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Abstract

We first extend the classical Sbrana-Cartan theory of isometri-
cally deformable Euclidean hypersurfaces to the sphere and hyperbolic
space. Then we construct and characterize a large family of hyper-
surfaces which admit a unique deformation. This is used to show, by
means of explicit examples, that different types of hypersurfaces in
the Sbrana-Cartan classification can be smoothly attached. Finally,
among other applications, we discuss the existence of complete de-
formable hypersurfaces in hyperbolic space.

The classification of all locally isometrically deformable euclidean hyper-
surfaces due to Sbrana ([Sb]) and Cartan ([Ca1]) has been of crucial impor-
tance in several recent developments, among others [DG4], [DG5] and [DF].
Sbrana, who stated his results in terms of what is now called (see [DG1])
the Gauss parametrization, was inspired by works due to Schur ([Sc]) and
Bianchi ([Bi1]). A few years after Sbrana, Cartan1 published similar results
but in the language of envelopes of hyperplanes.

Deformable hypersurfaces can be divided into four classes. Submanifolds
belonging to the two less interesting ones, namely, ‘surface-like’ and ruled
hypersurfaces, are highly deformable. On the contrary, while hypersurfaces
in one of the remaining classes admit, precisely, a continuous one-parameter
family of isometric deformations, elements belonging to the other class have
a unique one.

∗IMPA, marcos@impa.br
†IMPA, luis@impa.br
‡Universidade Federal de Uberlândia, rtfjunior@ufu.br
1For an interesting commentary see §473, p. 550 of [Bi2].
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The main result in the Sbrana-Cartan theory is a parametric classification
of all hypersurfaces in the two most important classes. For the first one, the
description turns out to be quite satisfactory in the sense that it enables
the construction of many explicit examples; cf §22 of [Ca1] and §4 of this
paper. For the remaining class the situation is quite different. First of all,
the parametric description is cumbersome. One has to search for surfaces
for which a pair of Christoffel symbols associated to a conjugate system of
coordinates satisfies a certain complicated system of second order partial
differential equations. Thus, it is not surprising that no example comes out
from this result. In fact, it was not clear until now whether hypersurfaces
of this type of dimension at least 4 even exist. See [Ko] for a claim in the
3-dimensional case.

Our purpose here is threefold. First, to extend the Sbrana-Cartan the-
ory to hypersurfaces in the sphere and hyperbolic space. For that, we follow
Sbrana’s approach which is more convenient in applications and makes possi-
ble to treat the problem in an unified fashion. Nevertheless, we should point
out that the one adopted by Cartan has the advantage of naturally extending
to the realm of conformal deformations (see [Ca2]).

Our second and main goal is to address the existence problem of de-
formable hypersurfaces of the discrete type. Roughly speaking, we show
that intersecting two hypersurfaces with the same constant sectional cur-
vature as that of a ambient space form yields, generically, a hypersurface
of discrete type together with its unique isometric deformation. Moreover,
we provide a parametric description of all deformable hypersurfaces which
can be obtained as intersections. In particular, this enables us to construct
explicit examples where deformable hypersurfaces of different types in the
Sbrana-Cartan theory are smoothly attached, thus showing the local nature
of their results.

We should point out that all of the above examples belong to a class of
discretely deformable hypersurfaces which we call of real type. As to now,
no example of complex type has been constructed.

Finally, among other applications, we study complete deformable hyper-
surfaces in hyperbolic space. The euclidean and spherical cases have been
analyzed in [Fe] (see [Da]) and [DG4]). First, we fully describe those of a
particular simple type, the surface-like ones, which include the family of ex-
amples discovered by Mori ([Mor1]). Then we discuss existence of examples
of the remaining types. Our main accomplishment is a nonexistence result

2



which, to our surprise, implies that deformable hypersurfaces obtained as
intersections cannot be complete unless surface-like.

We are grateful to D. Rial for a very helpful suggestion.

§1 Surfaces of 1st and 2nd species

Deformable hypersurfaces in space forms belonging to the two most in-
teresting classes in the Sbrana-Cartan theory are affine vector bundles build
on from the normal bundles of certain spherical surfaces. We introduce these
surfaces in this section and then discuss their parametrization.

Let us denote by On+1 both, the Euclidean space Rn+1 or the Lorentzian
flat space Ln+1. For simplicity, Sn

1 ⊂ On+1 will stand for the Riemannian or
Lorentzian unit sphere

Sn
1 = {x ∈ On+1: ‖x‖ = 1}.

By a pair {h, (u, v)} we mean a spherical surface h: V 2 → Sn
1 endowed with

a global coordinate system (u, v). Recall that (u, v) is called a real conjugate
system of coordinates when the second fundamental form αh: TV × TV → N
of h with values in the normal vector bundle satisfies everywhere,

αh(∂u, ∂v) = 0 (1)

for the coordinate vector fields ∂u = ∂/∂u, ∂v = ∂/∂v. It is called complex
conjugate when condition (1) holds for the complex coordinate vector fields
∂z = ∂u − i∂v, ∂z̄ = ∂u + i∂v, that is,

αh(∂z, ∂z̄) = αh(∂u, ∂u) + αh(∂v, ∂v) = 0. (2)

For h regarded as an On+1–valued map, condition (1) takes the form

Hessh(∂u, ∂v) + 〈∂u, ∂v〉h = 0. (3)

In other words, h = (h1, . . . , hn+1) satisfies

hj
uv − Γ1hj

u − Γ2hj
v + 〈∂u, ∂v〉hj = 0, 1 ≤ j ≤ n + 1, (4)

where Γ1, Γ2 are the Christoffel symbols for the induced metric given by

∇′

∂u
∂v = Γ1∂u + Γ2∂v.
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We look for surfaces {h, (u, v)} for which the system of equations





τu = 2Γ2τ(1 − τ)

τv = 2Γ1(1 − τ)
(5)

has positive solutions other than the trivial one τ ≡ 1. The integrability
condition for (5) is

(Γ2
v − 2Γ1Γ2)τ − Γ1

u + 2Γ1Γ2 = 0. (6)

Following Sbrana, we say that {h, (u, v)} is of first species if (6) is trivially
satisfied, i.e.,

Γ1
u = Γ2

v = 2Γ1Γ2, (7)

and, in addition, an everywhere positive solution exists (which is always the
case locally; cf. (56)).

We call the surface of second species if it is not of first species and

τ =
Γ2

v − 2Γ1Γ2

Γ1
u − 2Γ1Γ2

is positive and a (necessarily unique) solution of (5).

Proposition 1. A surface h: U ⊂ R2 → Sn
1 ⊂ On+1 is of first species with

real conjugate coordinates (u, v) if and only if there exist functions U = U(u),
V = V (v) and F = F (u, v) such that all coordinate functions of h satisfy the
same differential equation

hj
uv +

Vv

2(U + V )
hj

u +
Uu

2(U + V )
hj

v + Fhj = 0. (8)

Proof: Solving equations (7), we get

Γ1 =
−Vv

2(U + V )
, Γ2 =

−Uu

2(U + V )
,

where U = U(u) and V = V (v), and the direct statement follows from (4).
The converse is straightforward.
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When {h, (u, v)} has complex conjugate coordinates, we define a complex-
valued connection function Γ = Γ(z, z̄), where z = u + iv, by

∇′

∂z
∂z̄ = Γ∂z + Γ̄∂z̄.

Then condition (2) takes the form

Hessh(∂z, ∂z̄) + 〈∂z, ∂z̄〉h = 0,

which can also be written as

hj
uu + hj

vv − 2Γ1hj
u − 2Γ2hj

v + (〈∂u, ∂u〉+ 〈∂v, ∂v〉)hj = 0, 1 ≤ j ≤ n + 1, (9)

where Γ = Γ1 + iΓ2. Consider the differential equation

ρz̄ + Γ(ρ − ρ̄) = 0, (10)

where ρ = ρ(z, z̄) takes values in the unit circle. In this case, we call
{h, (u, v)} of first species when the integrability condition

Im ρ(Γz − 2ΓΓ̄) = 0 (11)

of equation (10) is trivially satisfied, i.e.,

Γz(= Γ̄z̄) = 2ΓΓ̄, (12)

which is the complex analogue of (7). We say that h is of second species if it
is not of first species and (10) has a (necessarily unique) solution determined
by (11).

