On Nonpositively Curved Euclidean Submanifolds: Splitting Results *

Luis A. Florit^{\dagger} and Fangyang Zheng^{\ddagger}

Abstract

In this article, we prove that a *n*-dimensional, non-positively curved Euclidean submanifold with codimension p and with minimal index of relative nullity $\nu = n - 2p$ is (in an open dense subset) locally the product of p hypersurfaces.

AMS-Classification: Primary 53B25; Secondary 53C40.

Key wods: isometric immersion, non-positively curved, Euclidean submanifold.

Let $f: M^n \to \mathbb{Q}_c^{n+p}$ be an isometric immersion from a Riemannian manifold into a complete simply connected Riemannian manifold of constant sectional curvature c (superscripts will always denote dimensions). Denote by ν the *index of relative nullity* of f,

$$\nu(x) = \dim\{X \in T_x M : \alpha_f(X, Y) = 0, \forall Y \in T_x M\},\$$

where α_f stands for the vector valued second fundamental form of f. It is well known that having $\nu > 0$ imposes strong restrictions on the manifold M^n and on its isometric immersion f. In [F1], the first author proved the inequality $\nu \ge n - 2p$ when the sectional curvature of M^n satisfies $K_M \le c$ and gave several applications of this result. First let us show that this estimate is sharp.

^{*}Mathematics Subject Classification (1991): Primary 53B25; Secondary 53C40.

[†]Research partially supported by CNPq Brazil.

[‡]Research partially supported by a NSF grant and an Alfred P. Sloan Fellowship. This project is also sponsored by the National Security Agency under grant # MDA904-98-1-0036.

Example. For each i = 1, ..., p, let $S_i \subseteq \mathbb{R}^3$ be a negatively curved surface. Then the product $M^{2p} = S_1 \times \cdots \times S_p \subseteq \mathbb{R}^{3p}$ satisfies the equality $\nu = n - 2p = 0$.

More generically, let $M_i^{n_i} \subseteq \mathbb{R}^{n_i+1}$ be nowhere flat nonpositively curved hypersurfaces, $i = 1, \ldots, p$. The Gauss equation tells us that the relative nullity ν_i of $M_i^{n_i}$ is $\nu_i = n_i - 2$. Then, the product manifold $M^n = M_1^{n_1} \times \cdots \times M_p^{n_p} \subseteq \mathbb{R}^{n+p}$ also have $\nu = n - 2p$.

The first author proved in [F2] a general splitting theorem for Euclidean submanifolds fof nonpositive sectional curvature, under the additional assumption that the normal bundle of f is flat. The main purpose of this paper is to drop that assumption in the borderline case $\nu = n - 2p$ to prove that the above example is essentially the unique one with minimal relative nullity index.

Theorem 1. Let $f: M^n \to \mathbb{R}^{n+p}$ be an isometric immersion into Euclidean space of a Riemannian manifold with nonpositive sectional curvature. Assume that $\nu = n - 2p$ everywhere. Then there exists an open dense subset $\mathcal{U} \subset M^n$ such that $f|_{\mathcal{U}}$ splits locally as a product of p Euclidean hypersurfaces, that is, for any $x \in \mathcal{U}$, there exist a neighborhood $x \in \mathcal{V} \subseteq \mathcal{U}$ and p nowhere flat Euclidean hypersurfaces $f_i: M_i^{n_i} \to \mathbb{R}^{n_i+1}$ of nonpositive sectional curvature, such that

$$\mathcal{V} = M_1 \times \cdots \times M_p$$
 and $f|_{\mathcal{V}} = f_1 \times \cdots \times f_p$

split.

First of all, note that when f is analytic, the splitting occurs on the entire M. In the general case, each n_i is constant in a connected components of \mathcal{U} , in fact, the universal covering space of any component of of \mathcal{U} is the product of p Euclidean hypersurfaces. However, there are examples in which the n_i 's are not constant in the entire \mathcal{U} . Secondly, it is interesting to observe that, from Theorem 1 of [M] we have that $f|_{\mathcal{V}}$ in the above is isometrically rigid if and only if each factor is rigid.

