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The classical Allendoerfer’s local rigidity result assures that any isometric immersion

f : Mn → Qn+p
c with type number ρf ≥ 3 everywhere is isometrically rigid. Here and

throughout the paper, Mn stands for a connected n−dimensional Riemannian manifold

and QN
c denotes a complete simply connected Riemannian manifold of constant sectional

curvature c. On the other hand, Dajczer and Rodŕıguez ([1]) have shown that the same

type number condition also guarantees infinitesimal rigidity. Thus, “generically speaking”,

isometric rigidity and infinitesimal rigidity are the same property in low codimension.

A stronger concept of isometric rigidity was considered by Dajczer and Tojeiro

in [2]. Given an isometric embedding f : Mn → Qn+1
c and an isometric immersion

g : Mn → Qn+p
c , they proved, under some weak regularity conditions on g, that g must

be a composition g = h ◦ f , with ρf ≥ p + 2 everywhere. Here h : U ⊂ Qn+1
c → Qn+p

c is

an isometric immersion and U an open subset containing f(M). In view of [1], it is thus

natural to look for an infinitesimal version of this stronger isometric rigidity result. The

main purpose of this paper is to show that, in this context, any infinitesimal deformation

of the composition g must be the restriction to f(M) of an infinitesimal deformation of

the extension h, when we restrict ourselves to the case of codimension p = 2.

To state our main result, we first need some definitions. We say that an infinitesimal

deformation Z of a composition g = h◦f admits an extension along h, if Z = Z ◦f , where

Z is an infinitesimal deformation of h|U ′ , for some open subset f(M) ⊂ U ′ ⊂ U . The

isometric immersion g is said to be 1-regular if the normal space spanned by its second

fundamental form has constant dimension.

Theorem 1. Let f : Mn → Qn+1
c be an isometric embedding and let h : U ⊂ Qn+1

c →
Qn+2

c be an isometric immersion such that f(M) ⊂ U . Assume that the composition

1Mathematics Subject Classification: 53B25.

1



g = h ◦ f is 1-regular and that either ρf ≥ 5 or ρf ≥ 4 and the sectional curvature of Mn

verifies KM ≥ 0 everywhere. Let Z be an infinitesimal deformation of g. Then, one of the

following holds:

1) g = i ◦ f , where i : Qn+1
c → Qn+2

c is a totally geodesic inclusion, and Z admits an

extension Z along i, or

2) Z admits a unique extension Z along h.

The theorem is no longer true if the composition g is not 1-regular. Consider an

hypersurface Mn of Euclidean space such that TpM disconnects Mn in more than two

components for some p ∈ Mn. Now, define a C∞ infinitesimal deformation Z of Mn

to be zero except in one component where it is nonzero arbitrary close to p. If h is the

circular cylinder with leaves of relative nullity being the hyperplanes parallel to TpM , we

can choose the connected component of Mn \TpM where Z is nonzero, in such a way that

h∗Z cannot be extended along h.

Without any regularity assumption, we conclude from Theorem 1 the following.

Corollary 2. Let f : Mn → Qn+1
c and h : U ⊂ Qn+1

c → Qn+2
c be isometric immersions

such that f(M) ⊂ U and that either ρf ≥ 5 or ρf ≥ 4 and KM ≥ 0 everywhere. Then,

there exists an open and dense subset V ⊂Mn such that any infinitesimal deformation Z

of h ◦ f |V can be extended along h.

If the isometric immersion h has arbitrary codimension, the situation is more compli-

cated. Nevertheless, for this case we provide an equivalent condition to the existence of an

extension Z along h of an infinitesimal deformation Z of the composition g. We also give

a characterization of all possible extensions.

This work is a portion of the author’s doctoral thesis at IMPA - Rio de Janeiro.

The author would like to express his gratefulness to his adviser, Prof. M. Dajczer for his

orientation.
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1. Preliminaries

For what follows, we will need some definitions. Given an isometric immersion

f : M → N between Riemannian manifolds, a deformation of f is a smooth map

F : I × M → N, where I ⊂ R is an open interval around the origin, and the maps

Ft = F (t, ·) are isometric immersions from M to N with F0 = f. It is easy to verify (cf.[4],

Chapter 12) that the variational vector field Z along f , Z = ∂F
∂t

|t=0, satisfies

(1) 〈∇V Z, V 〉 = 0, ∀ V ∈ TM,

where ∇ is the Levi-Civita connection of the metric 〈 , 〉 of N . We call any vector field Z

along f which satisfies (1) an infinitesimal deformation of f . This terminology arise from

the fact that the map F (t, x) = expf(x)(tZ(x)) is a deformation of first order of f , being

exp the exponential map of the ambient space N . For example, if N = Rm,

‖F t∗X‖2 = ‖X‖2 + t2‖∇XZ‖2, ∀X ∈ TM.