Proposition 1’. A surface h: U ⊂ R2 → Sn
1 ⊂ On+1 with complex conju-

gate coordinates {u, v} is of first species with complex conjugate coordinates
{u, v} if and only if there exist functions φ = φ(u, v) satisfying

φuu + φvv = 0 (13)

and F = F (u, v) such that all coordinate functions of h are solutions of the
same differential equation

hj
uu + hj

vv +
φu

φ
hj

u +
φv

φ
hj

v + Fhj = 0. (14)
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Proof: Solving equation (12), we get

Γ1 = −φu

2φ
, Γ2 = −φv

2φ
,

where φ = φ(u, v) satisfies (13), and the direct statement follows from (9).
The converse is straightforward.

Remark 2. As Cartan does, one can look at Propositions 1 and 1′ in a
unified way. In fact, replacing (u, v) by (z, z̄) and U(u), V (v) by U(z), V (z̄) =
Ū(z) in (8), we get (14) for φ = Re U(z).

§2 The Sbrana-Cartan theory

Following [DG5], we call an isometric immersion f : Mn → Qn+1
c , n ≥ 3,

into a space form a Sbrana-Cartan hypersurface if Mn has no points with
constant sectional curvature c and f admits a nowhere congruent isomet-
ric immersion. In this section, we locally describe in a parametric form all
Sbrana-Cartan hypersurfaces, but first we discuss some basic facts and defi-
nitions.

For a hypersurface f : Mn → Qn+1
c with a unit normal vector field N and

second fundamental form Af = Af
N : TM → TM , it is a well known fact that

the relative nullity spaces ∆(x) := ker Af (x) form an integrable distribution
along any open subset where the index of relative nullity νf (x) := dim ∆(x)
is constant. Moreover, the leaves of the induced foliation are totally geodesic
in Qn+1

c and N is constant along them.
By the classical Beez–Killing rigidity theorem, a Sbrana-Cartan hypersur-

face has precisely two nonzero principal curvatures at each point. Therefore,
f can be locally parametrized by an inverse to its Gauss map, called in [DG1]
the Gauss parametrization. Let us denote by π: U → V 2 the quotient space
of relative nullity leaves in an open subset U ⊂ Mn. If the ambient space is
euclidean, the Gauss image h: V 2 → Sn

1 ⊂ Rn+1 is the isometric immersion
(with the induced metric) so that

h ◦ π = N,
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where N : Mn → Sn
1 is the Gauss map. Then f can be parametrized along

the normal bundle N of h in Sn
1 by Ψ: N → Rn+1 given by

Ψ(x,w) = (γh + grad γ)(x) + w, (15)

where γ is the “support function” defined by γ ◦ π = 〈f,N〉. It is easily seen
that Ψ has maximal rank n at (x,w) if and only if the self adjoint operator
Hessγ + γI − Bw is nonsingular. Here Hessγ stands for the linear operator
associated to the Hessian of γ and Bw denotes the tangent valued second
fundamental form of h in direction w.

There are similar parametrizations when c 6= 0. From now on, we consider
Qn+1

c , c 6= 0, isometrically embedded into On+2. For simplicity, we take
c = ±1. Associated to the Gauss map N : Mn → Sn+1

1 ⊂ On+2, we have the
Gauss image h: V 2 → Sn+1

1 ⊂ On+2 satisfying h ◦ π = N . In the spherical
case, the Gauss parametrization Ψ: N 1 → Sn+1

1 is defined on the unit normal
bundle N 1 of h and takes the form

Ψ(x,w) = w. (16)

Here Ψ has rank n at (x,w) if and only if Bw is nonsingular. In hyperbolic
space, the Gauss parametrization Ψ: N 1 → Hn+1

−1 is also given by (16),
but now the elements of N 1 have length −1. We refer to [DG1] for further
information on the subject.

We say that f : Mn → Qn+1
c is ruled if Mn admits a foliation by leaves of

codimension one which are mapped by f into totally geodesic submanifolds
of Qn+1

c .

Theorem 3 ([Sb], [Ca1]). Let f : Mn → Qn+1
c , n ≥ 3, be a Sbrana-Cartan

hypersurface. Then, there is an open dense subset U ⊂ Mn such that one of
the following holds on any connected component U of U :

(I) i) c = 0 and f(U) ⊂ L2 × Rn−2 where L2 is a surface in R3, or
ii)-a) c = 0 and f(U) ⊂ CL2 × Rn−3 where CL2 ⊂ R4 is a cone over
a surface L2 ⊂ S 3, or
ii)-b) c 6= 0 and f(U) ⊂ CL2×On−2∩Qn+1

c ⊂ On+2 where CL2 ⊂ O 4

is a cone over a surface L2 ⊂ Q 3
c̃ with Q 3

c̃ ⊂ Qn+1
c totally umbilical,

and On−2, O 4 have different signatures when c < 0.

(II) f is a ruled hypersurface.
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(III) In terms of the Gauss parametrization, f is given by {h, (u, v)} of first
species and, when c = 0, a function γ satisfying the same equation (8)
or (14) as any of the coordinate functions of h does.

(IV) In terms of the Gauss parametrization, f is given by {h, (u, v)} of sec-
ond species and, when c = 0, a function γ satisfying the same equation
(4) or (9) as any of the coordinate functions of h does.

Conversely, any simply connected hypersurface which can be described as
in (II), (III) or (IV ) is Sbrana-Cartan. Moreover, any deformation of a hy-
persurface of type (I) is given by a deformation of the surface L2, whereas the
set of deformations of a hypersurface of type (II), (III) or (IV ) which is not
of type (I) is, respectively, parametrized by all smooth functions in an inter-
val, a continuous 1–parameter family or contains only one other immersion.
In all cases deformations are always of the same type.

It is easy to verify that hypersurfaces of type (I) and (II) can be smoothly
attached; see [DG2]. In the next section, we construct explicit examples of
Sbrana-Cartan hypersurfaces which contain open subsets of type (I), (III)
and (IV ).

We say that a Sbrana-Cartan hypersurface of type (III) or (IV ) is of real
or complex type according to whether the associated coordinate system on
its Gauss image is real or complex conjugate, respectively.

Remarks 4. 1) In Cartan’s terminology, a hypersurface in Rn+1 with two
nonzero principal curvatures is given as an envelope of a two parameter family
of hyperplanes,

α1x1 + . . . + αn+1xn+1 + α0 = 0,

with αj = αj(u, v), 0 ≤ j ≤ n + 1. In terms of the Gauss parametrization,
the hypersurface is determined by

h =
1√∑n+1

j=1 (αj)2
(α1, . . . , αn+1), γ =

α0

√∑n+1
j=1 (αj)2

.

Then the hypersurface is of real type (III) if and only if all homogeneous
tangential coordinates αj satisfy the same differential equation

αj
uv + Mαj = 0, where

n+1∑

j=1

(αj)2 = U(u) + V (v). (17)
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Accordingly, it is of complex type (III) if and only if

αj
uu + αj

vv + Mαj = 0, where
n+1∑

j=1

(αj)2 = φ(u, v) with φuu + φvv = 0. (18)

To see that Cartan’s description is equivalent to the one given in Theorem
3, the key observation is that any solution hj of (8) (respectively, (14)) gives
rise to a solution αj =

√
U + V hj (respectively, αj =

√
φ hj) of an equation

of type (17) (respectively, (18)) and vice-versa.

2) A Sbrana-Cartan hypersurface of type (III) or (IV ) with sectional cur-
vature KM ≥ 0 is always of real type.

Before going into the proof of Theorem 3, we review some basic facts and
obtain preliminary results. Consider an isometric immersion f : Mn → Qn+1

c

with constant index of relative nullity. Associated to its relative nullity fo-
liation, one defines the splitting tensor C which assigns to each T ∈ ∆ the
endomorphism CT of ∆⊥ given by

CT X = −(∇XT )∆⊥ .

A crucial fact is that the splitting tensor is solely determined by the foliation
and, in that sense, independent of f . Hence, given two isometric hyper-
surfaces with the same nullity foliations, as turns out to be the case for two
isometric Sbrana-Cartan hypersurfaces, any geometric property derived from
the structure of C necessarily holds for both.

In the following statement and the sequel, Af has to be considered re-
stricted to ∆⊥.

