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Abstract

In this article, we prove that a n-dimensional, non-positively curved Euclidean submanifold with

codimension p and with minimal index of relative nullity ν = n − 2p is (in an open dense subset)

locally the product of p hypersurfaces.
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Let f : Mn → Qn+p
c be an isometric immersion from a Riemannian manifold into a com-

plete simply connected Riemannian manifold of constant sectional curvature c (superscripts

will always denote dimensions). Denote by ν the index of relative nullity of f ,

ν(x) = dim{X ∈ TxM : αf (X,Y ) = 0,∀ Y ∈ TxM},

where αf stands for the vector valued second fundamental form of f . It is well known that

having ν > 0 imposes strong restrictions on the manifold M n and on its isometric immersion

f . In [F1], the first author proved the inequality ν ≥ n− 2p when the sectional curvature

of Mn satisfies KM ≤ c and gave several applications of this result. First let us show that

this estimate is sharp.
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Example. For each i = 1, . . . , p, let Si ⊆ R3 be a negatively curved surface. Then the

product M 2p = S1 × · · · × Sp ⊆ R3p satisfies the equality ν = n− 2p = 0.

More generically, let Mni

i ⊆ Rni+1 be nowhere flat nonpositively curved hypersurfaces,

i = 1, . . . , p. The Gauss equation tells us that the relative nullity νi of Mni

i is νi = ni − 2.

Then, the product manifold Mn = Mn1

1 × · · · ×M
np
p ⊆ Rn+p also have ν = n− 2p.

The first author proved in [F2] a general splitting theorem for Euclidean submanifolds f

of nonpositive sectional curvature, under the additional assumption that the normal bundle

of f is flat. The main purpose of this paper is to drop that assumption in the borderline

case ν = n− 2p to prove that the above example is essentially the unique one with minimal

relative nullity index.

Theorem 1. Let f : Mn → Rn+p be an isometric immersion into Euclidean space of

a Riemannian manifold with nonpositive sectional curvature. Assume that ν = n − 2p

everywhere. Then there exists an open dense subset U ⊂M n such that f |U splits locally as

a product of p Euclidean hypersurfaces, that is, for any x ∈ U , there exist a neighborhood

x ∈ V ⊆ U and p nowhere flat Euclidean hypersurfaces fi : Mni

i → Rni+1 of nonpositive

sectional curvature, such that

V = M1 × · · · ×Mp and f |V = f1 × · · · × fp

split.

First of all, note that when f is analytic, the splitting occurs on the entire M . In the general

case, each ni is constant in a connected components of U , in fact, the universal covering

space of any component of of U is the product of p Euclidean hypersurfaces. However, there

are examples in which the ni’s are not constant in the entire U . Secondly, it is interesting

to observe that, from Theorem 1 of [M] we have that f |V in the above is isometrically rigid

if and only if each factor is rigid.

Corollary 2. Let f : Mn → Qn+p
c , 2p ≤ n, be an isometric immersion of a connected

Riemannian manifold Mn with KM ≤ c and Ricci curvature RicM < c. Then c = 0, n = 2p

and f splits locally as a product of p negatively curved surfaces of R3. Moreover, the splitting
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is global provided that Mn is a Hadamard manifold.

The assumption on the Ricci curvature in the above can be replaced by the weaker one

ν = 0. Also, the Hadamard condition can probably be relaxed a bit. Combining our results

and [Z], we can state the complex analogue of the above:

Theorem 3. Let Xn be an immersed complex submanifold of CQn+p
c , the complex space

form of constant holomorphic sectional curvature c. Assume that Xn has nonpositive ex-

trinsic sectional curvature. Then the index of relative nullity of Xn satisfies ν ≥ n − p

and:

(1) when ν = n− p = 0, we must have c = 0;

(2) when c = 0 and ν = n− p, Xn is locally holomorphically isometric to a product

C
k ×Xn1 × · · · ×Xnp ⊆ Xn+p, n = k +

p∑

i=1

ni ,

for some 0 ≤ k ≤ ν, where each Xni ⊆ C ni+1 is a nowhere flat nonpositively curved

hypersurface.

Moreover, if Xn is complete, then its universal covering is holomorphicaly isometric to

the product C ν × Σ1 × · · · × Σp, where each Σi ↪→ C 2 is a complete immersion of the unit

disc. All dimensions here are the complex ones.

Notice that the real analyticity of Xn prevented k from jumping around. The last part

of Theorem 3 is because, by a theorem of Abe in [A], any complete immersed complex

submanifold of C m with one dimensional Gauss image must be a cylinder.

