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Given an isometric immersion f : Mn → Qn+p
c of a riemannian manifold

into a space of constant sectional curvature c, it was shown by B. Y. Chen
([Ch1]) that the inequality

δM ≤ n − 2

2

{
n2

(n − 1)
‖H‖2 + (n + 1)c

}
(1)

holds pointwise. Here, H denotes the mean curvature vector of f and δM

stands for the intrinsic invariant defined as

δM(x) = s(x) − inf {K(σ) : σ ⊂ TxM},

where K and s denote, respectively, sectional and not normalized scalar
curvature of Mn.

It is then natural to try to understand all submanifolds for which equality
in (1) holds everywhere. In euclidean space, Chen showed that the trivial
examples satisfying his basic equality are either affine subspaces or rotation
hypersurfaces obtained by rotating a straight line, that is, cones and cylin-
ders. Nontrivial examples for n ≥ 4 divide in two classes, namely, any
minimal submanifolds of rank two, which we completely describe in [DF],
and a certain class of nonminimal submanifolds foliated by totally umbilic
spheres of codimension two.

In this paper, we show that connected elements in Chen’s second nontriv-
ial class have the simplest possible geometric structure among submanifolds
foliated by totally umbilic spheres, namely, they are rotation submanifolds
over surfaces. This means that Mn is isometric to an open subset of a warped
product L2 ×ϕ Sn−2

1 , ϕ ∈ C∞(L) positive, and

f(x, y) = (h(x), ϕ(x) y) (2)
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being h: L2 → Rp+1 a surface and S1 denotes a unit sphere. The surface
k := (h, ϕ): L2 → Rp+2 is the profile of f .

The paper is organized as follows. First, we discuss the general problem
whether a submanifold foliated by totally umbilic spheres of codimension
two is rotational, and present necessary and sufficient conditions for this to
occur. Then, we see that submanifolds satisfying the basic equality are either
minimal or fall under those conditions. Finally, we present the restrictions
for f in (2) in order to satisfy the basic equality. In particular, we show
that rotational hypersurfaces over surfaces satisfying the basic equality are
in correspondence with solutions of the second order quasilinear elliptical
partial differential equation in the plane

ϕ tr (R Hessϕ) + 1 = 0, where R = I − (1 + ‖∇ϕ‖2)−1〈∇ϕ, ∗ 〉∇ϕ.

Rotation (n-2)-umbilic submanifolds.

We say that a submanifold f : Mn → Qn+p
c is k-umbilic when it carries a

maximal k-dimensional totally umbilic distribution U . This means that there
exist a smooth vector field η ∈ T⊥

f M of unit length and a positive function
µ ∈ C∞(M) so that

U = {X ∈ TM : αf (X, Y ) − µ〈X, Y 〉η = 0, ∀Y ∈ TM}

where αf : TM × TM → T⊥
f M denotes the second fundamental form of f .

It is then well-known that U is an integrable distribution whose leaves are
totally umbilic submanifolds of Mn and Qn+p

c along which µ is constant and
η is parallel in the normal connection; cf. [Re] for details.

We call a k-umbilic submanifold f generic if it satisfies

dim{ker(Aη − µ I)(x)} = k, ∀ x ∈ Mn,

where Aη denotes the second fundamental form of f in direction η. Any
k-umbilic hypersurface is trivially generic and can be parametrized, when in
euclidean space, as an (n − k)-parameter envelope of spheres; see [AD] for
details. We discuss next an useful extension to higher codimension of this
parametrization.

Given a submanifold g: Ln−k → Rn+p, an orthogonal smooth splitting
of its normal bundle T⊥

g L = Λk+1 ⊕ Λ⊥, a positive function r ∈ C∞(L)
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and a smooth section ξ ∈ Λ⊥ so that ‖∇r‖2 + ‖ξ‖2 < 1, we define a map
φ: Λ1 → Rn+p by

φ(w) = g − rη, η = ∇r + ξ + Ω w, (3)

where Ω := (1 − ‖∇r‖2 − ‖ξ‖2)1/2 and Λ1 stands for the unit bundle of
Λk+1. Although at regular points φ parametrizes a submanifold foliated by
k-dimensional spheres, it is not a k-umbilic submanifold in general. Never-
theless, we have the following basic fact.