Lemma 5 ([DG4]). Let f : Mn → Qn+1
c be an isometric immersion with

constant index of relative nullity νf = k. Then,

i) The following differential equations hold:

∇T Af = Af ◦ CT , ∀T ∈ ∆, (19)

∇T1
CT2

= CT2
CT1

+ C∇T1
T2

+ c〈T1, T2〉I, ∀T1, T2 ∈ ∆, (20)

(∇∆⊥

X CT )Y − (∇∆⊥

Y CT )X = C(∇XT )∆Y − C(∇Y T )∆X, ∀T ∈ ∆. (21)
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ii) The distribution ∆⊥ is integrable if and only if CT is selfadjoint for all
T ∈ ∆.

Next, we characterize hypersurfaces with constant index of relative nullity
whose splitting tensor has one of two special structures.

Lemma 6. Let f : Mn → Qn+1
c be an isometric immersion with constant

index of relative nullity νf = k > 0. Then,

i) C vanishes identically if and only if c = 0 and each point has a neigh-
borhood V such that f(V ) ⊂ Ln−k × Rk, where Ln−k is a hypersurface
of Rn−k+1.

ii) There exists a unit T ∈ ∆ such that coker C = span{T} and CT = µI ,
µ 6= 0, if and only if one of the following holds:

a) c = 0 and each point has a neighborhood V such that f(V ) ⊂
CLn−k ×Rk−1, where CLn−k ⊂ Rn−k+2 is the cone over a hypersurface
Ln−k of Sn−k+1, or

b) c 6= 0 and each point has a neighborhood V such that f(V ) ⊂
CLn−k × O k ∩ Qn+1

c ⊂ On+2, where CLn−k ⊂ On−k+2 is the cone
over a hypersurface Ln−k in a totally umbilical Qn−k+1

c̃ ⊂ Qn+1
c .

Proof: i) If C = 0, equation (20) immediately implies that c = 0. Moreover,
from the definition of C it follows that ∆ is parallel in Mn and, therefore,
constant in Rn+1. The converse is trivial.

ii) We prove the direct statement, the other being easy. By assumption,

〈∇XS, Y 〉 = −〈CSX,Y 〉 = −µ〈S, T 〉〈X,Y 〉, ∀X,Y ∈ ∆⊥, ∀S ∈ ∆. (22)

On the other hand, we easily obtain from (21) that

〈∇XS, T 〉 = 0, ∀S ∈ ker C, (23)

and
X(µ) = 0, ∀X ∈ ∆⊥. (24)

We conclude from (22) and (23) that

∇̃XS ∈ ker C, ∀S ∈ ker C, (25)
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and
∇̃XT = −µX, ∀X ∈ ∆⊥, (26)

where ∇̃ denotes the connection in either Rn+1 or On+2 ⊃ Qn+1
c according

as c = 0 or c 6= 0, respectively. Equation (20) yields

µ〈∇RS, T 〉 + c〈R,S〉 = 0, ∀R ∈ ∆, S ∈ ker C, (27)

and
T (µ) = µ2 + c, S(µ) = 0, ∀S ∈ ker C. (28)

In particular, we conclude from (27) that

∇T T = 0. (29)

Assume c = 0. It follows from (25) and (27) that the distribution kerC
is constant in Rn+1. Hence, each point has a product neighborhood V =
Ln−k+1 × V k−1, V k−1 ⊂ Rk−1 open, on which f = g × I splits isometrically.
It remains to prove that g is a cone. Since T ∈ ∆, we conclude from (29)
that the integral curves of T are straight lines in Rn+1. Using (24), (26) and
(28) we obtain

∇̃T

(
g +

1

µ
T

)
= 0 and ∇̃X

(
g +

1

µ
T

)
= 0, ∀X ∈ ∆⊥,

which shows that all lines pass through a fixed point and concludes the proof
of part a).

Suppose now that c 6= 0. By part ii) of Lemma 5, the distribution ∆⊥ is
integrable. For a fixed leaf Ln−k of ∆⊥, equations (25) and (26) imply that
Ω = ∆ ⊕ span{f} is a parallel subbundle of the normal bundle of Ln−k in
On+2. Moreover, it follows from (22) that

(∇̃XY )Ω = 〈X,Y 〉(µT − cf), ∀X,Y ∈ ∆⊥.

Therefore, Ln−k is contained in a (n − k + 1)-dimensional umbilical sub-
manifold Qn−k+1

c̃ of Qn+1
c . To conclude the proof of part b), it suffices to

show that the cone over f in On+2 splits isometrically as CLn−k ×Ok, where
CLn−k ⊂ On−k+2 is the cone over Ln−k. Since the leaves of ∆ are totally
geodesic in Qn+1

c , the leaves of Ω are (k +1)–dimensional subspaces of On+2.
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We claim that the orthogonal complement Ω̄ of µT − cf in Ω is constant in
On+2. In fact, we have

Ω̄ = ker C ⊕ span{T + µf}.

By (24) and (26),
∇̃X(T + µf) = 0, ∀X ∈ ∆⊥. (30)

Equations (28) and (29) yield

∇̃T (T + µf) = µ(T + µf), (31)

whereas (27) and (28) give

∇̃S(T + µf) = (
c

µ
+ µ)S. (32)

On the other hand, for any S ∈ ker C, we get from (22) and (29) that

∇̃SS = − c

µ
(T + µf) and ∇̃T S ∈ ker C. (33)

The claim follows from (25) and (30) to (33), and this concludes the proof.

Any hypersurface f as in part ii)−b) can be described as a warped product
of isometric immersions by the use of the warped product representation of
space forms due to Nölker. This will be useful in the last section.

For a fixed point x̄ ∈ Qn+1
c , let

Tx̄Q
n+1
c = V k ⊕ V n−k+1

be an orthogonal decomposition into nontrivial subspaces. Choose z ∈ V k

and let Qn−k+1
c̃ , c̃ = c + ‖z‖2, be the umbilical submanifold of Qn+1

c such
that Tx̄Q

n−k+1
c̃ = V n−k+1 and whose mean curvature vector at x̄ is z. Let

a = c̃x̄ − z be the mean curvature vector of Qn−k+1
c̃ in On+2 ⊃ Qn+1

c at x̄
and Qk

c the totally geodesic submanifold

Qk
c = Qn+1

c ∩ {span{x̄} ⊕ V k}.

Set Nk = Qk
c if ‖a‖2 ≤ 0 and Nk = Qk

c ∩ {x : 〈a, x〉 > 0} otherwise, and
consider the warped product Nk ×σ Qn−k+1

c̃ with warping function σ(x) =
〈a, x〉. The map ψ: Nk ×σ Qn−k+1

c̃ → Qn+1
c given by

ψ(x, y) = x + σ(x)(y − x̄)
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is an isometry onto either Qn+1
c or Qn+1

c \ {span{a} ⊕ V n−k+1}⊥, according
as ‖a‖2 ≤ 0 or ‖a‖2 > 0, respectively.

Then, f is the warped product of the hypersurface f1: Ln−k → Qn−k+1
c̃

with the identity map on Nk given by

f = ψ ◦ (id × f1): Nk ×σ Ln−k → Qn+1
c . (34)

In fact, it is easily seen that the cone in On+2 over the hypersurface defined
by (34) factors as CLn−k × Ok, where CLn−k ⊂ On−k+2 is the cone over
Ln−k.

Proof of Theorem 3: Let g: Mn → Qn+1
c be a nowhere congruent isometric

deformation of f . For each point x ∈ Mn, let

W (x) = T⊥

f(x)M ⊕ T⊥

g(x)M

be endowed with the natural inner product 〈〈 , 〉〉 of type (1, 1), and set

β = αf ⊕ αg: TxM × TxM → W (x).

The Gauss equations for f and g imply that β is flat , that is,

〈〈β((X,Y ), β(Z,W )〉〉 − 〈〈β((X,W ), β(Z, Y )〉〉 = 0, ∀X,Y, Z,W ∈ TM.

