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Let f : Mn → Qn+p
c be an isometric immersion of an n–dimensional

riemannian manifold into a simply connected space form of constant sectional
curvature c. The index of relative nullity ν(x) of f at x is the dimension of
the nullity space of the second fundamental form α of f , i.e.,

ν(x) = dim Kerα = dim{v ∈ TxM : α(v, w) = 0, ∀ w ∈ TxM}.

The positiveness of this index is a very fundamental and useful data about
the immersion since relative nullity distributions of submanifolds into space
forms are integrable with totally geodesic leaves in both the submanifold and
ambient space. Hence, for the theory of isometric immersions it is important
to know any a priori estimates for this index, say, under some natural intrinsic
condition. We choose for this condition to be bounds on sectional curvature
KM of the submanifold. Since there is no possible estimate for KM ≥ c as
the spheres in euclidean spaces show, we assume from now on that KM ≤ c.

In this context, for submanifolds with KM ≡ c, the Chern-Kuiper in-
equality states that ν ≥ n − p. On the other hand, for KM ≤ c it was
shown in [F1] that ν ≥ n − 2p. This is a sharp inequality since a product
of p nowhere flat nonpositively curved euclidean hypersurfaces satisfies the
equality.

In [F2], the first author studied the flat normal bundle situation. It was
shown under this assumption that, if ν = n−p−r for some integer 2 ≤ r ≤ p,
then any euclidean submanifold is (locally) a product of r submanifolds.
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Hence, for nonpositively curved irreducible euclidean submanifolds with flat
normal bundle we have the improved inequality ν ≥ n− p− 1, which is also
sharp because any local isometric immersion of the hyperbolic n–space into
R2n−1 has flat normal bundle. The question now is if this strong condition
on the normal bundle can be dropped.

In this direction, we proved in [FZ] that having minimal relative nullity
index ν = n−2p implies, in fact, that the normal bundle must be flat. Thus,
we concluded that the only euclidean submanifolds with minimal relative
index are (locally) products of nowhere flat hypersurfaces.

For the general case that ν = n − p − r with 2 ≤ r ≤ p − 1, however, it
does not hold that the submanifold is a product of r submanifolds, even for
ν = n − 2p + 1. The purpose of this paper is to completely understand the
situation under this last assumption, giving rise to conjectures on the general
case. We show that the submanifold is, in fact, locally a product of p − 1
submanifolds, but possibly contained in a flat hypersurface. More precisely,
we prove the following

Theorem 1. Let f : Mn → Rn+p be an isometric immersion of a rieman-
nian manifold with nonpositive sectional curvature. Assume ν = n− 2p+ 1
everywhere. Then, there is an open dense subset V ⊂ Mn such that each
connected component Vλ of V satisfies Vλ = Mn1

1 × · · · ×M
np−1

p−1 and either:

1) there is an isometric immersion f1 : Mn1

1 → Rn1+2 and nowhere flat
hypersurfaces fi : Mni

i → Rni+1, 2 ≤ i ≤ p− 1, such that

f |Vλ
= f1 × · · · × fp−1, or

2) there are nowhere flat hypersurfaces fi : Mni

i → Rni+1, 1 ≤ i ≤ p − 1,
and a flat hypersurface h : U ⊂ Rn+p−1 → Rn+p such that

f |Vλ
= h ◦ (f1 × · · · × fp−1).

It is interesting to observe that 1) in the above corresponds to the case that
the relative nullity coincides with the nullity µ of the curvature tensor of the
manifold and 2) to that of µ = ν + 1.

We should point out that the proof of the above result is much more
difficult that the one in our previous work because it arises a double problem:
to understand the “composition” case 2) and to deal with an undecomposable
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algebraic situation described latter. Both appear to be the key points to solve
the general case.

For vanishig nullity we obtain global consequences:

Theorem 2. Let f : Mn → Qn+p
c , 2p ≤ n+ 1, be an isometric immersion

of a riemannian manifold with KM ≤ c and Ricci curvature RicM < c. Then,
c = 0 and either:

1) n = 2p, and f splits locally as a product of p surfaces of R3, or

2) n = 2p− 1, and f splits locally as a product of p− 2 surfaces of R3 and
M3 ⊂ R5,

that is, f splits locally as a product of (n − p) submanifolds. Moreover, the
splitting is global provided that Mn is a Hadamard manifold.

Acknowledgements. Part of this work was done during a visit of the first
author to the Ohio State University. He would like to express his gratefulness
for the hospitality of the people of the mathematics deparment.

§1 Some algebraic results.

Let V n and W p be real vector spaces of dimensions n and p, respectively.
Suppose that V n and W p have positive definite inner products both denoted
by 〈 , 〉, and let α : V n × V n → W p be a symmetric bilinear map. We say
that α is nonpositive if its (sectional) curvature satisfies Kα ≤ 0, i.e.,

Kα(X, Y ) = 〈α(X,X), α(Y, Y )〉 − ‖α(X, Y )‖2 ≤ 0, ∀ X, Y ∈ V n.

