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Abstract

We introduce the concept of genuine isometric deformation of an Euclidean
submanifold and describe the geometric structure of the submanifolds that admit
deformations of this kind. That an isometric deformation is genuine means that
the submanifold is not included into a submanifold of larger dimension such that
the deformation of the former is given by a deformation of the latter. Our main
result says that an Euclidean submanifold together with a genuine deformation in
low (but not necessarily equal) codimensions must be mutually ruled, and gives
a sharp estimate for the dimension of the rulings. This has several strong local
and global consequences. Moreover, the unifying character and geometric nature,
as opposed to a purely algebraic one, of our result suggest that it should be the
starting point for a deformation theory extending the classical Sbrana - Cartan
theory for hypersurfaces to higher codimensions.

The isometric deformation problem for a given isometric immersion f : Mn → Rn+p

of a Riemannian manifold into flat Euclidean space with codimension p and a positive
integer q is to describe all possible isometric immersions f̂ : Mn → Rn+q. A satisfactory
answer to the local version of the problem for every hypersurface (p=1) and q = 1 going
back almost a century is due to Sbrana [19] and Cartan [4]. However, basic questions,
like the existence of Sbrana-Cartan hypersurfaces of the discrete type or the possibility
of smoothly attaching different types of these deformable hypersurfaces, were answered
positively only recently; see [10] and also [3] for a special case. The global version of
the problem for hypersurfaces was solved in [11] and [18].

Nothing similar to the Sbrana-Cartan theory for codimensions q = p higher than
one has yet been obtained. Nevertheless, the classical Beez-Killing rigidity theorem
for hypersurfaces, the starting point for the theory, has several generalizations; see [1],
[2], [5] and [20]. All these results provide generic algebraic conditions on the second
fundamental form of the isometric immersion that imply isometric rigidity, that is, any
other isometric immersion must differ by an isometry (rigid motion) of the ambient
space.

There is a large set of isometric deformations once we allow codimension q > p since
one can always compose f : Mn → Rn+p with (local) isometric immersions of Rn+p into
Rn+q. In [7] we found generic algebraic conditions on the second fundamental form
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that assure that compositions of this kind are the only possible deformations. Such a
composition for q = p is just an isometric congruence, and thus the result in [7] reduces
to the rigidity one in [5].

Since a submanifold of a deformable one is also deformable, to go deeper into the
deformation problem one has to discard those deformations that arise this way, in par-
ticular, through compositions as above. Our goal in this paper is twofold. First to
introduce the concept of genuine deformation, and then to give the geometric structure
of the submanifolds that admit deformations of this kind. As a consequence, we have
several applications for a new rigidity concept that extends the ones already discussed.

We say that a pair f : Mn → Rn+p and f̂ : Mn → Rn+q of isometric immersions
extends isometrically when there are an isometric embedding j: Mn →֒ Nm into a Rie-
mannian manifold Nm with m > n and isometric immersions F : Nm → Rn+p and
F̂ : Nm → Rn+q such that f = F ◦ j and f̂ = F̂ ◦ j. In other terms, the following
diagram commutes:

Mn Nm (1)

Rn+p

Rn+q

f

f̂

F

F̂
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We called f̂ in [7] a composition if m = n+ p and p ≤ q because Nn+p is flat and, if f
is an embedding, there is an isometric immersion h into Rn+q of an open neighborhood
of f(M) in Rn+p such that f̂ = h ◦ f . Clearly, the concept of composition for p = q
reduces to the standard one of congruence.

Definition. An isometric immersion f̂ : Mn → Rn+q is a genuine deformation of a given
isometric immersion f : Mn → Rn+p if there is no open subset U ⊂Mn along which the
restrictions f |U and f̂ |U extend isometrically.

In this paper, we prove that any pair of submanifolds in low codimensions deter-
mined by a genuine deformation is mutually ruled (with the same rulings) and give a
sharp estimate for the dimension of the rulings. In addition, we show that the rela-
tion discussed in the sequel between the normal bundles and second fundamental forms
that exists for any pair of mutually ruled submanifolds must satisfy strong additional
conditions.

Recall that an isometric immersion f : Mn → Rn+p is d-ruled , or more specifically,
Dd-ruled, if Mn has a (not necessarily maximal dimensionwise) nontrivial integrable
d-dimensional distribution Dd ⊂ TM whose leaves are mapped diffeomorphically by
f to (open subsets of ) affine subspaces of Rn+p. At each point x ∈ M there is an
associated orthogonal splitting of the normal bundle T⊥

f M = LD ⊕ L⊥
D of f , where

LD(x) = span{α(Z,X) : Z ∈ Dd(x) and X ∈ TxM}
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is given in terms of its second fundamental form α: TM × TM → T⊥
f M . Assume

that ℓD = dimLD is constant, and let f̂ : Mn → Rn+q be another Dd-ruled isometric
immersion. Then, by the Gauss equation for f and f̂ , there is a unique vector bundle
isometry T

D
: LD → L̂D satisfying

α̂|D×TM = T
D
◦ α|D×TM .

Here and elsewhere we mark with a hat any object that refers to f̂ . Then T
D

may neither

preserve second fundamental forms (fully) nor the induced connections on LD and L̂D.
In other words, it may not hold that α̂L̂D

= T
D
◦ αLD

or that T
D

is parallel, where

αS = πS ◦ α and πS: T⊥
f M → S stands for the orthogonal projection onto a subbundle

S ⊂ T⊥
f M . The following is an immediate consequence of our main result.

Theorem 1. Let f̂ :Mn → Rn+q be a genuine deformation of f :Mn→ Rn+p with

p+ q < n and min {p, q} ≤ 5. Then, along each connected component of an open dense

subset of Mn, the immersions f and f̂ are mutually Dd-ruled with

d ≥ n− p− q + 3 ℓD,

and T
D

is a parallel bundle isometry that preserves second fundamental forms.

Theorem 1 generalizes the one on compositions in [7] (see Theorem 24 below) which
extended, beside the result on isometric rigidity in [5], the one on compositions in [13].
We recall that [5] implies Allendoerfer’s rigidity theorem [1] until codimension p ≤ 5
and, in particular, the classical Beez-Killing rigidity theorem for hypersurfaces, which
is also immediate from ours.

Theorem 1 also generalizes known results on isometric extensions. This is the case of
Theorem 5 in [12] and Theorem 2 in [14]. The former deals with deformable subman-
ifolds in the special case p = q = 2. In this situation, we would have from Theorem 1
that ℓD ≤ 1 and, even for ℓD = 1, it follows that the index of relative nullity (i.e., the
dimension of the nullity of the second fundamental form α) of both immersions satis-
fies ν ≥ n − 4. Therefore, if as in [12] one of the immersions has index ν ≤ n − 5
everywhere, we conclude that they extend isometrically to either flat or Sbrana-Cartan
hypersurfaces.