Being g nowhere congruent to f , the subset V0 ⊂ Mn where β is null, i.e., β
satisfies

〈〈β((X,Y ), β(Z,W )〉〉 = 0, ∀X,Y, Z,W ∈ TM,

has empty interior. Moreover, it follows from Corollary 2 of [Mo] and the
assumption that Mn has no points with constant sectional curvature c that

∆f = ∆g and νf = νg = n − 2. (35)

Lemma 7. The endomorphism D := (Af )−1 ◦ Ag: ∆⊥ → ∆⊥ satisfies:

i) det D = 1,

ii) [D,CT ] = 0, ∀T ∈ ∆,

iii) ∇T D = 0, ∀T ∈ ∆.
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Proof: i) It is immediate from the Gauss equations for f and g.
ii) Since the term on the left hand side of (19) is symmetric, we have

Af ◦ CT = C∗

T ◦ Af , (36)

where C∗

T denotes the adjoint operator of CT . A similar equation also holds
for Ag = Af ◦ D, thus

AfDCT = AgCT = C∗

T Ag = C∗

T AfD = AfCT D,

and the proof follows.
iii) Equation (19) for Af and Ag yields, respectively,

AfCT D = (∇T Af )D

and
AfDCT = AgCT = ∇T Ag = ∇T (AfD).

Hence,
Af [D,CT ] = Af (∇T D),

and the proof follows from ii).

Lemma 8. Let f : Mn → Qn+1
c be a Sbrana-Cartan hypersurface. Then,

dim coker C ≤ 2.

Moreover, when equality holds, then either CT is symmetric for all T ∈ ∆ or
there exists S ∈ coker C such that CS = µ I.

Proof: The first assertion follows immediately from ii) of Lemma 7. When
dim coker C = 2, by dimension reasons there exists S̄ ∈ coker C such that
CS̄ is symmetric. The last assertion then follows easily using again part ii)
of Lemma 7.

Let M0,M1 ⊂ V = Mn\V0 be the interiors of the subsets where C = 0
and where C satisfies the conditions of part ii) in Lemma 6, respectively. It
follows from Lemma 6 that f is as in part (I)− i) or ii) along any connected
component of M0 or M1, respectively.

Let M2 ⊂ V be the interior of the set where dim ker C is locally constant
and there exists S ∈ coker C so that CS has one eigenvalue of multiplicity
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two without being symmetric. By Lemma 8, there exist S ∈ coker C smooth
and a unique, up to signs, orthonormal frame {X,Y } in ∆⊥ for which

CS =

[
a 0
b a

]
, b 6= 0. (37)

Being AfCS symmetric by (19), we have

a〈AfY,X〉 = 〈AfCSY,X〉 = 〈Y,AfCSX〉 = a〈AfY,X〉 + b〈AfY, Y 〉,

which implies that Y is asymptotic for f , i.e.,

〈AfY, Y 〉 = 0.

Since the same holds for g, we conclude from the Gauss equations that there
exist smooth functions λ, µ and θ such that

Af =

[
λ µ
µ 0

]
, Ag =

[
λ + θ µ

µ 0

]
(38)

with respect to the frame {X,Y }. In particular,

DY = Y. (39)

We claim that the distribution

x 7→ span{Y (x)} ⊕ ∆(x)

is integrable and totally geodesic. In fact, by (37) and Lemma (8),

〈∇Y T,X〉 = −〈CT Y,X〉 = 0, ∀T ∈ ∆. (40)

Moreover, from iii) of Lemma 7 and (39), we get D∇T Y = ∇T Y , which
implies that

∇T Y = 0, ∀T ∈ ∆. (41)

On the other hand, an easy computation shows that Af and Ag satisfy si-
multaneously the Codazzi equations if and only if

〈∇Y Y,X〉 = 0, (42)
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Y (θ) = 〈∇XX,Y 〉θ and T (θ) = 〈∇XX,T 〉θ, ∀T ∈ ∆. (43)

The claim follows from (40), (41), (42) and the fact that ∆ is totally geodesic.
We conclude that f is locally ruled on M2.

Consider the open subset M3 ⊂ V where there exists S ∈ ∆ such that CS

has two distinct real eigenvalues. By ii) of Lemma 7, there exists a unique,
up to signs, frame {Y1, Y2} of unit eigenvectors of CT for all T ∈ ∆, with
respect to which D has the form

D =

[
θ 0
0 1/θ

]
, θ 6= ±1. (44)

Then, equation iii) of Lemma 7 is equivalent to

T (θ) = 0, ∀T ∈ ∆, (45)

and
∇T Yj = 0, ∀T ∈ ∆, 1 ≤ j ≤ 2. (46)

Equation (45) says that θ is a function on the Gauss image V 2. We claim
that there exist smooth functions µ1 and µ2 and a coordinate system (u, v) on
V 2 such that the frame {X1, X2} defined by Xj = µjYj, 1 ≤ j ≤ 2, satisfies

∂u ◦ π = π∗X1, ∂v ◦ π = π∗X2. (47)

It suffices to have
∇̃T N∗Xj = 0 (48)

and
[X1, X2] ∈ ∆. (49)

By the Codazzi equation,

∇̃T N∗Xj = −∇̃T AXj = −∇T AXj = A[Xj, T ].

Hence, (48) is equivalent to

[Xj, T ] ∈ ∆, ∀T ∈ ∆, 1 ≤ j ≤ 2. (50)

A straightforward calculation shows that each µj can be arbitrarily prescribed
along an integral curve γ of Yj and then extended along each integral curve
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of Yi, i 6= j, and each geodesic of ∆ through γ, as a solution of the linear
first order differential equations

T (µj) + bjµj = 0, Yi(µj) + rjµj = 0,

where
CT Yj = bjYj and [Y1, Y2] + r1Y1 − r2Y2 ∈ ∆,

which proves the claim.
The Codazzi equation for Ag = Af ◦ D and (49) yield

∇X1
(AfDX2) = ∇X2

(AfDX1). (51)

We have,

∇X2
(AfDX1) = ∇X2

(AfθX1) = ∇̃X2
(AfθX1) − θ〈AfX1, A

fX2〉N
= −∇̃X2

N∗θX1 − θ〈N∗X1, N∗X2〉N = −∇̃∂v
θ∂u − θ〈∂u, ∂v〉h

= −θv∂u − θ
(
∇′

∂v
∂u + αh(∂u, ∂v)

)
.

Similarly,

∇X1
(AfDX2) =

θu

θ2
∂v −

1

θ

(
∇′

∂u
∂v + αh(∂u, ∂v)

)
.

Setting
τ = θ2, (52)

we easily see that (51) is equivalent to conditions (1) and (5). We conclude
that V 2 is a surface of first or second species with real conjugate coordinates.

On the other hand, we have

〈AgX1, X2〉 = 〈AfDX1, X2〉 = θ〈AfX1, X2〉 = θ2〈AgX1, X2〉,

hence X1, X2 are conjugate vectors, i.e.,

〈AfX1, X2〉 = 0. (53)

Moreover, by Proposition 1.8 in [DG1], we have for f in terms of the Gauss
parametrization (15) that

Af (w) = −(Hessγ + γI − Bw)−1. (54)
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It follows from (1), (53) and (54) that γ satisfies (4). Of course, there is no
support function when c 6= 0. We conclude that f is of real type (III) or
(IV ).

Finally, let M4 ⊂ V be the open subset where there exists S ∈ ∆ such
that CS has complex conjugate eigenvalues. Then D takes the form

D =

[
ρ 0
0 ρ̄

]
, ‖ρ‖ = 1, ρ2 6= 1, (55)

in the basis Z = X1 − iX2, Z̄ = X1 + iX2 of eigenvectors. A computation
similar to the previous one shows that Z, Z̄ induce conjugate coordinates
(z, z̄) on the Gauss image V 2 and that the function ρ defines a function on
V 2 satisfying (10). Thus, V 2 is a surface of first or second species in the
sphere with complex conjugate coordinates. Moreover, as in the real case,
we conclude that the support function γ is a solution of equation (9), hence
f is of complex type (III) or (IV ).

We now prove the converse. First observe that isometric Sbrana-Cartan
hypersurfaces have the same relative nullity foliations by (35), hence the
same splitting tensor C. It follows from the proof of the direct statement
that they are necessarily of the same type. The assertion on hypersurfaces
of type (I) is now clear.

Suppose first that f : Mn → Qn+1
c is ruled. Let {X,Y } be an orthonormal

frame of ∆⊥ as before with X orthogonal to the rulings. Then (40), (41)
and (42) hold, and there exist smooth functions λ and µ such that Af is
given as in (38). Thus, any solution θ of (43) defines a tensor Ag as in (38)
satisfying the Gauss and Codazzi equations for an isometric immersion into
Qn+1

c , hence gives rise to an isometric deformation of f . By the previous
observation, any deformation arises this way. Notice that each such function
is completely determined once an initial condition is chosen along a fixed
orthogonal trajectory to the rulings.