For ξ ∈ W p, X, Y ∈ V n, define Aξ ∈ End(V n) and αX ∈ L(V n,W p) by the
formulas 〈AξX, Y 〉 = 〈αX(Y ), ξ〉 = 〈α(X, Y ), ξ〉. We also interpret Aξ as the
symmetric bilinear form Aξ(X, Y ) = 〈AξX, Y 〉, giving sense to KAξ

. Observe
that KAξ

≤ 0 is equivalent to Aξ having at most two nonzero oppositely
signed eigenvalues. Although the nonpositively of α has nothing to do with
the inner product on V n, we introduce it to see each Aξ as an endomorphism
in order to make the proofs more clear. Denote by A(α) the set of asymptotic
vectors of α: A(α) = {X ∈ V n : α(X,X) = 0}.

In the proof of the following lemma there are several arguments already
contained in the proof of Proposition 4 in [FZ]. Thus, we refer to it for
further details.
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Lemma 3. Let α : V n × V n → W p be a nonpositive symmetric bilinear
map such that ν = n − 2p + 1. Then, there is a unit vector ξ ∈ W p so that
rankAξ ≤ 2 and KAξ

≤ 0.

Proof: Without loss of generality, we may assume p ≥ 3 and ν = 0. Hence
n = 2p − 1 ≥ 5. As in [FZ], we have for each X ∈ A(α) the nonpositive
symmetric bilinear map

β = α|V ′×V ′ → Im (αX)⊥, with V ′ = Ker (αX). (1)

Fix such an X with rank (αX) = r = min{rank (αX) : 0 6= X ∈ A(α)} > 0.
Noting that X ∈ Kerβ, set r + s = dim span {Im (αY ) : Y ∈ Ker β} and
denote by q the nullity of β, i.e., q = dim Ker β. Then, similar arguments as
those of [FZ] yield

r + 2s− 1 ≤ q = 1 ≤ r + s.

Hence, s = 0 and r is either 1 or 2.
If r = 1, take 0 6= ξ ∈ Im (αX). Since 〈α(V ′ × V ′), ξ〉 = 0 and V ′ ⊆ V n

has codimension 1, we conclude that rankAξ ≤ 2 with KAξ
≤ 0 as we wished.

Now assume r = 2. Since the nullity of β is q = 1 = (n− 2) − 2(p− 2),
by Proposition 4 of [FZ] β can be diagonalized. Thus, there exist a ba-
sis {e1 = X, e2, . . . , en−2} of V ′ and an orthonormal basis {ξ1, . . . , ξp−2} of
(ImαX)⊥, such that α(e2k, e2k+1) = ξi, k = 1, . . . , p− 2, and α(ei, ej) = 0 for
any other 1 ≤ i, j ≤ n− 2. In particular,

KAξ1
(e2, e3) < 0. (2)

Let {ξp−1, ξp} be an orthonormal basis of W1 = Im (αX) and en−1, en ∈ V n

so that α(X, en−1) = ξp−1, α(X, en) = ξp. For any 1 ≤ i 6= j ≤ p− 2, since
Kα(e2i+δ, e2j+δ′) = 0 (where δ, δ′ = 0, 1), we have that

Kα(e2j + e2j+1, e2i+δ + tZ) = 4t〈α(e2i+δ, Z), ξj〉 − t2Kα(e2j, Z) ≤ 0.

Thus, α(e2i+δ, V
n) ⊥ ξj. Therefore, for s = n− 1, n, replacing the vec-

tor es by es −
∑p−2

i=1 (〈α(es, e2i), ξi〉e2i+1 + 〈α(es, e2i+1), ξi〉e2i) we obtain for
V1 = span {en−1, en} that

α(V ′ × V1) ⊆ W1. (3)

For each Y ∈ V ′ ∩A(α), write α(Y, en−2+i) = BY
i1ξp−1 +BY

i2ξp, i = 1, 2. If
we assume that BY has complex eigenvalues, we will arrive to a contradiction,
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as in the proof of q = 1 in Proposition 4 of [FZ]. We claim that BY is in fact
symmetric. Replacing Y by Y − λX, we may assume BY has an eigenvalue
equal to zero. Suppose that Z = z1en−1 +z2en 6= 0 satisfies α(Y, Z) = 0, that
is,

∑
i ziB

Y
ij = 0. Since α(Y,X) = 0, we have by (1) that α(X,Z) ⊥ Im (αY ),

so
∑

j zjB
Y
ij = 0. These two linear systems yield the symmetry of BY .

Next, we want to change our frames in W1 and V1 so that Be2 and Be3

look specially simple. Replacing e2 by e2 −λX, we may assume that Be2 has
a zero eigenvalue. So, pick a vector en−1 ∈ V1 so that α(e2, en−1) = 0 and
‖α(X, en−1)‖ = 1. Rotate the orthonormal basis {ξp−1, ξp} of W1 to obtain

ξp−1 = α(X, en−1).