Corollary 2. Let $f: M^n \to \mathbb{Q}_c^{n+p}$, $2p \leq n$, be an isometric immersion of a connected Riemannian manifold M^n with $K_M \leq c$ and Ricci curvature $\operatorname{Ric}_M < c$. Then c = 0, n = 2pand f splits locally as a product of p negatively curved surfaces of \mathbb{R}^3 . Moreover, the splitting The assumption on the Ricci curvature in the above can be replaced by the weaker one $\nu = 0$. Also, the Hadamard condition can probably be relaxed a bit. Combining our results and [Z], we can state the complex analogue of the above:

Theorem 3. Let X^n be an immersed complex submanifold of \mathbb{CQ}_c^{n+p} , the complex space form of constant holomorphic sectional curvature c. Assume that X^n has nonpositive extrinsic sectional curvature. Then the index of relative nullity of X^n satisfies $\nu \ge n-p$ and:

(1) when $\nu = n - p = 0$, we must have c = 0;

(2) when c = 0 and $\nu = n - p$, X^n is locally holomorphically isometric to a product

$$\mathbb{C}^k \times X^{n_1} \times \cdots \times X^{n_p} \subseteq \mathbf{X}^{n+p}, \quad n = k + \sum_{i=1}^p n_i$$

for some $0 \leq k \leq \nu$, where each $X^{n_i} \subseteq \mathbb{C}^{n_i+1}$ is a nowhere flat nonpositively curved hypersurface.

Moreover, if X^n is complete, then its universal covering is holomorphically isometric to the product $\mathbb{C}^{\nu} \times \Sigma_1 \times \cdots \times \Sigma_p$, where each $\Sigma_i \hookrightarrow \mathbb{C}^2$ is a complete immersion of the unit disc. All dimensions here are the complex ones.

Notice that the real analyticity of X^n prevented k from jumping around. The last part of Theorem 3 is because, by a theorem of Abe in [A], any complete immersed complex submanifold of \mathbb{C}^m with one dimensional Gauss image must be a cylinder.

Remark. Any Euclidean hypersurface $g: H^m \to \mathbb{R}^{m+1}$ of nonpositive sectional curvature without flat points can be described locally by means of the Gauss parametrization in the following way (see [DG] for details). Take a surface $\xi: V^2 \to \mathbb{S}^m$ in the Euclidean unit sphere and a smooth function γ on V^2 . The map $\Psi: T_{\xi}^{\perp}V \to \mathbb{R}^{m+1}$ given by

$$\Psi(v) = \gamma \xi + grad\gamma + v$$

parametrizes g over the normal bundle of ξ , in the open set of normal vectors v which satisfies det $(\gamma Id + Hess_{\gamma} - B_v) < 0$. Here, B_v denotes the second fundamental operator of ξ in the direction v. In this parametrization, ξ is the Gauss map of g and $\gamma = \langle g, \xi \rangle$ its support function. For a discussion on the isometric deformations of those hypersurfaces see [DFT]. Observe that any isometric immersion f as in Theorem 1 can now be explicitly parametrized locally along \mathcal{U} using the Gauss parametrization for each factor.

The flatness of the normal bundle.

Let $\alpha: V^n \times V^n \to W^p$ be a symmetric bilinear map, where V and W are real vector spaces of dimension n and p, respectively, and W is equipped with an inner product \langle , \rangle . Assume α is *nonpositive* as defined in [F1], i.e.,

$$K_{\alpha}(X,Y) = \langle \alpha(X,X), \alpha(Y,Y) \rangle - \parallel \alpha(X,Y) \parallel^{2} \le 0,$$

for all $X, Y \in V$. Denote by ν the dimension of the null space N of α :

$$N = \{ X \in V \mid \alpha(X, Y) = 0, \forall Y \in V \}.$$

Recall that a subspace $T \subseteq V$ is said to be *asymptotic*, if $\alpha(X, Y) = 0$ for all $X, Y \in T$. We know from [F1] that, for the above α , $\nu \geq n - 2p$. The main technical part of this article is the following diagonalization result for the borderline case $\nu = n - 2p$.