Assume now that f is of real type (III) or (IV ) and let {h, (u, v)} be its
Gauss image. By (54), the coordinate vector fields of h induce a frame of
conjugate vector fields for f . Defining D in this frame by (44) with θ given
by (52) in terms of a positive solution τ 6= 1 of (5), the computations in
the proof of the direct statement show that Af ◦ D satisfies the Gauss and
Codazzi equations. Therefore f is a Sbrana-Cartan hypersurface and the set
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of deformations is in correspondence with the set of positive solutions of (5).
When V 2 is of first species, the general solution of (5) is given in terms of
the functions U(u), V (v) of Proposition 1 by

τ(u, v) =
c − V (v)

c + U(u)
, c ∈ R, (56)

and, therefore, f admits a one-parameter family of deformations. Notice
that the constant c has to be chosen do that τ is positive. When V 2 is of
second species, (5) has only one positive solution τ 6= 1, and hence f admits
a unique isometric deformation.

The proof that any simply connected hypersurface of complex type (III)
or (IV ) admits, respectively, a one-parameter family or a unique isometric
deformation is completely similar to the one for hypersurfaces of real type.
Now, however, one has to make use of the fact that, when V 2 is of first
species, the general solution of (10) is given in terms of the function φ of
Proposition 1’ by

ρ = eiθ, cot θ =
µ + λ

φ
, (57)

where µ is any particular solution of µv = φu and λ = λ(u) is determined,
up to a constant, by

λ′ + µu + φv = 0. (58)

This concludes the proof.

The works by Sbrana and Cartan (see also [Bo1] and [Bo2]) contain in-
teresting additional information. One result in Sbrana’s paper is particularly
remarkable. Given a set of n + 1 solutions h1, . . . , hn+1 of the equation

∂2ψ

∂u∂v
= Mψ

satisfying the condition
∑n+1

j=1 (hj)2 = 1, Bianchi ([Bi1]) had found an analytic
transformation which generates a n–parameter family of new sets of solutions
satisfying the same quadratic condition. The transformation reduces to solv-
ing a first order completely integrable system of differential equations. In
view of the discussion in Remark 4, this transformation can be used to gen-
erate a n–parameter family of new surfaces of first species from a given one.
In addition, there is a permutability formula which allows, given any two
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transforms of a surface of first species, to generate a third surface just by an
algebraic procedure.

§3 Intersections

The main purpose of this section is to construct and characterize a large
family of deformable hypersurfaces of class (IV ). We also show, by means
of explicit examples, that different types of hypersurfaces in the Sbrana-
Cartan classification can be smoothly attached. For simplicity, statements
and proofs are given for euclidean ambient space. Extensions to the sphere
and hyperbolic space are straightforward.

Let Fi: Ui ⊂ Rn+1 → Rn+2 be two isometric embeddings of rank 1, i.e.,
free of totally geodesic points, whose Gauss maps ηi: Ui → Sn+1

1 ⊂ Rn+2

satisfy
0 < 〈η1, η2〉 < 1 (59)

along Mn = F1(U1) ∩ F2(U2). Notice that (59) is just a condition on two
curves. In fact, any flat hypersurface F : U ⊂ Rm → Rm+1 of rank 1 can
be locally parametrized (Gauss parametrization) by a map Ψ: N → Rm+1

defined on the normal bundle of a unit speed curve c: I ⊂ R → Sm
1 , and

given by
Ψ(s, w) = (rc + r′c′)(s) + w,

where r ∈ C∞(I). In particular, the Gauss map η: U → Sm
1 ⊂ Rm+1 satisfies

η(s, w) = c(s).
We say that F1, F2 satisfying the above conditions are in general position

when, in addition, their relative nullity spaces ∆F1
, ∆F2

are transversal at
any point of Mn.

Theorem 9. Given F1, F2 in general position, define f1, f2: Mn → Rn+1 by

fi = (Fi|F−1

i
(Mn))

−1: Mn → Ui ⊂ Rn+1.

Then f1, f2 are isometric Sbrana-Cartan hypersurfaces. In terms of the
Gauss parametrization, each hypersurface can be locally described by a pair
{h, γ} of the form

h(u, v) =
1√

1 − τ

(
α(u) +

∫ v

0

√
τ(u, s)β(s)ds

)
(60)
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and

γ(u, v) =
1√

1 − τ

(
a(u) +

∫ v

0

√
τ(u, s)b(s)ds

)
, (61)

given in terms of two smooth curves α(u) and β(v) in Rn+1 and three smooth
functions a(u), b(v) and τ(u, v).

Conversely, given two smooth curves α(u), β(v) in Rn+1 with ‖α(u)‖ < 1,
there exists locally a unique smooth function τ(u, v) ∈ (0, 1) so that h(u, v)
has unit length. Then, given arbitrary smooth functions a(u) and b(v), the
pair {h, γ} defines locally at regular points a Sbrana-Cartan hypersurface
which can be obtained as an intersection as above.

Let us first prove the following basic fact.

Lemma 10. A surface h: V 2 → Sn
1 admits a parametric description (60) if

and only if (u, v) are real conjugate coordinates for h, τ is a solution of (5)
and the Christoffel symbols satisfy the additional condition

Γ1
u − Γ1Γ2 + F = 0, F = 〈∂u, ∂v〉. (62)

Proof: That a surface h: V 2 → Sn
1 admits a parametric description (60) is

clearly equivalent to (
(
√

1 − τ h)v√
τ

)

u

= 0. (63)

A straightforward computation shows that (63) holds if and only if (u, v) are
real conjugate coordinates for h, τ is a solution of (5) and condition (62) is
satisfied.

Proof of Theorem 9: We denote by Bi = Bηi
the second fundamental form

of Fi and by Ai = A
Ñi

the second fundamental form of fi associated to the

Gauss map Ñi: Mn → Sn
1 ⊂ Rn+1. Along Mn, we have from

F1 ◦ f1 = F2 ◦ f2 (64)

that

〈B1X,Y 〉η1+〈A1X,Y 〉N1 = 〈B2X,Y 〉η2+〈A2X,Y 〉N2, ∀X,Y ∈ TM, (65)

where Ni = Fi∗Ñi. Clearly, we may write

η2 = cos α η1 + sin α N1, N2 = − sin α η1 + cos α N1, (66)
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where the function α: Mn → (0, π) denotes the angle between both hyper-
surfaces.

Define B̄i: TM → TM by

〈B̄iX,Y 〉 = 〈BiX,Y 〉. (67)

Then (65) is equivalent to

A1 − cos α A2 = sin α B̄2 (68)

and
sin α A2 = cos α B̄2 − B̄1. (69)

Clearly,
ker B̄i = ∆Fi

∩ TM. (70)

Our assumption that ∆F1
and ∆F2

are everywhere transversal implies that
ker B̄1∩ker B̄2 = ∆F1

∩∆F2
∩TM has always dimension n−2. Hence B̄1, B̄2

are linearly independent of rank one. It follows from (59) and (69) that

∆ = ker B̄1 ∩ ker B̄2. (71)

Hence, Mn does not have flat points. Consider vector fields X1, X2 so that

span{Xi} = ker B̄i ∩ ∆⊥, 1 ≤ i ≤ 2.

Set τ = cos2 α. Then (68) and (69) yield

B̄iXj = (−1)i
√

τ−1 − 1 AiXj, 1 ≤ i 6= j ≤ 2, (72)

and

A2 = A1D, D =

[ √
τ 0

0
√

τ−1

]
, (73)

when A1, A2 are restricted do ∆⊥. Therefore, f1, f2 are nowhere congruent of
real type with conjugate directions X1, X2, which we choose to satisfy (47).

Set
λi = 〈BiXj, Ñi〉, 1 ≤ i 6= j ≤ 2.

Taking derivatives and using Codazzi’s equation for Fi yields

T (λi) = 〈∇̃Xj
BiT − Bi[Xj, T ], Ñi〉 − 〈BiXj, BiT 〉. (74)
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It follows from (50), (71) and (74) that

T (λi) = 0, ∀T ∈ ∆,

hence λ1, λ2 can be viewed as functions on V 2. We have from (49), (70), (71)
and the Codazzi equation that

0 = ∇̃Xi
(BiXj) =

(
Xi(λi) + (−1)i

√
τ−1 − 1 〈AiXi, AiXj〉

)
Ñi − λi AiXi

+ (−1)iXi

(√
τ−1 − 1

)
AiXj + (−1)i

√
τ−1 − 1∇Xi

AiXj.