Take the vector en ∈ V1 such that α(X, en) = ξp. Since e2 ∈ A(α), by (1) ξp−1

is perpendicular to Im(αe2
). So α(e2, en) = cξp. Also replacing e3 by e3−λX

if necessary, we may assume that α(e3, en−1) = aξp−1 + bξp, α(e3, en) = bξp−1.
We are ready to show that Aξ1 has rank 2. It suffices to show that

u = v = w = 0, where u, v, and w are the ξ1 components of α(en−1, en−1),
α(en−1, en) and α(en, en), respectively. For this purpose, let us consider

U = xe1 + ye2 + e3, S = zen−1 + en.

Then we have

〈α(U, U), α(S, S)〉 = 2y(z2u+ 2zv + w) and

‖α(U, S)‖2 = (xz + az + b)2 + (x + cy + bz)2.

So, by the nonpositivity of α we have

2y(z2u+ 2zv + w) ≤ (xz + az + b)2 + (x + cy + bz)2

for arbitrary real numbers x, y and z.
Taking z = 0 and x = −cy, we get 2yw ≤ b2 for arbitrary y, so w = 0.

Similarly, for x = −a and z → ∞ we get 2yu ≤ b2, so u = 0 as well. The
inequality now becomes 4yzv ≤ (xz + az + b)2 + (x + cy + bz)2. Choosing
z = ±1, the inequality can be rewritten as

2x2 + 2x(a + 2bz + cy) + (a2 + 2b2 + 2abz + c2y2 + 2bczy − 4zvy) ≥ 0.

Since this holds for any x, the discriminant must be nonpositive:

c2y2 − 2y(ac+ 4zv) + a2 ≥ 0, ∀ y ∈ R.
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So, we obtain 2v2 + aczv ≤ 0. Choosing z = 1 or z = −1 so that aczv ≥ 0,
we conclude that v2 ≤ 0, hence v = 0. This and (2) conclude the proof.

The following is our main algebraic result.

Lemma 4. Let α : V n × V n → W p be a nonpositive symmetric bilinear
map such that ν = n − 2p + 1. Assume that rank Aξ 6= 1, for all ξ ∈
W p. Then, there is an orthonormal basis {ξ1, . . . , ξp} of W p so that, for all
1 ≤ i 6= j ≤ p − 1, 1 ≤ k ≤ p − 2, we have rankAξi

= 2 with KAξi
≤ 0,

ImAξi
∩ ImAξj

= ImAξk
∩ ImAξp

= 0, and either

1) dim(ImAξp−1
+ ImAξp

) = 3, or

2) rankAξp
= 2 with KAξp

≤ 0 and ImAξp−1
∩ ImAξp

= 0.

Moreover, the sets {ξ1, . . . ξp−2} in case 1) and {ξ1, . . . , ξp} in case 2) are
unique (up to signs and permutations).

Proof: Of course we need to prove the lemma only for ν = 0. Let us proceed
by induction on p. Since there is nothing to prove for p = 1, 2, assume that
the lemma holds for some p ≥ 2 and let see for p+1. By Lemma 3 there is a
unit vector ξ ∈ W p+1 such that rankAξ = 2 and KAξ

≤ 0. Set T n−2 = KerAξ

and
α̃ = α− 〈Aξ·, ·〉ξ : V n × V n → W̃ p = (span {ξ})⊥.

Since Kerα = T n−2 ∩ Ker α̃, we have that ν̃ := dim Ker α̃ ≤ 2. In case
of ν̃ = n− 2p+ 1 = 2, define ξ1 = ξ and apply the inductive hypothesis to
α̃|T×T to easily conclude that the Lemma holds for p+1. Thus, assume from
now on that ν̃ ≤ 1.

For each e ∈ V n\T n−2 take the hyperplane V n−1
e := T n−2⊕span {e} ⊂ V n

and the symmetric bilinear map

α′ = α̃|Ve×Ve
: V n−1

e × V n−1
e → W̃ p

with ν ′ = dim Kerα′. It is clear that Kα′ ≤ 0 since rankAξ|Ve
≤ 1.

Claim. There is e ∈ V n \ T n−2 such that ν ′ = (n− 1) − 2p = 0.
For ν̃ = 1, any e 6∈ Ker α̃ + T n−2 satisfies the claim. So, assume that

ν̃ = 0. Set γ = α̃|T×T and ∆γ = Ker γ. First we show that

dim
(
+X∈∆γ

Imα′
X

)
≥ dim ∆γ . (4)
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To see this, take a plane L2 ⊂ V n so that L2 ∩ T n−2 = 0 and set β = α|L×∆γ

and U = L2⊕∆γ . We now apply the techniques of the proof of Proposition 8
of [F1] to α|U×U . It is clear that ∆γ ⊂ A(α|U×U). If Y0 ∈ RE(β) ⊂ L2, we
obtain as in the proof of Proposition 8 of [F1] that

α(Y,X) = 0, ∀ Y ∈ L2, X ∈ Ker β(Y0) ⊂ ∆γ.

We conclude that Kerβ(Y0) ⊂ Kerα = 0, i.e., {α(X1, Y0), . . . , α(Xs, Y0)}
are linearly independent for a basis {X1, . . . , Xs} of ∆γ . Thus, equation (4)
follows.

