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Abstract

We show that any real Kähler Euclidean submanifold f : M 2n → R
2n+p with

either non-negative Ricci curvature or non-negative holomorphic sectional curva-
ture has index of relative nullity greater than or equal to 2n − 2p. Moreover, if
equality holds everywhere, then the submanifold must be a product of Euclidean
hypersurfaces almost everywhere, and the splitting is global provided that M 2n

is complete. In particular, we conclude that the only real Kähler submanifolds
M2n in R

3n that have either positive Ricci curvature or positive holomorphic sec-
tional curvature are precisely products of n orientable surfaces in R

3 with positive
Gaussian curvature. Further applications of our main result are also given.

§1. Introduction

Splitting theorems have always had a central role in Riemannian geometry, and in
submanifolds theory in particular. A well known example is Hartman’s cylinder theorem
([H]) which is the extrinsic version of Cheeger–Gromoll’s splitting theorem for complete
manifolds of non–negative Ricci curvature.

In [F2, FZ1, FZ2, Z] we gave some splitting results for Euclidean submanifolds of
non–positive sectional curvature. In [FZ1], we showed that, if f : Mm → Rm+p, 2p ≤ m,
is an isometric immersion in Euclidean space of an m–dimensional (connected) Rieman-
nian manifold Mm with non–positive sectional curvature and negative Ricci curvature,
then 2p = m and f splits locally as a product of p surfaces in R3. We say that an
isometric immersion f : Mm → Rm+p splits locally as a product of hypersurfaces if, for
any x ∈Mm, there exists a neighborhood x ∈ U ⊆Mm, and, for each 1 ≤ i ≤ p, a Rie-
mannian manifold Umi

i of dimension mi and an isometric immersion fi : Umi

i → Rmi+1,
such that

U = U1 × · · · × Up and f |U = f1 × · · · × fp.

∗Mathematics Subject Classification (2000): Primary 53B25; Secondary 53C40.
†IMPA: Estrada Dona Castorina 110, 22460–320, Rio de Janeiro, Brazil; e-mail: luis@impa.br.

Research partially supported by CNPq.
‡The Ohio State University: Columbus, OH 43210, USA; e-mails: wshui@math.ohio-state.edu and

zheng@math.ohio-state.edu. Research partially supported by a NSF grant.

1



There is no such a general splitting result for positive sectional curvature, as the standard
immersion of the unit sphere as an Euclidean hypersurface shows.

One of the main goals of this article is to study this kind of splitting when the Rie-
mannian manifold has a Kähler structure. In this case we are able to give an analogous
result to the aforementioned one in [FZ1], but with the reversed sign on the curvature,
and even with weaker curvatures than the sectional one:

Theorem 1. Let f : M 2n → R2n+p be an isometric immersion of a Kähler manifold
with p ≤ n. Assume that M 2n has either positive Ricci curvature or positive holomorphic
sectional curvature. Then p = n, and f splits locally as a product of n positively curved
surfaces in R3. Moreover, the splitting is global if M 2n is complete.

As an immediate consequence of the above we obtain that there is no local isometric
immersion of a Kähler manifold M 2n with positive sectional curvature into R2n+p, p≤n.
In particular, no open subset of C P n admits an isometric immersion into R2n+p, p ≤ n.

Theorem 1 is a consequence of a more general result, where we study, for our situa-
tion, the index of relative nullity ν of the isometric immersion f , that is,

ν(x) = dim ∆(x),

where ∆(x) = Ker α(x) = {v ∈ TxM : α(v, w) = 0, ∀ w ∈ TxM} is the relative
nullity of f at x, i.e., the nullity space of the second fundamental form α of f at x.
It is well known that the positiveness of ν imposes quite strong restrictions on both f
and M , since, on any open subset where ν is constant, the relative nullity is a smooth
integrable distribution with totally geodesic leaves in both M and the ambient Euclidean
space. Therefore, any lower bound on ν gives deep information on the submanifold.
In particular, our aforementioned splitting works for Euclidean submanifolds of non–
positive sectional curvature rely on a careful analysis of the relative nullity.