We say that the infinitesimal deformation Z is trivial if it is the restriction to M of a

Killing field of the ambient space N . The existence of nontrivial infinitesimal deformations

means that M is infinitesimally deformable in N .

Let g : Mn → Qn+p
c be an isometric immersion with second fundamental form αg :

TM × TM → TgM
⊥. Denote by Ng

1 (x) the first normal space of g at x, i.e. the normal

subspace defined as

N
g
1 (x) = span {αg(X,Y ) : X,Y ∈ TxM}.

Set sg(x) := dim N
g
1 (x). Notice that, in the context of Theorem 1, for each x ∈ Mn we

have sg(x) = 1 or 2. We say that g is 1-regular if the semicontinuous function sg remains

constant on Mn. For each normal vector ξ ∈ TxM
⊥, we denote by Ag

ξ the endomorphism

of TxM defined by

〈Ag
ξX,Y 〉 = 〈αg(X,Y ), ξ〉.

We denote by ∆g(x) the relative nullity of g at x, that is, the subspace of TxM given

by

∆g(x) = {X ∈ TxM : αg(X,Y ) = 0, for all Y ∈ TxM}.
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It is well known that in an open subset W ⊂ Mn where the dimension of ∆g is constant,

∆g is a smooth and integrable distribution whose leaves are totally geodesic in both W

and Qn+p
c .

If the Riemannian manifoldMn has constant sectional curvature c, the Gauss equation

says that the symmetric bilinear map αg is flat, i.e. for all X,Y ∈ TM,

〈αg(X,X), αg(Y, Y )〉 = ‖αg(X,Y )‖2.

In this case, the classical Chern-Kuiper inequality implies that dim ∆g ≥ n−p everywhere

(cf.[4], Chapter 11).

2. Infinitesimal rigidity

Sbrana has shown in [3] that there is a large family of hypersurfaces of Rn+1 with type

number ρ = 2, which are locally isometrically rigid but are infinitesimally deformable. On

the other hand, the classical algebraic condition which assures local isometric rigidity for

any codimension also assures local infinitesimal rigidity. In fact, Dajczer and Rodŕıguez

([1]) have shown that any isometric immersion f : Mn → RN into Euclidean space with

type number ρf ≥ 3 must be infinitesimally rigid, that is, admits only trivial infinitesimal

deformations. For later use, we give an extension of the above result to the context of

arbitrary simply connected space forms.

Theorem 3. Let f : Mn → QN
c be an isometric immersion such that ρf ≥ 3 everywhere.

Then f is infinitesimally rigid.

This result follows, like Theorem 2 in [1], from the next statement where we consider

the ambient space totally umbilically included in the (N+1)−dimensional Euclidean space

(respectively, the (N+1)−dimensional Lorentzian space) for c > 0 (respectively, for c < 0).

Proposition 4. Let Z be an infinitesimal deformation of the isometric immersion f :

Mn → QN
c . Consider the maps Gt : Mn → QN

c , t ∈ I, defined as

Gt(x) =
1

√

1 + ct2‖Z(x)‖2
(f(x) + tZ(x)).

Then,
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a) Gt is an immersion and Gt and G−t induce the same metric, for all t ∈ I.

b) If f is substantial and, for some t0 6= 0, Gt0 and G−t0 are congruent in QN
c , then Z is

trivial.

Proof: The map Gt differs from the one of Theorem 1 in [1] only by the scalar factor

1√
1+ct2‖Z(x)‖2

, and the proof is very similar. We get a) from

‖Gt∗(X)‖2 =
1

1 + ct2‖Z(x)‖2

(

‖X‖2 + t2‖∇XZ‖2 − t4
〈∇XZ,Z〉2

1 + ct2‖Z(x)‖2

)

.

Then, b) follows from the fact that all operators involved in the proof of the theorem in

[1] are linear. Details are left to the reader. ut

3. The condition of extendibility

In this section, we provide a condition equivalent to the existence of an extension Z

along h of an infinitesimal deformation Z of the composition g = h ◦ f . Here, g may have

arbitrary codimension. From now on, ∇ and ∇ denote the Levi-Civita connections of Mn

and Qn+p
c respectively. All proofs in this paper will be done for the case c = 0, being the

other cases similar.

