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§1 Introduction

An immersed submanifold f : Mn → Rn+p in standard flat Euclidean
space, endowed with the induced metric, is said to be conformally flat if
each point has a neighborhood conformal to Rn. Around 1919, nonflat con-
formally flat hypersurfaces (p = 1, n ≥ 4) were completely described by
E. Cartan ([Ca2]) as being any envelope of a 1–parameter family of spheres.
In this case, the geometric parametric description (see [CY], [CDM], [AD2]
or [Da]) is an immediate consequence of the existence, at any point, of a
principal curvature of multiplicity at least n− 1.

For higher but still low codimension, namely, p ≤ n − 3, the algebraic
structure of the second fundamental form of a conformally flat submanifold
has also been well understood for some time due to the work of Moore ([Mo1];
see also [MM]). His extension of Cartan’s result implies that generically,
Mn carries a (n−p)–dimensional foliation by extrinsic spheres which immerse
in Rn+p as round spheres.

It is well known ([AD1], [Da]) that a simply connected Riemannian
manifold Mn, n ≥ 3, is conformally flat if and only if it can be realized as
a hypersurface of the light cone Vn+1 of the standard flat Lorentzian space
Ln+2. Recall that

Vn+1 = {X ∈ Ln+2: 〈X,X〉 = 0, X 6= 0}.

Hence, in order to obtain examples of conformally flat submanifolds Mn

of Rn+p, it suffices to produce a Riemannian manifold Nn+1 which admits
isometric immersions F : Nn+1 → Rn+p and G: Nn+1 → Ln+2 and then take
Mn as the intersection G(Nn+1) ∩ Vn+1.
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Our first main result is that, for p ≤ n−3, the above procedure generates
all simply connected examples. In particular, Moore’s spherical foliation is
nothing else but the intersection with Vn+1 of the at least (n − p + 1)–
dimensional relative nullity foliation common to F and G.

The remaining part of the paper is devoted to the classification of all
local conformally flat submanifolds in codimension p = 2. In fact, this goal
is achieved by two different means. Our first approach consists in putting
together the above result with a description of all Riemannian manifolds Nm

which can be realized, simultaneously, as hypersurfaces in Rm+1 and Lm+1.
This last result is of independent interest and has other consequences.

On one hand, it allows us to construct explicit counterexamples to the claims
in [No1] and [No2]. More importantly, it reveals a completely unexpected
strong relation with the classical Sbrana–Cartan theory ([Sb], [Ca1]) of iso-
metrically deformable Euclidean hypersurfaces. It turns out that in order to
admit an isometric immersion in Lm+1, a nonflat hypersurface Nm of Rm+1

is either in one of three (out of five) classes of deformable Sbrana–Cartan
hypersurfaces or has a similar structure as the elements of a fourth class.
As a consequence, in codimension 2, we show that any ‘generic’ conformally
flat submanifold either has as many isometric deformations as a certain sur-
face in R3 or in the sphere S3, admits precisely a 1–parameter family of
deformations, or is isometrically rigid.

Making use of our previous results, we are then able to describe all nonflat
codimension 2 conformally flat submanifolds in a parametric form. This sec-
ond approach turns out to be much more involved than Cartan’s description
because, aside from hypersurfaces, the existence alone of a spherical foliation
as above is far from sufficient to conclude conformal flatness.

Our parametrization and an observation due to Cartan then enable us to
explicitly construct a large family of what seems to be the first known generic
examples. Finally, in order to complete our classification, we extend the
parametrization of flat surfaces in R4 obtained in [CD] to flat n–dimensional
submanifolds of Rn+2.
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§2 The general case

We first recall some basic facts and definitions. Given an isometric immer-
sion F : Nm → Rm+p, the relative nullity subspace ∆(x) ⊂ TxN at x ∈ Nm

is defined as

∆(x) = {X ∈ TxN : αF (X, Y ) = 0, ∀Y ∈ TxN},

where αF : TN×TN → T⊥
F N stands for the vector valued second fundamen-

tal form. It is a standard fact that on any open subset where the index of
relative nullity νF (x) := dim ∆(x) is constant, the relative nullity distribution
is integrable and its leaves are totally geodesic in Nm and Rm+p.

Consider a hypersurface F : Nm → Rm+1 with constant index νF = `,
0 ≤ ` ≤ m− 1. In this situation, we may locally parametrize F by means of
the Gauss parametrization which we briefly describe next for later use and
refer to [DG1] for further details.

Let V m−` be the quotient space of relative nullity leaves in an open subset
U ⊂ Nm with projection π: U → V m−`. The Gauss map ξ: U → Sm(1)
induces an isometric (with the induced metric) immersion h: V m−` → Sm(1)
so that h ◦ π = ξ. Let N denote the normal bundle of h in Sm(1) ⊂ Rm+1

and let γ be the “support function” defined by γ ◦ π = 〈F, ξ〉. The Gauss
parametrization Ψ: N → Rm+1 is given by

Ψ(ϑ) = γ(x)h(x) + grad γ(x) + ϑ, x = π(ϑ),

where we fiberwise identify the affine relative nullity bundle over a cross
section with the vector bundle N by parallel transport in Euclidean space.