With this in mind, [F1] was devoted to show that the index of relative nullity of an
Euclidean submanifold f : Mm → R

m+p with non–positive sectional curvature satisfies

ν ≥ m− 2p,

while the main result in [FZ1] is that, if equality holds, the submanifold should split
locally as a product of p hypersurfaces almost everywhere. Although it is easy to see
that the same estimate on ν holds for any real Kähler Euclidean hypersurface (p = 1),
even for codimension p = 2 we can have ν ≡ 0 for any n, as it is shown, for example, by
the holomorphic complex hypersurface in C n+1 = R2n+2 given by zn+1 = z2

1 + · · · + z2
n.

However, our next result states that the same estimate as in [F1] and the same splitting
as in [FZ1] hold for Kähler Euclidean submanifolds, but with the reversed sign on weaker
curvatures:
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Theorem 2. Let f : M 2n → R2n+p be an isometric immersion of a Kähler manifold with
either non–negative Ricci curvature or non–negative holomorphic sectional curvature.
Then, the index of relative nullity ν of f satisfies that ν ≥ 2n − 2p. Moreover, if
ν ≡ 2n − 2p, then there is an open dense subset W ⊂ M 2n such that f |W splits locally
as a product of p nowhere flat real Kähler Euclidean hypersurfaces with non–negative
Ricci curvature.

Therefore, every such real Kähler Euclidean submanifold should be foliated al-
most everywhere by (open subsets of) affine Euclidean subspaces of dimension at least
2(n− p). Moreover, its curvature (and hence Ricci) tensor also has nullity of dimension
µ ≥ 2(n− p) since, by the Gauss equation, the relative nullity is always contained in
that nullity. Thus, setting µM = minx∈M µ, which is an even integer number if M 2n is
Kähler, we can state an immediate corollary with purely intrinsic assumptions:

Corollary 3. Let M2n be a Kähler manifold with either non–negative Ricci curvature or
non–negative holomorphic sectional curvature. Let p = n− µM/2. If f : M2n → R

2n+p

is an isometric immersion, then there is an open dense subset W ⊂M 2n such that f |W
splits locally as a product of p nowhere flat real Kähler Euclidean hypersurfaces.

Theorem 2 is sharp in the sense that there are locally irreducible isometric immer-
sions satisfying its hypothesis but with ν ≡ 2n − 2p + 1. To see this, just compose a
product of p− 1 nowhere flat real Kähler hypersurfaces with a generic local immersion
of R2n+p−1 into R2n+p. It is an interesting question if this is the only way to construct
such submanifolds, as is the case for non–positive sectional curvature; see [FZ2].

Since each hypersurface factor in the conclusion of Theorem 2 has constant relative
nullity of codimension two, we conclude that any real Kähler Euclidean submanifold with
either non–negative Ricci curvature or non–negative holomorphic sectional curvature
that has minimal index of relative nullity ν ≡ 2n − 2p can now be explicitly locally
parametrized. This can be done by means of the Gauss parametrization in terms of
pseudoholomorphic surfaces in the sphere; cf. [C, DG1, DG2, FZ1, FZ2].

There are some known cylinder theorems for complete real Kähler submanifolds
f : M2n → R2n+p . The aforementioned fact that ν ≥ 2n − 2 for p = 1 was used
in [A] to show that f splits as a surface in R3 and a C n−1 factor if either f is real
analytic, or the scalar curvature of M 2n is negative or non–negative. In fact, it was
shown in [DG3] that the same holds true if ν = 2n − 2 in a dense connected subset,
regardless of the codimension. For other cylinder theorems for complete minimal real
Kähler submanifolds, see [DR2, DG4].

As a consequence of Theorem 2 we are also able to give a cylinder theorem of global
nature that generalizes the one in [Fw].