Proposition 1. Any generic k-umbilic submanifold f : Mn → Rn+p admits
locally a parametrization (3).

Proof: First observe that the map

g := f + rη, r = 1/µ, (4)

is constant along the leaves of U and, being f generic, has constant rank n−k.
Hence, we may also consider g and r as smooth maps on the submanifold
Ln−k = g(Mn) endowed with the induced metric. Being η normal to f , we
have that

0 = 〈η, f∗X〉 = 〈η, g∗X〉 − X(r), ∀X ∈ TM.

Hence, the TL–component of η is ∇r. The proof follows now from the fact
that the leaves of U are spheres in Rn+p and that ‖η‖ = 1.

The following is our main result in this paper.

Theorem 2. Let f : Mn → Rn+p, n ≥ 4, be a generic (n− 2)-umbilic
submanifold and assume that trAη 6= nµ. Then f is a rotation submanifold
over a surface if and only if trAη is constant along the leaves of U .

Proof: The direct statement is trivial. For the converse we use Proposition 1.
It suffices to show that Λn−1 is constant in ambient space. Then g reduces
codimension to p + 1, and the result follows.

From (4), we have

f∗X = g∗X − X(r) η − r η∗X, ∀X ∈ TM. (5)

Denote by PM and PL the orthogonal projections on TM and TL, respec-
tively. Hence,

rPMη∗X = PMg∗X − f∗X (6)

3



and
PLf∗X = (S − rQw)g∗X, (7)

being S, Qw : TL → TL the tensors on L2 given by

S = I − 〈∇r, ∗ 〉∇r

and
Qw = Hessr − Bξ − ΩBw, w ∈ Λn−1,

where Bτ denotes the second fundamental form of L2 relative to τ .
We claim that T = PLPM |TL is a well defined tensor on L2. From

g∗X = (I − rAη)f∗X + ∇⊥
Xrη, (8)

we get

Tg∗X = g∗X − PL(I − PM)g∗X = g∗X − PL(∇⊥
Xrη)

= (S − PLP〈η〉⊥)g∗X

where T⊥
f M = 〈η〉 ⊕ 〈η〉⊥. The claim follows from the fact, easy to check,

that the subbundle 〈η〉⊥ is constant in Rn+p along leaves of U .
Fix a point x ∈ Mn, and let λ1, λ2 be the eigenvalues of Aη different from

µ corresponding to the eigenvectors X1, X2. We want to compute λ1 + λ2 in
terms of g and r. Taking the TL-component of

−PM η∗Xi = λif∗Xi

and using (6) and (7), we get

Tg∗Xi = (S − rQw)(1 − rλi)g∗Xi, 1 ≤ i ≤ 2,

Now observe that T > 0. In fact, this is equivalent to T⊥
f M ∩TgL = 0, which

follows from (8) and λj 6= µ. We conclude that S − rQw is not singular.
Our assumption yields

0 6= θ := (2µ − λ1 − λ2)r = tr (S − rQw)−1T = tr (P + νBw)−1T

is independent of w. Here,

P = S − rHessr + rBξ and ν = rΩ.
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For a pair C, D of 2 × 2 matrices, we have

tr (C−1D) det C = trC trD − tr (CD) = det(C + D) − det C − det D,

where we assume that C is not singular only for the first equality. Therefore,

θ det(P + νBw) = trT tr (P + νBw) − tr (T (P + νBw)).

Thus,

θν2 det Bw = ν tr (T − θP )trBw − ν tr ((T − θP )Bw) + trT trP

−tr (TP ) − θ det P, ∀w ∈ Λ1.

