spheres in Mn.

Theorem 1. Let f : Mn →
� N be an isometric immersion with a parallel

principal curvature normal η of multiplicity q such that the conullity E⊥
η is

totally umbilical on Mn. If q = n−1, assume further that the integral curves
of the conullity are circles in Mn. Then f(Mn) is conformally congruent to
an open subset of one of the following:

i) a product Mn−q ×
� q , where Mn−q is a submanifold of

� N−q ,

ii) a product CMn−q ×
� q−1 , where CMn−q ⊂

� N−q+1 is the cone over a
submanifold Mn−q of the sphere � N−q ⊂

� N−q+1 ,

iii) a rotational submanifold over a submanifold Mn−q of
� N−q .

Moreover, f has flat normal bundle if and only if the same holds for M n−q.

Recall that the rotational submanifold Nn of
� N over Mn−q with axis� N−q−1 is the n-dimensional submanifold generated by the orbits of the

points of Mn−q under the action of SO(q + 1). Here Mn−q ⊂
� N−q ⊂

� N

is a submanifold disjoint from the subspace
� N−q−1 ⊂

� N−q and SO(q + 1)
denotes the subgroup of SO(N) which keeps

� N−q−1 pointwise fixed. Notice
that the hypothesis of the theorem for q = 1 is equivalent to assuming that
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the integral curves of Eη are segments of circles or straight lines in
� N ; cf.

Proposition 8.
A hypersurface f : Mn →

� n+1 is called a Cyclide of Dupin of characteris-
tic (q, n−q) if it has everywhere only two principal curvatures of multiplicities
q and n− q, respectively, which are constant along the correspondent eigen-
bundles; cf. [Pi]. It follows from Theorem 1 that any Cyclide of Dupin is
conformally equivalent to a hypersurface of one of the three types in Theo-
rem 1, where Mn−q is an (n−q)–dimensional sphere. This is Cecil’s result
referred to in the introduction.

In the case where q = n−2 in Theorem 1, we can replace the assumption
on E⊥

η by the weaker hypothesis that it is simply integrable if we impose on
f the further restriction of having nowhere flat normal bundle, that is, not
having flat normal bundle on any open subset.

Corollary 2. Let f : Mn →
� N , n ≥ 4, be an isometric immersion with

nowhere flat normal bundle carrying a proper principal curvature normal η
of multiplicity n − 2 with integrable conullity. Then f(Mn) is conformally
congruent to an open subset of a submanifold of type i), ii) or iii) in Theo-
rem 1 with nowhere flat normal bundle.

Next, we consider isometric immersions of conformally flat manifolds. We
start with a general result for immersions with flat normal bundle.

Proposition 3. Let f : Mn →
� N be an isometric immersion of a confor-

mally flat manifold with flat normal bundle and a constant number of proper
principal curvature normals η1, . . . , η`. Then, the conullity E⊥

ηk
is integrable

if the multiplicity of Eηk
is at least 2.

We call an isometric immersion f : Mn →
� N , n ≥ 4 and N ≤ 2n− 3, of

a conformally flat manifold generic if Eη assumes everywhere its possible
minimum dimension 2n − N . Here η is the principal curvature normal of f
given by Moore’s result referred to in the introduction. By Proposition 3,
the class of generic conformally flat submanifolds for which the conullity is
integrable contains the class of generic conformally flat submanifolds with
flat normal bundle satisfying the regularity assumption in the statement.
The next result shows that for N = n+ 2 there is only one class of examples
that belong to the former class but not to the latter.
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Corollary 4. Let f : Mn →
� n+2 , n ≥ 4, be a generic isometric immersion

of a conformally flat manifold with nowhere flat normal bundle such that the
conullity E⊥

η is integrable. Then f(Mn) is conformally congruent to a rota-
tional submanifold over a surface M 2 ∈

� 4
+ such that (M 2, g) has constant

curvature −1, where g is the metric induced from the hyperbolic metric of
constant sectional curvature −1 on

� 4
+ with the axis

� 3 as the hyperplane at
infinity.

Corollary 4 follows by putting together Corollary 2 and the following
result of independent interest.

Proposition 5. Let f : Mn →
� N be a rotational submanifold over a sub-

manifold ϕ: Mn−q →
� N−q

+ . Then Mn is conformally flat if and only if one
of the following possibilities holds:

i) n− q = 1.

ii) q = 1 and (Mn−q, g) has constant sectional curvature K, where g is the
metric induced by ϕ from the hyperbolic metric of constant curvature −1
on

� N−q
+ with the axis

� N−q−1 as the hyperplane at infinity. Moreover,
K ≥ −1 if n ≥ 4 and N ≤ 2n− 3.

iii) q ≥ 2, n ≥ 4 and (Mn−q, g) has constant sectional curvature −1.