Corollary 4. Let f : M 2n → R2n+p be an isometric immersion of a complete Kähler
manifold with either non–negative Ricci curvature or non–negative holomorphic sectional
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curvature. Then ν ≥ 2n− 2p, and equality holds everywhere if and only if

M2n = M2
1 × . . .×M2

p × C
n−p and f = f1 × · · · fp × I

split globally, where fi :M
2
i → R3, 1≤ i≤ p, is a complete isometrically immersed ori-

ented surface of positive Gaussian curvature, and I: Cn−p→ R
2n−2p is the identity map.

An analogous result holds if we ask only ν(x0) = 2n − 2p at one point x0 ∈ M2n

and the metric of M 2n to be real analytic; see Remark 12. Observe that there is a
large family of complete, irreducible, minimal but not holomorphic real Kähler sub-
manifolds in codimension p = 2. They must be holomorphically ruled for n ≥ 3 (so,
ν ≡ 2n− 4 = 2n− 2p) and admit a Weierstrass–type representation; cf. [DG4]. On the
other hand, any complete, not everywhere minimal, real analytic Kähler submanifold
f :M2n → R2n+2 in codimension p = 2 must split as f = f1 × I, where I: Cn−2→ R2n−4

is the identity map, and f1 : N4 → R
6 being either a product of two surfaces in R

3, or a
cylinder over a surface in R4, or a composition of isometric immersions f1 = i ◦ (f2 × I),
where f2 : L2 → R3, I : C → R2 and i : U ⊂ R5 → R6; see [FZ4]. Moreover, it
was shown in [FZ3] that any complete real Kähler Euclidean hypersurface must be a
cylinder over a surface in R3, result that generalizes the aforementioned one in [A].

The main ingredient in the proof of Theorem 2 is the general Proposition 10 of
independent interest. In fact, it also allows us to obtain the following generalization of
several results, as [R] for Kähler hypersurfaces in the sphere SN

c of constant sectional
curvature c, Theorem 4 in [FT] and Corollary 5 in [F1] (see also Corollary 11 below):

Theorem 5. If M 2n ⊂ S2n+p
c is a real Kähler submanifold of a sphere with p<n, then

p = n−1 and M 2n is (an open subset of) a product of n round spheres in R3. That is,
M2n ⊆ S2

c1
× · · · × S2

cn
⊂ S3n−1

c ⊂ R3n, where 1/c = 1/c1 + · · ·+ 1/cn.

We point out that the other part of the main result in [R], that deals with Kähler
hypersurfaces in hyperbolic space H2n+1, does not admit a generalization in the line of
Theorem 5, since the hyperbolic space has a totally umbilical R2n+p−1 ⊂ H2n+p.

§2. The second fundamental form of a real Kähler Euclidean submanifold

In this section, we shall study some aspects of the general behavior of the second
fundamental form of a real Kähler Euclidean submanifold, especially its (1, 1) part.

Let us first fix some notations. From now on, f : M 2n → R
2n+p will be an isometric

immersion of the Kähler manifold M 2n into the Euclidean space. Fix a point x ∈M 2n.
The second fundamental form α = α(x) of f at x is the symmetric bilinear map

α : TxM × TxM → T⊥
x M = N ∼= R

p,
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where TxM ∼= R2n is the real tangent space of M 2n at x, and (T⊥
xM, 〈 , 〉) is the normal

space of f at x. Extend α bilinearly over C , and still denote it by α,

α : (TxM)⊗C × (TxM)⊗C → N⊗C .

Let V be the space of type (1, 0) tangent vectors at x, that is, V is the complex subspace
of (TxM)⊗C given by V = {v − iJv : v ∈ TxM}. Then (TxM)⊗C ∼= V ⊕ V . Write

H = α|V ×V and S = α|V ×V

for the (1, 1) and (2, 0) parts of α, respectively. Then S : V ×V → N⊗C is a symmetric
complex bilinear map, while H : V × V → N⊗C is a Hermitian bilinear map, that is,

H(Y,X) = H(X, Y ) , ∀ X, Y ∈ V.