Since dim Λn−1 ≥ 3, we easily obtain

det Bw = 0,

tr (T − θP )trBw = tr ((T − θP )Bw), (9)

and
det(T − θP ) = det T > 0. (10)

Suppose that Bw0
6= 0 for some w0 ∈ Λn−1. Then (9) yields 〈(T−θP )v, v〉 = 0

for 0 6= v ∈ ker Bw0
, which is in contradiction with (10) and proves that

Bw = 0, ∀w ∈ Λn−1. (11)

Since leaves of U are the images of Λ1 under parametrization (3), we have

〈η〉⊥ ⊂ Tg(x)L ⊕ Λ⊥
g(x), ∀ x ∈ Mn. (12)

Observe that T⊥
f(x)M ∩ Tg(x)L = 0 implies that 〈η〉⊥ ∩ Tg(x)L = 0. Hence, the

orthogonal projection

π(x): 〈η(x)〉⊥ ⊂ T⊥
x M → Λ⊥

g(x) ⊂ T⊥
g(x)L

is an isomorphism. On the other hand, we have using (5) that

〈g∗Y − r∇̃Y (∇r + ξ + Ω w), δ〉 = 0, ∀Y ∈ TL, w ∈ Λn−1 and δ ∈ 〈η〉⊥.

It follows from (11), (12) and that 〈η〉⊥ is constant along the leaves that

〈∇̃Y w, δ〉 = 0, ∀Y ∈ TL, w ∈ Λn−1 and δ ∈ 〈η〉⊥.

Being π an isomorphism, we conclude from (11) that Λn−1 is constant and
this proves the theorem.

5



Remark 3. The assumption that trAη 6= nµ in Theorem 2 is essential.
Otherwise, from θ = 0 in the proof we have that trT trBw = tr (TBw) and
trT trP = tr (TP ). This alone does not imply that f is rotational. For
instance, in the hypersurface case, we conclude that f is (n−2)-umbilic with
trAη = nµ if and only if {g, r} in (3) satisfies tr (S−1Bw) = 0 for all w ∈ T⊥

g L
and r tr (S−1Hessr) = 2.

Theorem 4. Let f : Mn → S
n+p
1 , n ≥ 4, be a generic (n−2)-umbilic sub-

manifold and assume that trAη 6= nµ. Then trAη is constant along the leaves
of U if and only if there exists a surface h: L2 → Rp+2, ‖h‖ < 1, such that
f : Mn ⊂ L2 ×√

1−‖h(x)‖2
Sn−2

1 → S
n+p
1 ⊂ Rn+p+1 is a rotation submanifold.

Proof: It suffices to show that the composition f̂ of f with the inclusion of
S

n+p
1 into Rn+p+1 satisfies the conditions in Theorem 2. In fact, the principal

curvatures for the umbilic direction η̂ = 1/
√

1 + µ2 (µη − f) for f̂ are

λ̂j =
1√

1 + µ2
(λjµ − 1), j = 1, 2, µ̂ =

1√
1 + µ2

(µ2 − 1),

and the proof follows.

Next, we analyze nongeneric (n−2)-umbilic submanifolds.

Theorem 5. Assume that f : Mn → Rn+p is a (n−2)-umbilic submanifold
with

dim{ker(Aη − µ I)(x)} = n − 1, ∀ x ∈ Mn.

Then f is a rotation submanifold over a surface if and only if the mean
curvature vector is parallel in the normal connection along the leaves of U .

Proof: The direct statement is trivial. For the converse, let X, Y ∈ U⊥

be orthonormal eigenvectors for Aη with eigenvalues λ, µ, respectively. By
assumption, there is a smooth field of unit length ξ ∈ T⊥

f M, ξ ⊥ η, parallel

along U with AξY 6= 0 and trAξ constant along U . Taking the U⊥-component
of the Codazzi equation for (X, T, η), i.e.,

(∇XAη)T − A∇⊥

X
ηT = (∇T Aη)X − A∇⊥

T
ηX, T ∈ U ,

we get
∇v

XX = 0, (13)
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where Zv (respectively, Zh) denotes taking the U (respectively, U⊥) compo-
nent of Z. Similarly, the X-component of the Codazzi equation for (Y, T, η)
yields

∇v
Y X = 0. (14)

Now, a straightforward computation of the Codazzi equations for (X, T, ξ)
and (Y, T, ξ) gives

〈∇Y Y, T 〉〈AξY, Y 〉 + 〈∇XY, T 〉〈AξY, X〉 = 0

and
〈∇XY, T 〉〈AξY, Y 〉 − 〈∇Y Y, T 〉〈AξY, X〉 = 0,

from which we conclude that

∇v
Y Y = 0 = ∇v

XY. (15)

Equations (13), (14) and (15) say that the distribution U⊥ is totally geodesic
(autoparallel) in Mn. The following observation (cf. [DT]) concludes the
proof.