Proposition 4. Let $\alpha : V^n \times V^n \to W^p$ be a symmetric, nonpositive bilinear map. If $\nu = n - 2p$, then there exist a basis $\{e_1, \ldots, e_n\}$ of V and an orthonormal basis $\{w_1, \ldots, w_p\}$ of W such that $\{e_{2p+1}, \ldots, e_n\}$ is a basis of the null space N, and for each $i, j \leq 2p$,

$$\alpha(e_i, e_j) = \delta_{ij} (-1)^i w_{\left[\frac{i+1}{2}\right]}.$$

Proof: We will carry out the induction on p. When p = 1, α is just a symmetric bilinear form, so it can always be diagonalized. The nonpositivity condition will force the rank of α to be less or equal than 2, and when it equals 2, the two nonzero eigenvalues must be of opposite sign. Now assume that the result holds when dim W < p, and consider the case dim W = p.

By restricting α to a subspace \widetilde{V}^{2p} such that $V = N \oplus \widetilde{V}$, we may assume that n = 2pand $\nu = 0$. Denote by α_X the endomorphism $\alpha_X(Y) = \alpha(X, Y)$. By Proposition 6 of [F1] we know that there exists an asymptotic subspace $T^p \subseteq \widetilde{V}^{2p}$ of α . Set

$$r = \min\{rank\alpha_X : 0 \neq X \in T\} > 0.$$

Fix a vector $X \in T$ with rank $\alpha_X = r$ and let $V' = Ker(\alpha_X) \supseteq T$. Thus, by the first claim in the proof of Proposition 6 of [F1], we know that the image $\alpha(V' \times V')$ is perpendicular to the image subspace $Im(\alpha_X)$, that is, we have the restriction map

$$\alpha \mid_{V' \times V'} : V' \times V' \to Im(\alpha_X)^{\perp}$$

Let N' be its null space. If there is $Y \in N' \setminus T$, then $\operatorname{span}(T \cup \{Y\})$ would be an asymptotic subspace of α of dimension p + 1. By Proposition 8 of [F1], we get $\nu \ge 1$, a contradiction to our assumption. Therefore, $N' \subseteq T$.

For each $Y \in N' \subseteq T$, we have $\operatorname{Ker}(\alpha_Y) \supseteq V' = \operatorname{Ker}(\alpha_X)$, so rank $\alpha_Y = r$. Therefore,

$$V' = Ker(\alpha_Y), \quad \forall \ 0 \neq Y \in N'.$$
(1)

Put $W_0 = span\{Im(\alpha_Y) : Y \in N'\}$ which has dimension r + s, for some $s \ge 0$. Again from the proof of Proposition 6 of [F1], we know that $\alpha(V' \times V')$ is perpendicular to W_0 , that is,

$$\beta = \alpha \mid_{V' \times V'} : V' \times V' \to W_0^{\perp}$$

is itself a symmetric, nonpositive bilinear map, with dim V' = 2p - r, dim $W_0^{\perp} = p - r - s$. Write $q = \dim N'$. Then by Proposition 9 of [F1] we have

$$q \ge (2p - r) - 2(p - r - s) = r + 2s.$$
⁽²⁾

On the other hand, if $\{Y_1, \ldots, Y_q\}$ is a basis of N' and $Z \in V \setminus V'$, from (1) we obtain that the set of vectors $\{\alpha(Y_1, Z), \cdots, \alpha(Y_q, Z)\}$ in W_0 must be linearly independent. Thus

$$q \le r + s. \tag{3}$$

We conclude from (2) and (3) that s = 0 and q = r. So we can apply the induction hypothesis on β . However, we want to show first that r = 1.

Assume the contrary, that is, q > 1. Take a subspace V_1^r such that $V_1 \oplus V' = V$. Choose any $Y \in N'$ not collinear with X. Since s = 0, (the restriction of) both α_X and α_Y give isomorphisms between V_1 and W_0^{\perp} . Fix an orthonormal basis $\{w_1, \ldots, w_r\}$ of W_0^{\perp} . Let $\{v_1, \ldots, v_r\}$ be the basis of V_1 such that $\alpha_X(v_i) = w_i$ and write $\alpha_Y(v_i) = \sum_{j=1}^r B_{ij} w_j$. That is, we identify V_1 and W_0^{\perp} through α_X , and use the matrix B to represent α_Y .