For the sake of simplicity, we will always write SXY for S(X, Y ) and HXY for H(X, Y ).
Let us also extend the inner product 〈 , 〉 on N bilinearly over C to N⊗C , and

still denote it by 〈 , 〉. The Riemannian curvature tensor R of M 2n and the second
fundamental form α are related by the Gauss equation:

RABCD = 〈α(A,D), α(B,C)〉 − 〈α(A,C), α(B,D)〉,

for any real tangent vectors A, B, C, D in TxM . By our linear extension over C , this
equality also holds true for any A, B, C, D in (TxM)⊗C = V ⊕V . Since M 2n is Kähler,
we have RXY ∗∗ = 0 if both X and Y are in V . Therefore, we get the following.

Proposition 6. Let f : M 2n → R2n+p be a real Kähler Euclidean submanifold, and
consider V , H, S as above. Then for any vectors X, Y , Z, W in V , it holds that

〈HXW , HY Z〉 = 〈HY W , HXZ〉, (1)

〈HXW , SY Z〉 = 〈HY W , SXZ〉, (2)

〈SXW , SY Z〉 = 〈SXZ , SY W 〉, (3)

RXY ZW = 〈HXW , HZY 〉 − 〈SXZ , SY W 〉. (4)

In particular, if X = (v − iJv)/
√

2, Y = (w − iJw)/
√

2 are unit vectors in V , we get

RvJvJw w = RXXY Y = |HXY |2 − |SXY |2, (5)

K(v, Jv) = RXXXX = |HXX |2 − |SXX |2, (6)

where K is the sectional curvature of M 2n.

Define the index of pluriharmonic nullity νJ = νJ(x) of f at x ∈M 2n by

νJ = dimC ∆1,1, where ∆1,1 = ∆1,1(x) := {X ∈ V | HXY = 0, ∀ Y ∈ V }.

Our goal in this section is to prove the next general result.
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Lemma 7. Let f : M 2n → R2n+p be a real Kähler Euclidean submanifold, p ≥ 1.
Take x ∈ M2n, and let V , N , H, S be as above. Then, νJ(x) ≥ n − p. Moreover,
if νJ(x) = n − p, there exists a basis {e1, . . . , en} of V such that Heiej

= Seiej
= 0,

if either i 6= j or i = j > p. Moreover, for 1 ≤ i ≤ p, Heiei
6= 0, Seiei

is collinear to
wi = Heiei

/|Heiei
|, and {w1, . . . , wp} is an orthonormal basis of the normal space N at x.

Proof: We will prove this lemma by a series of claims. Set q = νJ(x) and V0 = ∆1,1(x).

Claim 1: It holds that HXX 6= 0, for any 0 6= X ∈ V ⊥
0 .

Proof: If otherwise, then for any Y ∈ V , by (1) we have |HXY |2 = 〈HXX , HY Y 〉 = 0.
So, X ∈ V0, which is a contradiction.

Claim 2: If n ≥ 2, then there exist non zero vectors X, Y ∈ V ⊥
0 such that HXY = 0.

Proof: Let {e1, . . . , en−q} be a basis of V ⊥
0 . In the following, we will write Hij for

Heiej
. Consider the vectors H11, H12, . . . , H1n−q in N⊗C ∼= C p. By the assumption,

we have p ≤ n − q. If p < n − q, then these vectors are linearly dependent. So there
will be Y 6= 0 in V such that He1Y = 0, and Claim 2 is proved. Now let us consider
the case p = n − q. We may also assume that the set {H11, H12, . . . , H1p} and the set
{H21, H22, . . . , H2p} are linearly independent in N⊗C . Both sets are bases of C

p, so
there is a non-degenerate complex p×p matrix B = (Bij) such that

H1i =

p∑

j=1

BijH2j

for each 1 ≤ i ≤ p. Let X = e1 − λe2, and Y =
∑
yiei. Then we have

HXY =
∑

yiH1i − λ
∑

yiH2i =
∑

j

{
∑

i

yi(B − λI)ij}H2j

Thus, if we choose λ to be an eigenvalue of the matrix B, and (y1, . . . , yp) 6= 0 the
corresponding eigenvector, then we would have HXY = 0. This completes the proof of
Claim 2.

