# A counterexample to a conjecture on flat bilinear forms 

Marcos Dajczer \& Luis A. Florit

Abstract. We provide a counterexample to a conjecture on the dimension of the nullity of a flat symmetric bilinear form.

The algebraic theory of flat bilinear forms was developed by J. D. Moore after the seminal work of E. Cartan on exteriorly orthogonal quadratic forms as a tool to treat the "rigidity problem" for submanifolds; see [5] and references therein. An $\mathbb{R}$-bilinear form $\beta: \mathbb{V}^{n} \times \mathbb{V}^{n} \rightarrow \mathbb{W}^{p, q}$ into a vector space endowed with an indefinite inner product of type $(p, q)$ is said to be flat if

$$
\langle\beta(X, Y), \beta(Z, W)\rangle-\langle\beta(X, W), \beta(Z, Y)\rangle=0 \quad \text { for all } X, Y, Z, W \in \mathbb{V}^{n}
$$

One main goal of the theory is to estimate the dimension of the nullity space

$$
N(\beta)=\left\{X \in \mathbb{V}^{n}: \beta(X, Y)=0: Y \in \mathbb{V}^{n}\right\}
$$

of a given $\beta$ that is assumed to be onto, that is, $\mathbb{W} \mathbb{W}^{p, q}=\operatorname{span}\left\{\beta(X, Y): X, Y \in \mathbb{V}^{n}\right\}$.
In [1] the following result for a symmetric bilinear form was proved.
Theorem 1. Let $\beta: \mathbb{V}^{n} \times \mathbb{V}^{n} \rightarrow \mathbb{W}^{q, q}$ be a flat symmetric bilinear form. If $q \leq 5$ and $\beta$ is onto then $\operatorname{dim} N(\beta) \geq n-2 q$.

A proof of the preceding result for $q=2$ is contained in the argument by Cartan in [2]. It was conjectured around 1984 by the first author of this paper that the same estimate holds for arbitrary dimension $q$. A positive answer to the conjecture would have important consequences. For instance, the isometric and conformal rigidity results in [1] would hold after dropping the restriction on the codimension. Moreover, an extension of the results in [3] and [4] for arbitrary codimension with the same bounds would be possible. However, we give next a counterexample that shows that the conjecture is already false for $q=6$ and that there is no linear estimate.

Theorem 2. For a given $\tau \in \mathbb{N}$ with $\tau \geq 3$ set $2 p=\tau(\tau+1)$. Then, there is an onto flat symmetric bilinear form $\beta: \mathbb{V}^{n} \times \mathbb{V}^{n} \rightarrow \mathbb{W}^{p, p}$ such that $\operatorname{dim} N(\beta)=n-2 p-\binom{\tau}{3}$.

2000 Mathematics Subject Classification. Primary 53B25.
Key words and phrases. symmetric flat bilinear form, nullity.

Proof: Denote $L=\{1,2, \ldots, \tau\}, I=(L \times L) / S(2)$ and $J=(L \times L \times L) / S(3)$, where $S(n)$ is the group of permutations of $n$ elements. Then, $\# I=p$ and $\# J=m:=\binom{\tau+2}{3}$. For $a \in L, k=[(i, j)] \in I$ and $s=[(u, v, w)] \in J$, we say that $a \in s$ if $a \in\{u, v, w\}$, and define $*: L \times I \rightarrow J$ by $a * k=[(a, i, j)]$. Then either $a \notin s$ or there is a unique $k \in I$ such that $a * k=s$.

Let $\mathbb{V}^{n}=\mathbb{R}^{\tau} \oplus \mathbb{R}^{m}$, and take bases $\left\{y_{1}, \ldots, y_{\tau}\right\}$ and $\left\{n_{s}: s \in J\right\}$ of $\mathbb{R}^{\tau}$ and $\mathbb{R}^{m}$, respectively. Let $B_{1}=\left\{e_{r}: r \in I\right\}$ and $B_{2}=\left\{\hat{e}_{r}: r \in I\right\}$ be two basis of $\mathbb{R}^{p}$, and consider on $\mathbb{W}^{p, p}=\mathbb{R}^{2 p}$ the metric of type $(p, p)$ given by $\left\langle e_{r}, e_{s}\right\rangle=\left\langle\hat{e}_{r}, \hat{e}_{s}\right\rangle=0$, $\left\langle e_{r}, \hat{e}_{s}\right\rangle=\delta_{r, s}$ for all $r, s \in I$. The (ordered) union of the bases $B_{1}$ and $B_{2}$ is called a pseudo-orthonormal basis of $\mathbb{W}^{p, p}$. Define a symmetric bilinear map $\beta$ as follows:

$$
\begin{array}{rlrl}
\beta\left(n_{s}, n_{r}\right) & =0, & & r, s \in J, \\
\beta\left(y_{i}, y_{j}\right) & =\hat{e}_{[(i, j)]}, & & i, j \in L, \\
\beta\left(y_{i}, n_{s}\right)=0, & & \text { if } i \notin s, \\
\beta\left(y_{i}, n_{s}\right)=e_{k}, & & \text { if } i \in s \text { and } i * k=s .
\end{array}
$$

To prove that $N(\beta)=0$, take $x=y+n \in N(\beta)$ with $y=\sum_{j=1}^{\tau} a_{j} y_{j}$ and $n=\sum_{s \in J} b_{s} n_{s}$. Then $\left.a_{i}=\left\langle\beta\left(x, y_{i}\right), e_{[(i, i)]}\right)\right\rangle=0$, and $b_{s}=\left\langle\beta\left(x, y_{u}\right), \hat{e}_{[(v, w)]}\right\rangle=0$ for $s=[(u, v, w)]$. To see that $\beta$ is flat just observe that $\left\langle\beta\left(y_{i}, y_{j}\right), \beta\left(y_{t}, n_{s}\right)\right\rangle=\delta_{s,[(i, j, t)]}$ is symmetric in $i, j, t \in L$.

## References

[1] M. do Carmo and M. Dajczer, Conformal Rigidity, Amer. J. Math. 109 (1987), 963-985.
[2] E. Cartan, La déformation des hypersurfaces dans l'espace conforme réel a $n \geq 5$ dimensions. Bull. Soc. Math. France 45 (1917), 57-121.
[3] M. Dajczer and L. A. Florit, Compositions of isometric immersions in higher codimension, Manuscripta Math. 105 (2001), 507-517. Erratum, Manuscripta Math. To appear.
[4] M. Dajczer and R. Tojeiro, A rigidity theorem for conformal immersions, Indiana Univ. Math. J. 46 (1997), 491-504.
[5] J. D. Moore, Submanifolds of constant positive curvature I, Duke Math. J. 44 (1977), 449-484.

IMPA - Estrada Dona Castorina, 110 22460-320 - Rio de Janeiro - Brazil marcos@impa.br - luis@impa.br