Now consider on V 2 the metric induced by h1 and the real conjugate
coordinates (u, v) satisfying (47) for suitably normalized X1, X2. The above
equation can be replaced by

Xi(λi) + (−1)i
√

τ−1 − 1〈AiXi, AiXj〉 = 0, (75)

λ1∂u +
(√

τ−1 − 1
)

u
∂v +

√
τ−1 − 1∇′

∂u
∂v = 0, (76)

and
λ2√
τ
∂v −

(√
1 − τ

)
v
∂u −

√
1 − τ ∇′

∂u
∂v = 0, (77)

where (76) and (77) are equivalent to (5) and





λ1 +
1√
τ

√
1 − τ Γ1 = 0

λ2 −
√

τ
√

1 − τ Γ2 = 0.

(78)

Using (5) and (78), we easily see that (75) reduces to (6) and the additional
condition (62) on V 2. It follows from Lemma 10 that h admits a parametric
description (60). Moreover, an easy computation shows that, under condition
(62), equation (3) for the support function holds if and only if

(
(
√

1 − τ γ)v√
τ

)

u

= 0. (79)

This is clearly equivalent to γ being given by (61) and concludes the proof
of the direct statement.
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For the converse, we first show the existence of a unique smooth function
τ(u, v) so that h(u, v) has unit length. But this is equivalent to

θ2(u, v) = 1 − ‖α(u)‖2 − 2
∫ v

0
〈α(u), β(s)〉θ(u, s)ds

−
∫ v

0

∫ v

0
〈β(s), β(t)〉θ(u, s)θ(u, t)dtds,

where θ2 = τ . Taking derivatives with respect to v yields

θv(u, v) = −〈α(u), β(v)〉 −
∫ v

0
〈β(v), β(t)〉θ(u, t)dt.

Using

θ(u, t) = θ(u, 0) +
∫ t

0
θv(u, s)ds, θ(u, 0) =

√
1 − ‖α(u)‖2

and Fubini’s theorem, we get

θv(u, v) = −〈α(u), β(v)〉 −
(∫ v

0
〈β(v), β(t)〉dt

)
θ(u, 0)

−
∫ v

0

(∫ v

s
〈β(v), β(t)〉dt

)
θv(u, s)ds.

The above is an integral equation of Volterra type which has a unique
(smooth) solution θv(u, v). Finally, notice that 0 < θ(u, v) < 1 for suffi-
ciently small values of the variables.

Now suppose that Mn is simply connected and that f : Mn → Rn+1

is given by a pair {h, γ} as in (60) and (61). By Lemma 10, h satisfies
condition (62) and τ is a solution of (5). Let f2: Mn → Rn+1 be the isometric
deformation of f1 = f determined by τ , and let h2: V 2 → Sn

1 be its Gauss
image. We claim that h2 satisfies (62) for (v, u). The metrics induced on V 2

by h2 and h1 = h are related by

〈 , 〉h2
= 〈D,D〉h1

.

Using (5), this yields for the Christoffel symbols Γ̃i of h2,

Γ̃1 =
1

τ
Γ1, Γ̃2 = τΓ2. (80)
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It follows from (5), (6) and (80) that

Γ̃1
u = Γ2

v, Γ̃2
v = Γ1

u, (81)

which proves the claim. By Lemma 10, h2 can be parametrized as

h2(u, v) =
1√

1 − τ

(
α2(v) +

∫ u

0

√
τ(s, v)β2(s)ds

)

for smooth curves α2(v), β2(u) and the same function τ(u, v). In particular,

β1(v) = β(v) =
1√
τ

(√
1 − τ h1

)
v
, β2(u) =

1√
τ

(√
1 − τ h2

)
u
.

Therefore,

β1(v) ∈ span{h1, h1∗∂v}, β2(u) ∈ span{h2, h2∗∂u}.

Take a smooth unit vector field δi = δi(u, v), 1 ≤ i ≤ 2, orthogonal to
βi in each of the above plane bundles. Observe that the δi’s are nowhere
tangent to Mn. Let ψi: Mn × (−ǫ, ǫ) → Ui ⊂ Rn+1 be a parametrization of
a tubular neighborhood of fi(M) defined as

ψi(x, t) = fi(x) + tδi(π(x)), i = 1, 2.

Now define rank one endomorphisms Bi along ψi by

B1(∆) = 0, B1ψ
1
u = 0, B1ψ

1
t = 0, B1ψ

1
v = β1(v),

and
B2(∆) = 0, B2ψ

2
v = 0, B2ψ

1
t = 0, B2ψ

2
u = −β2(u).

One can easily check that the Bi’s are symmetric tensors. Moreover, the
Bi’s trivially satisfy the Codazzi equations. Therefore, there exist isometric
immersions Fi: Ui ⊂ Rn+1 → Rn+2 with second fundamental forms Bi.

We have for the B̄i’s defined by (67) that

B̄1X2 = (β1(v))TM =
√

τ−1 − 1 h1∗∂v = −
√

τ−1 − 1 A1X2 (82)

and, similarly,
B̄2X1 =

√
τ−1 − 1 A2X1. (83)
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For Ñi, Ni and ηi as before, define an isometry Υ: T⊥

F2◦f2
M → T⊥

F1◦f1
M be-

tween the normal bundles by

Υ(η2) =
√

τ η1 +
√

1 − τ N1, Υ(N2) = −
√

1 − τ η1 +
√

τ N1.

It follows easily from (82) and (83) that Υ preserves the second fundamental
forms. We claim that Υ is parallel with respect to the normal connections.
In fact, we have

Υ∇⊥

X1
η2 = −Υ(B2X1)

⊥ =
(
√

1 − τ)u√
τ

ΥN2.

Thus,

∇⊥

X1
Υη2 = ∇⊥

X1
(
√

τ η1 +
√

1 − τN1) = (
√

τ)uη1 + (
√

1 − τ)uN1 = Υ∇⊥

X1
η2.

Similarly,
Υ∇⊥

X2
η2 = −Υ(B2X2)

⊥ = 0

and

∇⊥

X2
Υη2 = (

√
τ)vη1 −

√
τ(B1X2)

⊥ + (
√

1 − τ)vN1 +
√

1 − τ〈N1, B1X2〉η1 = 0

which proves the claim. We conclude from the fundamental theorem of sub-
manifolds that (64) holds up to a rigid motion.

We show below that Sbrana-Cartan hypersurfaces obtained as intersec-
tions are generically of type (IV ). Nevertheless, there exist deformable hy-
persurfaces of type (I) or (III) which can be obtained this way. In fact, it is
easy to see that the flat hypersurfaces which yield the ones of type (I) are
precisely as follows:

1) Fi = F 0
i × I splits, where F 0

i : U0
i ⊂ R3 → R4 and the euclidean factors

Rn−2 are parallel, or

2) Fi = F 0
i × I splits, where the F 0

i : U0
i ⊂ R4 → R5 are cones over

hypersurfaces of rank 1 in S 4
1 ⊂ R5 and the euclidean factors Rn−3 are

parallel.

26



It is also not difficult to characterize the above hypersurfaces of type (I)
in terms of the Gauss parametrization. They are given by a pair {h, γ} as
in (60), (61), satisfying: 1) h is contained in a totally geodesic S2

1 ⊂ Sn
1 , or

2) h is contained in a totally geodesic S3
1 ⊂ Sn

1 and γ is a height function,
i.e., a = 〈α, v0〉 and b = 〈β, v0〉 for v0 ∈ Rn+1.

Hypersurfaces of type (III) which can be obtained as intersections admit
a simpler parametrization determined by

h =
(α1(u), α2(v))√

‖α1(u)‖2 + ‖α2(v)‖2
and γ =

a1(u) + a2(v)√
‖α1(u)‖2 + ‖α2(v)‖2

,

where the smooth curves αj: Ij → Ej lie in affine orthogonal subspaces Ej ⊂
Rn+1 and a1(u), a2(v) are arbitrary smooth functions. This class was already
obtained by Cartan ([Ca1]) as a result of a completely different approach.
Notice that in this case condition (62) reduces to Γ1Γ2 +F = 0. See [DF] for
details.