Next, for each X ∈ V ⊥
0 , denote by HX : V ⊥

0 → N⊗C the linear map given by
HX(Y ) = H(Y,X), and let K(X) = KerHX . We will call the subspace of N ⊗ C

spanned by HXY for all X, Y in V ⊥
0 the image space of H.

Claim 3: It holds that p = n− q, the image space of H coincides with N⊗C , and there
exists 0 6= X ∈ V ⊥

0 such that K(X) is (n−q−1)-dimensional.
Proof: We will perform induction on n − q. When n − q = 1, p must be 1, for any
nonzero X ∈ V ⊥

0 , HX has trivial kernel, and the image space of H is N⊗C by Claim 1.
Now let us assume that Claim 3 is true when restricted to any proper subspace of

V ⊥
0 . For our V ⊥

0 of dimension n− q ≥ 2, let us fix 0 6= X ∈ V ⊥
0 . We get from Claims 1

and 2 that dimK(X) = n− q − r, for some 1 ≤ r < n− q.
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Denote by P = Im (HX) ⊂ N⊗C . It has complex dimension r. Consider the sub-
space Q = P + P ⊆ N⊗C , and denote its complex dimension by s ≥ r. Since Q = Q,
we know that Q = N0⊗C for some real linear subspace N0 ⊆ N of real dimension s.
Let N1 be the orthogonal complement of N0 in N , and write V1 = K(X). Then for any
Y , Z in V1 and any W ∈ V , we have by (1) that

〈HY Z , HXW 〉 = 〈HY W , HXZ〉 = 0,

and similarly, 〈HY Z , HWX〉 = 0. That is, HY Z is perpendicular to Q, or, in other words,
the restriction H|V1×V1

has its image contained in N1⊗C . Note that the dimension of
N1 is p − s, which is less than or equal to n − q − r, the dimension of V1. So by the
inductive hypothesis, we know that p− s = n− q− r, which implies that p = n− q and
r = s, and that there exists 0 6= Y ∈ V1 such that Ker (HY |V1

) ⊂ V1 has codimension 1.
Moreover, the image space of H|V1×V1

is equal to N1⊗C , which implies that the image
space of H is equal to N⊗C .

We claim that K(Y ) ⊂ V ⊥
0 has codimension 1, which completes the proof of Claim 3.

Since HY Y 6= 0, it suffices to show that, for any Z ∈ V ⊥
0 , W = Z − λY ∈ K(Y ), where

λ = λ(Z) = 〈HZY , HY Y 〉/|HY Y |2. Observe that 〈HWY , HY Y 〉 = 0.
First, let us write m = n − q − r, and choose a basis {e1, . . . , em} of V1 such that

Y = e1, and Ker (HY |V1
) = span{e2, . . . , em}. By the inductive hypothesis, the space

N1⊗C is spanned by Hij, for 1 ≤ i, j ≤ m. By (1), we have that

〈HWY , Hij〉 = 〈HWej
, HeiY

〉,

which will be zero if i > 1, or if i = 1 and j > 1 since H1j = 0 in this case. We also
know that the left hand side is zero if i = j = 1, by our construction of W . So HWY is
orthogonal to N1⊗C , that is, HWY ∈ Q.

Secondly, from the fact that r = s, we know that Q = Im (HX) = H(X, V ). But
〈HWY , HXU〉 = 〈HWU , HXY 〉 = 0 for all U ∈ V since HXY = 0. We conclude that
HWY = 0 as desired.

Now we are ready to finish the proof of Lemma 7. By Claim 3, we have e1 ∈ V ⊥
0

such that the kernel K(e1) is (n−q−1)-dimensional. Note that e1 /∈ K(e1). Applying
Claim 3 to the restriction of H to K(e1) ×K(e1), we get e2 ∈ K(e1) for which He2

has
codimension one kernel in K(e1). Inductively, we get a basis B = {e1, . . . , ep} of V ⊥

0 ,
such that Hij = 0 whenever i 6= j. This fact and (1) also imply that 0 6= Hii ⊥ Hjj for
any i 6= j, and we get the desired orthonormal basis {w1, . . . , wp} of N . Extend B to a
basis B′ = {e1, . . . , en} of V such that {ep+1, . . . , en} is a basis of V0.