The following example shows that the estimate in Theorem 1 is sharp even for p 6= q.

Example 2. There exist local isometric immersions of the round sphere Sn into R2n−1

that cannot be obtained as a composition of the inclusion in: Sn →֒ Rn+1 with a lo-
cal isometric immersions of Rn+1 into R2n−1; see [15]. These immersions cannot be
compositions since they have no umbilical direction. Hence, given isometric immersions
gnj

: Snj → R2nj−1 as such, the product immersion

g = gn1
× · · · × gnp

× id : Sn1 × · · · × Snp × Rk → Rn+q,

where n = k +
∑p

i=1 ni, is a genuine deformation of the product in1
× · · · × inp

× id of
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inclusions, and satisfies that k = n− p− q is the maximal dimension of the rulings of g.

The need for assumptions on rulings or nullity bounds in several of the afore-
mentioned results was not quite well understood at the time but has now been com-
pletely clarified by our constructions; see Theorem 24 below. This shows that a deeper
understanding in the study of basic rigidity questions can be reached in the broader
framework of this paper.

Theorem 1 has several local and global rigidity consequences dealing with the rigidity
concept that arises from the notion of genuine deformation.

Definition. An isometric immersion f : Mn → Rn+p is genuinely rigid in Rn+q for a
fixed integer q if for any given isometric immersion f̂ : Mn → Rn+q there is an open
dense subset U ⊂Mn such that f |U and f̂ |U extend isometrically.

The first and immediate consequence is a sharp general rigidity result.

Corollary 3. Let f : Mn → Rn+p be an isometric immersion and q a positive integer

with p + q < n. If min {p, q} ≤ 5 and f is not (n−p−q)–ruled on any open subset of

Mn, then f is genuinely rigid in Rn+q.

Rather simple arguments give the following three corollaries.

Corollary 4. Let f : Mn → Rn+p be an isometric immersion of a compact manifold

and q a positive integer with p + q < n. If min {p, q} ≤ 5, then there is an open subset

U ⊂Mn such that f |U is genuinely rigid in Rn+q.

In a more general setting where isometric extensions are allowed to be singular,
it was shown in [12] for p = q = 2 in Corollary 4 that f itself is genuinely rigid.
Counterexamples to this result if only regular extensions are allowed can be constructed;
see Example 29. We take this opportunity to observe that the unproved last assertion
of Theorem 1 in [12] is not clear.

Corollary 5. Let f : Mn → Rn+p be an isometric immersion and q a positive integer

such that p+ q < n. If min {p, q} ≤ 5 and the Ricci curvature of Mn is positive then f
is genuinely rigid in Rn+q.

Example 2 for p = 1 and k = 0 shows that in the preceding result the first bound
for the codimensions is sharp. The following immediate consequence of Theorem 1 gives
Theorem 3 in [13] and Theorem 1 in [14]. Both results deal with the characterization of
Riemannian manifolds that admit isometric immersions in two space forms of different
sectional curvatures.

Corollary 6. Let f : Mn → Sn+p ⊂ Rn+p+1 be an isometric immersion and q a positive

integer such that p+ q+ 1 < n. If min {p+ 1, q} ≤ 5, then f is genuinely rigid in Rn+q.
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We conclude with the following topological criteria for genuine rigidity that follows
easily from Theorem 25 below, and relates to the result for p = q = 2 given in [12].

Theorem 7. Let Mn be a compact manifold whose first Pontrjagin class satisfies that

[p1]
2 6= 0. If n > p + q and p + q ≤ 6, then any analytic immersion f : Mn → Rn+p is

(with the induced metric) genuinely rigid in Rn+q.

It seems quite possible that the assumption in Theorem 1 that min {p, q} ≤ 5 cannot
be dropped. In that sense, we observe that the key Lemma 16 does not hold for di-
mensions higher than five; see [8]. Nevertheless, we have a result that includes the case
min {p, q} = 6; see Theorem 14 below. To conclude, we observe that it is straightforward
to extend our results to ambient spaces of arbitrary constant sectional curvature.

The authors would like to acknowledge valuable comments by D. Gromoll. The first
author is grateful to the people of the Stony Brook Mathematical Department for their
kindness and hospitality.

A class of ruled extensions.

In this section we provide conditions that allow to extend to mutually ruled isometric
submanifolds a pair of isometric immersions of a given Riemannian manifold.

Let f : Mn → Rn+p and f̂ : Mn → Rn+q be a pair of isometric immersions, and let

T : L ⊂ T⊥
f M → L̂ ⊂ T⊥

f̂
M

be a vector bundle isometry. Assume that the vector subspaces

D = N (αL⊥) ∩ N (α̂L̂⊥) ⊂ TM

have constant dimension on Mn, and that the pair (T , D) satisfies the conditions:





(C1) The isometry T is parallel and preserves second fundamental forms;

(C2) The subbundles L and L̂ are parallel along D in the normal connections.
(2)

Throughout this paper, given a bilinear form β: V n × Um → W between finite
dimensional real vector spaces we denote by S(β) ⊂ W the subspace generated by the
image of β, that is,

S(β) = span{β(X, Y ) : X ∈ V n and Y ∈ Um},

and by N (β) ⊂ V n the (left) nullity space of β defined as

N (β) = {X ∈ V n : β(X, Y ) = 0 for all Y ∈ Um}.
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Let φ: (TM ⊕ L) × TM → L⊥ × L̂⊥ be the bilinear form given by

φ(Y + ξ,X) =
(
(∇̃X(Y + ξ))L⊥, (∇̃X(Y + T ξ))L̂⊥

)
, (3)

and assume further that the vector subspaces

∆ = N (φ) ⊂ TM ⊕ L

have constant dimension on Mn. By condition (C1) the vector bundle isometry defined
as T0 = I ⊕ T : f∗TM ⊕ L → f̂∗TM ⊕ L̂ is parallel in the connections induced by the
Euclidean ambient spaces. It follows that T0 |∆: ∆ → ∆̂ is a parallel vector bundle
isometry, and hence, we may identify ∆̂ with ∆.

Lemma 8. The distribution D ⊂ ∆ is integrable and ∆ ∩ TM = D holds.

Proof: By assumption ∇̃Zµ ∈ L⊥ for all µ ∈ L⊥ and Z ∈ D. The integrability of D
now follows easily from R̃(Y, Z)µ = 0 for any Y, Z ∈ D and µ ∈ L⊥ or L̂⊥, where R̃
stands for the flat curvature tensor of the Euclidean ambient spaces. If Y ∈ ∆ ∩ TM
and X ∈ TM , then 0 = (∇̃XY )L⊥ = αL⊥(Y,X), and similarly αL̂⊥(Y,X) = 0. Thus
Y ∈ D, and therefore ∆ ∩ TM = D.

