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1 Introduction 

For an isometric immersion between Riemannian manifolds f : M " ~  N "+p, the 
Gauss equation says that the (sectional) extrinsic curvature of M" in N" +p at x e M" 
for a plane a c TxM,  Kr Ku(a) - Ku(o), is given by 

Kj,(a) = ( ~ ( X , X ) , 2 ( K  Y ) )  - II~(X, Y)II 2 , 

where ~ is the second fundamental form of the immersion and {X, Y} any 
orthonormal basis of a. Superscripts always means dimension. 

Chern and Kuiper [3] have shown that v => n - p at the points where the 
extrinsic curvature vanishes. Here v(x) is the dimension of the subspace 

A(x)  = Ker c~(x) = {Xe T x M : ~ ( X ,  Y )  = O, g Y c  T x M }  

and is called the index of  relative nullity of f a t  x. It is a well known fact that the 
positiveness of the index of relative nullity imposes strong conditions on the metric 
of the submanifold and on the structure of the immersion. Therefore, it is a natural 
question to ask what happens if the extrinsic curvature is merely nonpositive. 

In that direction, Boriscnko had shown in [2] that at points where K I < 0, the 
index of relative nullity verifies v > n - p2 _ p. The main purpose of this paper is 
to prove the following improvement of Borisenko's result 

Theorem 1. Let  f :M"- -+N "+p be an isometric immersion between Riemannian 
manifolds. Suppose that at x o e M "  we have KI (xo)  <_ O. Then V(Xo) > n - 2p. 

The following example shows that our estimate in Theorem 1 is sharp. 

Example. Let U 2 c R a be a surface in the euclidean space with negative Gaussian 
curvature at x0 s U 2. Then the product immersion ofp factors U 2 x . . .  x U 2 -~ R 3v 
satisfies v(x o . . . . .  Xo) = n - 2p = O. 

The strong restrictions that v > 0 imposes on an isometric immersion allow us 
to find several applications of Theorem 1. The following corollary is an improvement 
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of Theorem 3 in [2], where a much stronger quadratic hypothesis for the codimen- 
sion is needed. 

Corollary 2. Let f :  M" -} S~ +p be an isometric immersion of  a complete Riemannian 
manifold into the euclidean sphere of  constant sectional curvature c. I f  K~t <= c and 
2p < n - v,, then f is totally 9eodesic. 

In the above statement v, is defined as v, = max {k:p(n - k) >__ k + 1 }, where p(n) 
is given by p((odd)24~+b) = 8d + 2 ~, with d being any nonnegative integer and 
b = 0,1,2,3. Some values of v, are: v, = n - (highest power of 2 < n) for n < 24, 
v , - < 8 d - 1  f o r n <  16 a a n d v 2 ~ = 0 .  

At least for some dimcnsions, the hypothesis in the codimcnsion in the above 
corollary cannot be improved to 2p < n. For  example, the simplest of Cartan's  
isoparametric hypersurfaces, i.e., the unit normal bundle of the Veronesse surface in 
S~, is a 4 compact  non totally geodesic submanifold of S~ with curvature less or equal 
than one. 

We have the following for isometric immersions of Riemannian products. 

Corollary 3. Let M " =  NT'x  N~ ~ be the product of two Riemannian manifolds. 
Suppose that there exists ( x , x ' ) ~ M  ~ such that KN~(x), KN~(x')< c, a positive 
constant. Then, there is no isometric immersion of M" into S~+P for 2p < n. 

Corollaries 2 and 3 also hold if we replace the ambient space by any manifold of 
constant sectional curvature c. 

By Q~" (resp. CQ~) we denote the standard real (resp. complex) simply connected 
space form of constant sectional (resp. holomorphic) curvature c and real (resp. 
complex) dimension n. Dajczer and Rodriguez [5] have shown that any isometric 
immersion of a K/ihler manifold with v > 0 everywhere into CQ~, c 4- 0, must be 
holomorphic. From the proof of that theorem and our main result we conclude the 
following statement. 

Corollary 4. Let M 2n be a K~hler manifold and xo ~ M  2~ such that KM(xo) <-- c + O. 
I f  p < n, then there exists no isometric immersion of  M 2~ into Q2,+p. 

Further  applications of our main result for isometric immersions of K/ihler mani- 
folds will be given in Sect. 3. 

2 The proof of Theorem 1 

Let V" and W p be real vector spaces of dimensions n and p respectively. Suppose 
that W p has a positive definite inner product  ( , ) ,  and let ~: V" • V" ~ W p be 
a symmetric bilinear map with nonpositive curvature, i.e., 

K~(X, Y) = (~(X ,X) ,~ (Y ,  Y ) )  - II ~(X, Y)]I 2 ~ O, 

for all X, Y~ V". We recall the following version of a well-known result due to 
Otsuki [9]. 

Lemma 5. With the above assumptions, for any subspace S c V" with dim S > p 
there exists 0 4- X e S  such that ct(X,X) = O. 