Theorem 1 and Proposition 5 yield the following result.

Corollary 6. Let f : M 3 →
� 4 be a connected conformally flat hypersurface

with three distinct principal curvatures. Assume that the lines of curvature
of one family are segments of circles or straight lines in

� 4 . Then f(M3) is
conformally congruent to an open subset of one of the following:

i) a product M 2 ×
�
, where M2 is a surface in

� 3 of constant Gaussian
curvature.

ii) a cone CM 2 over a surface M 2 in � 3 of constant Gaussian curvature.

iii) a rotational hypersurface over a surface M 2 of constant Gaussian cur-
vature in

� 3
+ endowed with the hyperbolic metric of constant negative

sectional curvature.
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Finally, we specialize to surfaces f : M 2 →
� N . For such an f notice that

admitting a principal curvature normal is equivalent to having flat normal
bundle. In this case, there are pointwise one or two principal curvature
normals, the first case corresponding to an umbilical point. We have the
following generalization of the classical classification of the Cyclides of Dupin
in

� 3 .

Corollary 7. Let f : M 2 →
� N be an isometric immersion with flat normal

bundle and free of umbilical points. Assume that the lines of curvature of
one family are segments of circles or straight lines in

� N and that those of
the other family have constant geodesic curvature in M 2. Then f(M2) is
conformally congruent to an open subset of one of the following:

i) a product β ×
�
, where β is a curve in

� N−1 ,

ii) a cone over a curve β in the sphere � N−1,

iii) a rotational surface over a curve β in
� N−1 .

If in the above result we assume the lines of curvature of both families
to be segments of circles or straight lines in

� N , then f must be conformally
congruent to a Cyclide of Dupin in an affine

� 3 ⊂
� N . For surfaces in

� 3 , it
was shown by Bonnet in 1867 ([Bo]) that the same conclusion of Corollary 7
holds under the weaker assumption that the lines of curvature of both families
have constant geodesic curvature. A more geometric proof of this result is
due to Ribaucour ([Ri], see also [Da], Vol III, pg. 121).

§2 The proofs.

We first discuss the main ingredients in the proof of Theorem 1, which are
also of independent interest. Although they are essentially known in the liter-
ature, we provide complete proofs for the sake of completeness and simplicity.
The first one is Reckziegel’s basic result referred to in the introduction.

Proposition 8. Let f : Mn →
� N be an isometric immersion with a non-

vanishing proper principal curvature normal η of multiplicity q. Then the
following holds:
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i) Eη is a spherical distribution on Mn whose leaves are q-dimensional
round spheres in

� N if and only if η is parallel in the normal connection
of f along Eη.

ii) If q ≥ 2 then η is parallel in the normal connection of f along Eη.

Proof: i) We write η = λζ, where ζ has unit length. Assume first that η is
parallel along Eη in the normal connection. Choose S, T ∈ Eη, X ∈ E⊥

η and
ξ ∈ T⊥

f M such that ξ ⊥ η. We obtain that

(λI − Aζ)∇TS = 〈T, S〉∇λ and 〈Aξ∇TS,X〉 = λ〈T, S〉〈∇⊥
Xξ, ζ〉 (1)

by taking the S-component of the Codazzi equations for (Aζ, T,X) and
(Aξ, T,X). By this we mean taking the inner product with S of both sides
of the Codazzi equations ∇A(ζ, T,X) = ∇A(ζ,X, T ) and ∇A(ξ, T,X) =
∇A(ξ,X, T ). This terminology is used throughout the paper.