Now, take X ∈ ∆γ , Y ∈ T n−2, Z ∈ V n. Hence, Kα(X, Y ) = 0 and then
Kα(X + tZ, Y ) = 2t〈α(X,Z), α(Y, Y )〉 + t2K(Z, Y ) ≤ 0, t ∈ R. Therefore,
〈α(X,Z), α(Y, Y )〉 = 0, or equivalently, the nonpositive symmetric bilinear
map γ satisfies

γ : T × T →
(
span {ξ} ⊕ (+X∈∆γ

Imα′
X)

)⊥
.

From Proposition 9 of [F1] and (4) we obtain

dim ∆γ ≥ (n− 2) − 2
(
p− dim(+X∈∆γ

Imα′
X)

)
≥ 2 dim∆γ − 1,

that is, dim ∆γ ≤ 1.
For dim ∆γ = 1, using that ν̃ = 0 choose e ∈ V n \ T n−2 such that

α̃(e,∆γ) 6= 0. It is easy to verify that ν ′ = 0 in this case.
For dim ∆γ = 0, take e1, e2 ∈ V n \ T n−2 linearly independent. If ν ′ > 0

for both ei’s, we have from dim ∆γ = 0 that ν ′ = 1 in both cases and that
there are ti ∈ T n−2 so that α(ei + ti, Vei

) = 0, i = 1, 2. But α(e1, e2) 6= 0
since ν = 0. We easily verify that e = e1 + e2 satisfies the claim, which is
now completely proved.

We conclude from the above claim and from Proposition 4 of [FZ] applied

to α′ that there is an orthonormal frame {ξ1, . . . , ξp} of W̃ p such that each
shape operator A′

ξi
of α′, 1 ≤ i ≤ p, satisfies rankA′

ξi
= 2 with KA′

ξi
≤ 0 and

V n−1
e = ImA′

ξ1
⊕ · · · ⊕ ImA′

ξp
. (5)

If ν̃ = n− 2p = 1 take ξp+1 = ξ. We have from ν = 0 that E = ImAξ ∩V
n−1
e

is a line. If E 6⊂ ImAξk
for all 1 ≤ k ≤ p, we conclude that α is as in case 2).

Otherwise, it is as in case 1) and the lemma for p+ 1 holds in this situation.
From now on assume that ν̃ = 0, the only remaining case.
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Pick 1 ≤ i 6= j ≤ p and xi ∈ I2
i :=

⋂
k 6=i KerA′

ξk
⊂ V n−1

e . Choose

e0 ∈ V n \ V n−1
e . If A stands for the matrix of Aξ under {e0, xi, xj}, from

rankA ≤ 2 and rankAξ|Ve×Ve
≤ 1 we easily obtain that A02A11−A12A01 = 0.

Hence,

g(t) = Kα(xi, te0 + xj) = t2Kα(xi, e0) + 2t〈α(e0, xj), ξi〉〈A
′
ξi
xi, xi〉 ≤ 0.

We conclude that 〈α(e0, xj), ξi〉 = 0. In view of (5), we can replace e0 by
e0 +

∑p
i=1 aixi for suitable ai ∈ R and xi ∈ I2

i as we did to obtain (3) to
conclude

α̃(e0, V
n−1
e ) = 0. (6)

Now, from ν̃ = 0 and the above we get η := α̃(e0, e0) 6= 0. Moreover, if
l = #{i ≤ p : 〈η, ξi〉 6= 0}, we have from (5) that A′

η has exactly l positive
eigenvalues. On the other hand, from (6) we have that

〈A′
ηX,X〉 = Keα(e0, X) = Kα(e0, X) ≤ 0, ∀ X ∈ T n−2 ⊂ V n−1

e . (7)

Thus, l = 1, say,
α̃(e0, e0) = λξp 6= 0.

Then, from rankA′
ξp

= 2 and (6) we get e0 ∈
⋂

j≤p−1 KerAξj
, e0 6∈ KerAξp

and rankAξp
= 3. Moreover, (7) yields that KerAξp

⊂ T n−2 = KerAξ.
Setting ξp+1 := ξp and ξp := ξ, we conclude from (5) that

V n = ImAξ1 ⊕ · · · ⊕ ImAξp−1
⊕ ImAξp+1

,

with ImAξp
⊂ ImAξp+1

. The lemma is proved.

Remark. The lemma just says that algebraic bilinear maps as above fall into
two types. On one hand, the ‘decomposable’ type 1), that is, V n decomposes
as V1⊕· · ·⊕Vp−1 so that α(Vi, Vi) ⊥ α(Vj, Vj) and α(Vi, Vj) = 0 for i 6= j. On
the other hand, the ‘undecomposable’ type 2), that needs some additional
argument to be treated in order to obtain a splitting (cf. Lemma 6).
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§2 The splitting.

We now show how the algebraic results of the last section give rise to
the (local) splitting of the tangent bundle of submanifolds, as the one of
Theorem 1, into distributions. We deal first with the case of nullity µ =
dim KerR = ν+1 (R is here the curvature tensor of Mn), showing that they
are locally compositions.