Lemma 6. Let f : Mn → Rn+p be k-umbilic. Assume that the distribution
U⊥ is totally geodesic (autoparallel) in Mn. Then f is a rotation submanifold.

Proof: Let γ denote the mean curvature vector of the leaves of U in Mn, i.e.,

∇h
ST = 〈S, T 〉γ, ∀S, T ∈ U .

Take X ∈ U⊥ and T ∈ U of unit length. We have,

∇h
T∇XT = Rh(T, X)T + ∇h

X∇v
T T + ∇h

Xγ + ∇h
[T,X]vT + ∇h

[T,X]hT.

A straightforward computation using that U⊥ is totally geodesic and the
Gauss equation yields

∇Xγ = µAηX + 〈X, γ〉γ. (16)

We claim that the mean curvature vector σ = γ + µη of the leaves of U
in euclidean space satisfies

∇̃Xσ = 〈X, γ〉σ, ∀X ∈ U⊥. (17)
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In fact, the T -component of the Codazzi equation for (X, T, η) gives

X(µ) = µ〈X, γ〉 − 〈AηX, γ〉. (18)

On the other hand, the Codazzi equation for Aξ yields

〈AξX, γ〉 + µ〈∇⊥
Xη, ξ〉 = 0. (19)

To obtain the claim, compute ∇̃Xσ and use (16), (18) and (19).
From the claim,

X(‖σ‖2) = 2〈X, γ〉‖σ‖2. (20)

Set
Γ = f + ‖σ‖−2σ.

Using (17) and (20), we get

∇̃T Γ = 0 and ∇̃XΓ = X − ‖σ‖−2〈X, γ〉σ, ∀T ∈ U , X ∈ U⊥.

From ∇̃XT = ∇XT ∈ U and (17), the subspaces L = U ⊕ span {σ} contain-
ing the leaves of U are parallel in ambient space. Since Γ∗X is orthogonal to
U and σ for all X ∈ U , we conclude that Γ is contained in an affine subspace
orthogonal to L, and the proof follows.

The basic equality.

In this section we deal with nonminimal submanifolds satisfying the basic
equality.

Theorem 7. Let f : Mn → Rn+p, n ≥ 4, be a connected submanifold sat-
isfying everywhere the basic equality which is nowhere trivial or minimal.
Then f is any rotation submanifold with profile k: L2 → Rp+2 whose mean
curvature vector H satisfies the condition

e = ∇ϕ − 2ϕH, (21)

where ϕ = 〈k, e〉 is the high function of k with respect to a constant vector
e ∈ Rp+2 of unit length and L2 is endowed with the metric induced by k.

First, we give the general analytic conditions for a rotation submanifold
to satisfy the basic equality.
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Proposition 8. Let f : Mn = L2×ϕ Sn−2
1 → Rn+p be a rotation submanifold.

Then f(x, y) = (h(x), ϕ(x) y) satisfies the basic equality if and only if ϕ is a
solution on L2 of the second order quasilinear elliptical differential equation

ϕ tr (RHessϕ) + 1 = 0, (22)

and the second fundamental form of h: L2 → Rp+1 satisfies

tr (R Bh
ξ ) = 0, ∀ ξ ∈ T⊥

h L. (23)

Proof: We have,

T⊥
f M = T⊥

h L ⊕⊥ 〈η〉, η(x, y) =
1√

1 + ‖∇ϕ‖2
(∇ϕ,−y).