It follows from (1) and Eη = ∩γ∈T⊥

f
Mker (Aγ − 〈γ, η〉I) that ∇TS ∈ Eη

for any orthogonal pair S, T . This implies that Eη is totally umbilical with
mean curvature vector δ satisfying

(λI − Aζ)δ = ∇λ (2)

and
〈Aξδ,X〉 = λ〈∇⊥

Xξ, ζ〉. (3)

A straightforward computation using the Codazzi equation for (Aζ , T,X)
and (2) gives

〈∇T δ, (λI − Aζ)X〉 = T 〈(λI − Aζ)δ,X〉 − 〈δ,∇T (λI − Aζ)X〉 = 0. (4)

A similar computation using (3) and the Codazzi equation for (Aξ, T,X)
yields

〈∇T δ, AξX〉 = T 〈Aξδ,X〉 − 〈δ,∇TAξX〉 = 〈R⊥(T,X)ξ, ζ〉 = 0. (5)

We conclude from (4) and (5) that Eη is spherical. Now, denoting by ∇̃ the
derivative in the ambient space, we have

∇̃TS = ∇v
TS + 〈T, S〉σ, where σ := δ + η. (6)
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Using that ∇⊥
T η = 0, we get that

∇̃Tσ = ∇T δ − AηT = −‖σ‖2T. (7)

It follows by a standard argument that the leaves of Eη are q-dimensional
round spheres in

� N . The converse is straightforward.

ii) The Codazzi equation for (Aζ , T, S) gives

T (λ) = 0 and [S, T ] ∈ ker (λI − Aζ),

whereas the Codazzi equation for (Aξ, T, S) for ξ orthogonal to η yields

∇⊥
T ζ = 0 and [S, T ] ∈ ker Aξ,

and the proof follows.

For a given distribution U on Mn, in the following two results we agree
that S, T (respectively, X, Y ) are vector fields on U (respectively, on U⊥).
Moreover, we denote by C the splitting tensor of U which assigns to each
T ∈ U the endomorphism CT of U⊥ given by

CTX = −∇h
XT.

Lemma 9. Let U be a totally umbilical distribution on Mn with mean cur-
vature vector δ. Then the following differential equations hold:

(∇h
TCS)X = CSCTX+C∇v

T
SX−Rh(T,X)S+ 〈T, S〉

(
〈X, δ〉δ −∇h

Xδ
)
, (8)

(∇h
XCT )Y −(∇h

YCT )X = C∇v
X

TY −C∇v
Y

TX−Rh(X, Y )T−〈[X, Y ], T 〉δ. (9)

Moreover, if U = Eη is the distribution associated to a proper principal cur-
vature normal η of an isometric immersion f : Mn →

� N , then (8) and (9)
take, respectively, the form

(∇h
TCS)X = CSCTX + C∇v

T
SX + 〈T, S〉

(
AηX + 〈δ,X〉δ −∇h

Xδ
)

(10)

and
(∇h

XCT )Y − (∇h
YCT )X = C∇v

X
TY − C∇v

Y
TX − 〈[X, Y ], T 〉δ. (11)
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Proof: The proof of (8) follows easily from

(∇h
TCS)X = −∇h

T∇
h
XS − CS∇

h
TX = −∇h

T∇XS + 〈T,∇XS〉δ − CS∇
h
TX

and

∇h
T∇XS = Rh(T,X)S + ∇h

X∇TS + ∇h
[T,X]S

= Rh(T,X)S + ∇h
X∇

v
TS + ∇h

X∇
h
TS + ∇h

[T,X]vS + ∇h
∇h

T
X
S −∇h

∇h
X

T
S

= Rh(T,X)S − C∇v
T

SX + ∇h
X〈T, S〉δ + 〈[T,X], S〉δ − CS∇

h
TX − CSCTX.

To prove (9), we first compute

(∇h
XCT )Y = −∇h

X∇h
Y T − CT∇

h
XY = −∇h

X∇Y T − C∇v
Y

TX + ∇h
∇h

X
Y T.

Therefore,

(∇h
XCT )Y − (∇h

YCT )X = −Rh(X, Y )T −∇h
[X,Y ]vT + C∇v

X
TY − C∇v

Y
TX,

and the proof follows.
Assume now that U = Eη as in the statement. Then (10) and (11) are

consequences of (8), (9) and the Gauss equations R(T,X)S = −〈T, S〉AηX
and R(X, Y )T = Aαf (Y,T )X − Aαf (X,T )Y = 0.

The next result also follows from Nolker’s in [No].

Proposition 10. Let f : Mn →
� N be an isometric immersion with a non-

vanishing proper principal curvature normal η which carries an `-dimensional
spherical distribution U ⊂ Eη such that U⊥ is totally geodesic in Mn. Then f
is a rotational submanifold over an (n−`)-dimensional submanifold of

� N−` .