Consider the vector bundle π: Λ = Λ̂ →Mn determined by the orthogonal splitting
∆ = D ⊕ Λ, and define F : N → Rn+p as the restriction of the map

λ ∈ Λ 7→ f(π(λ)) + λ

to a tubular neighborhood of the 0-section j: Mn →֒ N ⊂ Λ of Λ along which F is an
immersion. Similarly, define F̂ : N → Rn+q. Henceforth, L⊥ and ∆ will be understood
as vector bundles over N ⊂ Λ by means of L⊥(λ) = L⊥(π(λ)) and ∆(λ) = ∆(π(λ)).

Proposition 9. The immersions F and F̂ are isometric ∆-ruled extensions of f and f̂ .
Moreover, there are smooth orthogonal splittings

T⊥
F N = L ⊕ L⊥ and T⊥

F̂
N = L̂ ⊕ L̂⊥ (4)

and a vector bundle isometry T : L → L̂ such that

∆ = N (αF
L⊥) ∩ N (α̂F̂

L̂⊥
), (5)

and the pair (T,∆) satisfies conditions (C1) and (C2) in (2).

Proof: It follows from F̂∗ = T0 ◦ F∗ that F and F̂ are isometric. To see that both
immersions are ∆-ruled it suffices to check that ∆ is constant along the leaves of D.
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This follows easily from R̃(Y,X)δ = 0 for any Y ∈ D, X ∈ TM and δ ∈ ∆. The proof
of (4) is straightforward. Moreover, taking T = T0|L we obtain (C1) for F and F̂ .

Condition (C2) and the inclusion “⊂” in (5) are immediate. For the opposite inclu-
sion observe that αF

L⊥|TjM×TjM = αL⊥ , and similarly for F̂ and f̂ . We easily obtain from
TjN = TM ⊕ Λ that equality is satisfied along j(M). To conclude the proof observe
that the dimension of the right hand side of the inclusion can only decrease along N
from its value on j(M) if N is taken small enough.

Observe that if the ruled extensions F and F̂ are trivial (i.e., dimN = n) then f
and f̂ were already D-ruled.

Remark 10. The assumptions that the subspaces D and ∆ have constant dimension
are not essential for local purposes. In fact, without them the same result holds for f
and f̂ restricted to connected components of an open dense subset of Mn.

The structure.

In this section, we study the structure of the tangent and normal bundles of a pair
of isometric submanifolds of Euclidean spaces. Our goal is to give conditions that allow
the construction of isometric ruled extensions.

In the sequel, we define pointwise several vector subspaces as either images or kernels
of certain tensor fields on a submanifold. To avoid cumbersome repetition, for the
remaining of the paper we agree that we are always working restricted to a connected
component of an open dense subset of the submanifold where all these subspaces have
constant dimensions, and hence form smooth vector subbundles.

Given a pair of isometric immersions f : Mn → Rn+p and f̂ : Mn → Rn+q with second
fundamental forms α and α̂, respectively, we endow the vector bundle T⊥

f M ⊕ T⊥
f̂
M

with the indefinite metric of type (p, q) given by

〈〈 , 〉〉T⊥

f
M⊕T⊥

f̂
M = 〈 , 〉T⊥

f
M − 〈 , 〉T⊥

f̂
M .

Set α ⊕ α̂: TM × TM → S(α) ⊕ S(α̂) ⊂ T⊥
f M ⊕ T⊥

f̂
M , and let Ω ⊂ S(α) ⊕ S(α̂)

be the vector bundle with null fibers Ω = S(α⊕ α̂)∩S(α⊕ α̂)⊥. Accordingly, there are
orthogonal splittings

S(α) = Γ ⊕ Γ⊥ and S(α̂) = Γ̂ ⊕ Γ̂⊥,

where Γ = S(α) ∩ Ω⊥ and Γ̂ = S(α̂) ∩ Ω⊥, and an isometry J : Γ⊥ → Γ̂⊥ such that

Ω = {(η,J η) : η ∈ Γ⊥} ⊂ Γ⊥ ⊕ Γ̂⊥
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and α̂Γ̂⊥ = J ◦ αΓ⊥. From now on we identify Γ⊥ with Γ̂⊥ by means of J , and hence

α̂Γ̂⊥ = αΓ⊥. (6)

Define β: TM × TM → Γ ⊕ Γ̂ as β = αΓ ⊕ α̂Γ̂ and a vector subbundle Θ ⊂ TM by

Θ = N (β).

The vector subbundle S ⊂ Γ⊥(= Γ̂⊥) defined by

S = S(α|Θ×TM)

satisfies Θ = N (αS⊥) ∩ N (α̂Ŝ⊥). Now define a vector subbundle S0 ⊂ S by

S0 =
⋂

X∈TM

kerK(X),

where K(X) ∈ Λ2(S) for any X ∈ TM denotes the skew-symmetric tensor given by

K(X)η = (∇⊥
Xη)S − (∇̂⊥

Xη)S.

Then define vector subbundles Lℓ ⊂ S0 and Dd ⊂ Θ as

Lℓ = {δ ∈ S0 : ∇⊥
Y δ ∈ S and ∇̂⊥

Y δ ∈ Ŝ for all Y ∈ Θ}

and
Dd = N (αL⊥) ∩N (α̂L̂⊥),

and let T : Lℓ → Lℓ be the induced vector bundle isometry given by

T = J |L: Lℓ ⊂ T⊥
f M → Lℓ ⊂ T⊥

f̂
M.

Theorem 11. Let f :Mn→ Rn+p and f̂ :Mn → Rn+q be isometric immersions. Then,

along each connected component of an open dense subset of Mn the pair (T , Dd) satisfies

(C1) and (C2) in (2). In particular, f and f̂ have (possibly trivial) isometric ruled

extensions F : N → Rn+p and F̂ : N → Rn+q satisfying the conclusions of Proposition 9.

Therefore, if f is a genuine deformation of f̂ , then f and f̂ are mutually Dd-ruled.

We will make use of the following result.

Lemma 12. The tensor K: TM → Λ2(S) satisfies:

(i) K(Z) = 0 for all Z ∈ Θ;

(ii) K(X)α(Y, Z) = K(Y )α(X,Z) for all Z ∈ Θ and X, Y ∈ TM .
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Proof: Comparing the Codazzi equation for f and f̂ for Z1, Z2 ∈ Θ or Z3 ∈ Θ yields

K(Z1)α(Z2, Z3) = K(Z2)α(Z1, Z3). (7)

Denote 〈K(X1)α(X2, X3), α(X4, X5)〉 = (X1, X2, X3, X4, X5). If Z1, Z2, Z3 ∈ Θ, then

(Y, Z1, Z2, Z3, X) = −(Y, Z3, X, Z1, Z2) = −(X,Z3, Y, Z1, Z2) = (X,Z1, Z2, Z3, Y )

= (Z2, Z1, X, Z3, Y ) = −(Z2, Z3, Y, Z1, X) = −(Z3, Z2, Y, Z1, X)

= (Z3, Z1, X, Z2, Y ) = (Z1, Z3, X, Z2, Y ) = −(Z1, Z2, Y, Z3, X)

= −(Y, Z1, Z2, Z3, X).