Theorem 11. A Sbrana-Cartan hypersurface obtained as an intersection
can only be of type (I), (III) or (IV ). Moreover, if nowhere of type (I), it is
of type (III) if and only if one of the following equivalent conditions hold:

1) The curves α(u), β(v) in (60) satisfy

α(u) = α0(u) +
√

1 − ‖α0(u)‖2 v0

with v0 ∈ Rn+1 constant and 〈α0(u), v0〉 = 〈α0(u), β(v)〉 = 0.

2) dim (span{η1} ∩ span{η2}) = 1.

Proof: For a pair of isometric Sbrana-Cartan hypersurfaces obtained as an
intersection, the tensor D = A−1

1 ◦ A2 has two real distinct eigenvalues. On
the other hand, the tensor D associated to a pair of isometric hypersurfaces
of type (II) has 1 as an eigenvalue of multiplicity two. This proves the first
assertion.

For a surface {h, (u, v)} of first or second species and a solution τ of (5),
we have (

τu

τ

)

v

= 2(1 − τ)(Γ2
v − 2Γ1Γ2).
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Therefore, h is of first species if and only if there exist functions V = V (v) < 0
and U = U(u) > 0 such that

τ(u, v) =
−V (v)

U(u)
. (84)

1) Suppose that h is of first species. Replacing (84) in (60) yields

U(u) + V (v) =
∥∥∥∥
√

U(u) α(u) +
∫ v

0

√
−V (s) β(s) ds

∥∥∥∥
2

. (85)

It follows easily that
〈(√

U(u) α(u)
)

u

, β(v)
〉

= 0.

Hence, we have that

α(u) = α0(u) +
1√

U(u)
w0, (86)

where 〈α0(u), w0〉 = 〈α0(u), β(v)〉 = 0. From (85) and (86), we obtain

U(u)(1 − ‖α0(u)‖2) + V (v) − ‖w0 +
∫ v

0

√
−V (s) β(s) ds‖2 = 0.

Therefore, there exists a constant k0 > 0 such that

U(u) =
k0

1 − ‖α0(u)‖2
, V (v) = −k0 + ‖w0 +

∫ v

0

√
−V (s) β(s) ds‖2, (87)

and the proof of the direct statement follows by setting v0 = w0/
√

k0.
To prove the converse, we first show that there exists a function V (v)

satisfying the second equation in (87). Set V (v) = −ψ2(v). Differentiation
yields

ψ′(v) = 〈β(v), v0〉 −
∫ v

0
〈β(v), β(s)〉ψ(s) ds.

By a similar procedure as before, this equation can be transformed into
an integral equation of Volterra type, hence has a unique solution. Go-
ing backwards in the above calculations shows that the function τ̄(u, v) =
−V (v)/U(u), with V (v) and U(u) as in (87), has the property that

h(u, v) =
1√

1 − τ̄

(
α0(u) +

√
1 − ‖α0(u)‖2 v0 +

∫ v

0

√
τ̄(u, s)β(s)ds

)
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has unit length. By the uniqueness established in the proof of the converse
of Theorem 9, we have τ̄ = τ and the proof of 1) is completed.

2) Since
√

τ = 〈η1, η2〉 for a hypersurface obtained as an intersection, we
have that (84) holds if and only if

〈(η1,
−1√
U

), (η2,
√
−V )〉 = 0

in Rn+3. This is clearly equivalent to the subspaces span{η1} ∩ span{η2}
having dimension 1.

Our last result has the following important consequence.

Corollary 12. There exist connected Sbrana-Cartan hypersurfaces which
are of type (III) and (IV ) but not of type (I) on some open subsets, and of
type (I) along some other open subsets.

Examples 13. Examples of Sbrana-Cartan hypersurfaces as in Corollary 12
can be explicitly constructed. Take β(v) = e constant with ‖e‖ = 1, and
α: I → Rn+1 any curve so that ‖α(u)‖2 = k < 1 is constant. Set

√
τ = −〈α(u), e〉 sin v +

√
1 − k cos v (88)

and let V 2 be any connected component of I × R where 0 <
√

τ < 1. Then
h: V 2 → Rn+1 given by

h(u, v) =
1√

1 − τ

(
α(u) +

∫ v

0

√
τ(u, s)ds e

)
(89)

has unit length. We have everywhere on V 2 that

W := span{hu, hv, h} = span{α(u), α′(u), e}.

Hence, the singular points of h occur precisely along the v-coordinate curves
for which e ∈ span{α(u), α′(u)}. Since huv, hvv ∈ W , we conclude that (u, v)
are real conjugate coordinates and that hv belongs to the relative nullity of
h. In particular, V 2 has constant Gauss curvature 1 at its regular points.
Moreover, huu ∈ W , i.e., h is totally geodesic, if and only if α′′(u) ∈ W ,
that is,

α(I) ⊂ R3 ∋ e. (90)
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By part 1) of Theorem 9, we have that h is of first species (with Γ1 = Γ1(v)
and Γ2 = 0) on any open subset of V 2 where 〈α(u), e〉 is constant, and of
second species on an open subset where 〈α′(u), e〉 6= 0. In the first case, the
singular points of h occur along the v-coordinate curves for which e and α(u)
are colinear.

A straightforward computation for τ as in (88) and γ as in (61) shows
that

〈(Hessγ + γI )hv, hv〉 = 0 ⇐⇒ b′(v) = 0.

On the other hand, where h is not totally geodesic, let η, ξ1, . . . , ξn−3 be an
orthonormal frame of T⊥V such that η spans the first normal space of h. For
x ∈ V 2 and w = tη +

∑n−3
1 tiξi ∈ T⊥

x V , the points (x,w) ∈ T⊥V where

〈(Hessγ + γI − Bw)hu, hu〉 = 0

can only occur along the hypersurface S given by

S =

{
(x,w) ∈ T⊥V : t =

〈(Hessγ + γI )hu, hu〉
〈Bηhu, hu〉

}
.

Therefore, a hypersurface generated by {h, γ} is regular outside S if b(v)
is chosen so that b′(v) 6= 0 everywhere. Moreover, it is of type (III) on any
open subset where 〈α(u), e〉 is constant, of type (IV ) on an open subset where
〈α′(u), e〉 6= 0 and of type (I) i) on an open subset where α(u) satisfies (90).
Notice that it cannot be of type (I) ii) because in that case b′(v) = 0.

On any open subset of type (III), an easy computation shows that the
one parameter family of local deformations is given by

τ̄ = c + (1 − c)τ, c ∈ R.

Notice also that the sectional curvature changes signs at opposite sides of S.

§4 Further examples

In this section we construct large families of surfaces in Riemannian and
Lorentzian sphere which are of first species with respect to real conjugate co-
ordinates. They do not satisfy condition (62), thus they yield Sbrana-Cartan
hypersurfaces of real type (III) which cannot be obtained as intersections.
Verifications are left to the reader.
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Proposition 14. Given two curves cj: Ij → Rnj , cj = cj(uj), with Frenet
frames c′j = ej

1, . . . , e
j
nj

and first curvature functions k1
j (uj) > 0 for all

uj ∈ Ij, the map h: I1 × I2 → Sn
1 ⊂ Rn+1 = Rn1 ⊕ Rn2 given by

h =
1√

cos2 θ1 + cos2 θ2

(
cos θ2 e1

2, cos θ1 e2
2

)
,

where
d

duj

θj = k1
j , 1 ≤ j ≤ 2,

is a surface of first species with real conjugate coordinates (u1, u2).

Proposition 15. Consider curves c1: I1 → Ln1, c1 = c1(u1), with Frenet
frame c′1 = e1

1, . . . , e
1
n1

, ‖e1
2‖ = −1, and c2: I2 → Rn2, c2 = c2(u2), with Frenet

frame c′2 = e2
1, . . . , e

2
n2

. Assume that the first and second Frenet curvatures
k1

j , k
2
j of cj, 1 ≤ j ≤ 2, satisfy the following conditions:

i) k1
j (uj) > 0, ∀uj ∈ Ij,

ii) θ1(u1) > θ2(u2), ∀uj ∈ Ij, where
d

duj

θj = k1
j ,

iii) 1 +

(
k2

j

k1
j

)2

>
sinh2 θj

cosh2 θ1 − cosh2 θ2

.

Then, the map h: I1 × I2 → Sn
1 ⊂ Ln+1 = Ln1 ⊕ Rn2 given by

h =
1√

cosh2 θ1 − cosh2 θ2

(
cosh θ2 e1

2, cosh θ1 e2
2

)

is a surface of first species with real conjugate coordinates (u1, u2).