Proof: Let δ denote the mean curvature of U . Since (6) and (7) hold, then
the leaves of U are `-dimensional round spheres in

� N . We claim that

∇̃Xσ = 〈X, δ〉σ. (12)

To prove the claim, first observe that the splitting tensor of U vanishes iden-
tically since U⊥ is totally geodesic. Then (10) yields

∇Xδ = AηX + 〈X, δ〉δ. (13)
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The Codazzi equation for (Aξ, T,X) with ξ ⊥ η = λζ implies that

〈αf(X, δ), ξ〉 + λ〈∇⊥
Xζ, ξ〉 = 0, (14)

whereas the first equation in (1) for S = T gives

X(λ) = λ〈X, δ〉 − 〈AζX, δ〉. (15)

We obtain the claim by replacing (13), (14) and (15) in

∇̃Xσ = X(λ)ζ − λAζX + λ∇⊥
Xζ + ∇Xδ + αf (X, δ).

Since U⊥ is totally geodesic, we have that ∇̃XT = ∇XT ∈ U . It follows
using (6), (7) and (12) that the subspaces L = U ⊕ span{σ} containing the
leaves of U are parallel in

� N . Let Γ = f + ‖σ‖−2σ be the submanifold
generated by the centers of the leaves of U . Using (12) we get

Γ∗X = X − ‖σ‖−2〈X, δ〉σ.

Since Γ∗U
⊥ is orthogonal to L, we conclude that f is a rotational submanifold

whose axis is an affine subspace
� N−`−1 orthogonal to L.

We are now in position to prove our main result.

Proof of Theorem 1: Throughout this proof we agree that T ∈ Eη and X, Y ∈
E⊥

η . We have from Proposition 8 that Eη is spherical with mean curvature δ.
By assumption, there is a vector field β ∈ Eη such that

∇v
XY = 〈X, Y 〉β. (16)

Suppose that U is an open subset of Mn where one of the following holds
everywhere: a) β = 0 = η, b) β = 0 6= η, c) β 6= 0 = η, or d) β 6= 0 6= η.

Assume first that either a) or b) holds. Then, it follows easily that each
leaf of E⊥

η is contained in an (N−q)-dimensional affine subspace orthogonal
to Eη along the leaf. If η vanishes identically, then the leaves of Eη are
q-dimensional parallel affine subspaces orthogonal to the affine subspaces
containing the leaves of E⊥

η . Hence, f is as in part i) of the statement when
a) holds. In case b) we have that f is as in part iii) by Proposition 10.

Assume now that β is nowhere zero in U and write β = µT , where
T has unit length. Suppose q ≥ 2 and consider the orthogonal splitting
TM = U ⊕ U⊥, where

U⊥ = span{T } ⊕ E⊥
η .
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We claim that U⊥ is totally geodesic and that U is spherical when η 6= 0 and
totally geodesic when η = 0. To prove the claim, first observe that (16) is
equivalent to

CT = µ〈T , T 〉I. (17)

In the following, S and S ′ denote vector fields in U . If q ≤ n− 2, replacing
(17) in (11) easily gives

〈∇XT , S〉 = 0 and X(µ) = 0, (18)

whereas (18) holds by assumption for q = n − 1. Moreover, we obtain from
(10) that

〈∇T T , S〉 = 0. (19)

We conclude that U⊥ is totally geodesic from 〈∇TX,S〉 = −〈S, T 〉〈δ,X〉 = 0,
(16), (18) and (19).

Now, we have from (10) and (17) that

µ〈∇SS
′, T 〉X = −〈S, S ′〉

(
AηX + 〈δ,X〉δ −∇h

Xδ
)
. (20)

If η = 0, then δ = 0 and Eη is totally geodesic, hence also U is totally geodesic.
If η 6= 0, it follows from (20) that we may write

〈∇SS
′, T 〉 = ρ〈S, S ′〉 (21)

for some smooth function ρ, i.e., U is totally umbilical. Suppose first that
q ≥ 3. Then dimU ≥ 2 and, the leaves of Eη being spheres in the ambient
space, the same holds for the leaves of U . Since Eη is spherical, it follows
easily that also U is spherical. To conclude the proof of the claim it remains
to show that the integral curves of U are circles when q = 2. Set δ = αW ,
where α = ‖δ‖. Hence, T (α) = 0 and ∇h

TW = 0. It follows using (18) that

∇SW = −αS and ∇WS = 0. (22)

To show that S(ρ) = 0, we use that µρ = 〈AηW,W 〉−W (α)−α2, as follows
from (20). On one hand, we get

S(µ)=S〈∇WW, T 〉=〈∇S∇WW, T 〉=〈∇W∇SW, T 〉+〈∇[S,W ]W, T 〉=0 (23)

using (22) and 〈R(S,W )W, T 〉 = 0. On the other hand, we easily obtain
from (22) and the Codazzi equation for (Aη, S,W ) that

S〈AηW,W 〉 = 〈∇SAηW,W 〉 = 0. (24)

11



Since S(W (α)) = [S,W ](α) = 0 by (22), we conclude from (23) and (24)
that S(ρ) = 0, as we wished.