If B has a real eigenvalue λ , then $\alpha_{Y-\lambda X}$ would have rank less than r, which contradicts (1). So the matrix B has no real eigenvalues. By considering a complex eigenvector which corresponds to a complex eigenvalue of B, we obtain two 2-planes $P \subseteq V_1$, $Q \subseteq W_0^{\perp}$, such that both α_X and α_Y give isomorphisms between P and Q.

Now let us fix an orthonormal basis $\{w_1, w_2\}$ of Q, and let $\{e_3, e_4\}$ be the basis of P such that $\alpha_X(e_3) = w_1$, $\alpha_X(e_4) = w_2$. Write

$$\alpha_Y(e_3) = aw_1 + bw_2, \ \ \alpha_Y(e_4) = cw_1 + dw_2.$$

Replacing Y by Y - dX, we may assume that

d = 0.

We know that the 2×2 real matrix with entries a, b, c, 0 can not have any real eigenvalue, or equivalently,

$$4bc + a^2 < 0.$$

Set $e_1 = X$, $e_2 = Y$. For arbitrary real constants x and y, let us consider the vectors $Z = xe_1 + xye_2 + xe_3 - e_4$ and $Z' = ye_2 + e_3$. We have

$$Z \wedge Z' = xye_1 \wedge e_2 + xe_1 \wedge e_3 + ye_2 \wedge e_4 + e_3 \wedge e_4.$$

Define the symmetric bilinear form R on $\Lambda^2 V$, the curvature of α , as

$$R(Z_1 \wedge Z_2, Z_3 \wedge Z_4) = \langle \alpha(Z_1, Z_3), \alpha(Z_2, Z_4) \rangle - \langle \alpha(Z_1, Z_4), \alpha(Z_2, Z_3) \rangle.$$
(4)

Hence, the matrix of R under the partial basis $\{e_1 \land e_2, e_1 \land e_3, e_2 \land e_4, e_3 \land e_4\}$ is

$$R = \begin{bmatrix} 0 & 0 & 0 & c-b \\ 0 & -1 & -b & -f \\ 0 & -b & -c^2 & -g \\ c-b & -f & -g & -h \end{bmatrix}$$

Therefore $-R(Z \wedge Z', Z \wedge Z') = x^2 + c^2y^2 + h + 2(2b-c)xy + 2fx + 2gy$. Thus, the nonpositivity of α gives us

$$c^{2}y^{2} + 2((2b - c)x + g)y + (x^{2} + 2fx + h) \ge 0.$$

Hence, the discriminant with respect to y must be nonpositive, that is,

$$0 \le c^2(x^2 + 2fx + h) - ((2b - c)x + g))^2 = (4bc - 4b^2)x^2 + 2(c^2f + cg - 2bg)x + (c^2h - g^2).$$

Since $a^2 + 4bc < 0$, the leading coefficient is negative, which is a contradiction for x sufficiently large. This completes the proof of the claim that q = r = 1.

Now applying the induction hypothesis on the restriction map β , we obtain an orthonormal basis $\{w_1, \ldots, w_p\}$ of W and a basis $\{e'_1, e_2, e'_2, \ldots, e_p, e'_p\}$ of $V' = Ker(\alpha_X)$ such that $X = e'_1$, $Im(\alpha_X) = span\{w_1\}$,

$$\alpha(e_i, e_j) = \delta_{ij} w_i, \quad \alpha(e'_i, e'_j) = -\delta_{ij} w_i, \quad \alpha(e_i, e'_j) = 0, \quad \forall \ 2 \le i, j \le p,$$

and of course $\alpha(e_1',e_1') = \alpha(e_1',e_i) = \alpha(e_1',e_i') = 0$, for all $2 \le i \le p$.