All of the above easily extends to isometric immersions G: Nm → Lm+p.
In particular, the Gauss parametrization is now given in terms of a sub-
manifold k: V m−` → Hm(−1) ⊂ Lm+1 in hyperbolic space and takes the
form

Υ(ϑ) = ρk − grad ρ+ ϑ,

where ρ ◦ π = −〈G, ξ〉.
When f : Mn → Rn+p, p ≤ n−3, is a conformally flat submanifold, from

the work of Moore ([Mo1]; see also the proof below) we know that at each
point there is an umbilical subspace U(x) ⊂ TxM with dimU(x) ≥ n − p.
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Hence, there is a unit vector η ∈ T⊥
f(x)M and R 3 λ ≥ 0, so that the second

fundamental form satisfies

αf(Z,X) = λ〈Z,X〉η, ∀Z ∈ U(x), ∀X ∈ TxM. (1)

It is a well known fact (c.f. [Ki]) that the umbilical distribution U is
integrable on any open subset where the index of conformal nullity νc

f (x) :=
dimU(x) is constant, and its leaves are extrinsic spheres in Mn and part of
round spheres in Rn+p. Recall that an extrinsic sphere Σ of a Riemannian
manifold Mn is an umbilical submanifold with parallel mean curvature vector
such that the sectional curvature ofMn is constant along planes tangent to Σ.

We say that an isometric immersion F : Nn+1 → Ñn+p extends an iso-
metric immersion f : Mn → Ñn+p when there exists an isometric embedding
of Mn into Nn+1 such that F |M = f .

Theorem 1. Let f : Mn → Rn+p, n ≥ 5, p ≤ n − 3, be a simply connected
conformally flat submanifold without flat points. If f has constant index of
conformal nullity νc

f = `, then there exist an extension F : Nn+1 → Rn+p of f

and an isometric immersion G: Nn+1 → Ln+2 so that Mn = G(Nn+1)∩Vn+1.
Moreover, F and G carry a common (` + 1)–dimensional relative nullity
foliation.

Proof: We first sketch (see [AD1] or [Da] for details) how one produces
the isometric immersion g: Mn → Vn+1 ⊂ Ln+2 since G, in the statement,
will be an extension of g in Ln+2. Take the trivial Lorentzian vector bundle
Mn×L2 over Mn endowed with the compatible fiber connection which makes
a canonical orthonormal basis {ξ, ν} parallel. Here ‖ξ‖ = −1. Now consider
the symmetric bilinear form α: TM × TM → L2 given by

α(X, Y ) = −
(
L(X, Y ) − 1

2
〈X, Y 〉

)
ξ +

(
L(X, Y ) +

1

2
〈X, Y 〉

)
ν,

where L is the tensor defined as

L(X, Y ) =
1

n− 2

(
Ric(X, Y ) − 1

2
ns〈X, Y 〉

)

and s stands for the scalar curvature. Then α verifies the fundamental Gauss,
Codazzi and Ricci equations. In fact, the Gauss equations are equivalent to
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the vanishing of the conformal curvature tensor (Weyl tensor), the Codazzi
equations are equivalent to L being a Codazzi tensor and the Ricci equations
are trivially verified. We obtain from the Lorentzian version of the funda-
mental theorem for submanifolds that there exists an isometric immersion of
Mn into Ln+2 with second fundamental form α. Finally, in order to conclude
that the immersion lies in the light cone Vn+1, one has to use that the normal
vector field ξ − ν is umbilic, parallel and light–like, i.e., ‖ξ − ν‖ = 0.

At each point, let β: TM × TM → L2 ⊕ T⊥
f M be the symmetric bilinear

form defined by

β(X, Y ) =
(
L(X, Y ) +

1

2
〈X, Y 〉

)
ξ +

(
L(X, Y ) − 1

2
〈X, Y 〉

)
ν + αf(X, Y ).

Since β is flat and β(X,X) 6= 0 for all X 6= 0, by Proposition 2 of [Mo1] (or
Lemma 7.12 of [Da]) there exist a subspace U ⊂ TM , a real valued bilinear
form φ: TM × TM → R and a light–like vector e = ξ + aν + bη, where
η ∈ T⊥

f M and ‖η‖ = 1, such that:

i) dimU ≥ n− p,

ii) β(Z,X) = φ(Z,X)e, ∀Z ∈ U , X ∈ TM.

We conclude from ‖e‖ = 0 and ii) above by a straightforward computation
that there exists µ ∈ T⊥

g M , ‖µ‖ = 1, such that

αf (Z,X) = λ〈Z,X〉η, αg(Z,X) = λ〈Z,X〉µ, (2)

for all Z ∈ U , X ∈ TM .
We claim for the tangent valued second fundamental forms of f and g

that
Af

η = Ag
µ. (3)

Recall that a Riemannian manifold Mn is conformally flat if and only if its
sectional curvature KM satisfies

KM(X, Y ) +KM(Z,W ) = KM(X,W ) +KM(Z, Y ) (4)

for any orthonormal set of vectors. Using this and our assumption on Mn,
it follows easily that λ 6= 0 in equations (2). On the other hand, we get from
the Gauss equations,

λ〈αf(X, Y ), η〉 = λ〈αg(X, Y ), µ〉, ∀X, Y ∈ U⊥,
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and the claim follows.
From the assumption that U has constant dimension, we have that all of

the above data can be taken to be smooth. Let us denote by ∇ and ∇̃ the
Riemannian connections in the manifold and the ambient spaces, respectively.
For any vector field Z ∈ U , we have

∇̃ZZ = ∇ZZ + λ〈Z,Z〉η. (5)

It follows from (5) that

Lf = span{(∇̃ZZ)U⊥⊕T⊥

f
M , ∀Z ∈ U}

is a smooth line bundle over Mn. Moreover, Lf 6⊂ TM because λ 6= 0.
Since η is parallel along U in the normal connection, the Codazzi equation

for any normal vector field δ ⊥ η takes the form

∇ZA
f
δX − Af

δ∇ZX + Af

∇⊥

X
δ
Z + Af

δ∇XZ = 0, ∀Z ∈ U .

Taking inner product with Z, we easily get

〈∇̃ZZ, ∇̃Xδ〉 = 0.

Since 〈∇̃ZZ, δ〉 = 0, we conclude that

∇̃X∇̃ZZ ∈ TM ⊕ span{η}, ∀X ∈ TM.