Proposition 5. Let f : Mn → Rn+p be an isometric immersion of a sim-
ply connected nonpositively curved riemannian manifold with ν = n− 2p+ 1.
Suppose there is a unit normal vector field ξ such that rankAξ ≤ 1. Then,
there exists an isometric immersion f̃ : Mn → V ⊂ Rn+p−1 which splits
locally along an open dense subset as a product of (p−1) nowhere flat hyper-

surfaces, and a flat hypersurface h : V ⊂ Rn+p−1 → Rn+p, so that f = h ◦ f̃ .

Proof: Denote by ∇ and ∇⊥ the tangent and normal connections, respec-
tively. Set α̃ = α − 〈Aξ ·, ·〉ξ. First, notice that ∆α = ∆eα ∩ KerAξ and,
from the Gauss equation and the rank hypothesis on Aξ, that Keα = Kα ≤ 0.
Thus α̃ is nonpositive and satisfies Gauss equation. Observe that

ImAξ 6⊂ ∆⊥
eα . (8)

On the contrary, from ∆α = ∆eα and Proposition 9 of [F1] we conclude that
n−2p−1 = να = νeα ≥ n−2(p−1), which is a contradiction. Thus, we have
that

νeα = να + 1 = n− 2(p− 1). (9)

Hence, by Proposition 4 of [FZ] we get an orthonormal frame {ξ1, . . . , ξp−1}
of L = span {ξ}⊥ ⊂ TM⊥ such that

∆⊥
eα = ImAξ1 ⊕ · · · ⊕ ImAξp−1

, with rankAξi
= 2, 1 ≤ i ≤ p− 1. (10)

In particular, since ξ and {ξ1, . . . , ξp−1} are unique up to signs and permuta-
tions, we can choose them (locally) smooth. Therefore, α̃ is also smooth.

The Codazzi equation for Aξ gives

Aξ[X, Y ] = A∇⊥

X
ξY − A∇⊥

Y
ξX ∈ ∆⊥

eα , ∀ X, Y ∈ KerAξ.

This, (8) and (10) imply that

〈∇⊥
Xξ, ξj〉Aξj

Y = 〈∇⊥
Y ξ, ξj〉Aξj

X, ∀ X, Y ∈ KerAξ.
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Again by (8) and (10) we easily conclude that

∇⊥
Xξ = 0, ∀ X ∈ KerAξ, (11)

which yields

〈AξX,Z〉∇
⊥
Y ξ = 〈AξY, Z〉∇

⊥
Xξ, ∀ X, Y, Z ∈ TM. (12)

Let ∇′ be the connection on L induced by ∇⊥. Then, for all X, Y, Z ∈ TM

∇′
Y α̃ (X,Z) − α̃(∇YX,Z) − α̃(X,∇YZ)

=
(
∇⊥

Y (α(X,Z) − 〈AξX,Z〉ξ) − α(∇YX,Z) − α(X,∇YZ)
)

L

=
(
∇⊥

Y α(X,Z) − α(∇YX,Z) − α(X,∇YZ)
)

L
− 〈AξX,Z〉∇

⊥
Y ξ

= ∇′
Xα̃(Y, Z) − α̃(∇XY, Z) − α̃(Y,∇XZ),

where the last equality followed from the Codazzi equation for α and (12).
Thus, α̃ satisfies Codazzi equation.

Now, denote by R⊥ and R′ the curvature tensors of ∇⊥ and ∇′, respec-
tively, take η ∈ L and set ψ(X) = 〈∇⊥

Xξ, η〉. Noting that (11) implies
KerAξ ⊂ Ker ψ, we thus have for all X, Y ∈ TM that

(R⊥(X, Y )η)L =
(
∇⊥

X(∇′
Y η − ψ(Y )ξ) −∇⊥

Y (∇′
Xη − ψ(Y )ξ)

)
L
−∇′

[X,Y ]η

= R′(X, Y )η − ψ(Y )∇⊥
Xξ + ψ(X)∇⊥

Y ξ = R′(X, Y )η.

We conclude that {α̃,∇′} satisfies Gauss, Codazzi and Ricci equations for
constant sectional curvature zero. Therefore, by the fundamental theorem of
submanifolds, there exists an isometric immersion f̃ : Mn → Rn+p−1 with
second fundamental form α̃. From (9) and Theorem 1 of [FZ] we have that

along an open dense subset f̃ is locally a product of (p − 1) nowhere flat
hypersurfaces with nonpositive sectional curvature.

Take a unit vector field Z0 which spans ImAξ. Then, ∇̃Z0
ξ = λZ0+γ0 6= 0

by (8), for some γ0 ∈ TM⊥. Let Γ ⊂ TM ⊕L be the rank (p− 1) subbundle
transversal to TM defined as

Γ = (L ∩ span {γ0}
⊥) + span {‖γ0‖

2Z0 − λγ0}.

By definition, Γ satisfies that

〈∇̃Z0
µ, ξ〉 = −〈∇̃Z0

ξ, µ〉 = 0, ∀ µ ∈ Γ.
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Thus, from (11) we conclude that ∇̃Xµ ∈ TM ⊕ L, for all X ∈ TM, µ ∈ Γ.
The proof is now a consequence of Theorem 5 of [DT] applied to Γ.