Choose a vector $e_1 \in V \setminus V'$ such that $\alpha(e_1, e'_1) = w_1$. Write $\alpha = (A^1, \ldots, A^p)$, where each $A^k_{ab} = \langle \alpha(e_a, e_b), w_k \rangle$ is a symmetric $2p \times 2p$ matrix. Here for convenience we adopt the notations $e'_i = e_{p+i}$ and i' = i + p, for $i \leq p$. Under the basis $\{e_a \wedge e_b; 1 \leq a < b \leq 2p\}$ of $\Lambda^2 V$, the coordinate matrix of the bilinear form R becomes

$$R_{ab,cd} = \sum_{k=1}^{p} (A_{ac}^{k} A_{bd}^{k} - A_{ad}^{k} A_{bc}^{k}).$$

The nonpositivity of α simply says that $R(Z_1 \wedge Z_2, Z_1 \wedge Z_2) \leq 0$. For any three vectors Z_i , i = 1, 2, 3, by considering the nonpositivity at $Z_1 \wedge (Z_2 + xZ_3)$ for arbitrary x, we have

$$R(Z_1 \wedge Z_2, Z_1 \wedge Z_2) \cdot R(Z_1 \wedge Z_3, Z_1 \wedge Z_3) \ge (R(Z_1 \wedge Z_2, Z_1 \wedge Z_3))^2.$$
(5)

For all $2 \leq i \leq p$ and $2 \leq a \neq i, i'$, from the above and $R_{ia,ia} = 0$ we have $R_{1i,ia} = -A_{1a}^i = 0$. 0. That is, $A_{1j}^i = A_{1j'}^i = 0$, for all $2 \leq i \neq j \leq p$. Replacing e_1 by $e_1 - \sum_{i=2}^p (A_{1i}^i e_i - A_{1i'}^i e_i')$, we may assume that

$$A_{1j}^i \equiv 0, \quad \forall \ i, j \ge 2. \tag{6}$$

For $2 \le i \le p$, set

$$b_i = A_{11}^i, \ a_i = A_{1i}^1, \ c_i = A_{1i'}^1.$$

Thus,

$$R_{11',11'} = -1,$$

$$R_{1i,1i} = b_i - a_i^2, \quad R_{11',1i} = -a_i$$

$$R_{1i',1i'} = b_i - c_i^2, \quad R_{11',1i'} = -c_i,$$

since $A_{11'}^1 = 1$. From (6) and $R_{11',11'}R_{1i,1i} \ge (R_{11',1i})^2$ we get $b_i \le 0$. Similarly, replacing i by i', we have $b_i \ge 0$. Therefore, all $b_i = 0$.

Now we take any nonsingular 2×2 matrix

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]$$

such that

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} A_{11}^1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

and set

$$\tilde{e}_1 = ae_1 + ce'_1, \quad \tilde{e}'_1 = be_1 + de'_1, \quad \tilde{e}_i = e_i - a_ie'_1, \quad \tilde{e}'_i = e'_i - c_ie'_1, \quad 2 \le i \le p.$$

Then under the new basis $\{\tilde{e}_a\}$ of V, we have $\alpha(\tilde{e}_a, \tilde{e}_b) = 0$, if $a \neq b, b'$, and

$$\alpha(\tilde{e}_i, \tilde{e}_i) = w_i, \quad \alpha(\tilde{e}'_i, \tilde{e}'_i) = -w_i \ , \quad \forall \ 1 \le i \le p.$$

This completes the proof of Proposition 4. ■

Let us examine the diagonalizing frame $\{w_i\}$ of Proposition 4. Set

$$\mathcal{D} = \{ X \in V : \operatorname{rank}(\alpha_X) \le 1 \}.$$

This set of course depends only on α . By Proposition 4, we know that \mathcal{D} is the union of p subspaces of dimension $\nu + 2$, denoted by \mathcal{D}_i , $i = 1, \ldots, p$, with $\mathcal{D}_i \cap \mathcal{D}_j = N$ for all $i \neq j$. If we choose a plane $V_i \subseteq \mathcal{D}_i$ which has trivial intersection with N, then V is the direct sum

$$V = N \oplus V_1 \oplus \cdots \oplus V_p$$

and $\alpha(\mathcal{D}_i \times \mathcal{D}_j) = 0$ if $i \neq j$, while all $\alpha(\mathcal{D}_i \times \mathcal{D}_i)$ are one dimensional and mutually perpendicular. So the orthonormal frame $\{w_i\}$ is uniquely determined up to permutations.

It is interesting to note that $K \leq 0$ does not implies in general that the symmetric curvature operator R is negative semidefinite. However, it is easy to see using Proposition 4 that, in our case, we really have $R \leq 0$. In fact, $\{e_i \wedge e_{i+p} : 1 \leq i \leq p\}$ is a basis of the orthogonal complement F of the nullity space of R in $\Lambda^2 V$ formed by the unique (up to scaling) decomposable elements in F. Indeed, $e_i \wedge e_{i+p}$ is eigenvector of R of eigenvalue $K(e_i, e_{i+p}) \neq 0.$

We are now in position to give the remaining proofs.