For any unit vector Z ∈ U , we have from (5) and the above that

∇̃X∇̃ZZ = ∇X∇ZZ − λAf
ηX + 〈Af

η∇ZZ + gradλ,X〉η,

from where we easily obtain that

∇̃X(∇̃ZZ)U⊥ = ∇X(∇ZZ)U⊥ − λAf
ηX + 〈Af

η(∇ZZ)U⊥ + gradλ,X〉η. (6)

Let Lg be the line bundle over Mn similarly defined as Lf and denote
by τ : Lf → Lg the obvious bundle isometry. Then, the maps F : Lf → Rn+p

and G: Lf → Ln+2 defined as

F (ζ) = f(x) + ζ, G(ζ) = g(x) + τ(ζ), x = π(ζ),
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are immersions when restricted to a tubular neighborhood Nn+1 of the zero
section. A similar calculation shows that equation (6) also holds for g when
η is replaced by µ. We easily conclude from (3) and (6) that F and G induce
the same metric.

Notice that the maps F and G have been produced by “replacing” the ex-
trinsic spheres by the affine subspaces of one dimension higher which contain
them. This is so because the fibers of Lf and Lg are spanned by the mean
curvature vectors of the umbilical foliation. We now show that these affine
subspaces are contained in the relative nullity distributions. We have from
(6) that the normal bundles to F and G are, respectively, the orthogonal
complements to η and µ in the normal bundles of f and g. Being η and µ
parallel in the normal connection along U , we easily see that their orthogonal
complements are constant along U . Hence, the normal bundles of F and G
must be constant along the above affine subspaces. This concludes the proof
of the theorem.

Remark 2. It may well happen that Mn in Theorem 1 carries a foliation by
k–dimensional extrinsic spheres with k > `. If this is the case, we have for the
indices of relative nullity that νF = `+ 1 but, as we show below, νG = k+ 1.
See also Proposition 9 for further understanding of this situation.

From Theorem 1, any conformally flat hypersurface in Rn+1 without flat
points may always be obtained as the intersection of a flat hypersurface in
Ln+2 with the light cone. In fact, we have the following general result.

Theorem 3. Any simply connected conformally flat manifold Mn foliated
by extrinsic spheres of dimension ` ≥ 3 can be realized as the intersection
G(Nn+1) ∩ Vn+1, where G: Nn+1 → Ln+2 is an isometric immersion with
constant index of relative nullity νG = ` + 1. Conversely, any conformally
flat manifold, obtained by an intersection as above, carries a foliation by
`-dimensional extrinsic spheres.

Proof: We first prove the converse. In terms of a Gauss parametrization

Υ(ϑ) = ρk − grad ρ + ϑ

for G, the intersection g: Mn → Vn+1 ⊂ Ln+2 of G(Nn+1) with Vn+1 can be
parametrized as

g(w) = ρk − grad ρ +
√
ρ2 − ‖grad ρ‖2 w = ρ(k − µ) (7)
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along the unit normal bundle N1 of k in Hn+1(−1) ⊂ Ln+2.
All we have to show is that each fiber of N1, already part of an umbilical

sphere in Ln+1, is an extrinsic sphere in Mn. Taking derivatives of 〈g, g〉 = 0,
we see that g ∈ T⊥

g M . Thus, T⊥
g M = span{k, g}. Hence, the pair {k, µ}

is an orthonormal basis for T⊥
g M where µ (defined by (7)) is normal to Mn

in Nn+1. Since k and ρ are constant along the leaves, we have for any Z
tangent to a leaf that

g∗Z = −ρ∇̃Zµ,

which concludes the proof in one direction.
To prove the direct statement, let U denote the distribution tangent to

the extrinsic spheres. Conditions (4) and ` ≥ 3 yield

KM(X, Y ) = KM(X,Z), ∀Y, Z ∈ U(x), ∀X ∈ U⊥(x).

For the tensor L, this implies that

L(Y, Z) = κ〈Y, Z〉, ∀Y, Z ∈ U , κ ∈ C∞(M).

Moreover, using that L is a Codazzi tensor, it follows easily that κ must
be constant along each extrinsic sphere. Therefore, the second fundamental
form of g: Mn → Vn+1 ⊂ Ln+2 satisfies

αg(Y, Z) = 〈Y, Z〉
(
(
1

2
− κ)ξ + (

1

2
+ κ)η

)
= 〈Y, Z〉δ.

Hence, each extrinsic sphere is umbilic in Ln+2. By the same argument that
the one in the proof of Theorem 1, we now conclude that extension G of g as
required exists. Finally, observe that the condition νG = ` + 1 follows from
the first half of the proof.

§3 Hypersurfaces of RN and LN

Our classification of Riemannian manifolds which can be simultaneously
realized as hypersurfaces in both, RN and LN , makes use of a special class
of spherical and hyperbolic surfaces which we describe next.
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For a spherical surface h: V 2 → Sm(1) ⊂ Rm+1, m ≥ 2, together with
a global coordinate system (u, v), we denote by Γ1,Γ2, the two connection
functions of the Riemannian connection ∇′ of V 2 determined by

∇′
∂u
∂v = Γ1∂u + Γ2∂v,

where ∂u, ∂v stand for the coordinate vector fields. Notice that h is just
a coordinate system when m = 2. We say that the coordinates (u, v) are
conjugate whenever the second fundamental form of h satisfies

αh(∂u, ∂v) = 0. (8)

In terms of the coordinate functions (h1, . . . , hm+1) of h in Rm+1, equation (8)
takes the form

Hesshj(∂u, ∂v) + 〈∂u, ∂v〉hj = 0, 1 ≤ j ≤ m+ 1. (9)

We call an associated function to a given spherical surface with conjugate
coordinates {h, (u, v)} any negative solution τ of the system of equations




τu = 2Γ2τ(1 − τ)

τv = 2Γ1(1 − τ).
(10)

The integrability condition for system (10) turns out to be

(Γ2
v − 2Γ1Γ2)τ − Γ1

u + 2Γ1Γ2 = 0.