Thus 〈K(Z1)α(Z2, Y ), α(Z3, X)〉 = 0, and this proves (i). The proof of (ii) is (7)

The next result implies that the distribution Θ is integrable if K vanishes. The shape

operator Aξ: TM → TM for a normal vector ξ is defined by

〈AξX, Y 〉 = 〈α(X, Y ), ξ〉.

Lemma 13. Let Θ0 ⊂ Θ be the vector subbundle defined as

Θ0 = N (αS⊥
0
) ∩ N (α̂Ŝ⊥

0

).

Then [Θ0,Θ] ⊂ Θ.

Proof: Clearly S(β) ∩ S(β)⊥ = S(β) ∩ S(α ⊕ α̂)⊥ and S(α ⊕ α̂ − β) ⊂ Ω ⊂ S(α ⊕ α̂).
In particular, S(β) ⊂ S(α⊕ α̂), and hence S(β) ∩ S(β)⊥ ⊂ Ω ⊂ Γ⊥ ⊕ Γ̂⊥. We conclude
that the metric induced on S(β) ⊂ Γ ⊕ Γ̂ is nondegenerate.

Taking the inner product of the Codazzi equation (∇⊥
Z1
α)(Z2,W ) = (∇⊥

Z2
α)(Z1,W )

with µ ∈ S⊥ ⊂ T⊥
f M for Z1, Z2 ∈ Θ and any W ∈ TM yields

〈∇⊥
Z1
α(Z2,W ) −∇⊥

Z2
α(Z1,W ), µ〉 = 〈αS⊥([Z1, Z2],W ), µ〉, (8)

and an analogous equation holds for f̂ . On the other hand, the difference between the
Codazzi equations of f and f̂ for δ ∈ S is

A∇⊥

Z
δY − Â∇̂⊥

Z
δY = A∇⊥

Y
δZ − Â∇̂⊥

Y
δZ.

In the last equation, choose Z = Z1 ∈ Θ and δ = α(Z2,W ) ∈ S for Z2 ∈ Θ. The inner
product with X ∈ TM and Lemma 12–(i) give

〈∇⊥
Z1
α(Z2,W ), αS⊥(X, Y )〉 − 〈∇̂⊥

Z1
α̂(Z2,W ), α̂Ŝ⊥(X, Y )〉 = 〈α(Z1, X),K(Y )α(Z2,W )〉.
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The right hand side vanishes if either Z1 or Z2 belong to Θ0. Then we have using (8)
for both immersions that

〈αS⊥([Z1, Z2],W ), αS⊥(X, Y )〉 − 〈α̂Ŝ⊥([Z1, Z2],W ), α̂Ŝ⊥(X, Y )〉 = 0.

We obtain that 〈〈β([Z1, Z2],W ),S(β)〉〉 = 0, and the statement follows using that S(β)
is nondegenerate.

Proof of Theorem 11: The isometry T preserves the second fundamental forms by (6)
and it is parallel since J |S0

is parallel. The definition of S yields

S(αL⊥∩S|Θ×TM
) = L⊥ ∩ S. (9)

It follows from the Codazzi equation, Lemma 13 and the definition of Lℓ that

(∇⊥
Y αL⊥∩S0

(Z,X))S⊥ = (∇⊥
ZαL⊥∩S(Y,X))S⊥ (10)

for all Z ∈ Θ0, Y ∈ Θ and X ∈ TM , and a similar result holds for f̂ . Since the left hand
side of (10) vanishes if Z ∈ Dd and X ∈ TM , we obtain from (9) and the definition of
Lℓ that S and Ŝ are both parallel along Dd in the normal connections.

We define S1 ⊂ S by the orthogonal splitting S = S0 ⊕ S1. The skew-symmetry of
the K(X) gives

S1 = span{K(X)S1 : X ∈ TM}. (11)

By the Ricci equation, 〈R⊥(X,Z)δ, µ〉 = 〈R̂⊥(X,Z)δ, µ〉 for all δ, µ ∈ S. It follows easily
from the definitions of R⊥ and S0 that

〈∇⊥
Zδ,∇

⊥
Xµ〉 − 〈∇̂⊥

Zδ, ∇̂
⊥
Xµ〉 = 〈∇⊥

Xδ,∇
⊥
Zµ〉 − 〈∇̂⊥

Xδ, ∇̂
⊥
Zµ〉

for all δ ∈ S0 and µ ∈ S1. We now obtain from Lemma 12–(i) and the parallelism of S
and Ŝ along Dd that 〈∇⊥

Zδ, K(X)µ〉 = 0 for all Z ∈ Dd, X ∈ TM , δ ∈ Lℓ and µ ∈ S1.
It follows from (11) that

∇⊥
Zδ ∈ S0 for all Z ∈ Dd and δ ∈ Lℓ. (12)

The Ricci equation for Z ∈ Dd, Y ∈ Θ, δ ∈ Lℓ and ξ ∈ S⊥, yields

0 = 〈R⊥(Y, Z)δ, ξ〉 = 〈∇⊥
Y ∇

⊥
Zδ, ξ〉,

where for the second equality we have to use (12), Lemma 13 and the parallelism of S
along Dd. From the definition of Lℓ we conclude that Lℓ and L̂ℓ are parallel along Dd

in the corresponding normal connections.

The main result.

In this section, we show that for pairs of isometric submanifolds of low codimension
the foliation Dd is nontrivial by giving an estimate that implies the one in Theorem 1.

With the notation of the last section we now state the main result of this paper.
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Theorem 14. Let f̂ :Mn → Rn+q be a genuine deformation of f :Mn→ Rn+p with

p+q < n and min {p, q} ≤ 6. Then f and f̂ are mutually Dd-ruled along each connected

component of an open dense subset of Mn with

d ≥ n− p− q + 3ℓ,

unless min {p, q} = 6 and ℓ = 0 in which case d ≥ n−p−q−1, and the bundle isometry

T : Lℓ → Lℓ satisfies (C1) and (C2) in (2).

Notice that Theorem 14 provides more information than Theorem 1, in particular,
because Lℓ in the former can be larger than LD in the latter for the same rulings.
Moreover, already for p = q = 2, we may have that LD = Lℓ but the rulings Dd in
Theorem 1 that one considers can be smaller than the ones determined by Theorem 14.

The proof of the theorem will be made in several steps. First, we obtain some
estimates of the dimension of the nullity space of a vector valued bilinear map.

Given a bilinear form β: V n × Um → W , we call a vector Y ∈ Um a (right) regular

element of β if the map BY = β(Y, · ) satisfies

dimBY (V n) = max{dimBZ(V n) : Z ∈ Um}.