Proposition 5. Let f : Mn → Qn+1
c be an isometric embedding and let h : U ⊂ Qn+1

c →
Qn+p

c be an isometric immersion with f(M) ⊂ U . Assume that g = h ◦ f is 1-regular and

that the relative nullity of h has constant dimension on U with leaves transversal to Mn.

Then, an infinitesimal deformation Z of g admits an extension along h if and only if there

is σ ∈ L⊥ ⊂ TgM
⊥ such that

〈Ag
σX,Y 〉 = 〈∇X∇Y Z −∇∇XY Z,N 〉 + c〈X,Y 〉〈Z,N〉,

for all X,Y ∈ TM . Here, L is the line bundle generated by N = h∗N , being N an unit

vector field normal to f .

Proof: Suppose now that Mn is orientable. Set γ = αh|TM×TM . First, we see that

Ker γ = ∆h∩TM . In fact, from the flatness of αh, we have for all X ∈ Ker γ, Y ∈ TRn+1,

that

‖αh(X,Y )‖2 = 〈αh(X,X), αh(Y, Y )〉 = 〈γ(X,X), αh(Y, Y )〉 = 0.
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Consequently, being TM a subbundle of TfR
n+1 of codimension one, our assumption of

transversality is equivalent to the existence of a smooth vector field X0 ∈ (Ker γ)⊥ ⊂ TM

such that η = N +X0 ∈ ∆h. Clearly, there exists a positive continuous function λ : Mn →
R such that the map y : R×Mn → U ′ given by

y(t, x) = f(x) + tη(x),

is a parametrization of a tubular neighborhood U ′ ⊂ U of f(M), when restricted to the

subset {(t, x) ∈ R×Mn : |t| < λ(x)}. This parametrization plays an essential rôle in the

proof. In fact, since ∆h gives rise to a totally geodesic foliation of h(U ′), we have that

h(t, x) = g(x) + tη(x),

being η = h∗η. Therefore, any smooth extension Z of Z must have the form

Z(t, x) = Z(x) +W (t, x),

where W (0, x) = 0 for all x ∈Mn.

Set Af = A
f
N and denote by ′ the covariant derivative of a vector field with respect

to the parameter t. We claim that the fact that Z is an infinitesimal deformation of h is

equivalent to the following three equations:

(2) 〈W, η 〉 = 0,

(3) 〈W ′, It(X)〉 + 〈∇XZ + ∇XW, η 〉 = 0,

(4) 〈∇XW, It(X) + t〈AfX,X0〉η 〉 + t〈∇XZ,∇Xη 〉 = 0,

for all X ∈ TM where, for small values of t, It is the isomorphism of TM given by

It = Id+ tl, being

(5) l(X) = ∇Xη − 〈AfX,X0〉 η = ∇XX0 −AfX − 〈AfX,X0〉X0.
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To prove the claim, first observe that equation (2) is a consequence of W (0, x) = 0

and

0 = 〈∇∂tZ, h∗(∂t)〉 = 〈∇∂tW,h∗(∂t)〉 = 〈W ′, η〉.

Equation (3) now follows using (2),

0 = 〈∇∂tZ, h∗(X)〉 + 〈∇XZ, h∗(∂t)〉

= 〈W ′, X + t∇Xη〉 + 〈∇XZ + ∇XW, η 〉

= 〈W ′, It(X)〉+ 〈∇XZ + ∇XW, η〉.

Finally, we obtain (4) from

0 = 〈∇XZ, h∗(X)〉

= 〈∇XW,h∗X〉 + 〈∇XZ, h∗X〉

= 〈∇XW, It(X) + t〈AfX,X0〉η〉 + t〈∇XZ,∇Xη〉,

and the claim follows easily.

Differentiating equation (3) with respect to t and using (2) yields

0 = 〈W ′′, It(X)〉 + 〈W ′, I ′t(X)〉 + 〈∇XW
′, η〉

= 〈W ′′, It(X)〉 + 〈W ′, l(X)〉 − 〈W ′,∇Xη〉

= 〈W ′′, It(X)〉.