We then say that {h, (u, v)} is a surface of first type when its metric satisfies

Γ1
u = Γ2

v = 2Γ1Γ2. (11)

Surfaces of first type posses a 1–parameter family of associated functions.
In fact, as already observed in [Sb] and [Ca1], equations (11) can be easily
integrated. We get

Γ1 =
V ′

2(U − V )
, Γ2 =

−U ′

2(U − V )
, (12)

where U = U(u) and V = V (v) are smooth functions of one of the coordi-
nates. Then (10) and (12) yield for the associated functions

τ =
c+ V (v)

c+ U(u)
,
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where c ∈ R has to be chosen so that τ is negative.
When {h, (u, v)} is not of first type, we call it of second type if

τ =
Γ1

u − 2Γ1Γ2

Γ2
v − 2Γ1Γ2

(13)

is a (necessarily unique) associated function.

Remark 4. In their classification of isometrically deformable Euclidean hy-
persurfaces without flat points, Sbrana ([Sb]) and Cartan ([Ca1]) considered
two classes of spherical surfaces (called by Sbrana of first and second species)
which carry either real or complex conjugate coordinates. While surfaces of
first type are nothing else but surfaces of first species for real conjugate co-
ordinates, surfaces of second type are not of second species but of a similar
kind. Namely, τ given by (13) is still a solution of system (10) but it is a
positive one.

The notion of spherical surfaces of first or second type extends immedi-
ately to surfaces k: V 2 → Hm(−1) ⊂ Lm+1 in hyperbolic space. In this case,
equation (9) takes the form

Hesskj(∂u, ∂v) − 〈∂u, ∂v〉kj = 0, 1 ≤ j ≤ m+ 1.

The following is our main result in this section.

Theorem 5. Let Nm, m ≥ 2, be a Riemannian manifold without flat points
and let F :Nm → Rm+1 and G: Nm → Lm+1 be isometric immersions. Then,
F is locally given by the Gauss parametrization Ψ: N → Rm+1,

Ψ(ϑ) = γh+ grad γ + ϑ,

in terms of a surface of first or second type {h, (u, v)} and a solution γ of
the differential equation

Hessγ(∂u, ∂v) + 〈∂u, ∂v〉γ = 0. (14)

Conversely, any parametrized hypersurface in Rm+1 as above can be locally
isometrically immersed in Lm+1. A similar description holds for G.
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Proof: From Corollary 2 of [Mo2] and our assumption, we have everywhere
for the relative nullity distributions and their indices that ∆F = ∆G and
νF = m− 2 = νG . Define D: ∆⊥ → ∆⊥ by

D = (AF )−1 ◦ AG, (15)

where AF (respectively, AG) denotes the second fundamental form of F (re-
spectively, G) restricted to ∆⊥. From the Gauss equations,

detD = −1.

Hence, for a basis {X1, X2} of eigenvectors D takes the form

D =

[
θ 0
0 −1/θ

]
. (16)

In particular, from

〈AGX1, X2〉 = 〈AFDX1, X2〉 = θ〈AFX1, X2〉 = −θ2〈AGX1, X2〉,

we conclude that X1, X2 are conjugate for F and G, i.e.,

〈AFX1, X2〉 = 0 = 〈AGX1, X2〉.

We argue for F . We have to find necessary and sufficient conditions
for the existence of a tensor field D as in (16) so that AF ◦ D satisfies the
Codazzi equations for conjugate X1, X2. First recall that the splitting tensor
C assigns to each T ∈ ∆ the endomorphism CT of ∆⊥ given by

CTX = −(∇XT )∆⊥.

From the Codazzi equation, we get

∇TA
F = AF ◦ CT , ∀T ∈ ∆. (17)

Being the term on the left hand side symmetric, we have

AF ◦ CT = C∗
T ◦ AF , (18)

where C∗
T denotes the adjoint operator of CT . Similarly, AF ◦D also has to

satisfy (18). Thus,

AFDCT = C∗
TA

FD = AFCTD.
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Therefore,
[D,CT ] = 0, ∀T ∈ ∆. (19)

On the other hand, equation (17) for AF ◦D yields

AFDCTX = (∇TA
F )DX + AF (∇TD)X, ∀X ∈ ∆⊥, ∀T ∈ ∆.

Using (17), we get

AF [D,CT ]X = AF (∇TD)X, ∀X ∈ ∆⊥, ∀T ∈ ∆.

We conclude from (19) and the above that

∇TD = 0, ∀T ∈ ∆. (20)

Conversely, equations (19) and (20) imply that the Codazzi equation for
AF ◦D combining vectors in ∆ and ∆⊥ is satisfied.

Observe that equations (19) and (20) can be substituted by

T (θ) = 0, ∀T ∈ ∆, (21)

and
∇TXj ∈ span{Xj}, ∀T ∈ ∆, 1 ≤ j ≤ 2, (22)

where (21) says that θ is a function on V 2. Recall that V 2 is the quotient
space of relative nullity leaves and that h: V 2 → Sm(1) an immersion induced
by the Gauss map ξ. Moreover, condition (22) means that there exists a local
coordinate system (u, v) on V 2 such that

∂u ◦ π = π∗X1, ∂v ◦ π = π∗X2,

for X1, X2 of appropriated length. In particular, this implies that [X1, X2] ∈
∆. Thus, the Codazzi equation we still have to consider reduces to

∇X1
(AFDX2) = ∇X2

(AFDX1). (23)

We have,

∇X2
(AFDX1) = ∇X2

(AF θX1) = ∇̃X2
(AF θX1) − θ〈AFX1, A

FX2〉ξ
= −∇̃X2

ξ∗θX1 − θ〈ξ∗X1, ξ∗X2〉ξ = −∇̃∂v
θ∂u + θ〈∂u, ∂v〉ξ

= −θv∂u − θ (∇∂u
∂v + αh(∂u, ∂v)) .
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Analogously,

∇X1
(AFDX2) = −θu

θ2
∂v +

1

θ
(∇∂u

∂v + αh(∂u, ∂v)).