In the following result, we apply Lemma 4 to the second fundamental
form α of an isometric immersion as the one of Theorem 1 which is nowhere
a composition. The purpose is to show that the ‘undecomposable’ type 2) of
Lemma 4 cannot occur for such an α.

Lemma 6. Let f : Mn → Rn+p be an isometric immersion with nonpositive
sectional curvature and ν = n−2p+1 which is nowhere a composition in the
sense of Proposition 5. Then, there is an open dense subset W ⊂ Mn along
which there is (locally) a smooth orthonormal normal frame {ξ1, . . . , ξp} such
that rankAξi

= 2 with KAξi
≤ 0, 1 ≤ i ≤ p− 1, and

TW = ∆α ⊕ ImAξ1 ⊕ · · · ⊕ ImAξp−2
⊕ (ImAξp−1

+ ImAξp
). (13)

Proof: First observe that there is no open subset V ⊂Mn so that, for each
x ∈ V , there is a normal unit vector ξ(x) 6= 0 with rankAξ(x) ≤ 1. On the
contrary, from (10) we have that the direction determined by ξ is unique,
thus smooth. Hence, from Proposition 5, we conclude that f is locally a
composition on V , which is a contradiction. This implies that the open
subset W ⊂ Mn along which there is no direction of rank one is also dense.
This set is, in fact, the set along which the nullity µ of the curvature tensor
of Mn is minimal: W = µ−1(n− 2p+ 1).

For each x ∈ W, we have the decomposition of Lemma 4 for the second
fundamental form α(x) of f at x. Thus, we only need to show that the set
S ⊂ W along which the decomposition is of type 2) is empty.

First, notice that S is open. Assume that S is not empty, take x ∈ S and
the (smooth by uniqueness) orthonormal frame {ξ1, . . . , ξp} of TM⊥ given
by Lemma 4 in a neighborhood U ⊂ S of x. Observe now that

L =
(
ImAξ1 ⊕ · · · ⊕ ImAξp−1

)
∩ ImAξp

is a line bundle since ν = n−2p+1. Changing order in the frame if necessary,
we have that there is an integer 1 ≤ r ≤ p and smooth 0 6= Yj ∈ ImAξj

for
r ≤ j ≤ p such that

p∑

j=1

Aξj
Yj = 0, (14)

11



where Y1 = · · · = Yr−1 = 0. Notice that this equation is unique, up to scalar
multiplication. Observe that the assumption on S is equivalent to r ≤ p− 2.

From now on, we take arbitrary 1 ≤ i 6= j ≤ p and denote by φij the skew-
symmetric normal connection 1-forms φij(Z) = 〈∇⊥

Zξi, ξj〉. We only need to
show that φip = 0 for all i < p. If this is the case, from the Ricci equations
we get [Aξi

, Aξp
] = 0. Hence, ImAξi

⊂ KerAξp
since ImAξi

∩ ImAξp
= 0.

Therefore L = 0, a contradiction.
From the Codazzi equation for Aξi

we have

Aξi
[X, Y ] +

p∑

j 6=i

Aξj
φ̂ij(X, Y ) = 0, ∀ X, Y ∈ KerAξi

, (15)

where φ̂ij(X, Y ) := φij(X)Y − φij(Y )X. Observe that

φ̂ij(KerAξi
× KerAξi

) =

{
KerAξi

∩ Kerφij if KerAξi
6⊂ Kerφij

0 otherwise,
(16)

which is either an (n − 3)–dimensional subspace or 0. We claim that it is
always 0.

Assume the contrary for some i′ 6= j ′. Denoting by πj the orthogonal
projection to ImAξj

, (14) and (15) easily yield that, for each i, there is a
2-form λi ∈ Λ2(KerAξi

) such that πj[ , ] = λiYi and

πjφ̂ij = λiYj on KerAξi
× KerAξi

. (17)

Since along S it holds that KerAξi
+ KerAξj

= (ImAξi
∩ ImAξj

)⊥ = TxM ,
we get πj(KerAξi

) = ImAξj
. By dimension reasons, this, (16) and (17) give

0 6= πj′(KerAξi′
∩ Kerφi′j′) = λi′(KerAξi′

× KerAξi′
)Yj′.

Thus, λi′ 6= 0 and j ′ ≥ r. But (17) for i′ and j ≥ r gives

πjφ̂i′j(KerAξi′
× KerAξi′

) = span {Yj} 6= 0.

Therefore, (16) yields πj(KerAξi′
∩ Kerφi′j) = span {Yj}. By dimension

reasons we conclude that

KerAξi′
∩ Kerφi′j = KerAξi′

∩
(
KerAξj

⊕⊥ span {Yj}
)
, ∀ j ≥ r. (18)

12



On the other hand, we have from (17) that

KerAξi′
∩ Kerφi′j ∩ (span {Yj})

⊥ ⊂ Kerλi′.