By (2), this is equivalent to

W (t, x) = tW0(x) +W1(t, x),

where W0 ∈ TM⊕L and W1 ∈ L⊥. Observe that the parallel decomposition Th(t,x)R
n+p =

{Tg(x)M ⊕ L(g(x))} ⊕ L⊥(g(x)) allows us to differentiate with respect to t in each factor

without leaving it. Using the above, (2) and (5), we easily see that equation (3) is equivalent

to

(6) 〈W0, Y 〉 + 〈∇Y Z, η 〉 = 0, ∀ Y ∈ TM.

Observe that W0 is univocally determined by (2) and (6).
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It remains to compute W1 from (4). By a long but straightforward computation, using

(2) and (6), we get

0 = t〈∇XW0, It(X)〉 − 〈W1, γ(X, It(X))〉 − t2〈AfX,X0〉〈W0, l(X)〉

+ t〈∇XZ, l(X) + 〈AfX,X0〉η 〉

= −〈W1, γ(X, It(X))〉 − t{〈W0,∇XIt(X) + 〈AfX, It(X)〉N〉

+ 〈∇X∇It(X)Z, η 〉 + 〈∇It(X)Z, l(X) + 〈AfX,X0〉η 〉}

+ t2〈AfX,X0〉〈∇l(X)Z, η 〉 + t〈∇XZ, l(X) + 〈AfX,X0〉η 〉

= −〈W1, γ(X, It(X))〉 − tH(X, ItX) − t2〈∇l(X)Z, l(X)〉,

being H the symmetric (0,2) tensor on TM defined by

H(X,Y ) = 〈∇X∇Y Z −∇∇XY Z + 〈AfX,Y 〉∇X0
Z, η 〉.

Since Z is an infinitesimal deformation the last term vanishes. Setting −W1 = tµ + W2,

with µ ∈ N
g
1 ∩ L⊥ and W2 ∈ N

g
1
⊥ ⊂ TgM

⊥, it follows that

(7) 〈Ag
µX,Y 〉 = 〈µ, γ(X,Y )〉 = H(X,Y ), ∀ X,Y ∈ TM.

Observe that µ is independent from t and determined by (7).

In summary, the last equation together with (2) and (6) tell us that the extendibility

of Z is equivalent to the existence of a vector field µ ∈ L⊥ satisfying (7).

Consider the tensor field S defined by

Sijk = 〈∇Xi
∇Xj

Z −∇∇Xi
Xj
Z,Xk〉 + 〈AfXi, Xj〉〈∇Xk

Z,N〉 + 〈∇Xk
Z, γ(Xi, Xj)〉.

Then S is skew-symmetric in the second two components and symmetric in the first two.

The first statement follows from equation (1), namely,

S(X,Y, Y ) = 〈∇X∇Y Z, Y 〉 − 〈∇∇XY Z, Y 〉 + 〈∇Y Z, αg(X,Y )〉

= 〈∇X∇Y Z, Y 〉 + 〈∇Y Z,∇XY 〉 + 〈∇Y Z, αg(X,Y )〉

= 〈∇X∇Y Z, Y 〉 + 〈∇Y Z,∇XY 〉

= X〈∇Y Z, Y 〉 = 0.
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The second statement is due to the vanishing of the curvature tensor of the ambient space.

We conclude that S = 0 from

Sijk = −Sikj = −Skij = Skji = Sjki = −Sjik = −Sijk.

Now, setting σ = µ+(∇X0
Z)L⊥

, where ( )L⊥

denotes the orthogonal projection on L⊥, the

proof of the proposition when Mn is orientable follows easily from (7) and S(X,Y,X0) = 0.

In the general case, the condition of the proposition is equivalent to the local ex-

tendibility of Z. But, from (2), (6) and (7), we have uniqueness of Z(t, x) in TxM⊕Ng
1 (x).

Thus, we obtain the global extendibility of Z from the embedding hypothesis on f and the

proof is complete. ut

According to (2), (6) and (7), any extension Z of Z in the parametrization y must

have the form

Z(t, x) = Z(x) + tΨ(x) + Φt(x),

with Ψ ∈ TM ⊕Ng
1 univocally determined by Z, and Φt ∈ (TM⊕Ng

1 )⊥ being any smooth

vector field such that Φ0 = 0. From this, we obtain the following consequence.

Corollary 6. With the same assumtions of Proposition 5, let Z1 and Z2 be infinitesimal

deformations of h such that Z1 ◦ f = Z2 ◦ f . If Ng
1 = TgM

⊥, then Z1 = Z2 in a

neighborhood of f(M).