It is easy to see that the subset RE(β) ⊂ Um of regular elements of β is open and dense
and that

S(β|ker BY ×Um) ⊂ BY (V n) for any Y ∈ RE(β). (13)

Therefore,
S(β) = S(β|R×Um) (14)

if the subspace R ⊂ V n satisfies V n = R ⊕ kerBY ; see [6] or [17] for details.

Lemma 15. Let β: V n × Um → W be a nonzero bilinear form and let Lk ⊂ Um be a

vector subspace of minimal dimension k such that S(β|V n×Lk) = S(β). Then there is an

integer ρ satisfying 1 ≤ ρ ≤ dimS(β) − k + 1 such that

dimN (β|V n×Lk) ≥ n− k(ρ− 1) − 1.

Proof: Take ρ = dimBY (V n) for Y ∈ RE(β). If Lk = span{Y1, . . . , Yk} for Yj ∈ RE(β),
1 ≤ j ≤ k, then BYi

(V n) 6= BYj
(V n) if i 6= j, and an easy argument using (13) gives

the proof in this case. To obtain the proof for an arbitrary Lk observe that there is a
sequence Lk

j → Lk such that each Lk
j satisfies the assumption and is spanned by vectors

in RE(β) as before.

Let W p,q be a (p+q)–dimensional vector space endowed with a possibly indefinite
inner product of type (p, q). We call a subspace U ⊂ W p,q degenerate if the restriction
of the metric of W p,q to U is degenerate, and denote by rankU the rank of the induced
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metric. Thus rankU = dimU − dimU ∩U⊥. We call null the degenerate subspace U if
rankU = 0, and thus U = U ∩ U⊥. A bilinear form β: V n × Um → W p,q is said to be
flat when

〈β(X, Y ), β(Z, T )〉 − 〈β(X, T ), β(Z, Y )〉 = 0

for all X, Y ∈ V n and Z, T ∈ Um. It follows from (13) that

S(β|ker BY ×Um) ⊂ BY (V n) ∩ BY (V n)⊥ if Y ∈ RE(β). (15)

The proof of Theorem 3 in [7] on flat symmetric bilinear forms stated below gives
the following slightly stronger result.

Lemma 16. Let β: V n×V n →W p,q be a flat symmetric bilinear form. If min{p, q} ≤ 6
and S(β) is nondegenerate, then

dimN (β) ≥ n− dim Im BY − dimS(β|ker BY ×TM) − δ 6
min {p,q}

for any Y ∈ RE(β).

Corollary 17 ([7]). Let β: V n × V n → W p,q be a flat symmetric bilinear form. If

min{p, q} ≤ 6 and S(β) is nondegenerate, then dimN (β) ≥ n− dimS(β) − δ 6
min {p,q}.

To our surprise, we recently constructed in [8] a family of examples that shows not
only that the last two results are false for min{p, q} = 6 without the Kronecker symbol
in the estimates, but also that there is no linear estimate in p and q. Since Lemma 16
is a key point in the argument, there can be no linear estimate for d in Theorem 14 for
higher codimensions as well.

Lemma 18. Under the assumptions of Theorem 14 we have that

dim Θ ≥ n− p− q + 2τ + τ0 − δ0, (16)

where τ = dimS, τ0 = dimS0 and δ0 = δ 6
min{dimΓ,dim Γ̂}

.

Proof: It follows from Corollary 17 and that S(β) is nondegenerate (see the proof of
Lemma 13) that

dim Θ ≥ n− p− q + 2τ − δ0. (17)

To prove the better estimate (16) we have to work with the more elaborate flat
bilinear form defined next, and make strong use of the fact that the deformation is
genuine.

Let φ: (TM ⊕ S0) × TM → S⊥ × Ŝ⊥ be the bilinear form given by

φ(X + ξ, Y ) = β ′(X, Y ) + ψ(ξ, Y ),
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where ψ: S0 × TM → S⊥ ⊕ Ŝ⊥ is defined as

ψ(ξ, Y ) = ((∇⊥
Y ξ)S⊥, (∇̂⊥

Y ξ)Ŝ⊥)

and β ′: TM × TM → S⊥ ⊕ Ŝ⊥ by

β ′ = αS⊥ ⊕ α̂Ŝ⊥.

Notice that S(β ′) is degenerate if S 6= Γ⊥. A long but straightforward computation
using the Gauss, Codazzi and Ricci equations for f and f̂ and the definitions of S0

and S gives that φ is flat. Now a key observation is that there is no local section
X0 + ξ0 ∈ TM ⊕ S0 with ξ0 6= 0 such that the subspace φ(X0 + ξ0, TM) is null. This
is so because this is the precise condition for the maps F (x, t) = f(x) + t(X0 + ξ0) and
F̂ (x, t) = f̂(x) + t(X0 + ξ0) to be local isometric extensions of f and f̂ in Mn × (−ǫ, ǫ),
for some ǫ > 0.

Set CY = φ( · , Y ) and B′
Y = β ′( · , Y ) for Y ∈ RE(φ). By (15) and the flatness of

φ the subspace S(φ|ker CY ×TM) is null. It follows using the above that kerCY = kerB′
Y .

Therefore,
dim Im CY = dim Im B′

Y + τ0. (18)

Set K = kerBY and K ′ = kerB′
Y , where now Y ∈ RE(φ) ∩ RE(β). The subspaces

Im CY and S(β ′|K ′×TM) are orthogonal by the flatness of φ. In particular,

dim Im CY + dimS(β ′|K ′×TM) ≤ p+ q − 2τ. (19)

The Gauss equation for f and f̂ and (6) give that β = αΓ ⊕ α̂Γ̂ is flat. By Lemma 16
and since S(β) is nondegenerate, we have

dim Θ ≥ n− dim Im BY − dimS(β|K×TM) − δ0. (20)

We obtain from (18), (19), (20) and dim Im B′
Y + dimK ′ = dim Im BY + dimK that

dim Θ ≥ n−p− q− δ0 +2τ + τ0 +dimS(β ′|K ′×TM)−dimS(β|K×TM)+dimK−dimK ′.

Since K ′ ⊂ K, then (16) follows unless K ′ ( K and

dimS(β ′|K ′×TM) − dimS(β|K×TM) + dimK − dimK ′ < 0.