Proofs of Theorem 1 and Corollary 2: For each $x \in M^n$, consider $\alpha_f(x)$ the vector valued second fundamental form of f at x. Since $K_M \leq 0$, the Gauss equation tells us that $\alpha_f(x)$ is nonpositive. Thus, we apply Proposition 4 to it to obtain the special (smooth) orthonormal frame $\{w_i, 1 \leq i \leq p\}$. By Theorem 1 and Corollary 2 of [F2], we only need to prove that the normal bundle of f is flat. We will show indeed that this frame is normal parallel.

For each $1 \leq i \leq p$, consider the shape tensor A_{w_i} on M^n defined by $\langle A_{w_i}X, Y \rangle = \langle \alpha_f(X,Y), w_i \rangle$. By Proposition 4, $V_i = Im A_{w_i}$ are two dimensional distributions on M^n such that

$$V_1 \oplus \dots \oplus V_p = \Delta^{\perp},\tag{7}$$

where Δ stands for the relative nullity distribution of f. Let ψ_{ij} be the 1-forms defined by $\psi_{ij}(X) = \langle \nabla_X^{\perp} w_i, w_j \rangle$. We only need to show that $\psi_{ij} = 0$, for all i, j.

Recall that the Codazzi equation for A_{w_i} is

$$\nabla_X(A_{w_i}Y) - A_{w_i}\nabla_XY - A_{\nabla_X^{\perp}w_i}Y = \nabla_Y(A_{w_i}X) - A_{w_i}\nabla_YX - A_{\nabla_Y^{\perp}w_i}X.$$
(8)

Taking in (8) $X, Y \in V_i^{\perp} = KerA_{w_i}$ we easily obtain using (7) that

$$A_{w_j}(\psi_{ij}(X)Y - \psi_{ij}(Y)X) = 0, \ \forall X, Y \in V_i^{\perp}, \ 1 \le j \le p.$$

Suppose that there is $X_0 \in V_i^{\perp}$, and $j \neq i$ such that $\psi_{ij}(X_0) \neq 0$. The above equation implies that $V_i^{\perp} \subset V_j^{\perp} \oplus span\{X_0\}$, that is,

$$T_x M \neq V_i^{\perp} + V_j^{\perp} = (V_i \cap V_j)^{\perp},$$

which is a contradiction by (7). Thus $V_i^{\perp} \subset Ker\psi_{ij}$, for all i, j. By the orthonormality of $\{w_i\}$ we have $\psi_{ij} = -\psi_{ji}$. Therefore, $T_x M = V_i^{\perp} + V_j^{\perp} \subset Ker\psi_{ij}$. Notice that the Ricci equations imply that the V_i 's are orthogonal. This concludes our proof.

The proof of Theorem 3 can be obtained by combining the diagonalization theorem of [Z] (together with the similar argument of the orthogonality of the special frame) and the proof of the Theorem 1 of [F2]. So we shall omit it here.

Final comments.

i) Let us explain Theorem 1 a little bit. We have everywhere on M^n the orthogonal decomposition $TM = N \oplus V_1 \oplus \cdots \oplus V_p$ of the tangent bundle into distributions. Let \tilde{V}_i be the distribution spanned by all vector fields in V_i and all $\nabla_{X_1} \cdots \nabla_{X_s} X_{s+1}$, where all $X_j \in V_i$. It is shown in [F2] that $\tilde{V}_i \perp \tilde{V}_j$ whenever $i \neq j$, and all \tilde{V}_i are parallel distributions (in the neighborhood where they have constant dimensions). Let $n_i(x)$ be the dimension of \tilde{V}_i at x. Each n_i is a lower semicontinuous integer-valued function. If $k = n - \sum_{i=1}^p n_i$, then $0 \leq k \leq \nu$. Let \mathcal{U} be the open dense subset of M^n which is the disjoint union of open subsets \mathcal{U}_j in which k(x) takes constant value j. All n_i are necessarily constant in \mathcal{U}_j , and we have the desired local splitting on $\mathcal{U}_{|}$. Observe that, using the Gauss parametrization, it is easy to construct examples of submanifolds with the functions n_i nonconstant. Therefore, for $\nu > 0$ we can only obtain the local splitting along an open dense subset. With this is mind, the same argument as in Corollary 2 of [F2] proves the following