Remark. If the transversality condition fails in an open subset V ⊂ Mn, it follows from

the flatness of αh that Ker γ = ∆h on V . Thus, V must be n − p + 1 ruled, since the

Chern-Kuiper inequality for the flat bilinear map γ says that dim Ker γ ≥ n− (p− 1). In

particular, ρf ≤ 2(p− 1) on V .

4. The proof of Theorem 1

Proof: Let N and N be as in Proposition 5, and consider N
⊥

so that {N,N⊥} is an

orthonormal basis of TgM
⊥. Set

B = A
g

N
⊥ , B = Ah

N
⊥ .
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Observe that B = π ◦ B|TM , being π the the orthogonal projection onto TM . Moreover,

from the beginning of the proof of Proposition 5, we have that Ker B = Ker B ∩TM . Let

us denote by ∇′ the connection of Rn+1. We have to consider two cases:

Case 1: sg ≡ 1. Here, Af and B are linearly independent. Since ρf ≥ 4 and rank B ≤ 1,

we have Ng
1 = L, that is, B = 0. Thus, h must be totally geodesic in f(M). Otherwise,

if there exists p ∈ Mn such that TpM = Ker B, the same holds in a neighborhood V of

p. But this would imply that V must be totally geodesic in Rn+1, which is not the case in

view of our assumptions. Then, N
⊥

is parallel along g. We conclude from the isometric

rigidity of f that g = i ◦ f , where i : Rn+1 → Rn+2 is a totally geodesic inclusion.

Setting i∗(Z0) = Z − 〈Z,N⊥〉N⊥
, we have that

〈∇′
XZ0, f∗X〉 = 〈∇XZ, g∗X〉 = 0, ∀ X ∈ TM,

that is, Z0 is an infinitesimal deformation of f . Hence, by Theorem 3, we have that

Z0 = Cf + v is trivial. Then, it follows from Proposition 5 that Z can be extended along

i, since

〈∇X∇Y Z −∇∇XY Z,N〉 = 〈∇′
X∇′

Y Z0 −∇′
∇XY Z0, N〉

= 〈∇′
XCY − C∇XY,N〉

= 〈AfX,Y 〉〈CN,N〉

= 0,

for all X,Y ∈ TM . In particular, Z = (V +ϕN
⊥

) ◦ f , being V a Killing field of Rn+1 and

ϕ a smooth function. Notice that, in this case, we only made use of ρf ≥ 3.

Case 2: sg ≡ 2. Uniqueness follows from Corollary 6 and N
g
1 = TgM

⊥. Thus, we only

need to prove the result locally, since f is an embedding. In particular, we can suppose

that the parametrization y and the vector fields η and η of the proof of Proposition 5 are

globally defined on Mn. We have that

η = X0 +N = φe0 +N ∈ Ker B,

where e0 ∈ Im B is unitary and φ a smooth function. Next, we use the fundamental

equations of the isometric immersions to obtain more information. We claim that Ker B
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is integrable, and that

(8) ∇Xe0 + φAfX − 〈AfX,X0〉e0 = 0,

(9) X(φ2 + 1) = 2〈AfX,X0〉(φ2 + 1),

where X ∈ Ker B is arbitrary.

To prove the claim, first observe that

∇⊥
Y N

⊥
= 〈∇Y N

⊥
, N〉N = 〈BY,X0〉N, ∀ Y ∈ TM,

since η ∈ Ker B. Here, ∇⊥ denotes the normal connection on TgM
⊥ induced by ∇. Hence,

the Codazzi equation for X ∈ Ker B, Y ∈ TM , is

∇X(BY ) − B(∇XY ) = −B(∇Y X) − 〈BY,X0〉AfX.

In particular, taking Y ∈ Ker B, we conclude that Ker B is integrable. For Y = e0, we

get

a∇Xe0 +X(a)e0 = −a〈∇e0
X, e0〉e0 − aφAfX,

or equivalently,

{X(a) + a〈∇e0
X + φAfX, e0〉}e0 = −a{∇Xe0 + φAfX − φ〈AfX, e0〉e0},

where a 6= 0 is given by Be0 = ae0. Since the right hand side belongs to Ker B, both sides

must vanish. This proves (8) and yields

(10) X(a) = −a〈∇e0
X + φAfX, e0〉.