In the latter situation the null subspace S(β0) 6= 0, where β ′ = β⊕β0. Moreover, we can
assume that β ′|K ′×TM 6= 0 since, otherwise, K ′ = N (β ′) ⊂ N (β) and we easily obtain
(16) from (18). It follows that

min{p, q} − τ0 > dimS(β|K×TM) > dimS(β ′|K ′×TM) + dimK − dimK ′ ≥ 2,

where the first inequality follows from the fact that S(β|K×TM) ⊂ Γ⊕Γ̂ is a null subspace,
and that τ0 ≤ dimS < dim Γ⊥ because β0 6= 0. But min{p, q} ≤ 6 by assumption, and
hence τ0 ≤ 2. Corollary 17 now yields

dim Θ + δ0 ≥ n− dimS(β) ≥ n− p− q + 2τ + 2 dimS(β0) ≥ n− p− q + 2τ + τ0,

as we wished.
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Lemma 19. Let f :Mn→ Rn+p and f̂ :Mn → Rn+q be isometric immersions satisfying

min {p, q} ≤ 6. Then,

dim Θ0 ≥ dim Θ − τ1 − δ 6
τ1
, (21)

where τ1 = dimS1.

Proof: We only have to argue for τ1 ≥ 1. Set VZ = γ(TM,Z) ⊂ S1 and m = dim VZ ,
where γ = αS1

|TM⊕Θ and Z ∈ RE(γ) ⊂ Θ. We claim that 1 ≤ m ≤ [τ1/2], where [ · ]
denotes the entire part function. Observe that S1 = S(γ), and take the minimal number
of elements Z1, . . . , Zk0

∈ RE(γ) such that

S1 = S(γ|TM×span{Z1,...,Zk0
}) =

k0∑

j=1

VZj
. (22)

Suppose that m > [τ1/2]. Then k0 ≤ τ1 −m+ 1 ≤ [(τ1 + 1)/2]. Since τ1 ≤ 6, we easily
see that L0 =

⋂k0

j=1 VZj
⊂ S1 satisfies L0 6= 0. On the other hand, Lemma 12–(ii) easily

gives 〈K(X)α(Y, Z), α(T, Z)〉 = 0 for any Z ∈ Θ. Equivalently, K(X)VZ ⊂ V ⊥
Z ⊂ S1 for

any Z ∈ Θ and X ∈ TM . It follows using (22) that K(X)L0 ⊂
⋂k0

j=1 V
⊥
Zj

= 0 for any
X ∈ TM . Hence, L0 ⊂ S0 ∩ S1 = 0. This is a contradiction and proves the claim.

Notice that Θ0 = N (αS1
|Θ×TM). For L(X) = γ(X, · ): Θ → S1 this is equivalent to

Θ0 =
⋂

X∈TM

kerL(X). (23)

Fix Z ∈ RE(γ). Then (14) gives S1 =
∑m

i=1 Im L(Xi), where X1. . . . , Xm ∈ TM are
such that VZ = span{γ(Xi, Z), 1 ≤ i ≤ m}. Let {Y1, . . . , Ym0

} ⊂ {X1, . . . , Xm} be a
subset with the minimum number of elements satisfying

S1 =

m0∑

j=1

Im L(Yj). (24)

We show that (23) can be replaced by

Θ0 =
⋂

1≤j≤m0

kerL(Yj). (25)

In fact, from (11) and (24) we easily obtain S1 =
∑m0

j=1 Im K(Yj). Equivalently, we have

⋂

1≤j≤m0

kerK(Yj) = 0. (26)

Since Z ∈
⋂m0

j=1 kerL(Yj) if and only if K(X)γ(Yj, Z) = K(Yj)γ(X,Z) = 0 for all
X ∈ TM and 1 ≤ j ≤ m0, then (25) follows from (23) and (26).
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We show that (21) holds without the Kronecker symbol when a nonsingular K(Y )
exists. By (26) this is the case when m0 = 1. We have,

K(Y )γ(X, kerL(Y )) = K(X)γ(Y, kerL(Y )) = 0.

Thus, kerL(Y ) ⊂ Θ0, and dim Θ0 ≥ dim kerL(Y ) ≥ dim Θ − τ1 as wished. Since
[τ1/2] ≥ m ≥ m0, it suffices to argue for τ1 ≥ 4 and the K(Y ) are all singular. Assume
m0 = 2. After taking linear combinations, if necessary, we obtain from (26) that there
are Y1, Y2 such that rankK(Yj) = 4. Thus τ1 ≥ 5, and dim kerL(Y1) ≥ dim Θ − τ1 + 1
since Im L(Y1) 6= S1 by (24). On the other hand,

K(Y1)γ(Y2, kerL(Y1)) = K(Y2)γ(Y1, kerL(Y1)) = 0,

and (21) follows from (25) and (26). If m0 = 3, then τ1 = 6 and dim Im L(Yj) ≤ 4.
Moreover, dim kerK(Y1) ∩ kerK(Y2) ≤ 1, and now (21) follows similarly.

Proof of Theorem 14: If L = S then (9) gives Dd = Θ0 = Θ, and the estimate for d
follows from (16). Thus, we may assume that αL⊥∩S|Θ×TM

does not vanish and apply

Lemma 15. By (9) there is a subspace V k0

0 ⊂ TM of minimal dimension such that

S(αL⊥∩S|Θ×V0
) = L⊥ ∩ S, (27)

and such that Θ′ = N (αL⊥∩S|Θ×V0
) ⊂ Θ satisfies

dim Θ′ ≥ dim Θ − k0(ρ− 1) − 1 (28)

with 1 ≤ k0 ≤ τ0 + τ1 − ℓ− ρ+ 1 and 1 ≤ ρ ≤ τ0 + τ1 − ℓ ≤ 6.
We first show that D0 = Θ′ ∩ Θ0 satisfies

dimD0 ≥ n− p− q + 2 ℓ+ τ0. (29)

We have by (28) that
dimD0 ≥ dim Θ0 − k0(ρ− 1) − 1. (30)

It follows from the definition of Θ0 that D0 = N (αL⊥∩S0
|
Θ0×V0

). In particular,

dimD0 ≥ dim Θ0 − k0(τ0 − ℓ). (31)

By obtain form (30) and (31) that

dimD0 ≥ dim Θ0 − min{k0(ρ− 1) + 1, k0(τ0 − ℓ)}.

Now we use that the deformation is genuine. We have from (16) and (21) that

dimD0 ≥ n− p− q + τ1 + 3τ0 − δ0 − δ 6
τ1
− min{k0(ρ− 1) + 1, k0(τ0 − ℓ)}.
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To prove (29) we have to verify that

min{k0(ρ− 1) + 1, k0(τ0 − ℓ)} ≤ 2(τ0 − ℓ) + τ1 − δ0 − δ 6
τ1
, (32)

where 1 ≤ k0 ≤ τ0 + τ1 − ℓ−ρ+1 and 1 ≤ ρ ≤ τ0 + τ1 − ℓ ≤ 6. First observe that δ0 = 0
since we are assuming τ1 ≥ 1. Moreover, δ 6

τ1
= 1 only if τ1 = 6 and τ0 = ℓ = 0, and then

(32) holds. The remaining of the argument is a straightforward verification that can be
done, for instance, with a simple computer script.