Since λi′ 6= 0 is skew-symmetric, we obtain equality above and, by (18),
Kerλi′ = KerAξi′

∩ KerAξj
, for all j ≥ r. Hence,

n− 4 = dim Kerλi′ = dim(KerAξi′

⋂

j≥r

KerAξj
)

≤ n− dim
(
+j≥rImAξj

)
= 2(r − 1) ≤ 2p− 6,

a contradiction because n − 2p + 1 = ν ≥ 0. Thus, KerAξi
⊂ Kerφij for

all i, j.
To conclude the proof, observe that the skew-symmetry of φip gives

TxM = KerAξi
+ KerAξp

⊂ Kerφip. Therefore, φip = 0.

The following general splitting result has its own interest (compare with
Lemma 5 of [F2]).

Proposition 7. Let f : Mn → Qn+p
c be an isometric immersion of a

riemannian manifold which has k distributions D1, . . . ,Dk such that

TM = (D1 ⊕ · · · ⊕ Dk) ⊕
⊥ ∆ and α(Di,Dj) = 0, ∀ 1 ≤ i 6= j ≤ k.

Assume that W pi

i = spanα(Di,Di), 1 ≤ i ≤ k, are mutually orthogonal
parallel normal subbundles. Then:

1) If c = 0, there exists an open dense subset U so that U is locally a rie-
mannian product Uλ = Mn1

1 × · · · ×Mnk

k with Di ⊂ TMi. In addition,
there are isometric immersions fi : Mni

i → Rni+pi such that

f |Uλ
= f1 × · · · × fk.

2) For ∆ = 0, we must have c = 0. In addition, the above local splitting
holds for the whole U = Mn.

Proof: Of course we can suppose that k = 2. Along this proof, denote by
i, j arbitrary indexes 1 ≤ i 6= j ≤ 2.

13



Claim 1): D1 ⊥ D2. Set

Ki = ∆⊥
⋂

w∈Wi

KerAw, Ii = span {ImAw : w ∈ Wi} = K⊥
i ∩ ∆⊥.

From α(D1,D2) = 0 and W1 ⊥ W2 we get Di ⊆ Kj. But ∆⊥ = D1 ⊕ D2 ⊆
K1 ⊕K2 ⊆ ∆⊥. Thus, Di = Kj.

For ηi ∈ Wi, Ricci equation and the assumption on W1,W2 imply that
[Aη1

, Aη2
] = 0. Thus, Aηi

Aηj
= 0 since K1 ∩ K2 = 0. In other words,

Ii ⊆ Kj = Di. Hence ∆⊥ = I1 ⊕ I2 ⊆ K1 ⊕K2 = ∆⊥. This implies Ii = Di

and proves Claim 1) since D1 = I1 ⊥ K1 = D2.
Set D0

i = Di and

Dr+1
i := span {∇XY : X ∈ Di, Y ∈ Dr

i } ⊇ Dr
i .

Claim 2): Dr
i ⊥ Dj, for all r ≥ 0. By induction suppose that the Claim holds

for r and take X ∈ Dj, Y ∈ Di and Z ∈ Dr
i . The Codazzi equation says

α(X,∇YZ) = ∇⊥
Y α(X,Z) −∇⊥

Xα(Y, Z) + α([X, Y ], Z) + α(Y,∇XZ).

The parallelism of the Wk’s and the inductive hypothesis imply that the
right hand side of the above equation belongs to Wi. This proves the claim,
because the left hand side belongs to Wj.

Claim 3): ∇VZ ∈ Dr
i , for all V ∈ D⊥

i , Z ∈ Dr
i , r ≥ 0.

By induction, take X, Y ∈ Dj and Z ∈ Di. From Claim 2) we obtain that

∇XZ ∈ Di ⊕ ∆ (19)

since 〈∇XZ, Y 〉 = −〈Z,∇XY 〉 = 0. The claim is now clear for ∆ = 0.
Observe also that c = 0 in this case since 0 = KM(X,Z) = c ‖X‖2‖Z‖2 by
the Gauss equation.

For U ∈ ∆, Codazzi equation implies that α(X,∇ZU) = α(Z,∇XU) = 0,
since both belong to different Wk’s. Hence ∇XU ∈ Dj ⊕∆, which in view of
(19) implies that

∇XZ ∈ Di. (20)

Again from the Codazzi equation we get α([X,U ], Z) = α(∇UZ,X) = 0,
or equivalently, ∇UZ ∈ Di since ∆ is a totally geodesic distribution. This
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proves the claim for r = 0. The claim is now a consequence of Gauss equation
and the inductive process since, if Z ∈ Dr

i , S ∈ Di and V ∈ D⊥
i , we have

∇V ∇SZ = ∇S∇VZ + ∇[V,S]Z ∈ Dr+1
i .

Claim 4): Dr
i ⊥ Dm

j , for all r,m ≥ 0.
The case m = 0 is just Claim 2). Take V ∈ Dj, Y ∈ Dm

j and Z ∈ Dr
i .

The claim now follows from Claim 3) by induction since

〈Z,∇V Y 〉 = −〈∇VZ, Y 〉 = 0.

Set
Γi := Dn

i , Γ0 := (Γ1 ⊕ Γ2)
⊥ ⊂ ∆,

and define U as the open dense subset where all the Γi’s have locally constant
dimension. Observe that U = Mn if ∆ = 0. Along the connected components
Uλ of U , we conclude from Claim 4) that all the Γk’s are smooth parallel
mutually orthogonal distributions. By the local de Rham’s decomposition
theorem we obtain locally that

Uλ = M0 ×M1 ×M2,

with TMi = Γi ⊇ Di. The splitting of f is a consequence of the Main Lemma
in [M] and the proposition is proved.