For X ∈ Ker B ⊂ Ker B, we have by the Ricci equation,

0 = 〈R⊥(X, e0)N
⊥
, N〉 + 〈[Af , B]X, e0〉(11)

= 〈∇⊥
X∇⊥

e0
N

⊥
+ ∇⊥

∇e0
XN

⊥
, N〉 − 〈BAfX, e0〉

= 〈∇⊥
X(aφN) + 〈∇e0

X, e0〉aφN,N〉 − a〈AfX, e0〉.
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From (10) and (11) it follows that

0 = X(aφ) + aφ〈∇e0
X, e0〉 − a〈AfX, e0〉

= aX(φ) − a(φ2 + 1)〈AfX, e0〉,

and we have (9). The claim has been proved.

From (5), (8) and (9) we conclude that

(12) l(X) = −(φ2 + 1)(AfX − 〈AfX, e0〉e0) ∈ Ker B,

for all X ∈ Ker B. Let j : R×Rn−1 → W ⊂ Mn be a local parametrization of Mn

such that, for each t ∈ R, Ht = j(t, Rn−1) is contained in a leaf of the foliation defined

by Ker B. Observe that each leaf f(Ht) is also given by the intersection of f(W ) with

the hyperplane of relative nullity Ker Bt = Ker B(f(t, x)), which only depends on t.

If ξ = 1√
φ2+1

(e0 − φN), we also have that ξ(t, x) = ξ(t), since ξ spans the orthogonal

complement Λ of Ker B◦f in Rn+1. This allows the orthogonal and smooth decomposition

along g,

Tg(t,x)R
n+2 = h∗(f(t, x))

(

Ker Bt ⊕ Λt

)

⊕ L⊥
t ,

being L⊥
t the line bundle spanned by N

⊥
(t) = N

⊥
(f(t, x)). According to this decomposi-

tion, set

Z = h∗(U0 + bξ) + ψN
⊥
,

where U0 ∈ Ker Bt. Define U = U0 + bξ. For each t ∈ R, let ft : Ht → Ker Bt be the

restriction of f to the leaf Ht. Equation (1) implies that

(13) 〈∇′
XU0, ft∗X〉 = 〈∇′

XU, f∗X〉 = 〈∇XZ, g∗X〉 = 0, ∀ X ∈ Ker B,

that is, U0 is an infinitesimal deformation of ft. By the definition (5) of l, the second

fundamental form of the isometric immersion ft in the hyperplane Ker Bt is

(14) Aft
η = −l|Ker B .

In view of (12), Aft
η is just the orthogonal projection on Ker B of Af |Ker B. Since both

operators are symmetric, it is easy to see that rank Aft
η ≥ rank Af − 2. Moreover, if Af is
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semidefinite, we can improve the inequality to rank Aft
η ≥ rank Af − 1. Hence, from our

assumption on ρf , we have that ρft
= rank Aft

η ≥ 3 everywhere in Ht. Thus, from (13) and

Theorem 3, we conclude that U0 is trivial along each leaf. Then, in the parametrization j,

we have

(15) U0(t, x) = Ctft(x) + vt,

being Ct a one parameter family of skew-symmetric endomorphisms of Rn+1 so that

Ctξ(t) = 0, and vt ∈ Ker Bt.

Now, as we saw in the proof of Proposition 5, Z admits an extension if and only if

there exists µ ∈ L⊥ such that equation (7) holds for all X,Y ∈ TM . Since, in our case, g

has codimension 2, we have that Ag
µ = 〈µ,N⊥〉B, where rank B = 1. Thus, we conclude

that Z admits an extension if

〈∇X∇Y Z −∇∇XY Z + 〈AfX,Y 〉∇X0
Z, η 〉 = 0,

for all Y ∈ TM , X ∈ Ker B. But, since η ∈ Ker B, we get

〈∇X∇Y Z −∇∇XY Z + 〈AfX,Y 〉∇X0
Z, η 〉

= 〈∇X{h∗(∇′
Y U) + (Y (ψ) + 〈BU, Y 〉)N⊥ − ψh∗BY }, η 〉

− 〈h∗∇′
∇XY U + 〈AfX,Y 〉h∗∇′

X0
U, η 〉

= 〈∇′
X∇′

Y U −∇′
∇XY U + 〈AfX,Y 〉∇′

X0
U, η〉 + 〈ψ∇′

X(BY ), η〉

= 〈∇′
X∇′

Y (U0 + bξ) −∇′
∇XY (U0 + bξ) + 〈AfX,Y 〉∇′

X0
(U0 + bξ), η〉,

where the last equality follows from the Codazzi equation for h. From the vanishing of

the curvature tensor of Rn+1, we have that Z admits an extension if, for all X ∈ Ker B,