We claim that D0 = Dd, and then the estimate follows since τ0 ≥ ℓ . Clearly,
Dd ⊂ D0. On the other hand, since the left hand side of (10) vanishes if Z ∈ D0 and
X ∈ V0, we have from (27) and the definition of Lℓ that S and Ŝ are parallel along
D0 in the normal connections. Now (10) yields ∇⊥

Y αL⊥∩S0
(Z,X) ∈ S for all Y ∈ Θ,

Z ∈ D0 and X ∈ TM for both immersions. From the definition of Lℓ we have that
αL⊥∩S0

(Z,X) = 0 for all Z ∈ D0 and X ∈ TM , that is, D0 ⊂ Dd, and the claim
follows.

Proof of Theorem 1: The result follows from LD ⊂ L by definition of LD.

Remarks 20. (1) Two important facts can be added to the conclusions of Theorem 1.
It can easily be proved using LD ⊂ Lℓ that

Dd = N (αL⊥

D
) ∩N (α̂L̂⊥

D
).

Moreover, we saw in Theorem 11 that Lℓ is parallel in the normal connections along the
leaves of Dd. This also holds in Theorem 1 for LD since, by the Codazzi equation, any
Dd-ruled submanifold has that property.

(2) That T
D

in Theorem 1 is parallel can be proved directly by comparing the Codazzi
equations of both immersions.

(3) Without the assumption that the deformation is genuine in Theorem 14 we still
have the estimate d ≥ n−p− q+2ℓ. To see this we use (17) instead of (16) in its proof.

(4) Theorem 14 does not assume that the second fundamental form of one of the im-
mersions spans the full normal space as it is usually asked for rigidity results. On the
other hand, we see from the proof that we can replace p and q in the estimate of d by
dimS(α) and dimS(α̂). Of course, everything just said holds for Theorem 1.

Further applications.

In this section, we give several applications of our main result beside the ones already
stated in the introduction that are now proved. The corresponding statements for the
case min {p, q} = 6 are straightforward.
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Our first an immediate application extends Corollary 3 in the introduction. We
define the (local) index νR(f) for f : Mn → Rn+p by

νR(f) = max{d− 3ℓD : f |U is Dd-ruled for some open subset U ⊂Mn}.

Corollary 21. Let f : Mn → Rn+p be an isometric immersion and let q be a positive

integer such that p + q < n and min {p, q} ≤ 5. If νR(f) ≤ n − p − q − 1, then f is

genuinely rigid in Rn+q.

Even for submanifolds with very degenerate second fundamental form one can have
genuine rigidity. In fact, we show in [9] that there is a large class of n-dimensional
submanifolds in codimension 2 with constant index of relative nullity ν = n−2 that are
genuinely rigid in Rn+2.

Proof of Corollary 4: If the function h(x) = ‖f(x)‖2 reaches a maximum at x0 ∈ Mn,
then ξ0 = f(x0) ∈ T⊥

x0
M and Aξ0 is definite. Hence, Aξ is definite in a neighborhood U

of x0 for a given smooth extension ξ of ξ0. Therefore, f |U must be genuinely rigid in
Rn+q because, otherwise, f would be Dd–ruled with d ≥ n−p− q > 0 on an open dense
subset, and thus Aξ|D×D = 0.

The following result extends Corollary 5 in the introduction. Example 2 shows that
the bound given for µ is sharp.

Corollary 22. Let f : Mn → Rn+p be an isometric immersion and let q be a positive

integer such that p+ q < n and min {p, q} ≤ 5. If Mn has nonnegative Ricci curvature

and the dimension of nullity of the curvature tensor µ satisfies µ < n− p− q, then f is

genuinely rigid in Rn+q.

Proof: If otherwise, then f is (n−p−q)–ruled on an open subset. By the Gauss equation
and the assumption on the Ricci curvature the rulings belong to the relative nullity of
the immersion, and hence to the nullity of the curvature tensor.

Corollary 23. Let f̂ :Mn → Rn+q be a genuine deformation of an isometric immersion

f :Mn → Rn+p such that p+ q < n and min {p, q} ≤ 5. If Mn has nonpositive sectional

curvature, then f and f̂ have common relative nullity of dimension ν ≥ n− p− q + 2ℓ.

Proof: It was shown in Proposition 8 in [16] that if α has nonpositive sectional curvature
and an asymptotic subspace Dd, i.e., α|D×D = 0, then ν ≥ d−s, where s = dim γ(D, Y )
with Y ∈ RE(γ) and γ = α|D×D⊥. By Theorem 14 we have S(γ) ⊂ Lℓ, and we obtain
the estimate for ν from the one for d. Observe that the relative nullity contained in Dd

must be shared by f̂ since it coincides with the set of vectors in Dd that belong to the
nullity of the curvature tensor of Mn.

The s-nullity νf
s (x) of f : Mn → Rn+p at x ∈Mn for 1 ≤ s ≤ p is defined by

νf
s (x) = max{dimN (αV s(x)) : V s ⊂ T⊥

f(x)M}.

The following result was proved in [7] by a different argument.
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Theorem 24 ( [7]). Let f : Mn → Rn+p be an isometric immersion and q ≥ p a positive

integer. Suppose p ≤ 5, and assume that f satisfies everywhere

νf
s ≤ n + p− q − 2s− 1 for all 1 ≤ s ≤ p.

For q ≥ p+5 assume further that νf
1 ≤ n−2(q−p)+1 everywhere. Then any isometric

immersion f̂ : Mn → Rn+q is a composition on connected components of an open dense

subset of Mn.

Proof: Theorem 1 applies and gives (possibly trivial) local isometric ∆-ruled extensions
F and F̂ of maximal dimension defined on a manifold Nn+r with 0 ≤ r ≤ p. It remains
to show that r = p. It is easy to see from the hypothesis on the s-nullities that L⊥ = 0,
that is, α̂F̂ = αF ⊕ γ, and that dim ∆ ≥ n+ 2p− q. If r < p, then take a normal vector
field η 6= 0 to F and conclude that f satisfies 〈Aη D,D〉 = 0 along points in Mn, where

D = ∆ ∩ TM . Since dimD ≥ dim ∆ − r ≥ n− (q − p) + 1, then νf
1 ≥ n− 2(q − p) + 2,

and this is a contradiction with our assumptions on νf
1 .

We conclude this section with the following intrinsic criteria for genuine rigidity.

Theorem 25. Let f : Mn → Rn+p be an isometric immersion and q a positive integer

such that p+q < n and min{p, q} ≤ 6. If there is a genuine deformation of f into Rn+q,

then the k-th Pontrjagin form pk of Mn vanishes for

k ≥





1 if p+ q ≤ 3,

2 if 4 ≤ p+ q ≤ 6,

(p+ q − 2)/2 if 7 ≤ p+ q ≤ 13,

(3(p+ q) − 17)/4 if p+ q ≥ 14.