Remark. Any Euclidean hypersurface g : Hm → Rm+1 of nonpositive sectional curvature

without flat points can be described locally by means of the Gauss parametrization in the

following way (see [DG] for details). Take a surface ξ : V 2 → Sm in the Euclidean unit

sphere and a smooth function γ on V 2. The map Ψ : T⊥
ξ V → Rm+1 given by

Ψ(v) = γξ + gradγ + v

parametrizes g over the normal bundle of ξ, in the open set of normal vectors v which

satisfies det(γId + Hessγ − Bv) < 0. Here, Bv denotes the second fundamental operator
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of ξ in the direction v. In this parametrization, ξ is the Gauss map of g and γ = 〈g, ξ〉

its support function. For a discussion on the isometric deformations of those hypersurfaces

see [DFT]. Observe that any isometric immersion f as in Theorem 1 can now be explicitly

parametrized locally along U using the Gauss parametrization for each factor.

The flatness of the normal bundle.

Let α : V n × V n → W p be a symmetric bilinear map, where V and W are real vector

spaces of dimension n and p, respectively, and W is equipped with an inner product 〈 , 〉.

Assume α is nonpositive as defined in [F1], i.e.,

Kα(X,Y ) = 〈α(X,X), α(Y, Y )〉− ‖ α(X,Y ) ‖2≤ 0,

for all X, Y ∈ V . Denote by ν the dimension of the null space N of α:

N = {X ∈ V | α(X,Y ) = 0, ∀ Y ∈ V }.

Recall that a subspace T ⊆ V is said to be asymptotic, if α(X,Y ) = 0 for all X,Y ∈ T . We

know from [F1] that, for the above α, ν ≥ n− 2p. The main technical part of this article

is the following diagonalization result for the borderline case ν = n− 2p.

Proposition 4. Let α : V n × V n → W p be a symmetric, nonpositive bilinear map. If

ν = n−2p, then there exist a basis {e1, . . . , en} of V and an orthonormal basis {w1, . . . , wp}

of W such that {e2p+1, . . . , en} is a basis of the null space N , and for each i, j ≤ 2p,

α(ei, ej) = δij(−1)iw[ i+1

2
] .

Proof: We will carry out the induction on p. When p = 1, α is just a symmetric bilinear

form, so it can always be diagonalized. The nonpositivity condition will force the rank of

α to be less or equal than 2, and when it equals 2, the two nonzero eigenvalues must be of

opposite sign. Now assume that the result holds when dim W < p, and consider the case

dim W = p.

By restricting α to a subspace Ṽ 2p such that V = N ⊕ Ṽ , we may assume that n = 2p

and ν = 0. Denote by αX the endomorphism αX(Y ) = α(X,Y ). By Proposition 6 of [F1]
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we know that there exists an asymptotic subspace T p ⊆ Ṽ 2p of α. Set

r = min{rankαX : 0 6= X ∈ T} > 0.

Fix a vector X ∈ T with rank αX = r and let V ′ = Ker(αX) ⊇ T . Thus, by the first claim

in the proof of Proposition 6 of [F1], we know that the image α(V ′ × V ′) is perpendicular

to the image subspace Im(αX), that is, we have the restriction map

α |V ′×V ′ : V ′ × V ′ → Im(αX)⊥.

Let N ′ be its null space. If there is Y ∈ N ′ \T , then span(T ∪{Y }) would be an asymptotic

subspace of α of dimension p + 1. By Proposition 8 of [F1], we get ν ≥ 1, a contradiction

to our assumption. Therefore, N ′ ⊆ T .

For each Y ∈ N ′ ⊆ T , we have Ker(αY ) ⊇ V ′ = Ker(αX), so rank αY = r. Therefore,

V ′ = Ker(αY ), ∀ 0 6= Y ∈ N ′. (1)

Put W0 = span{Im(αY ) : Y ∈ N ′} which has dimension r+ s, for some s ≥ 0. Again from

the proof of Proposition 6 of [F1], we know that α(V ′ ×V ′) is perpendicular to W0, that is,

β = α |V ′×V ′ : V ′ × V ′ →W⊥
0

is itself a symmetric, nonpositive bilinear map, with dim V ′ = 2p− r, dim W⊥
0 = p− r− s.

Write q = dim N ′. Then by Proposition 9 of [F1] we have

q ≥ (2p− r) − 2(p− r − s) = r + 2s. (2)

On the other hand, if {Y1, . . . , Yq} is a basis of N ′ and Z ∈ V \ V ′, from (1) we obtain that

the set of vectors {α(Y1, Z), · · · , α(Yq, Z)} in W0 must be linearly independent. Thus

q ≤ r + s. (3)

We conclude from (2) and (3) that s = 0 and q = r. So we can apply the induction

hypothesis on β. However, we want to show first that r = 1.