By the claim, if η = 0 then f(U) is a product M̃n−q+1 ×
� q−1 , where

M̃n−q+1 ⊂
� N−q+1 . If η 6= 0, the claim and Proposition 10 imply that f

is a rotational submanifold over a submanifold M̃n−q+1 ⊂
� N−q+1 with axis� N−q ⊂

� N−q+1 . In both cases notice that M̃n−q+1 is a leaf of U⊥.
We now make a detailed study of M̃n−q+1. Observe that M̃n−q+1 = Mn

when q = 1. We have that E⊥
η is totally geodesic when η = 0. When η 6= 0

and q ≤ n − 2, it follows from (18) that = E⊥
η is spherical. By assumption,

this is also the case when q = n− 1. On the other hand, we have from (19)
that

∇̃T T = δ + η := γ.

If η = 0, then also γ = 0, hence the integral curves of T are segments of
straight lines in

� N−q+1 . When η 6= 0, it follows from ∇̃T γ = −‖γ‖2T
that they are arcs of circles in

� N−q+1 . In both cases, we obtain using
αf(X, T ) = 0 that T is parallel in the normal connection of a leaf of E⊥

η

in the ambient space. Moreover, it is an umbilical normal vector field with
constant eigenvalue µ along the leaf. We conclude that each leaf of E⊥

η lies in
a (N−q)-dimensional sphere of radius µ−1 orthogonal to T in

� N−q+1 . Let
F denote the family of such spheres. Their centers are parametrized by

F = f + µ−1T . (25)

Differentiating (25) we get

F∗T = µ−2Z, where Z = (µ2 − T (µ))T + µγ. (26)

On the other hand, we obtain from (10) for T = S = T that

(µ2 − T (µ))X = ∇h
Xδ − 〈δ,X〉δ − AηX. (27)

If η = 0 this implies that Z = 0, that is, F is a family of concentric spheres.
Moreover, the straight lines containing the integral curves of T pass through
their common center. We conclude that M̃n−q+1 ⊂

� N−q+1 is the cone over
a submanifold Mn−q of the sphere � N−q ⊂

� N−q+1 , hence f is as in part ii)
of the statement in case c).

If η 6= 0, then (27) yields µ2 − T (µ) = W (α) − α2 − λ〈AζW,W 〉, where
λζ = η. Thus,

Z = (W (α) − α2 − λ〈AζW,W 〉)T + µγ. (28)
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On one hand,

TW (α) = [T ,W ](α) = ∇TW (α) −∇WT (α) = µW (α). (29)

On the other hand, taking the W component of the Codazzi equation for
(Aζ ,W, T ) yields

T 〈AζW,W 〉 = µ〈AζW,W 〉 − λµ. (30)

Using (28), (29) and (30) we easily obtain that ∇̃T Z = µZ. Therefore, F
parametrizes a straight line r. Moreover, comparing (20) and (27) we get
ρµ = µ2 − T (µ), thus Z = µσ, where σ = ρT + δ + η is the mean curvature
vector of the orbits of f , that is, the leaves of U . Hence r is orthogonal to
the axis

� N−q ⊂
� N−q+1 .

Observe that r is contained in the plane of each circle C containing an
integral curve of T , hence such planes intersect along r. In particular, each
plane intersects the axis

� N−q orthogonally along a line s. We show now
that s passes through the center O of C, that is, O ∈

� N−q . Let x be a point
on C where T is parallel to

� N−q . Since the normal vector γ to C at x is
orthogonal to

� N−q , all we need to show is that the distance from x to
� N−q

equals the radius ‖γ‖−1 of C. Since the mean curvature vector σ = ρT + γ
of the orbits of f is everywhere orthogonal to

� N−q , we must have ρ(x) = 0,
hence, the distance from x to

� N−q is ‖σ(x)‖−1 = ‖γ‖−1, as we wished.
For a fixed circle C containing an integral curve of T , we consider sepa-

rately the cases where r and C: i) Intersect at two points P1, P2; ii) Are
tangent at some point P ; iii) Are disjoint.