Setting τ = −θ2, we easily see that equation (23) reduces to conditions (8)
and (10).

It remains to find the condition for X1, X2 to be conjugate. Recall that
in terms of the Gauss parametrization,

AF (ϑ) = −[Hessγ + γId − Bϑ]
−1,

where Hessγ stands for the linear operator associated to the Hessian of γ and
Bϑ denotes the second fundamental form of h in direction ϑ. Hence, in the
presence of (8), we have

〈AFX1, X2〉 = 0 ⇐⇒ Hessγ(∂u, ∂v) + 〈∂u, ∂v〉γ = 0. (24)

The statement for F follows from (8), (10) and (24), and a similar argument
takes care of G. The converse is straightforward.

Remarks 6. 1) For G, equation (14) becomes

Hessρ(∂u, ∂v) − 〈∂u, ∂v〉ρ = 0. (25)

2) The intersection of G(Nm+1) with a foliation of Lm+2 by light cones
provides a local foliation of Nm+1 by m–dimensional conformally flat sub-
manifolds of Rm+2. See also Theorem 1.10 of [AD1].
3) The following special examples satisfy the assumptions of the above result:

i) Nm = N2×Rm−2, where N2 admits isometric immersions F ′: N2 → R3

and G′: N2 → L3, where F = F ′ × Id and G = G′ × Id;

ii) Nm = CN2 × Rm−3, where CN2 ∼= N2 × R+ is a cone over a surface
N2 which admits isometric immersions F ′: N2 → S3(1) ⊂ R4 and
G′: N2 → S3

1(1) ⊂ L4 into Lorentzian unit sphere, where F = CF ′× Id
and G = CG′ × Id.

13



We now introduce two new definitions in order to deal with the rigidity
question. We call a conformally flat submanifold f : Mn → Rn+2, n ≥ 5,
generic when its umbilical direction η ∈ T⊥

f M (recall (1)) possesses every-
where a nonzero principal curvature λ of multiplicity n − 2. Notice that
νc

f = n − 2. From (4) and the Gauss equations, we easily get that generic
conformally flat submanifolds cannot have flat points. We say that a generic
f is surface–like if its isometric extension F : Nn+1 → Rn+2 is as either one
of the examples in Remark 6.3.

Theorem 7. Any local isometric deformation of a generic conformally flat
submanifold f : Mn → Rn+2, n ≥ 5, is the restriction to Mn of an isomet-
ric deformation of its isometric extension F : Nn+1 → Rn+2. Moreover, if
nowhere surface–like, f admits, precisely, a 1–parameter family of isometric
deformations when F is generated by a surface of first type, and is isometri-
cally rigid otherwise. In the surface–like situation, all deformations of f are
determined by isometric deformations of the surface in the first factor of F .

Proof: The first statement is a consequence of Theorem 5 in [DG2]. The
remaining part follows from the classical Sbrana–Cartan classification of de-
formable Euclidean hypersurfaces ([Sb], [Ca1]). In fact, they proved that
isometric deformations of hypersurfaces splitting a surface factor or a cone of
a spherical surface are given by deformations of the surface. Moreover, they
also showed that hypersurfaces given by the Gauss parametrizations in terms
of a surface of first species (see Remark 4) and a support function satisfying
equation (14), which do not split a factor as above, admit a 1–parameter
family of isometric deformations. Finally, unless it splits a factor, F does
not belong to any class of deformable hypersurfaces when generated by a
surface of second type.

Given a conformally flat submanifold f : Mn → Rn+2 without flat points
and constant index νc

f = n − 2, it is easy to conclude from the result in
[MM] that Mn possesses two foliations by conformally flat hypersurfaces
each leaf having constant νc = n − 2 in Rn+2. Moreover, the foliation by
extrinsic spheres is generate by the intersection of the two foliations. In
addition, the foliations are orthogonal if and only if f has flat normal bundle.
Next, we present two families of examples showing that the converse to this
observation, claimed in [No1] and [No2], does not hold.
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Examples 8. 1) Consider a surface g′: N2 → L3 which does not admit any
local isometric immersion into R3. The intersection g: N 2 ×Sn−2(1) → Ln+2

of G = g′ × Id: N2 × Rn−1 → Ln+2 with Vn+1, has the form

g(x, v) = g′(x) + φ(x)v

where φ2 = −〈g′, g′〉. Orthogonal foliations by conformally flat hypersurfaces
as above, are produced by attaching the spheres to the integral curves of
gradφ and (gradφ)⊥. It follows from Theorem 5 that N 2 × Sn−2(1) cannot
be isometrically immersed in Rn+2 with the metric induced by g.

2) Take any surface k: N 2 → Hn+1(−1) with flat normal bundle and principal
coordinates (u, v) which is not of first or second type. Let G: Nn+1 → Ln+2

be the hypersurface defined in terms of the Gauss parametrization by k and
the support function ρ = 1. The intersection g: N 2 × Sn−2(1) → Ln+2 of
G(Nn+1) with Vn+1 is of the form

g(u, v, t1, . . . , tn−2) = k(u, v) +
n−1∑

j=1

ψj(t1, . . . , tn−2)ξj(u, v),

where ξ1, . . . , ξn−1 is a parallel orthonormal normal frame for k and ψ =
(ψ1, . . . , ψn−1) a parametrization of the unit sphere in Rn−1. A straightfor-
ward calculation shows that the foliations obtained fixing values of u or v
verify all of the above conditions but N 2 × Sn−2(1) cannot be isometrically
immersed in Rn+2 with the metric induced by g.