Y ∈ TM ,

0 = 〈∇′
X∇′

Y U0 −∇′
∇XY U0 + 〈AfX,Y 〉∇′

X0
U0, η〉

+ 〈X(b)∇′
Y ξ − b{〈∇YX, e0〉 − φ〈AfX,Y 〉}∇′

e0
ξ, η〉

= 〈∇′
X∇′

Y U0 −∇′
∇XY U0 + 〈AfX,Y 〉∇′

X0
U0, η〉(16)

+ 〈Y, e0〉{X(b) + b〈X,∇e0
e0 + AfX0〉}〈∇′

e0
ξ, η 〉,
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where the last equality follows from equation (8) for the Ker B component of Y .

First, we verify from equation (15) that (16) holds for all X,Y ∈ Ker B. In fact,

〈∇′
X∇′

Y U0 −∇′
∇XY U0 + 〈AfX,Y 〉∇′

X0
U0, η〉(17)

= 〈∇′
XCtY − Ct(∇XY − 〈AfX,Y 〉X0), η〉

= 〈Ct(∇′
XY −∇XY − 〈AfX,Y 〉X0), η〉

= −〈AfX,Y 〉〈Ctη, η〉

= 0.

Hence, to conclude that Z can be extended we only need to show that (16) also holds for

Y = e0.

Set T (j(t, x)) = j∗(
∂
∂t
, 0)(t, x). Equations (1) and (15) yield

0 = 〈∇XZ, T 〉 + 〈∇TZ,X〉(18)

= 〈∇′
XU, T 〉 + 〈∇′

TU,X〉

= 〈CtX +X(b)ξ, T 〉+ 〈C ′
tf + v′t + CtT + b′ξ + bξ′, X〉

= X(b)〈ξ, T 〉+ 〈C ′
tf + v′t + bξ′, X〉,

for all X ∈ Ker B. Thus, for all X,Y ∈ Ker B,

0 = Y {X(b)〈ξ, T 〉+ 〈C ′
tf + v′t + bξ′, X〉}

−X{Y (b)〈ξ, T 〉+ 〈C ′
tf + v′t + bξ′, Y 〉}

= [Y,X](b)〈ξ, T 〉+ 〈C ′
tf + v′t + bξ′, [Y,X]〉

+X(b)〈ξ,∇′
Y T 〉 − Y (b)〈ξ,∇′

XT 〉

+ 〈C ′
tY + Y (b)ξ′, X〉 − 〈C ′

tX +X(b)ξ′, Y 〉

= 2Y (b)〈ξ′, X〉 − 2X(b)〈ξ′, Y 〉 + 2〈C ′
tY,X〉,

where the last equality follows from the fact that Ker B is integrable and 〈ξ ′, X〉 =

T 〈ξ,X〉 − 〈ξ,∇′
TX〉 = −〈ξ,∇′

XT 〉, for all X ∈ Ker B. Again by (18), we obtain

(19) 〈ξ, T 〉〈C ′
tY,X〉 = 〈ξ′, X〉〈C ′

tf + v′t, Y 〉 − 〈ξ′, Y 〉〈C ′
tf + v′t, X〉,
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or equivalently,

(20) 〈ξ, T 〉C ′
tY = 〈C ′

tf + v′t, Y 〉ξ′ − 〈ξ′, Y 〉(C ′
tf + v′t) + ω(Y )η + θ(Y )ξ,

for all Y ∈ Ker B, and some ω, θ ∈ (Ker B)∗.

We claim that equation (16) for Y = e0 is equivalent to ω = 0. First, observe that by

(9) we get, for all X ∈ Ker B,

〈ξ′, X〉 = −〈ξ,∇′
XT 〉 = −X

(

〈T, e0〉
√

φ2 + 1

)

(21)

=
1

√

φ2 + 1
(〈T, e0〉〈AfX,X0〉 −X〈T, e0〉).