Suppose first that i) holds and consider an inversion I whose pole is, say,
P1. Then I(r) = r and I(C) = t is a straight line through P̃2 = I(P2) ∈ r.
Since each sphere L of F is orthogonal to C and r, we have that I(L) is
orthogonal to I(C) = t and I(r) = r, hence I(L) is a sphere with center at
P̃2 = t∩ r. Therefore, F̃ = I(F) is a family of concentric spheres with center
P̃2. Consider now another integral circle C ′ of T . Since C ′ is orthogonal to
each element of F , we have that I(C ′) is orthogonal to each sphere of F̃ ,
hence I(C ′) is a straight line through P̃2. In particular, this implies that
C ′ intersects r at the same points P1, P2. We conclude that I(M̃n−q+1) is
contained in a cone CMn−q, where Mn−q is the image of a leaf of E⊥

η .
Assume now that ii) holds and consider an inversion I with pole P . Then

I(r) = r and I(C) = t is a straight line parallel to r. Therefore, F̃ = I(F)
is a family of parallel hyperplanes in

� N−q+1 orthogonal to r. Given another
integral circle C ′ of T , we have that I(C ′) must be a straight line parallel
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to r, since it is orthogonal to each hyperplane of F̃ . In particular, it follows
that C ′ must be tangent to r at the same point P . Hence, I(M̃n−q+1) is
contained in a product Mn−q ×

�
.

Finally, assume that iii) holds. Let H be the hyperplane of
� N−q+1

orthogonal to r through the center of C and let � N−q−1 be the sphere along
which a fixed sphere � N−q

0 of F intersects H. Consider an inversion whose
pole is any point of � N−q−1. We have that I(H) = H and I( � N−q

0 ) =
� N−q

is a hyperplane of
� N−q+1 which intersects H along

� N−q−1 = I( � N−q−1).
Since I(r) and I(C) are circles orthogonal to I(H) = H and to I( � N−q

0 ) =� N−q , both must be contained in planes orthogonal to
� N−q−1 and must

have their centers at
� N−q−1 . Given another sphere � N−q of F , we have that

I( � N−q) is orthogonal to I(r) and I(C), hence I( � N−q) is a hyperplane of� N−q+1 containing
� N−q−1 . Therefore, F̃ = I(F) is a family of hyperplanes

in
� N−q+1 intersecting along

� N−q−1 . In particular, this implies that all
spheres of F intersect along � N−q−1. Moreover, given another integral circle
C ′ of T , we have that I(C ′) is orthogonal to any hyperplane of F̃ , hence
it is also a circle in a plane orthogonal to

� N−q−1 with center at
� N−q−1 .

In particular, C ′ does not intersect r. Therefore, I(M̃n−q+1) is a rotational
submanifold with one-dimensional orbits and

� N−q−1 as axis.
Now we determine I(f(U)) in each of the three cases above. In cases i) or

ii), for each point Q ∈ M̃n−q+1 the image I(`) of the leaf ` of Eη through Q
is a q-dimensional subspace which intersects

� N−q+1 orthogonally along the
line I(C). It follows that I(f(U)) is contained in a product CMn−q ×

� q−1

in case i) or in a product Mn−q ×
� q in case ii).

Consider now case iii). We have seen that the center O of any circle C
containing an integral curve of T belongs to the axis

� N−q of f . Hence, the
euclidean subspace containing the sphere � N−q−1 along which all spheres of F
intersect is precisely the axis

� N−q . Our aim is to show that g(U) = I(f(U))
is a rotational submanifold whose axis is

� N−q−1 = I( � N−q−1). First we
prove the following general fact.

Lemma 11. Let h: Mn →
� N be a rotational submanifold with axis

� N−q

over a submanifold Mn−q+1 of
� N−q+1 ⊃

� N−q and let I be an inversion
whose pole is any point in the axis. Then I◦h is also a rotational submanifold
with the same axis over the image of Mn−q+1 by I.

Proof: The axis
� N−q is invariant under I. Moreover, the subspaces

� q

containing the orbits of f are mapped onto spheres ¯� q through the pole.
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Since each subspace
� q is orthogonal to

� N−q , the same holds for its image
¯� q. Hence, ¯� q has its center on

� N−q . Thus, the image I( � q−1) of each orbit
� q−1 ⊂

� q of f lies on the intersection of ¯� q = I(
� q ) with the cone over � q−1

with vertex at the pole. Therefore, I( � q−1) is also a sphere with center on� N−q and contained in a subspace ¯� q orthogonal to
� N−q .