Remark 16. The examples above are totally geodesic for n = 3, but for
higher dimensions this, in general, is not the case.

It is known that simply-connected minimal hypersurfaces of rank 2 are
Sbrana-Cartan hypersurfaces; cf. [DG1]. In terms of the Gauss parametriza-
tion, they are given by a minimal surface in the sphere and, in case the
ambient space is euclidean, a function γ on the surface satisfying

∆γ + 2γ = 0. (91)
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Notice that (91) is equation (9) with respect to isothermal coordinates. In
our context, this result can be proved using the following.

Proposition 17. Minimal surfaces endowed with isothermal coordinates are
surfaces of first species with complex conjugate coordinates.

Proof: They correspond to solutions of (14) for constant φ.

§5 Some applications

Theorem 3 yields two applications. The first result deals with the rigidity
question for real Kaehler hypersurfaces in euclidean space.

Theorem 18. Let f : M2n → R2n+1, n ≥ 2, be an isometric immersion of
a locally irreducible Kaehler manifold. Then f is isometrically deformable if
and only if it is minimal.

Proof: Suppose that the Gauss image h: V 2 → Sn
1 of a locally irreducible

hypersurface g: Mn → Rn+1, n ≥ 4, is a minimal surface. By Theorem 3,
we have that g is deformable if and only if it is either minimal or ruled.
We argue that it cannot be ruled. In fact, if otherwise, g has everywhere
an asymptotic direction. It follows from (54) that also h must have every-
where an asymptotic direction. Being minimal, either h is totally geodesic
or the dimension of its first normal space is equal to 1 except possibly at
isolated points. Hence, the substantial codimension is at most 1, which is
in contradiction with our assumption that g is irreducible. To conclude the
proof observe that, by Theorem 2.5 of [DG2], the Gauss image of f in the
statement has to be a pseudoholomorphic surface, hence minimal.

Next we provide a short proof of part of the result in [DG3].

Theorem 19 ([DG3]). Let f : Mn → Rn+1 be a Sbrana-Cartan hypersur-
face and g: Mn → Rn+1 an isometric deformation. If f, g have isometric
Gauss maps, then f is minimal and g belongs to its associated family.

Proof: Having isometric Gauss maps means that

(Af )2 = (Ag)2 = (AfD)2.
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This easily implies the statement for hypersurfaces of type (I), and excludes
ruled and hypersurfaces of real type (III) and (IV ) .

If f is of complex type (III) or (IV ), we have for the complex coordinate
vector ∂z = ∂u − i∂v induced on the Gauss image by the complex eigenfield
Z of D that

〈∂z, ∂z〉 = 〈AfZ,AfZ〉 = 〈AfDZ,AfDZ〉 = ρ2〈AfZ,AfZ〉 = ρ2〈∂z, ∂z〉,

hence 〈∂z, ∂z〉 = 0. This is equivalent to asking the coordinates (u, v) to be
isothermal. We conclude from (2) that the Gauss image of f is minimal.
Moreover, since the solutions of (13) associated to minimal surfaces are the
constant ones, the corresponding solutions of (10) given by (57) are ρ = eiθ,
θ ∈ R. Therefore, the 1-parameter family of deformations of a minimal
hypersurface coincides with its associated family.

§6 Global results

In this section we study complete Sbrana-Cartan hypersurfaces in hyper-
bolic space. We first characterize those of type (I).

Theorem 20. Let f : Mn → Hn+1
−1 be a Sbrana-Cartan hypersurface of type

(I) determined by a surface L2 in Q 3
c̃ . Then Mn is complete if and only if

c̃ ≤ 0 and L2 is complete.

Proof: Let a denote the mean curvature vector of Q3
c̃ in Ln+2 ⊃ Hn+1

−1 . By
the discussion following Lemma 6, Mn is isometric to Nn−2 ×σ L2, where
Nn−2 = Hn−2

−1 if c̃ ≤ 0 and Nn−2 = Hn−2
−1 ∩ {x : 〈a, x〉 > 0} otherwise,

the warping function σ: Nn−2 → R being σ(x) = 〈a, x〉. The conclusion
follows from the standard characterization of whether a warped product is
complete.

Remark 21. The examples of complete deformable hypersurfaces in hyper-
bolic space in [Mor1] are rather simple. They are of type (I) where L2 is a
complete ruled surface in a totally geodesic H3

−1 ⊂ Hn+1
−1 . Moreover, being

L2 ruled, they also turn out to be ruled, that is, of type (II).

There exist many complete ruled hypersurfaces in hyperbolic space of any
dimension which are not of type (I). To generate simple examples one starts
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with a substantial curve d: R → Hn+1, d = d(s), n ≥ 4, with Frenet frame
d′ = e1, . . . , en+1, and consider the parametrized hypersurface

F (s, t1, . . . , tn−1) = exp d(s)




n−1∑

j=1

tjej+2(s)


 .

Next we prove a non-existence result for complete hypersurfaces of real
type (III) and (IV ).

Theorem 22. No hypersurface f : Mn → Hn+1
−1 , n ≥ 4, can be Sbrana-

Cartan of real type (III) or (IV ) on an open subset with complete relative
nullity leaves unless it is also of type (I) on that subset.

Proof: Suppose that the hypersurface is of real type (III) or (IV ) on an open
subset U as in the statement. Then, it can be described along U by the Gauss
parametrization (16) defined on the normal bundle of a surface h: V 2 → Sn

1

of first or second species, respectively. Being the leaves of relative nullity
complete on U , Ψ must have maximal rank everywhere on T⊥V . As already
pointed out in §2, this is equivalent to Bw being nonsingular for any normal
vector w of length −1 on V 2. We claim that this is the case if and only if
the first normal spaces Nh

1 form a rank-1 parallel subbundle of the normal
bundle.

We first show that, at any point x ∈ V 2 where Nh
1 has the maximal di-

mension 2, there exists a vector w ∈ T⊥

x V such that ‖w‖ = −1 and Bw is
singular. The assertion is trivial if Nh

1 (x) is Riemannian. If it is degener-
ate, we may assume that ‖αh(∂u, ∂u)‖ 6= 0 and let w0 ∈ Nh

1 (x) ∩ Nh
1 (x)⊥.

Now take ŵ0 such that ‖ŵ0‖ = 0, 〈w0, ŵ0〉 = −1/2, 〈ŵ0, αh(∂u, ∂u)〉 = 0,
and set w = w0 + ŵ0. When Nh

1 (x) is Lorentzian and either αh(∂u, ∂u) or
αh(∂v, ∂v), say, the former, is space-like, simply choose w ∈ Nh

1 (x) orthogonal
to αh(∂u, ∂u). Finally, if both αh(∂u, ∂u) and αh(∂v, ∂v) are time-like, let ξ, δ
be an orthonormal basis of Nh

1 (x) with ξ colinear with αh(∂u, ∂u). Then set
w = cosh θ ξ + sinh θ δ, where tanh θ = −〈αh(∂v, ∂v), ξ〉/〈αh(∂v, ∂v), δ〉.

Now assume that Nh
1 (x) = span{w} and there exist ζ ∈ T⊥

x V orthogonal
to w and X ∈ TxV such that 〈∇⊥

Xw, ζ〉 6= 0. The Codazzi equation for Bζ

easily implies that BwY = 0 for any Y ∈ TxV such that 〈∇⊥

Y w, ζ〉 = 0.
Hence, Bw is singular and the claim is proved.

We conclude that h reduces codimension to one, that is, there exists a
totally geodesic S3

1 ⊂ Sn
1 such that h(V 2) ⊂ S3

1. Then, it is easily seen that
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f |U is of type (I), where the surface L2 ∈ H3
−1 in the statement of Theorem 3

is the polar surface of h.

Although we do not have examples of complete hypersurfaces in hyper-
bolic space of complex type (III), we believe that there exists an abundance.
A straightforward computation shows that, for any surface of first species
in Lorentzian sphere with complex conjugate coordinates whose first normal
space is nowhere Riemannian, the Gauss parametrization (16) is everywhere
an immersion. Hence, a natural way to produce examples would be to con-
sider hypersurfaces given by (16) for compact surfaces of first species, perhaps
minimal ones, with nowhere Riemannian first normal spaces.

Remark 23. We point out that the claim in [Mor2] is not correct. In
fact, the three dimensional complete deformable euclidean hypersurfaces con-
structed there are of type (I) i) in Theorem 3 and not of type (III).
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