§4 The parametrization

In this section we provide an explicit parametrization for any nonflat
conformally flat submanifolds in codimension 2.

That f : Mn → Rn+2 is a composition we mean that there exist an open
subset U ⊂ Rn+1 and isometric immersions f̃ : Mn → U and H: U → Rn+2

such that f = H ◦ f̃ .

Proposition 9. Any conformally flat submanifold f : Mn → Rn+2, n ≥ 5,
without flat points is locally along an open dense subset either generic or a
composition.

15



Proof: Since we are dealing with a local statement, we may assume that the
principal curvature λ 6= 0 of the umbilical direction η (see (1)) has constant
multiplicity `. When ` ≥ n − 1, we have from (4) that rankAξ ≤ 1 for unit
ξ ⊥ η. On any open subset of Mn where Aξ has constant rank, we verify
by a straightforward computation that Aη satisfies the Gauss and Codazzi
equations for a hypersurface f̃ : Mn → Rn+1. It follows from Theorem 8 of
[DT1] that f is a composition.

Notice that compositions as in the above result can easily be described
parametrically by using together the Gauss parametrization and Cartan’s
parametrization of conformally flat hypersurfaces referred to in the introduc-
tion. We now consider the generic case.

Theorem 10. Let h: V 2 → S n+1(1) ⊂ Rn+2, n ≥ 2, be a surface of first or
second type with conjugate coordinates (u, v). For a given associated function
τ , let Θ∗ be the adjoint to the tensor Θ: TV → TV defined by

Θ∂u =
1

θ
∂u, Θ∂v = −θ∂v,

where θ =
√−τ . Moreover, let ρ be a solution of the differential equation

ρuv + θ2Γ2ρv +
1

θ2
Γ1ρu + ρ〈∂u, ∂v〉 = 0, (26)

and let β: V 2 → Rn+2 be a solution, unique up to translations, of the com-
pletely integrable system of first order





βu = θρhu −
ρu

θ
h

βv = −ρ
θ
hv + θρvh.

Then, on the open subset of regular points, the map ϕ: N1 → Rn+2, defined
on the unit normal bundle N1 of h in the sphere and given by

ϕ(w) = β − Θ∗grad ρ+
√
ρ2 − ‖Θ∗grad ρ‖2 w (27)

is a parametrization of a generic n–dimensional conformally flat submanifold
of Rn+2. Conversely, for n ≥ 5, any generic conformally flat submanifold
f : Mn → Rn+2 can be locally parametrized this way.
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Proof: We prove the converse. Consider a local isometric immersion of Mn

into the light cone g: Mn → Vn+1 ⊂ Ln+2, and the isometric extensions
F : Nn+1 → Rn+2 of f and G: Nn+1 → Ln+2 of g. From the proofs of
Theorem 1 and Proposition 3, there exist orthonormal bases {h, η} of T ⊥

f M
and {k, µ} of T⊥

g M , where h, k are seen simultaneously as Gauss maps for F

and G and as certain immersions h: V 2 → Sn+1(1) and k: V 2 → Hn+1(−1).
Equation (15) yields

Ag
k = Af

h ◦D, (28)

for D extended to TM as D|U = 0. On the other hand, we easily get taking
derivatives of (7) and using (3) that

Id = ρ(Af
η − Ag

k),

where ρ = 1/λ (see (1)) is considered as a function on V 2. Therefore,

ρAf
h ◦D = ρAf

η − Id. (29)

Consider the map β: Mn → Rn+2, defined as

β = f + ρη.

Then, β can also be viewed as defined along V 2 since

β∗Z = f∗Z + ρ∇̃Zη = Z − ρAf
ηZ = 0, ∀Z ∈ U .

Our purpose is to describe f parametrically as

f = β − ρη, (30)

where β and η will be expressed in terms of data generated by h. Since the
images by f of the leaves of U are spheres, we have from (30) that η, when
restricted to a leaf, parametrizes part of a round (n− 2)–dimensional sphere
contained in some (n− 1)–dimensional affine subspace of Rn+2. Fix a leaf L
of U , x0 ∈ L, Y ∈ U⊥(x0) and set y = π∗Y . For any Z ∈ TL, we have

Z〈η, h∗y〉 = Z〈η, h∗π∗Y 〉 = 〈∇̃Zη, h∗π∗Y 〉 = 〈Af
ηZ,A

f
hY 〉 =

1

ρ
〈Af

hZ, Y 〉 = 0.

Therefore, the h∗(Tπ(x0)V )–component of η|L is constant. It follows easily
that there exists σ ∈ TV so that η can be written as

η = h∗σ + Φ + κψ

17



where Φ ∈ N ⊂ TSn+1(1), κ ∈ C∞(V ) and ψ(x) is a parametrization of the
unit sphere in the fiber N ([x]) when x varies along L. Using ‖η‖ = 1, we
easily obtain that Φ = 0. Hence,

η = h∗σ −
√

1 − ‖h∗σ‖2 ψ. (31)

Let φ(x): U⊥(x) → T[x]V be the isomorphism φ(x) = π∗|U⊥(x). From
(29), we have for X ∈ U⊥(x),

β∗X = X + ρ∇̃Xη +X(ρ)η

= (Id − ρAf
η)X − ρ〈∇̃Xh, η〉h+X(ρ)η

= −ρAf
hDX − ρ〈∇̃Xh, η〉h+X(ρ)η.