By Lemma 11, we have that g(U) = I(f(U)) is a rotational submanifold
over I(M̃n−q+1) with the same axis

� N−q ⊂
� N−q+1 as f . Let e1, . . . , eN

be an orthonormal basis of
� N such that e1, . . . , eN−q+1 span

� N−q+1 and
eN−q+1 is orthogonal to the axis

� N−q . Choose a coordinate system on
� N

with respect to e1, . . . , eN with the origin in the axis
� N−q . Then, g can be

described parametrically as

g = (g1, . . . , gN−q, gN−q+1φ), (31)

where gi = gi(x1, . . . , xn−q+1), 1 ≤ i ≤ N − q + 1, parametrizes the profile

I(M̃n−q+1) of g and φ(t1, . . . , tq−1) the unit (q−1)-dimensional sphere. On the

other hand, we have seen that I(M̃n−q+1) is itself a rotational submanifold
with one-dimensional orbits with axis

� N−q−1 . In terms of the parametriza-
tion of I(M̃n−q+1), this means that for some function ψ we have that

gi = gi(x1, . . . , xn−q), 1 ≤ i ≤ N − q − 1,

gN−q = ψ(x1, . . . , xn−q) cos xn−q+1, gN−q+1 = ψ(x1, . . . , xn−q) sin xn−q+1.

Therefore g = (g1, . . . , gN−q, ψφ̄), where

φ̄(t1, . . . , tq−1, xn−q+1) = (cos xn−q+1, sin xn−q+1φ(t1, . . . , tq−1))

is a parametrization of the unit q-dimensional sphere. We conclude that g(U)
is as in part iii).

We now argue that if there exists a non empty open subset U ⊂Mn such
that U is an open subset of a product Mn−q ×

� q , a product CMn−q ×
� q−1 ,

a rotational submanifold over a submanifold Mn−q of
� N−q or the image by

an inversion of an open subset of one of these submanifolds, then the same
must hold for the entire submanifold Mn. In fact, in the first and third
cases the leaves of Eη are open subsets of parallel affine subspaces or spheres
contained in parallel affine subspaces, respectively. In the other cases, let β
be given by (16). Then, the integral curves of β are arcs of straight lines
through a common point in case ii) and arcs of circles contained in planes
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which intersect along a straight line r in the remaining ones. Moreover, the
circles either are all tangent at a common point P ∈ r, intersect along two
fixed points P and Q of r or do not intersect r. On the other hand, the leaves
of E⊥

η lie on (N−q)-dimensional spheres which are concentric in case ii) and
have their centers on a common line in the remaining ones. Furthermore,
such spheres are either disjoint, are all tangent to a plane at a common
point or intersect at a common (N−q −1)-dimensional sphere. Since Eη is
a globally defined distribution on Mn by assumption, it follows easily that
open subsets correspondent to any two of the above six possibilities can not
be glued together.

Finally, the proof of the last statement follows from two elementary facts.
One is that the normal curvature tensor of a submanifold is a conformal
invariant; cf. [Ch]. The other one is that a rotational submanifold has flat
normal bundle if and only if the same holds for its generating submanifold;
cf. [No].

Proof of Corollary 2: The Codazzi equation yields

〈CTX,AξY 〉 = 〈η, ξ〉〈∇XY, T 〉 − 〈AξY,∇TX〉 − 〈AξX,∇TY 〉

+T 〈AξX, Y 〉 − 〈A∇⊥

T
ξX, Y 〉,

(32)

for any T ∈ Eη, X, Y ∈ E⊥
η and ξ ∈ T⊥

f M . From the integrability of E⊥
η it

follows that CT is symmetric for any T ∈ Eη, and that the first term in the
right hand side of (32) is symmetric in X and Y . Hence

[
CT , Aξ|E⊥

η

]
= 0. (33)

Since E⊥
η has dimension 2, at any point of Mn either there exists T0 ∈ Eη

such that CT = 〈T, T0〉I for any T ∈ Eη or there is T1 ∈ Eη such that CT1

(is symmetric and) has two distinct real eigenvalues. If the latter possibility
holds at some point, then it also holds in an open neighborhood U . It follows
from (33) that f has flat normal bundle on U , contradicting our assumption.
Hence, the first possibility holds everywhere, which is equivalent to E⊥

η being
a totally umbilical distribution on Mn. The conclusion now follows from
Theorem 1.