Theorem 5. Let $f: M^n \to \mathbb{Q}_c^{2n-r}$, $2 \leq r \leq n/2$, be an isometric immersion with flat normal bundle of a connected Riemannian manifold with $K_M \leq c$ and $Ric_M < c$. Then c = 0 and f splits locally as a product of r nonpositively curved Euclidean submanifolds, that is, $f = f_1 \times \cdots \times f_r$ locally, with $f_i: M_i^{n_i} \to \mathbb{R}^{2n_i-1}$. The splitting is global provided M^n is a Hadamard manifold.

Again, the assumption on the Ricci curvature can be replaced by $\nu = 0$.

ii) We believe that the case $\nu = n - 2p > 0$ for an isometric immersion $f: M^n \to \mathbb{Q}_c^{n+p}$, with $c \neq 0$, cannot occur. It would be interesting either to prove its nonexistence or to construct such an example. The complex case should be similar.

iii) Taking the curvature tensor R as a 4-tensor on M^n , it is defined the *nullity space* of M^n at x as the subspace $\Gamma(x) = \{X \in T_x M : R(X, Y, Z, W) = 0, \forall Y, Z, W \in T_x M\}$. This is an intrinsic subspace, so its dimension $\mu(x)$ called the *nullity index* of M^n is an intrinsic function. For an isometric immersion f of M^n into Euclidean space we always have that the relative nullity distribution Δ of f satisfies $\Delta \subset \Gamma$. Thus, our assumption on the relative nullity distribution in Theorem 1 can be replaced by the intrinsic one $\mu = n - 2p$. The same

holds for Corollary 2.

iv) Now let us consider the more general situation discussed in Theorem 1 of [F2], namely, $\nu = n - p - r$, for some $2 \le r \le p$. It is natural to ask if it can be generalized by dropping the flatness of the normal bundle assumption as we did for the case r = p. The answer to this question seems to be negative, since the algebraic decomposition Proposition 4 does not generalizes, even for the case r = p - 1, as the following example shows. Take A_i defined as

The bilinear form $\alpha = (A_1, A_2, A_3) : \mathbb{R}^5 \times \mathbb{R}^5 \to \mathbb{R}^3$ is nonpositive, has $\nu = n - p - r = 0$ for r = p - 1 = 2 but is not decomposable. It is easy to generalize this example for all p. Thus the analogous result to Proposition 4 is false for $\nu = n - p - r$ and $2 \le r \le p - 1$.

Acknowledgement: We would like to thank Professor M. Dajczer for his interests and helpful conversations. We would also like to thank the referee of this article for several valuable suggestions for improvements.

References

- [A] Abe, K., Applications of a Riccati type differential equation to Riemannian manifolds with totally geodesic distributions, Tôhoku Math. J., 25 (1973), 425–444.
- [DG] Dajczer, M. and Gromoll, D., Gauss parametrizations and rigidity aspects of submanifolds, J. Diff. Geom. 22, 1-12 (1985).
- [DFT] Dajczer, M., Florit, L. and Tojeiro, R., On deformable hypersurfaces in space forms, preprint.
- [F1] Florit, L., On submanifolds with nonpositive extrinsic curvature, Math. Ann. 298 (1994) 187–192.
- [F2] Florit, L., A splitting theorem for Euclidean submanifolds of nonpositive sectional curvature, to appear in Math. Z.
- [M] Moore, J., On isometric immersions of Riemannian products, J. Diff. Geom. 5, 159-168 (1971).
- [Z] Zheng, F., Isometric embedding of Kähler manifolds with nonpositive sectional curvature, Math. Ann. 304 (1996), 769–784.

IMPA

Estrada Dona Castorina, 110 22460–320 – Rio de Janeiro – Brazil luis@impa.br The Ohio State University Columbus, OH 43210-1174 – USA zheng@math.ohio-state.edu