Since h, ρ and β can be viewed as maps on V 2, the above and (31) yield

β∗φX = ρh∗φDX − ρ〈φX, σ〉h+ (φX(ρ) − ρ〈φDX, σ〉) η. (32)

By (20), a tensor field Ω on V 2 is defined so that

Ω ◦ φ = φ ◦D.
Notice that Θ = Ω−1. Only η in (32) is not constant along the leaves of U .
Hence, this equation is equivalent to

σ =
1

ρ
Θ∗grad ρ, (33)

and
β∗y = ρh∗Θ

−1y − 〈Θy, grad ρ〉h, ∀ y ∈ TV. (34)

In conjugate coordinates, (34) takes the form




βu = ρθhu −
ρu

θ
h

βv = −ρ
θ
hv + θρvh.

(35)

Set τ = −θ2. An easy computation shows that equations (8), (10) and (26)
are the integrability conditions for (35). Therefore, system (35) is completely
integrable if and only if h is a surface of first or second type and ρ verifies
(26). The proof follows from (30), (31), (33) and (35). The direct statement
is straightforward.
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Remarks 11. 1) A long but straightforward calculation using (28) and that
f and g are isometric yields

〈x, y〉′ = 〈Θ−1x,Θ−1y〉, ∀ x, y ∈ TV,

where we denote by 〈 , 〉′ and ∇′′ the metric and connection induced on V 2

by k. Therefore,
∇′′

xy = Θ∇′
xΘ

−1y.

Then,
Θ−1 grad′ρ = Θ∗grad ρ

and

Hess′ρ(∂u, ∂v) − ρ〈∂u, ∂v〉′ =
1

θ
{ρuv + θ2Γ2ρv +

1

θ2
Γ1ρu + ρ〈∂u, ∂v〉}.

Hence, equations (25) and (26) are equivalent. Also, the radius of the um-
bilical spheres in both ambient spaces (c.f. (7) and (27)) are equal, as they
must be, since f and g are isometric, that is,

s :=
√
ρ2 − ‖Θ∗grad ρ‖2 =

√
ρ2 − ‖grad′ρ‖′ 2.

2) It is easy to see that the regular points of the Euclidean parametrization
are the ones for which the operator P−sBw is nonsingular. Here P is defined
as

〈Px, y〉 = 〈ρΘ−1x−∇′
x(Θ

∗grad ρ), y〉,
and Bw stands for the second fundamental form of h in Sn+1(1) for the normal
direction w.

We conclude the section presenting a large family of examples generated
by a class of spherical surfaces of first type already considered by Cartan
([Ca1]).

Examples 12. Given a spherical surface h: V 2 → Sn+1(1) ⊂ Rn+2 of
first type, define H: V 2 → Rn+2 by H =

√
U − V h. From (9) and (12)

we have that, componentwise, any surface of first type is produced giving a
set of functions (h1, . . . , hm+1), with

∑m+1
j=1 (hj)2 = 1, all satisfying the same

differential equation:

hj
uv −

V ′

2(U − V )
hj

u +
U ′

2(U − V )
hj

v + Fhj = 0, 1 ≤ j ≤ m+ 1, (36)
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where U = U(u), V = V (v) and F = F (u, v) are arbitrary smooth functions.
A straightforward computation shows that equation (36) takes the form

Huv +
(
Γ1Γ2 + F

)
H = 0, F = 〈∂u, ∂v〉.

Let us analyze the case when

Γ1Γ2 + F = 0. (37)

In that situation, there exist two regular curves αj: Ij → Rn+2 so that

H(u, v) = α1(u) + α2(v).

Hence,
U(u) − V (v) = ‖α1‖2 + ‖α2‖2 + 2〈α1, α2〉.

In particular, 〈α′
1(u), α

′
2(v)〉 = 0 along I1 × I2. Therefore, there exist affine

orthogonal subspaces Ej ⊂ Rn+2 such that αj(Ij) ⊂ Ej, 1 ≤ j ≤ 2, and

U(u) = ‖α1‖2, V (v) = −‖α2‖2.

Hence, surfaces of first type satisfying the additional condition (37) have the
expression

h(u, v) =
(α1(u), α2(v))√

‖α1(u)‖2 + ‖α2(v)‖2
.

Assume, in addition, that the αj’s are spherical curves, i.e., ‖αj‖ = cj,
cj ∈ R+ with c21 + c22 = 1. Then, F = Γ1 = Γ2 = 0, τ = −k2 is constant and

ρ(u, v) = ρ1(u) + ρ2(v).

We conclude that

ϕ(w) =
1

k

(
k2ρα1 − (1 + k2)

∫
ρ′1α1du ,−ρα2 − (1 + k2)

∫
ρ′2α2dv

)

+ φ+
√
ρ2 − ‖φ‖2 w,

where

φ =

(
ρ′1α

′
1

k‖α′
1‖2

,−kρ
′
2α

′
2

‖α′
2‖2

)
,
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parametrizes a 1–parameter family of generic conformally flat submanifolds.
The above set of examples contains very simple ones obtained by taking

ρ = 1. This yields a 1–parameter family of immersions of the unit normal
bundle N1 of h in Sn+1(1), given by

ϕ(w) =
(
kα1,−

1

k
α2

)
+ w, k ∈ R+.

These examples are even simpler if the αj’s are taken to be circles.

§5 The flat case

Our goal in this section is to parametrically describe all flat Euclidean
submanifolds in codimension 2 which cannot be obtained as compositions.
Arguments here will be quite sketchy in regard to their similarity with the
ones in [CD].