Moreover,

f∗(X, 0) = (X, 〈∇ϕ, X〉y) and f∗(0, v) = ϕ(0, v). (24)

In particular,
µ−1 = ϕ

√
1 + ‖∇ϕ‖2. (25)

Now take (ξ, 0) ∈ T⊥
f M where ξ ∈ T⊥

h L. Then, ξ∗(X, 0) = (−Bh
ξ X+∇⊥

Xξ, 0).
We have,

Af
ξ X = −ξ∗X + (ξ∗X)T⊥

h
L + 〈ξ∗X, η〉η

= Bh
ξ X − 1

1 + ‖∇ϕ‖2
〈Bh

ξ X,∇ϕ〉(∇ϕ,−y)

= (R Bh
ξ X, ∗ ).

From (24), we have that Af
ξ and R Bh

ξ have the same eigenvalues. Thus,

trAf
ξ = 0 ⇐⇒ trR Bh

ξ = 0.

Also,

Af
ηX = −η∗X + (η∗X)T⊥

h
L = (−(η∗X)TL, ∗ )

=

(
〈HessϕX,∇ϕ〉∇ϕ

(1 + ‖∇ϕ‖2)3/2
− HessϕX√

1 + ‖∇ϕ‖2
, ∗
)

=
−1√

1 + ‖∇ϕ‖2
(R HessϕX, ∗ ) .
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From (24) and (25), it follows that

trAf
η = (n − 1)µ ⇐⇒ −1√

1 + ‖∇ϕ‖2
trR Hessϕ = µ

⇐⇒ trR Hessϕ = −1/ϕ,

and this concludes the proof.

Proof of Theorem 7: By Lemmas 3.2 and 3.3 of [Ch1] and our assumptions
there are two possibilities along each connected component of an open dense
subset. Namely, f is either (n−1)-umbilic or is (n−2)-umbilic. Moreover,
in both situations η is in the direction of the mean curvature vector and
trAη = (n − 1)µ. Then f is trivial in the first case and, in the second case,
it follows from Theorems 2 and 5 that f is a rotation submanifold.

We use Proposition 8 to conclude the proof. A straightforward computa-
tion of the mean curvature vector of the profile k yields that condition (21)
is equivalent to equations (22) and (23).

We now extend a result in [CY] to arbitrary codimension.

Corollary 9. Let f : Mn → Rn+p, n ≥ 4, be a connected submanifold with
constant mean curvature satisfying the basic equality. Then f is either a
minimal submanifold or an open subset of a riemannian product R× Sn−1

c ⊂
Rn+1.

Proof: Suppose that f is a rotation submanifold over a surface. By assump-
tion and (25),

ϕ2(1 + ‖∇ϕ‖2) = r > 0 (26)

is constant in Mn. Let {X1, X2} be a local orthonormal frame such that
X2(ϕ) = 0. Notice that ϕ cannot be constant on an open subset by (22).
Taking the derivative of (26) in direction X2 we get X2X1(ϕ) = 0. From
X1X2(ϕ) = 0 it follows that

[X1, X2] ∈ 〈X2〉. (27)

Hence, there exists λ ∈ C∞(L2) so that {X1, λX2} are the coordinate fields
of a coordinate system (u, v) and ϕ = ϕ(u). The derivative of (26) gives

ϕ′′ = −rϕ−3. (28)

10



On the other hand, a straightforward computation of (22) yields

ϕ2ϕ′′ + rϕ〈∇X2
X1, X2〉 + rϕ−1 = 0. (29)

From (28) and (29) we obtain that ∇X2
X1 = 0. We conclude from this

and (27) that L2 is flat. Notice that {X1, X2} are coordinates fields for a
euclidean system of coordinates. We have,

RX1 = (1 + (ϕ′)2)−1X1 and RX2 = X2.

We easily obtain from this, (23) and the Gauss equation that h is totally
geodesic. On the other hand, we have from (26) that ϕ(u) =

√
r − u2, and

this concludes the proof.

Remarks 10. 1) Notice that Theorem 7 and Corollary 9 hold for submani-
folds in the sphere.
2) For hypersurfaces, the second condition in Proposition 8 is trivially satis-
fied since g parametrizes an affine plane.
3) Theorems 3.1 and 3.2 in [Ch2] and Theorems 3 and 4 in [CY] for n ≥ 4
follow immediately from our results.
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