We say that T ~ V" is an asymptotic subspace of a if ~(X, Y) = 0 for all X, Y~ T. 
We denote the set of asymptotic  vectors of ~ by A(~). One of the main tools in the 
proof  of Theorem 1 is the following generalization of Lemma 5. 
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Proposition 6. Le t  ~ : V" x V n ~ W p be a symmetr ic  bilinear map with K~ <- O. Then, 
there exists  an asymptot ic  subspace T c V" o f  ct such that dim T__> n - p. 

Proof. F o r  each Xo ~ V", we define a l inear t ransformat ion  ~(Xo):  V" -~ W" by 

~(Xo)(Y) = ~.(Xo, Y) .  

Given X o cA(a) ,  we denote  

Vl = V , (Xo)  = Ker~(Xo) ,  W1 = W l ( X o )  = {Ima(Xo)}  • 

and define al = ~1 v, ~ v~. 
With the above  notat ions,  we claim that  Im c~1 --q W~. To  prove  the claim, take 

Z ~ Vt, Y ~ V". Then,  since X o ~ A (ct), 

K , ( X o  + tY,  Z )  = (2tc4Xo,  Y)  + t2a(Y, Y ) , ~ ( Z , Z )  ) - t2[[~(Y,Z)H 2 

= 2 t ( ~ ( X o ,  Y ) , a ( Z , Z ) )  + t a K ~ ( Y , Z ) ,  

for all t e R .  Then,  we have that  (~(Xo,  Y ) , ~ ( Z , Z ) ) =  O, for all Z c V 1 ,  Y e  V", 
because Ks -< O. The  claim follows easily using the symmetry  of cc 

The above  claim allows us to make  an induct ive process as follows. Set Vo = V 
and Wo = W. Given  k >_ O, for the symmetr ic  bil inear m a p  of nonposi t ive  curva- 
ture % = ~lv, • v, : Vk x Vk --* Wk, define 

rk = max  { d i m I m  e k ( X ) : X  eA(ek)} , 

k - 1  
and suppose that  if k > 1, nk = dim Vk = n -- ~q=o rz and Pk = dim Wk = p - -  

E -2 r,. Picking X k e A(etk) such that  dim Im ek(Xk) = r~, set 

Vk+ l = Vk+ t ( X o  . . . . .  X~) = Ker~k (Xk )  , 

and then 
k 

nk+l = dim Vk+l = n ~, r i .  
i = O  

The above  claim implies that  Im ~k +~ c_ Wk + t, where 

Wk+l = Wk+l(Xo . . . . .  Xk) = {Imc(k(Xk)} • --~ Wk,  

and ak+~ = O~k[V~xx Vt.t" 
h 

Since 0 _-< P~+I = dim Wk+t = p -- ~ = o r ~ ,  there exists a posit ive integer 
m such that  r,, -- 0. This tells us that  A(~,,) = Ker  ~ .  Set T = Ker  ~,,. By L e m m a  5, 
for all subspace S m V,, such that  d i m S  > pro, we have that  S c~ T =  
Sc~A(a , , )  + {0}. Hence, dim T >  nm - p,. = n - p. Moreover ,  since a,. = ~[v.• 
then T is an asymptot ic  subspace of c~ and this concludes the proof. [] 

Let fl: V' x V --, V" be a bil inear map. We say that  X e V' is a regular element o f / / i f  
dim Imf l (X)  = m a x  {dim lm  f l ( Z ) : Z  e V'}. The  set of regular  elements of fl is 
denoted by RE(fl).  For  the p roo f  of P ropos i t ion  8 we need the fol lowing result 
which is essentially due to M o o r e  [8]. 

Lemma 7. Le t  fl : V'  x V - *  V"  be a bilinear map and Yo ~ RE(fl). Then, 

fl(Y, Ker  fl(Yo)) ~_ Imfl (Yo)  

for  all Y e V'. 
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Proof  Let ZI  . . . . .  Z,  be vectors in V with r = d imlmfl (Yo)  and 

Imfl(Yo) = span {fl(Yo, Zj)  , 1 < j <= r} . 

It is easy to see that the vectors fl(Yo + tY,  Zj),  1 < j  < r, are linearly independent 
except for a finite number of values of t. Hence, they generate a family of 
r-dimensional subspaces that varies continuously with t if Itl < e, for some e > O. 
But if Z eKerfl(Yo), then fl(Yo + tY,  Z )  = tfl(Y, Z). Therefore, by continuity, 
fl(Y, Z ) e l m  [3( Yo). 

Proposition 8. Let  ~ : V n • V" ~ W p be a symmetric bilinear map with K ,  < O. Let 
T be an asymptotic subspace o f  ~. Then v > dim T - p. 

Proof  Let T ' _  V" be a subspace such that T ' @  T =  V", and define 
r :  T ' •  T ~  W" by fl = ~lr '• Take Yo sRE(fl) ,  Z ~ T, Z'  eKer/~(Y0) _-_ T and 
Ys  T'. Using only the assumption on T, we have for all s,t ~R that 

K , ( Y o  + tZ,  Y +  sZ')  = (o~(Yo, I1o) + 2t~(Yo, Z) ,~(Y ,  Y)  + 2sc t (Y ,Z ' ) )  

- If~(Yo + t Z ,  Y + s Z ' ) l l  2 . 