To see that S is also diagonal under B′, let us fix any i 6= j. For any 1 ≤ k ≤ p, we
have by (2) that 〈Hkk, Sij〉 = 〈Hik, Skj〉 = 〈Hjk, Ski〉. So it will be zero if k 6= i or k 6= j,
which always happens as i 6= j. That is, Sij is perpendicular to wk for all k, so it must
be zero. Similarly, Sii = 0 if i > p.

The formula (2) also implies that Sii ⊥ Hjj for any j 6= i, thus Sii points to the
direction of wi, for each 1 ≤ i ≤ p. This completes the proof of Lemma 7.
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Remark 8. From its very definition, we see that the vanishing of the (1, 1) part H
of the second fundamental form of f is equivalent to f be pluriharmonic (also called
circular), that is, α(JX, Y ) = α(X, JY ) for all X, Y ∈ TM . Therefore, Lemma 7 says
that the second fundamental form of f is diagonal if the immersion is ‘as far as possible’
of being pluriharmonic. It was shown in Theorem 1.2 of [DR1] that an Euclidean
Kähler submanifold is pluriharmonic if and only if it is minimal. We point out that this
result follows immediately from (1), since the mean curvature h of the immersion can
be written as h =

∑n

i=1Hii and then ‖h‖2 =
∑

i,j〈Hii, Hjj〉 =
∑

i,j ‖Hij‖2.

§2. The main result and some consequences

With the notations of Lemma 7, assume that νJ(x) = n − p, for all x ∈ M 2n.
Then, ν ≥ 2n − 2p and there exists a tangent diagonalizing frame {e1, . . . , ep} of type
(1, 0) vectors in ∆⊥

1,0 = V ∩ (∆⊥ ⊗ C ) at each x. Note that this frame is unique up
to permutation and scalings. In other words, the set {[e1], . . . , [ep]} is unique in the
symmetric power Sn(P(∆⊥

1,0)) of the projectified holomorphic ∆⊥
1,0 bundle. Hence, since

H is smooth, in a sufficiently small neighborhood U of x, we can take a smooth frame
{e1, . . . , en} such that it has the diagonalization property of Lemma 7 at each point
in U . In particular, we also obtain from Lemma 7 the smooth orthonormal normal
frame {w1, . . . , wp}.

Assume further that ν ≡ 2n− 2p. For each 1 ≤ i ≤ p, consider the shape tensor Awi

on M2n defined by 〈Awi
X, Y 〉 = 〈αf (X, Y ), wi〉, and let

Vi = Im Awi
. (7)

Thus, the set {Re e1, Im e1, . . . ,Re ei−1, Im ei−1,Re ei+1, Im ei+1, . . . ,Re ep, Im ep} is a
base of V ⊥

i ∩ ∆⊥ by Lemma 7, and then each Vi is a two dimensional complex smooth
distribution on M2n such that

V1 ⊕ · · · ⊕ Vp = ∆⊥. (8)

Lemma 9. With the notations of Lemma 7, if ν ≡ 2νJ ≡ 2n − 2p, then the normal
bundle of f is flat. Moreover, each wi is parallel in the normal connection, the decom-
position (8) is orthogonal and both Vi ⊕ ∆ and V ⊥

i are integrable, for all 1 ≤ i ≤ p.