Finally, we have the necessary tools to prove our main results.

Proof ot Theorem 1: Take U ′ the interior of the set where µ = ν + 1 =
n − 2p + 2. By Proposition 5, we have that this is also the maximal open
subset along which f is locally a composition, so it is as in case 2) of the
theorem. On the other hand, from Lemma 6 we get locally decomposition
(13) along the open set W of minimal nullity µ = ν. It also says that U ′∪W
is dense in Mn. Along W, using Lemma 6, set

Di = ∆⊥
⋂

j 6=i KerAξj
, Wi = span {ξi}, 1 ≤ i ≤ p− 2, and

Dp−1 = ∆⊥
⋂

j≤p−2 KerAξj
, Wp−1 = span {ξp−1, ξp}.

(21)

It is clear from (13) that the Di’s satisfy the hypothesis of Proposition 7.
Suppose now that the Wi’s are parallel along W. We conclude from Propo-
sition 7 that, locally along an open dense subset U ⊂ W, f is as in part 1)
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of Theorem 1. Since V = U ′ ∪ U is also dense in Mn, the theorem will be
proved. We now use the notations and definitions of the proof of Lemma 6
to show that Wj is parallel for 1 ≤ j ≤ p−2. Hence, Wp−1 is parallel as well.

Fix such a 1 ≤ j ≤ p − 2 and x ∈ W . From (13) and (15) we get

Im φ̂ij ⊂ KerAξj
at x. For dimension reasons, this and (16) yield that

KerAξi
⊂ Kerφij, ∀ 1 ≤ i ≤ p.

Hence, for j 6= i ≤ p− 2 we have TxW = KerAξi
+ KerAξj

⊂ Kerφij. Thus,

φij = 0, ∀ 1 ≤ i 6= j ≤ p− 2. (22)

Let τ = τj : KerAξj
→ W 2 = span {ξp−1, ξp} be the map τ(Z) = ∇⊥

Zξj. In
view of (13), the Codazzi equation for Aξj

implies that

AτYX = AτXY, ∀ X, Y ∈ KerAξj
.

If 0 < l := rank τj, we get from the above that Ker τ ⊂ KerAξ, for all
ξ ∈ Im τ . Therefore,

n− 2 − l = dim Ker τ ≤ dim
(⋂

ξ∈Im τKerAξ

)
≤ n− 1 − l,

that is, Ker τ ⊂ KerAξj
has codimension ≤ 1 into

⋂
ξ∈Im τ KerAξ. We con-

clude that ImAξj
∩ (+ξ∈Im τ ImAξ) 6= 0, a contradiction with (13). Thus,

l = 0 and, by (22), Wj is parallel.

Proof of Theorem 2: The hypothesis on the Ricci curvature implies that
µ = ν = 0. The codimension assumption and Proposition 9 of [F1] yield
n = 2p or n = 2p − 1. The first case is Theorem 2 of [FZ]. For the second
case, following the proof of Theorem 1 we get that W = Mn by Lemma 6.
Also, U ′ = Mn. The theorem is now a consequence of part 2 of Proposition 7
and the global de Rham’s decomposition theorem.

Final remarks. 1) Although f in 2) of Theorem 1 is not a product, it can be
described by means of the Gauss parametrization (see [DG] for details). To
do this, first proceed as in [FZ] for each hypersurface fi in the decomposition.
To take care of the flat hypersurface h, use that any flat nowhere totally
geodesic hypersurface is (locally) just the “twisted” normal bundle of an
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arc length parametrized spherical curve c : I → SN : take r ∈ C∞(I) and

h : Tc⊥ ⊂ TcS
N⊥

→ RN+1 as

h(ξ(s)) = r(s)c(s) + r′(s)c′(s) + ξ(s).

The image h(Tsc
⊥ \ S) is a flat hypersurface with gauss map c, where S is

the singular set of h, S = {ξ ∈ Tsc
⊥ : 〈ξ, c′′〉 = r + r′′}.

2) In 1) of Theorem 1, f can fail to have flat normal bundle only because
f1, generically, has nonflat normal bundle since it has relative nullity n1 − 3
and codimension two. In case 2), the immersion h is what ‘destroys’ the
flatness of the normal bundle of the product immersion.

3) In view of the our results and those mentioned on the introduction,
we believe that the following are also true for euclidean submanifolds f with
KM ≤ 0 and ν = n− p− r, for some 2 ≤ r ≤ p :

◦ The equality between nullity indexes ν = µ implies the splitting of f as
a product of r submanifolds. In fact, the next is stronger.

◦ Locally, there are r euclidean submanifolds fi : Mni

i → Rni+pi with
relative nullity νi = ni−pi−1, and a flat submanifold h : U ⊂ Rn+q → Rn+p,
q =

∑r

i=1 pi, such that f = h ◦ (f1 × · · · × fr) splits.
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