Assume the contrary, that is, q > 1. Take a subspace V r
1 such that V1⊕V

′ = V . Choose

any Y ∈ N ′ not collinear with X. Since s = 0, (the restriction of) both αX and αY give

isomorphisms between V1 and W⊥
0 . Fix an orthonormal basis {w1, . . . , wr} of W⊥

0 . Let
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{v1, . . . , vr} be the basis of V1 such that αX(vi) = wi and write αY (vi) =
∑r

j=1Bijwj .

That is, we identify V1 and W⊥
0 through αX , and use the matrix B to represent αY .

If B has a real eigenvalue λ, then αY −λX would have rank less than r, which contradicts

(1). So the matrix B has no real eigenvalues. By considering a complex eigenvector which

corresponds to a complex eigenvalue of B, we obtain two 2-planes P ⊆ V1, Q ⊆ W⊥
0 , such

that both αX and αY give isomorphisms between P and Q.

Now let us fix an orthonormal basis {w1, w2} of Q, and let {e3, e4} be the basis of P

such that αX(e3) = w1, αX(e4) = w2. Write

αY (e3) = aw1 + bw2, αY (e4) = cw1 + dw2.

Replacing Y by Y − dX, we may assume that

d = 0.

We know that the 2 × 2 real matrix with entries a, b, c, 0 can not have any real eigenvalue,

or equivalently,

4bc+ a2 < 0.

Set e1 = X, e2 = Y . For arbitrary real constants x and y, let us consider the vectors

Z = xe1 + xye2 + xe3 − e4 and Z ′ = ye2 + e3. We have

Z ∧ Z ′ = xye1 ∧ e2 + xe1 ∧ e3 + ye2 ∧ e4 + e3 ∧ e4.

Define the symmetric bilinear form R on Λ2V , the curvature of α, as

R(Z1 ∧ Z2, Z3 ∧ Z4) = 〈α(Z1, Z3), α(Z2, Z4)〉 − 〈α(Z1, Z4), α(Z2, Z3)〉. (4)

Hence, the matrix of R under the partial basis {e1 ∧ e2, e1 ∧ e3, e2 ∧ e4, e3 ∧ e4} is

R =




0 0 0 c− b

0 −1 −b −f

0 −b −c2 −g

c− b −f −g −h




.

Therefore −R(Z∧Z ′, Z∧Z ′) = x2+c2y2+h+2(2b−c)xy+2fx+2gy. Thus, the nonpositivity

of α gives us

c2y2 + 2((2b − c)x+ g)y + (x2 + 2fx+ h) ≥ 0.
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Hence, the discriminant with respect to y must be nonpositive, that is,

0 ≤ c2(x2 + 2fx+ h) − ((2b− c)x+ g))2 = (4bc− 4b2)x2 + 2(c2f + cg − 2bg)x+ (c2h− g2).

Since a2 + 4bc < 0, the leading coefficient is negative, which is a contradiction for x suffi-

ciently large. This completes the proof of the claim that q = r = 1.

Now applying the induction hypothesis on the restriction map β, we obtain an orthonor-

mal basis {w1, . . . , wp} of W and a basis {e′1, e2, e
′
2, . . . , ep, e

′
p} of V ′ = Ker(αX) such

that X = e′1, Im(αX) = span{w1},

α(ei, ej) = δijwi, α(e′i, e
′
j) = −δijwi, α(ei, e

′
j) = 0, ∀ 2 ≤ i, j ≤ p,

and of course α(e′1, e
′
1) = α(e′1, ei) = α(e′1, e

′
i) = 0 , for all 2 ≤ i ≤ p.

Choose a vector e1 ∈ V \ V ′ such that α(e1, e
′
1) = w1. Write α = (A1, . . . , Ap) , where

each Ak
ab = 〈α(ea, eb), wk〉 is a symmetric 2p× 2p matrix. Here for convenience we adopt

the notations e′i = ep+i and i′ = i+ p, for i ≤ p. Under the basis {ea ∧ eb; 1 ≤ a < b ≤ 2p}

of Λ2V , the coordinate matrix of the bilinear form R becomes

Rab,cd =
p∑

k=1

(Ak
acA

k
bd −Ak

adA
k
bc).