Proof: Let ψij be the 1–forms defined by ψij(X) = 〈∇⊥
Xwi, wj〉. To show that each wi

is parallel it suffices to see that ψij = 0, for all i, j. Recall that the Codazzi equation
for Awi

is

∇X(Awi
Y ) − Awi

∇XY − A∇⊥

X
wi
Y = ∇Y (Awi

X) − Awi
∇YX − A∇⊥

Y
wi
X. (9)

Taking in (9) X, Y ∈ V ⊥
i = KerAwi

we easily obtain using (8) that

Awj
(ψij(X)Y − ψij(Y )X) = 0, ∀ X, Y ∈ V ⊥

i , 1 ≤ j ≤ p.
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Suppose that there is X0 ∈ V ⊥
i , and j 6= i such that ψij(X0) 6= 0. The above equation

implies that V ⊥
i ⊂ V ⊥

j ⊕ span{X0}, that is, TxM 6= V ⊥
i + V ⊥

j = (Vi ∩ Vj)
⊥, which is a

contradiction by (8). Thus V ⊥
i ⊂ Kerψij, for all i, j. By the orthonormality of {wi} we

have ψij = −ψji. Therefore, TxM = V ⊥
i + V ⊥

j ⊂ Kerψij.
The Ricci equation now implies that the Vi’s are orthogonal, since it says that

[Awi
, Awj

] = 0. The integrability of V ⊥
i follows from (9) taking X, Y ∈ V ⊥

i , since
wi is parallel. This concludes our proof since Vi ⊕ ∆ = ∩j 6=iV

⊥
j .

Lemmas 7 and 9 are the principal ingredients to conclude the next main result, that
has interest on its own right:

Proposition 10. Let f : M 2n → R2n+p be any Kähler Euclidean submanifold, p ≤ n.
Then, νJ ≥n−p. Moreover:

i) If νJ ≡ n−p, then ν≥2n−2p.

ii) If νJ ≡ n−p and ν ≡ 2n−2p, then there is an open dense subset W ⊂ M 2n

such that f |W splits locally as a product of p nowhere flat (with relative nullity of
codimension two) real Kähler Euclidean hypersurfaces.

iii) If ν ≡ νJ ≡ 0, then f splits locally as a product of p nowhere flat orientable
surfaces in R3 on the whole M 2n. This splitting is global if M 2n is complete.

Proof: iii). We have that p= n. Lemma 9 and the local de Rham’s decomposition
Theorem imply that the metric on M 2n splits locally. Replacing U by a smaller simply-
connected neighborhood of x if necessary, we get the isometric splitting U= U1 ×· · ·× Un

into factors of complex dimension one, with TUi = Vi. Since by Lemmas 7 and 9 it holds
that α(Vi, Vj) = 0 for all 1 ≤ i 6= j ≤ n, the Main Lemma of [M] gives the splitting of
f |U . The surfaces are nowhere flat by (7). The complete case follows easily from the
global de Rham’s decomposition Theorem lifting f to the universal cover of M 2n.

ii). The proof follows just as above after constructing the factors with the same
arguments of Lemma 5 in [F2], so we will skip it here. We only recall that the presence
of the open dense subset W is due to the fact that the relative nullity can indeed “jump”
between the hypersurface factors.

The strength of this proposition becomes clear next where we use it to easily derive
the proofs of the theorems stated in the introduction:

Proof of Theorems 1 and 2: By Proposition 10, all we have to show is that ν ≥ 2νJ . If
the holomorphic sectional curvature is assumed to be non–negative, then for X ∈ ∆1,1,

RXXXX = |HXX |2 − |SXX |2 = −|SXX |2 ≥ 0

implies that SXX = 0, and by (3), SXY = 0 for any Y ∈ V . If the Ricci curvature is
assumed to be non–negative, then for any X ∈ ∆1,1, the Ricci curvature in the direction
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of X is given by
n∑

i=1

(|HXvi
|2 − |SXvi

|2) = −
n∑

i=1

|SXvi
|2

where {vi}n
i=1 is any unitary basis of V . So we know that SXY = 0 for any Y ∈ V .

Thus, under either curvature assumption, ∆1,1, and hence ∆1,1 ⊕ ∆1,1, is contained in
∆ ⊗ C . Therefore, 2νJ ≤ ν and the proof is complete.