Since 〈ξ′, X〉 = 〈T, e0〉〈∇′
e0
ξ,X〉 = 〈ξ, T 〉〈∇e0

e0 + AfX0, X〉, equation (16) for Y =

〈T, e0〉e0 6= 0 becomes

0 = 〈T, e0〉〈∇′
X∇′

e0
U0 −∇′

∇Xe0
U0 + 〈AfX,X0〉∇′

e0
U0, η〉(22)

+ {X(b) + b〈X,∇e0
e0 + AfX0〉}〈ξ′, η〉

= 〈∇′
X (C ′

tf + v′t + 〈T, e0〉Cte0) −
X〈T, e0〉
〈T, e0〉

(C ′
tf + v′t), η〉

− 〈Ct∇X(〈T, e0〉e0), η〉 + 〈AfX,X0〉〈(C ′
tf + v′t + 〈T, e0〉Cte0) , η〉

+ 〈ξ, T 〉−1(X(b)〈ξ, T 〉+ b〈ξ′, X〉)〈ξ′, η〉.

Hence, by (18) and (21), we get

0 = 〈C ′
tX + Ct{∇′

X(〈T, e0〉e0) −∇X(〈T, e0〉e0) + 〈AfX,X0〉〈T, e0〉e0}, η〉

+ 〈ξ, T 〉−1〈〈ξ′, X〉(C ′
tf + v′t) − 〈C ′

tf + v′t, X〉ξ′, η〉

= 〈C ′
tX + 〈AfX, e0〉〈T, e0〉Ctη, η〉

+ 〈ξ, T 〉−1〈 〈ξ′, X〉(C ′
tf + v′t) − 〈C ′

tf + v′t, X〉ξ′, η〉,

and the claim follows from the skew-symmetricity of Ct.

Denoting by ∇t the connection of the leaf Ht and differentiating (20) with respect to
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X ∈ Ker B, we get

0 = 〈ξ, T 〉{X〈ξ, T 〉C ′
tY + 〈ξ, T 〉C ′

t∇′
XY − 〈C ′

tX,Y 〉ξ′ − 〈C ′
tf + v′t,∇′

XY 〉ξ′

+ 〈ξ′,∇′
XY 〉(C ′

tf + v′t) + 〈ξ′, Y 〉C ′
tX −X(ω(Y ))η − ω(Y )∇′

Xη −X(θ(Y ))ξ}

= −〈ξ′, X〉〈ξ, T 〉C ′
tY + 〈ξ, T 〉2C ′

t

(

∇t
XY − 〈Y, l(X)〉

φ2 + 1
η

)

+ 〈ξ′, X〉〈C ′
tf + v′t, Y 〉ξ′ − 〈ξ, T 〉〈C ′

tf + v′t,∇t
XY − 〈Y, l(X)〉

φ2 + 1
η〉ξ′

+ 〈ξ, T 〉〈ξ′,∇t
XY − 〈Y, l(X)〉

φ2 + 1
η〉(C ′

tf + v′t) − 〈ξ′, Y 〉〈ξ′, X〉(C ′
tf + v′t)

− {X(ω(Y )) + ω(X) + ω(Y )〈AfX,X0〉}η − 〈ξ, T 〉ω(Y )l(X) −X(θ(Y ))ξ.

Using (19) and (20) several times, we obtain

(φ2 + 1)ω(Y )l(X) + 〈Y, l(X)〉V + θ1(X)ξ = 0, ∀ X ∈ Ker B,

where V = 〈ξ, T 〉C ′
tη − 〈C ′

tf + v′t, η〉ξ′ + 〈ξ′, η〉(C ′
tf + v′t). Therefore, if ω 6= 0,

l(Ker B) ⊂ span{V, ξ} ∩ Ker B,

which implies that rank l|Ker B ≤ 1. But this is not the case, since, by (14), rank l|Ker B =

ρ(ft) ≥ 3. Thus, ω = 0 and Z can be extended. ut

5. Final remarks.

1. When in case 1 of Theorem 1, Z may not admit an extension along h. To see

this, take h such that f(M) contains just one point x0 of the boundary of the open set

of nontotally geodesic points of h. Any smooth function ϕ : Mn → R defines a normal

infinitesimal deformation ϕN
⊥

of g, but it is easy to see that the existence of an extension

of such infinitesimal deformation along h imposes conditions on ϕ at x0.

2. It is natural to conjecture that the conclusion in Theorem 1 remains true just with

the type number assumption ρf ≥ 4.

3. The main difficulty to extend Theorem 1 for any codimension p− 1 of h, 2 ≤ p ≤
n− 2, with the type number assumption ρf ≥ p+ 2, is due to the fact that it is not clear
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how to find the section σ of Proposition 5. Nevertheless, we expect Theorem 1 to extend

to any codimension.
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