Proof of Proposition 3: The Codazzi equation gives

〈∇Xi
Xj, Xk〉(ηj − ηk) = 〈∇Xj

Xi, Xk〉(ηi − ηk)
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for all unit vectors Xi ∈ Eηi
, Xj ∈ Eηj

and Xk ∈ Eηk
any i 6= j 6= k 6= i. In

particular, E⊥
ηk

is integrable (regardless of the multiplicity of Eηk
) if ηi − ηk

and ηj − ηk are linearly independent for i 6= j 6= k 6= i. On the other hand,
by Kulkarni’s well-known criterion for conformal flatness,

K(X1, X2) +K(X3, X4) = K(X1, X3) +K(X2, X4)

for all orthonormal X1, X2, X3, X4, where K(Xi, Xj) denotes the sectional
curvature of the plane spanned by Xi and Xj. For X1 ∈ Eηi

, X2 ∈ Eηj
and

X3, X4 ∈ Eηk
, we get that

〈ηi − ηk, ηj − ηk〉 = 0

for any pair i 6= j with i, j 6= k, and this concludes the proof.

Proof of Proposition 5: Consider the conformal diffeomorphism

Θ:
� N → � N−q × � q ⊂ � N−q+1 ×

� q+1 = � N+2

given in terms of a pseudo–orthonormal basis {e1, . . . , eN+2} of standard flat
Lorentzian space � N+2 with ‖e1‖ = 0 = ‖eN−q+1‖, 〈e1, eN−q+1〉 = −1/2 and
〈ei, ej〉 = δij if i 6= 1, N − q + 1, by

Θ(a1, . . . , aN ) =




N∑

j=N−q

a2
j




−1/2 
1, a1, . . . , aN−q−1,

N∑

j=1

a2
j , aN−q, . . . , aN


 .

Let f be parametrized by

Ψ(x, t) = (ϕ1(x), . . . , ϕN−q−1(x), ϕN−q(x)φ(t)),

where ϕ = (ϕ1, . . . , ϕN−q) and φ parametrizes the unit sphere � q ⊂
� q+1 .

Then, Θ ◦ Ψ: Mn−q × � q → � N−q × � q satisfies

Θ ◦ Ψ = (Φ ◦ ϕ) × id,

where Φ:
� N−q

+ → � N−q ⊂ � N−q+1 , defined as

Φ(x1, . . . , xN−q) = x−1
N−q


1, x1, . . . , xN−q−1,

N−q∑

i=1

x2
i


 ,
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is an isometry between the half–space and hyperboloidal models of � N−q .
Since Θ is conformal, the riemannian product (Mn−q, g)× � q must be confor-
mally flat. The statement now follows from Proposition 2 of [La]. The restric-
tion on K in part ii) is due to the nonimmersibility of a space form Mm(K)
into another space form Mm+p(K̃) when m ≥ 3, K < K̃ and p ≤ m− 2.

Proof of Corollary 6: Let e1, e2, e3 denote the unit principal directions corre-
spondent to the distinct principal curvatures λ1, λ2, λ3, respectively. It was
shown by E. Cartan (see [La], p. 84) that conformal flatness is equivalent to
the relations

〈∇ei
ej, ek〉 = 0 (34)

and
(λj − λk)ei(λi) + (λi − λk)ei(λj) + (λj − λi)ei(λk) = 0, (35)

for all distinct indices i, j, k. It follows from Codazzi’s equation and (34) that

∇ei
ei =

∑

j 6=i

(λi − λj)
−1ej(λi)ej. (36)

Assume for instance that e3(λ3) = 0. Then equation (35) yields

(λ2 − λ3)e3(λ1) = (λ1 − λ3)e3(λ2),

hence the distribution spanned by e1 and e2 is umbilic in M3 from (36). By
Theorem 1, we have that f(M 3) is conformally congruent to an open subset
of one of the following: i) a product M 2 ×

�
, where M2 is a surface in

� 3 ,
ii) a cone CM 2 over a surface M 2 ⊂ � 3, iii) a rotational hypersurface with
axis

� 2 ⊂
� 3 over a surface M 2 ⊂

� 3 . It follows from Propositions 1 and 2
of [La] and Proposition 5 that M 2 must be as stated.

Remark 12. Corollary 6 can also be derived from the results in [H-J] (cf.
pp. 328). The special case of conformally flat hypersurfaces with constant
mean curvature and vanishing Gauss–Kroenecker curvature was also consid-
ered in [Fu], where they are shown to be cones over minimal Clifford tori.
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