Proof of Theorem 5: Consider the inclusion in Euclidean space M 2n ⊂ S2n+p
c ⊂ R2n+p+1,

and call it f . If η is the Gauss map of the sphere, then for f and X ∈ V , X 6= 0,
we have that 〈HXX , η〉 =

√
c‖X‖2 6= 0. So we obtain that ν ≡ νJ ≡ 0 ≤ n − p − 1.

Proposition 10 iii) then implies that f(M 2n) is locally contained in a product of n = p+1
surfaces in R3. Now, the only way that this product is included in S3n−1

c is if each factor
itself is an open subset of a round two–sphere.

With similar arguments we prove the following:

Corollary 11. Let f : M 2n → R2n+p be a real Kähler submanifold with p ≤ n. Assume
either that (a) f(M 2n) is contained in some strictly convex hypersurface of R2n+p, or
(b) M2n is complete with sectional curvature bounded from below, f(M 2n) is bounded and
f is real analytic. Then, p = n and f splits as a product of n orientable surfaces in R3.

Proof: It is clear that in case (a) we have a positive definite shape operator, so the proof
follows as in Theorem 5. For part (b), take h : M 2n → R defined by 2h(x) = 〈f(x), f(x)〉.
By Omori’s Lemma ([O]), there is y ∈ M 2n such that Hessh(y)(X,X) < ‖X‖2 for all
X ∈ TyM , X 6= 0. But Hessh(y)(X,X) = ‖X‖2+〈α(X,X), f(y)〉. Hence, A−f(y)⊥>0.

Proof of Corollary 4: The relative nullity estimate follows from Theorem 2. Assume
that the equality holds everywhere. From Theorem 2 we also have that M 2n has non–
negative Ricci curvature with either curvature assumption. In fact, we easily see that
the Ricci curvature restricted to ∆⊥ is positive. Since the leaves of the (complex)
relative nullity distribution ∆ are totally geodesic in both M 2n and R2n+p, and they
are complete whenever M 2n is complete, we have that M 2n contains 2n − 2p linearly
independent lines. So, by Hartman’s theorem [H], (see Theorem 5.10 in [D] for the Ricci
curvature version using the splitting theorem of Cheeger-Gromoll), f has a complex
factor, M2n = N2p × C n−p and f = f1 × I, where f1 : N2p → R3p is an isometric
immersion of a Kähler manifold with positive Ricci curvature and I is the identity map.
The corollary follows applying Theorem 1 to f1.

Remark 12. For an f : M 2n → R2n+p as in Corollary 4, let r = min ν. It is well known
that the subset U = ν−1(r) ⊂ M2n is open and the leaves of ∆ restricted to U are
complete. Hence, again by Hartman’s theorem, we have a splitting M 2n = N2n−r × Rr

and f = f1 × I, with r ≥ 2n − 2p. Thus, if we ask the maximal Euclidean factor of f
to have dimension 2n− 2p then, by Theorem 1, f1 also splits locally in U ∩ (N 2p ×{0})
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as a product of p orientable surfaces in R3 of positive Gaussian curvature in a unique
way. Therefore, if we further ask the metric of M 2n to be real analytic, we easily obtain
the same global splitting as in Corollary 4, although in this case the surface factors will
have positive Gaussian curvature almost everywhere.
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treal, Canada, (1968) 59–81.

[D] Dajczer, M. et all: Submanifolds and isometric immersions. Math. Lec. Series
13, Publish or Perish, Inc. Houston, 1990.

[DG1] Dajczer, M., Gromoll, D.: Gauss parametrizations and rigidity aspects of sub-
manifolds. J. Differential Geom. 22 (1985), 1–12.

[DG2] Dajczer, M., Gromoll, D.: Real Kaehler submanifolds and uniqueness of the
Gauss map. J. Differential Geom. 22 (1985), 13–28.

[DG3] Dajczer, M., Gromoll, D.: Rigidity of complete Euclidean hypersurfaces. J. Dif-
ferential Geom. 31 (1990), 401–416.

[DG4] Dajczer, M., Gromoll, D.: The Weierstrass representation for complete mini-
mal real Kaehler submanifolds of codimension two. Invent. Math. 119 (1995),
235–242.
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