In particular, when Mn is compact and the k-th Pontrjagin class [pk] does not vanish,

then any analytic isometric immersion of Mn in Rn+p is genuinely rigid in Rn+q in the

C∞-category if p, q and k are related as above.

For the proof of the last result we need the following fact.

Proposition 26. If the immersion f : Mn → Rn+p is d-ruled, then the k-th Pontrjagin

form pk of Mn vanishes for any k such that 4k > 3(n− d).

Proof: Let {e1, . . . , en} be an orthonormal tangent frame of Mn and {w1, . . . , wn} its
dual frame. For 1 ≤ a, b ≤ n we have the curvature 2-forms Ωab =

∑n

r,s=1Rabrswr ∧ ws,
where Rabrs are the components of the curvature tensor in the given frame. Then, the
Pontrjagin form pk has the local expression

pk =
∑

(i)

Θ2k
(i) ∧ Θ2k

(i),
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where Θ2k
(i) =

∑
(j) δ

(j)
(i) Ωj1j2 ∧ Ωj2k−1j2k

. Here, (i) = (i1, · · · , i2k) and (j) = (j1, · · · , j2k)

run over all the 2k-uples of distinct elements in {1, . . . , n}, and δ
(j)
(i) is +1 (resp., −1)

if (j1, · · · , j2k) is an even (resp., odd) permutation of (i1, · · · , i2k) and zero otherwise.
Therefore, pk is a sum (up to a constant factor) of terms of the form

Ωj1j2 ∧ · · · ∧ Ωj2k−1j2k
∧ Ωj′

1
j′
2
∧ · · · ∧ Ωj′

2k−1
j′
2k
, (33)

with {j1, · · · , j2k} = {j′1, · · · , j
′
2k}. By the Gauss equation

Ωab =
1

2

n∑

r,s=1

〈α(ea, er), α(eb, es)〉 wr ∧ ws.

We assume that en−d+1, . . . , en belong to the rulings. If a ≥ n−d+1 (resp., b ≥ n−d+1),
then r (resp., s) in the last equation runs only up to n − d. Thus, if 2k > n − d, then
(33) is a linear combination of terms of the form wr1

∧· · ·∧wr2k
∧wr′

1
∧· · ·∧wr′

2k
, where

at least 2k − n + d of the ri’s and also of the r′i’s are less or equal than n − d. We
conclude that all terms must vanish if 2(2k − n+ d) > n− d.

Proof of Theorem 25: If f has a genuine deformation, then the immersions must have
the structure given by Theorem 14. It follows that either f is (n − p − q + 3ℓ )-ruled
if min{p, q} ≤ 5 or ℓ ≥ 1, or its index of relative nullity satisfies ν ≥ n − p − q − 1 if
min{p, q} = 6 and ℓ = 0. In the first case, it is easy to see that ν ≥ n−(ℓ+1)(p+q−3ℓ).
The result is then a consequence of Proposition 26 and that pk = 0 if 4k > n− ν, since
the Pontrjagin forms are curvature forms and the relative nullity spaces are contained
in the nullity of the curvature tensor.

Proof of Theorem 7: We use Theorem 25 and that pk = pk
1 since at least one of the

immersions has codimension at most three.

Final comments.

First we argue that the estimate d ≥ n − p − q + 3ℓ in our main result does not
come as a complete surprise. The bilinear form φ defined by (3) for (T , Dd) given by
Theorem 11 is flat. In fact, nothing changes if φ is replaced with

φ′ = φ|(D⊥⊕L)×TM : (D⊥ ⊕ L) × TM → L⊥ × L̂⊥

since φ(D, TM) = 0. Take a vector fieldX ∈ RE(φ′) and set BX = φ′( · , X). If a section
Y0 + ξ0 ∈ kerBX satisfies ξ0 6= 0 everywhere, then the maps F (x, t) = f(x) + t(Y0 + ξ0)
and F̂ (x, t) = f̂(x) + t(Y0 + ξ0) are local isometric extensions of f and f̂ in Mn×(−ǫ, ǫ),
for some ǫ > 0. But this is not possible if f̃ is a genuine deformation of f . Observe that

dim kerBX ≥ n− d− p− q + 3ℓ,
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and hence, we cannot conclude that kerBX 6= 0 if d satisfies our estimate.
Next we show that isometric extensions is indeed a matter for pairs of submanifolds

even for codimensions as low as p = q = 2. In fact, in (1) we may have different exten-
sions F for different isometric deformations f̂ of f . Moreover, it may happen that the
given pair f and f̂ does extend isometrically but there exists an isometric deformation
of f that is genuine. To see that all this is possible, consider the following examples.

Example 27. Let i: Mn = Nn+1
1 ∩ Nn+1

2 →֒ Rn+2 be the transversal intersection of
two distinct Sbrana-Cartan hypersurfaces. Assume that the index of relative nullity
of i takes its generic value n − 4 everywhere. Now consider two additional isometric
immersions gj: M

n → Rn+2 determined by isometric deformations N̂n+1
j of Nn+1

j . One
can prove that the isometric extension of the pair of immersions i and gj of Mn recreates

Nn+1
j and N̂n+1

j , and thus the extension of i also depends on gj. Moreover, g2 must be a
genuine deformation of g1 since, otherwise, their second fundamental forms would have
to coincide on a normal subbundle, and that is not possible.

Example 28. We showed in [9] that a nonholomorphic isometric immersion of rank
two and codimension two of a simply connected and nowhere flat Kaehler manifold is
the intersection of a one-parameter family of (non isometric) deformable hypersurfaces.

Our ruled extensions are always nonsingular by definition and trivial if the pair of
isometric immersions we start with are mutually ruled. Nevertheless, there are situations
where it is convenient to consider more general ruled extensions. In fact, this is the case
of the extensions in Examples 28 and the ones in [12]. In the latter case, it was shown
that the subset of singular points of a so called Generalized Sbrana-Cartan hypersurface
Nn+1 in Rn+2 is a hypersurface Nn

0 ⊂ Nn+1 with index of relative nullity ν = n− 2 as
a submanifold of Rn+2. Moreover, deformations of Nn+1 yield deformations of Nn

0 that
preserve the relative nullity distribution. Given such an isometric deformation of Nn

0 ,
we thus have an example of a pair of submanifolds in codimension two that satisfies the
conclusion of Theorem 1 whose “isometric extensions” are singular. In fact, one can
show that their unique (possibly singular) isometric extensions are immersions of Nn+1

in Rn+2, and hence the condition ∆ ∩ TM = D is no longer satisfied. In particular, we
obtain the following example that relates to Corollary 4.

Example 29. A deformation of a compact hypersurface Mn →֒ Nn+1 that contains
an open subset of Nn

0 as above given by a deformation of Nn+1 can not be extended
isometrically and regularly along connected components of an open dense subset.
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