Since c~(Yo, Z ' )  = O, we get that 

K, (Yo  + tZ, Y +  sZ')  = K, (Yo ,  Y ) -  t211o~(Z, Y)II z 

+ 2 t ( (a (Yo ,  Z ) , a ( Y ,  Y ) ) -  (a(Yo, Y),c~(Z, Y)) )  

+ 2s((~(Yo, Yo), ct(Y, Z ' )> + 2t (~ ( ro ,  z ) ,  ~(Y, z ' ) ) ) ,  

which is linear in s, This implies, in view of the hypothesis on K~, that 

(~ ( ro ,  Yo),o~(Y, Z ')  ) + 2t (o~(Yo ,Z) ,c t ( r , z ' )  ) = O, 

for all t eR,  which says that (a(Yo, Z ) , c e ( Y , Z ' ) ) =  O. From the arbitrariness of 
Z and Z', it follows that 

fl(Y, Ker  fl(Yo)) ~_ {Imfl(Yo)} • , 

for all Ye  T'. This, together with Lemma 7, tells us that  ~(Y, X) -- 0, for all Y ~  T', 
X eKer/~(Yo). But since Kerfl(Yo) ___ T, we obtain 

Ker  fl(Yo) ~- Ker~  . 
Then, 

v > d i m K e r  fl(Yo) = d i m T -  dim Im fl(Yo) >-- dim T -  p ,  

which concludes the proof. [] 

The proof  of Theorem 1 follows immediately from the Gauss equation and the 
next result. 

Proposition 9. Let  ~ : V" x V" ~ W ~ be a symmetric bilinear map such that K~ <= O, 
Then v >= n - 2p. 

Proof. It is clear from Proposit ions 6 and 8. [] 

3 Some applications 

First of all, we give the proofs of the three corollaries stated in the Introduction. 
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Proof of  Corollary 2. It is a well-known fact (see e.g. [7]) that when the ambient 
space has constant sectional curvature, i.e., N "+p = N 2+p, the minimum relative 
nullity distribution of an isometric immersion f :  M" --* N~ "+v is smooth and inte- 
grable with totally geodesic leaves in both M" and N~ "+v. If in addit ion M" is 
complete, then the leaves are also complete. Now, the proof  is a direct consequence 
of Theorem 1 in [6] and our Theorem 1. D 

Proof of  Corollary 3. Suppose that such an immersion exists. Since the product  
manifold satisfies KM < c at (x,x'), by Theorem 1, there exists a unit vector 
X ~ Ttx.,~)M such that KM(X, Y) = c > 0, for all unit vector Y~ T~.x.IM normal 
to X. But this is a contradiction because K M ( Z , Z ' ) = O  if Z ~ T ~ N 1  and 
Z '  ~ Tx,N 2. [] 

The following is the same argument as the one in the proof  of Theorem 3 in [5]. 

Proof o f  Corollary 4. Suppose that  such an immersion exists and call it f Com- 
posing f w i t h  the totally geodesic and totally real inclusion i: Q2,+ v__. CQ,2" +v, we 
conclude from Theorem 1 that Vt, oj)(Xo) > 0. But the proof of the main result in 1-5] 
tells us that T~oM must be J invariant, where J is the almost complex structure of 
M. This is a contradiction, because i o f  is totally real. [] 

In [1], Abe had shown that any holomorphic isometric immersion of a com- 
plete K/ihler manifold into the complex projective space with v > 0 everywhere 
must be totally geodesic. But by the main result of [5], the holomorphic hypothesis 
is superfluous. Therefore, from Theorem 1, we conclude: 

Corollary 10. Let f :  M 2" ~ CP"~ +v, 2p < n, be an isometric immersion of  a complete 
Kdhler maniJbld into the complex projective space. Suppose that K f  < O. Then 
M 2" = CP"~ andJ is  a totally geodesic inclusion. 

Given an isometric immersion of a Riemannian manifold into the euclidean space 
with v > 0 everywhere, it is an interesting question to ask whether the relative 
nullity distribution gives rise to an euclidean factor of the submanifold. The next 
result follows directly from Theorems 3 and 4 of [4]. We say that the scalar 
curvature s of a Riemannian manifold M has subquadratic grow along geodesics if it 

, .  s(t) 
satisfies nm~, ~-}7- = 0, where t is the parameter  of any geodesic 7 and s(t) is the 

scalar curvature of M at y(t). 

Corollary 11. Let f :  M2n--~ R 2"+v be a minimal isometric immersion of a complete 
Kiihler manifold o f  nonpositive sectional curvature. Suppose that p < n and one of  the 
following holds: 

a) s has subquadratie 9row along geodesics, or 
b) there exists xo ~ M 2n where all the holomorphic curvatures o f  planes in A (Xo) • 

are negative. 
Then M 2~ : N 2v • R 2(n-p) and f = f l  • id splits. 
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