The nonpositivity of α simply says that R(Z1 ∧Z2, Z1 ∧Z2) ≤ 0. For any three vectors Zi,

i = 1, 2, 3, by considering the nonpositivity at Z1 ∧ (Z2 + xZ3) for arbitrary x, we have

R(Z1 ∧ Z2, Z1 ∧ Z2) ·R(Z1 ∧ Z3, Z1 ∧ Z3) ≥ (R(Z1 ∧ Z2, Z1 ∧ Z3))
2. (5)

For all 2 ≤ i ≤ p and 2 ≤ a 6= i, i′ , from the above and Ria,ia = 0 we have R1i,ia = −Ai
1a =

0. That is, Ai
1j = Ai

1j′ = 0, for all 2 ≤ i 6= j ≤ p. Replacing e1 by e1−
∑p

i=2(A
i
1iei−A

i
1i′e

′
i) ,

we may assume that

Ai
1j ≡ 0, ∀ i, j ≥ 2. (6)

For 2 ≤ i ≤ p , set

bi = Ai
11, ai = A1

1i, ci = A1
1i′ .

Thus,

R11′,11′ = −1,

R1i,1i = bi − a2
i , R11′,1i = −ai,
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R1i′,1i′ = bi − c2i , R11′,1i′ = −ci,

since A1
11′ = 1. From (6) and R11′,11′R1i,1i ≥ (R11′,1i)

2 we get bi ≤ 0. Similarly, replacing

i by i′, we have bi ≥ 0. Therefore, all bi = 0.

Now we take any nonsingular 2 × 2 matrix



a b

c d




such that 

a c

b d






A1

11 1

1 0






a b

c d


 =




1 0

0 −1




and set

ẽ1 = ae1 + ce′1, ẽ′1 = be1 + de′1, ẽi = ei − aie
′
1, ẽ′i = e′i − cie

′
1, 2 ≤ i ≤ p.

Then under the new basis {ẽa} of V , we have α(ẽa, ẽb) = 0 , if a 6= b, b′, and

α(ẽi, ẽi) = wi, α(ẽ′i, ẽ
′
i) = −wi , ∀ 1 ≤ i ≤ p.

This completes the proof of Proposition 4.

Let us examine the diagonalizing frame {wi} of Proposition 4. Set

D = {X ∈ V : rank (αX) ≤ 1 }.

This set of course depends only on α. By Proposition 4, we know that D is the union of p

subspaces of dimension ν + 2, denoted by Di, i = 1, . . . , p, with Di ∩Dj = N for all i 6= j.

If we choose a plane Vi ⊆ Di which has trivial intersection with N , then V is the direct sum

V = N ⊕ V1 ⊕ · · · ⊕ Vp

and α(Di × Dj) = 0 if i 6= j, while all α(Di × Di) are one dimensional and mutually

perpendicular. So the orthonormal frame {wi} is uniquely determined up to permutations.

It is interesting to note that K ≤ 0 does not implies in general that the symmetric

curvature operator R is negative semidefinite. However, it is easy to see using Proposition

4 that, in our case, we really have R ≤ 0. In fact, {ei ∧ ei+p : 1 ≤ i ≤ p} is a basis of
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the orthogonal complement F of the nullity space of R in Λ2V formed by the unique (up

to scaling) decomposable elements in F . Indeed, ei ∧ ei+p is eigenvector of R of eigenvalue

K(ei, ei+p) 6= 0.

We are now in position to give the remaining proofs.

Proofs of Theorem 1 and Corollary 2: For each x ∈ M n, consider αf (x) the vector valued

second fundamental form of f at x. Since KM ≤ 0, the Gauss equation tells us that αf (x) is

nonpositive. Thus, we apply Proposition 4 to it to obtain the special (smooth) orthonormal

frame {wi, 1 ≤ i ≤ p}. By Theorem 1 and Corollary 2 of [F2], we only need to prove that

the normal bundle of f is flat. We will show indeed that this frame is normal parallel.

For each 1 ≤ i ≤ p, consider the shape tensor Awi
on Mn defined by 〈Awi

X,Y 〉 =

〈αf (X,Y ), wi〉. By Proposition 4, Vi = ImAwi
are two dimensional distributions on M n

such that

V1 ⊕ · · · ⊕ Vp = ∆⊥, (7)

where ∆ stands for the relative nullity distribution of f . Let ψij be the 1–forms defined by

ψij(X) = 〈∇⊥
Xwi, wj〉. We only need to show that ψij = 0, for all i, j.