We assume that f : Mn → Rn+2 is flat, 1–regular and nowhere a com-
position. The first assumption means that the first normal spaces N f

1 (x) ⊂
T⊥

f(x)M , i.e., the subspaces spanned by the second fundamental form at each

point, form a subbundle of T⊥
f M . By Theorem 1 in [DT2] we have that

dimNf
1 = 2. As in [CD], we conclude that in a neighborhood of each point

there exists an orthonormal normal local basis {ξ, η} for globally defined line
bundles in T⊥

f M , such that

rankAξ = rankAη = 1

and, on an open dense subset,

kerAξ 6⊂ kerψ, kerAη 6⊂ kerψ, (38)

where ψ is the 1–form defined as

ψ(X) = 〈∇⊥
Xξ, η〉.

We say that a 1–regular flat submanifold f : Mn → Rn+2 is generic when
dimNf

1 = 2 and condition (38) holds everywhere. So f is nowhere a compo-
sition.
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By Codazzi’s equation,

Aξ[X,W ] = −ψ(X)AηW, ∀X ∈ ∆,

where 0 6= W ∈ kerAξ ∩ ∆⊥. From ImAξ 6= ImAη and AηW 6= 0, we get

∆ ⊂ kerψ. (39)

It follows easily from kerAξ 6⊂ kerψ that h: V 2 → Sn+1(1), defined by ξ =
h ◦ π, is an immersion. Here, V 2 is the quotient space of leaves of relative
nullity of Mn with projection π: Mn → V 2 endowed with the metric induced
by h.

For all X ∈ ∆ and Y ∈ TM , we have that

0 = 〈AξX, Y 〉 = −〈ξ∗Y, f∗X〉.

Hence, ∆(x) ⊂ T⊥
h([x])V . Set γ̃ = 〈f, ξ〉. Then,

X(γ̃) = 〈f, ξ∗X〉 = 0, ∀X ∈ ∆.

Therefore, γ̃ is constant along the leaves of ∆. Let δ ∈ T⊥
h V be a unit vector

field orthogonal to ∆. Similar to Proposition 3.5 of [CD], we can define a
parametrization ϕ of f along the subbundle Nδ = {β ∈ T⊥

h V : 〈β, δ〉 = 0} by

ϕ(β) = (γh + gradγ + θδ)(y) + β, y = π(β), (40)

where γ is defined by γ̃ = γ ◦ π. Notice that θ ∈ C∞(V ) since f∗X(x) =
X(x) ∈ Nδ([x]) for all X ∈ ∆.

Let P be the symmetric tensor field on V 2 defined as P = Hessγ + γId.
We have that ϕ∗Y = Y for any Y ∈ Nδ(π(β)) in the fiber at π(β) ∈ V 2. If
T ∈ TβNδ with π∗T = z, a calculation similar to that of Proposition 3.9 in
[CD] gives

ϕ∗T (β) = h∗(P −θBδ −Bβ)z+(〈Bδgrad γ+grad θ, z〉−〈∇⊥
z δ, β〉)δ+µ (41)

where µ ∈ Nδ(π(β)) and Bδ denotes the second fundamental form of h in the
normal direction δ. Set φ = π∗|∆⊥. From W ∈ kerAξ, we get η = λξ∗W =
h∗φλW , for some function λ 6= 0. Since η is constant along the leaves of
relative nullity, it follows that there exists a unit vector field w ∈ TV such
that

η = h∗w ◦ π. (42)
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By (41), this is equivalent to

Bβw = 0, ∀ β ∈ Nδ, and (P − θBδ)w = 0. (43)

But,
AηλW = λ2Aξ∗WW = 〈Bδw,w〉δ ◦ π + εW⊥, ε ∈ C∞(V ),

where W⊥ is a unit generator of ImAξ. From dimN1
f = 2, we conclude that

〈Bδw,w〉 6= 0. (44)

Since rankAη = 1 and dimN1
f = 2, we have that there exists a vector field

V ∈ ∆⊥, linearly independent with W , such that

Aξ∗WV = 0.

As in [CD], using (41) and (42), we easily conclude that there exists a vector
field v ∈ TV , linearly independent with w (v ◦ π = φV ), verifying

∇′
vw = 0, αh(v, w) = 0. (45)

By (45), equations (43) are equivalent to

δ =
αh(w,w)

‖αh(w,w)‖ , θ =
〈Pw,w〉

‖αh(w,w)‖ , and 〈Pv, w〉 = 0. (46)

Extending the definition in [CD], we call h: V 2 → Sn+1(1) a surface of
type C when there exists a conjugate coordinate system (u, v) such that

Γ1 = 0 and αh(∂v, ∂v) 6= 0.

Theorem 13. Let h: V 2 → Sn+1(1) be a surface of type C, and let γ be any
solution of equation

Hessγ(∂u, ∂v) + 〈∂u, ∂v〉γ = 0.

Let δ ∈ T⊥
h V and θ ∈ C∞(V ) be given by

δ =
αh(∂v, ∂v)

‖αh(∂v, ∂v)‖
, θ =

〈P∂v, ∂v〉
‖αh(∂v, ∂v)‖

.
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Then, on the open subset of regular points, the map ϕ: Nδ → Rn+2, defined
on Nδ = {β ∈ T⊥

h V : 〈δ, β〉 = 0} and given by

ϕ(β) = γh+ gradγ + θδ + β,

is a parametrization of a generic n–dimensional flat submanifold of Rn+2.
Conversely, any such submanifold can be locally parametrized this way.

Proof: Follows using (40), (44), (45) and (46).

Remarks 14. 1) The regular points of ϕ are characterized by conditions:

〈Bδgrad γ + grad θ, ∂v〉 6= 〈∇⊥
∂v
δ, β〉, 〈(P − θBδ − Bβ)∂u, ∂u〉 6= 0.

2) As in [CD], we have that R⊥
f = 0 ⇐⇒ ∇′

ww = 0.
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