Recall that the Codazzi equation for Awi
is

∇X(Awi
Y ) −Awi

∇XY −A∇⊥
X

wi
Y = ∇Y (Awi

X) −Awi
∇YX −A∇⊥

Y
wi
X. (8)

Taking in (8) X,Y ∈ V ⊥
i = KerAwi

we easily obtain using (7) that

Awj
(ψij(X)Y − ψij(Y )X) = 0, ∀ X,Y ∈ V ⊥

i , 1 ≤ j ≤ p.

Suppose that there is X0 ∈ V ⊥
i , and j 6= i such that ψij(X0) 6= 0. The above equation

implies that V ⊥
i ⊂ V ⊥

j ⊕ span{X0}, that is,

TxM 6= V ⊥
i + V ⊥

j = (Vi ∩ Vj)
⊥,

which is a contradiction by (7). Thus V ⊥
i ⊂ Kerψij , for all i, j. By the orthonormality of

{wi} we have ψij = −ψji. Therefore, TxM = V ⊥
i + V ⊥

j ⊂ Kerψij. Notice that the Ricci

equations imply that the Vi’s are orthogonal. This concludes our proof.

The proof of Theorem 3 can be obtained by combining the diagonalization theorem of

[Z] (together with the similar argument of the orthogonality of the special frame) and the

proof of the Theorem 1 of [F2]. So we shall omit it here.
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Final comments.

i) Let us explain Theorem 1 a little bit. We have everywhere on M n the orthogonal

decomposition TM = N ⊕ V1 ⊕ · · · ⊕ Vp of the tangent bundle into distributions. Let Ṽi

be the distribution spanned by all vector fields in Vi and all ∇X1
· · · ∇XsXs+1 , where all

Xj ∈ Vi. It is shown in [F2] that Ṽi ⊥ Ṽj whenever i 6= j, and all Ṽi are parallel distributions

(in the neighborhood where they have constant dimensions). Let ni(x) be the dimension

of Ṽi at x. Each ni is a lower semicontinuous integer-valued function. If k = n −
∑p

i=1 ni,

then 0 ≤ k ≤ ν. Let U be the open dense subset of M n which is the disjoint union of open

subsets Uj in which k(x) takes constant value j. All ni are necessarily constant in Uj, and

we have the desired local splitting on U|. Observe that, using the Gauss parametrization, it

is easy to construct examples of submanifolds with the functions ni nonconstant. Therefore,

for ν > 0 we can only obtain the local splitting along an open dense subset. With this is

mind, the same argument as in Corollary 2 of [F2] proves the following

Theorem 5. Let f : Mn → Q2n−r
c , 2 ≤ r ≤ n/2, be an isometric immersion with flat

normal bundle of a connected Riemannian manifold with KM ≤ c and RicM < c. Then

c = 0 and f splits locally as a product of r nonpositively curved Euclidean submanifolds,

that is, f = f1 × · · · × fr locally, with fi : Mni

i → R2ni−1. The splitting is global provided

Mn is a Hadamard manifold.

Again, the assumption on the Ricci curvature can be replaced by ν = 0.

ii) We believe that the case ν = n−2p > 0 for an isometric immersion f : M n → Qn+p
c ,

with c 6= 0, cannot occur. It would be interesting either to prove its nonexistence or to

construct such an example. The complex case should be similar.

iii) Taking the curvature tensor R as a 4–tensor on M n, it is defined the nullity space of

Mn at x as the subspace Γ(x) = {X ∈ TxM : R(X,Y,Z,W ) = 0, ∀ Y,Z,W ∈ TxM}. This

is an intrinsic subspace, so its dimension µ(x) called the nullity index of M n is an intrinsic

function. For an isometric immersion f of M n into Euclidean space we always have that the

relative nullity distribution ∆ of f satisfies ∆ ⊂ Γ. Thus, our assumption on the relative

nullity distribution in Theorem 1 can be replaced by the intrinsic one µ = n−2p. The same
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holds for Corollary 2.

iv) Now let us consider the more general situation discussed in Theorem 1 of [F2],

namely, ν = n− p− r, for some 2 ≤ r ≤ p. It is natural to ask if it can be generalized by

dropping the flatness of the normal bundle assumption as we did for the case r = p. The

answer to this question seems to be negative, since the algebraic decomposition Proposition

4 does not generalizes, even for the case r = p − 1, as the following example shows. Take

Ai defined as

A1 =




1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, A2 =




0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 0




, A3 =




0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

1 1 1 1 0




.

The bilinear form α = (A1, A2, A3) : R5 ×R5 → R3 is nonpositive, has ν = n− p− r = 0 for

r = p− 1 = 2 but is not decomposable. It is easy to generalize this example for all p. Thus

the analogous result to Proposition 4 is false for ν = n− p− r and 2 ≤ r ≤ p− 1.
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