
Differential Geometry guide

Luis A. Florit (luis@impa.br, office 404)

PART I
Prerequisites (part I): Analysis on R

n.
Analysis on manifolds, Stokes and de Rham recommended. Bibliography: [dC]

§1. Introduction

Differentiable manifolds: smooth world. Now we’re going to

measure in them. After all, geometry comes from the Greek:

“measurement of the Earth”:

Eratosthenes (Cirene, 276 AC - Alexandria, 194 AC)

Posidonius (135 AC - 51 AC) ⇒ Colombo

We will study in this first part curves, surfaces and hypersurfaces

of Euclidean space ⇒ Two aspects: intrinsic and extrinsic.

§2. Curves

Curve: intrinsically, nothing interesting: I ⊆ R.

Regular curves α in R
2 and R

3: arc length s, p.b.a.l, curvature

κα and torsion τα. Frenet Trihedron: {t, n, b}.
FTC: explicit vs. ODE.

Curves in R
n: FTC.

Exercise. Prove that κα =
√

‖α′‖2‖α′′‖2 − 〈α′, α′′〉2/‖α′‖3, indepen-

dently of the parametrization of α.
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§3. Surfaces in R
3

Regular (Euclidean) surface: S = S2 ⊂ R
3 (embedding!)

Regular (Euclidean) hypersurface: Mn ⊂ R
n+1 (embedding!)

Regular (Euclidean) submanifold: Mn ⊂ R
n+p (embedding!)

It is enough to check that: ∀x ∈ Mn, ∃V ⊂ R
n+p open, x ∈ V ,

and a smooth map U ⊂ R
n 7→ Mn∩V ⊂ R

n+p that is injective,

open and has rank n: coordinates (smooth = Cr/C∞/Cw).

Examples:

graf(f ) for f : U ⊂ R
n → R.

g−1(t0) for a regular value t0 (in the image) of g : W ⊂ R
n+1 → R:

Sphere S
n ⊂ R

n+1.

Ellipsoid g−1(r) for g(x, y, z) = x2/a2 + y2/b2 + z2/c2, r > 0.

Hyperboloid g−1(r) for g = x2 + y2 − z2 (Hyperboloid of two

sheets for r < 0, while the Cone g−1(0) is NOT a regular surface).

Hyperbolic paraboloid g−1(0) for g = x2/a2 − y2/b2 − z.

Circular cylinder and Cylinders over conics.

Def.: Parametrized surface just ϕ : U ⊂ R
2 → R

3. Singular

points of ϕ: dϕp singular. We call ϕ regular if it is an immersion.

Proposition 1. Every hypersurface is locally a graph.

Exercise. No need to check that a coordinate system is open (homeomor-

phism) if we know beforehand that Mn ⊂ R
n+1 is a regular hypersurface.

Differentiable functions: now we can use the ambient space.
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Examples: F : U⊂R
3→R smooth ⇒ F |S is smooth ∀S ⊂ U

ϕ : U ⊂ R
2 → R

3 coordinates ⇒ U and ϕ(U) are diffeomorphic

S symmetric ⇒ the symmetry restricted to S is smooth:

Example: Surfaces of revolution: Meridians, Parallels, Axis,

Generatrix (embedded!).

Example: Tangent surfaces to a curve α : I → R
3: κα 6= 0

⇒ ϕ(s, t) = α(s) + tα(s) is a parametrized surface, regular for

t 6= 0.

§4. Tangent space as a subspace

For a regular submanifoldMn ⊂ R
n+q and p ∈ Mn, we now have

TpM naturally included in R
n+q as an affine subspace: spanned

by {(∂ϕ/∂ui)(p) : i = 1, . . . , n} for any coordinate ϕ at p.

If α :I→S ⊂ R
3, α(s) = ϕ(u(s), v(s)), α(0) = p = ϕ(0, 0) ⇒

α′(0) = u′(0)
∂ϕ

∂u
(0, 0) + v′(0)

∂ϕ

∂v
(0, 0) ∈ TpS ⊂ R

3

Differential of a function f : S1 ⊂ R
3 → S2 ⊂ R

3 at a point: can

be seen as a linear map between subspaces of R3.

Local diffeomorphism, chain rule...

TIP: Use curves to compute differentials!

Example: L : R3 → R
3 linear, S ⊂ R

3 ⇒ f∗p = f |TpS
Since we fixed an orientation in R3, we can talk about the Normal
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vector field of our surface:

N =
∂ϕ
∂u ∧

∂ϕ
∂v

‖∂ϕ
∂u ∧

∂ϕ
∂v‖

(1)

Same holds for hypersurfaces.

Angle between surfaces.

§5. The First Fundamental Form

Curves + inner product 〈 · , · 〉 of R3 → distance → first funda-

mental form I :

I(p) = 〈 · , · 〉|TpS×TpS : TpS × TpS → R

is an inner product on TpS.

We will denote also by I its associated quadratic form.

Arc length s for α : I → S ⊂ R
3:

s(t) =

∫ t

t0

√

I(α′(r))dr.

ϕ : U → S ⊂ R
3 coordinate system ⇒

E = ‖∂ϕ
∂u

‖2, F = 〈∂ϕ
∂u

,
∂ϕ

∂v
〉, G = ‖∂ϕ

∂v
‖2 ∈ C∞(U)

coefficients of I in the coordinate ϕ.

Im (α) ⊂ Im (ϕ) ⇒ s(t) =
∫ t

t0

√
Eu′2 + 2Fu′v′ +Gv′2dr.

Remark 2. I is a symmetric positive definite (2,0)-tensor in S,

a Riemannian metric on S: I = inc∗〈 · , · 〉.
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Same for arbitrary regular Euclidean submanifolds:

Example: Affine plane through p ∈ R
3 or Cylinder over plane

curve ⇒ everywhere coordinate systems with E≡1≡G, F ≡0.

Def.: Regular domain D ⊂ S.

If ϕ : U → S is a coordinate system, ‖∂ϕ
∂u ∧

∂ϕ
∂v‖ is the area of the

parallelogram determined by the coordinate vector fields, and we

can define the area of a regular domain Ω ⊂ ϕ(U) by

A(Ω) =

∫

ϕ−1(Ω)

‖∂ϕ
∂u

∧ ∂ϕ

∂v
‖ =

∫

ϕ−1(Ω)

√

EG− F 2 dudv

since ‖x ∧ y‖2 + 〈x, y〉2 = ‖x‖2‖y‖2

§6. Recalling basic concepts of vector bundles

§7. Orientation

graf(f ) orientable

Mn ⊂ R
n+1 orientable ⇐⇒ there exist a globally defined smooth

unit normal vector field.

g−1(r) orientable (0 6= grad (g) ⊥ M)

Theorem 3. Mn ⊂ R
n+1 embedded, orientable ⇒ there

exist V ⊂ R
n+1 open with Mn ⊂ V , and g : V ⊂ R such that

0 is a regular value of g and Mn = g−1(0).

Proof: Existence of tubular neighborhoods.

Remark 4. Mn ⊂ R
n+1 embedded and compact ⇒ orientable

(Jordan Theorem 41 in our last course).
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§8. Gauss map and Second Fundamental Form

For any Euclidean hypersurface Mn ⊂ R
n+1, locally we have a

unit normal vector field

N : U ⊂ Mn → S
n ⊂ R

n+1.

But TpM is parallel to TN(p)S
n, and hence dNp ∈ End(TpM).

Moreover, dNp is self adjoint (w.r.t. I), so the quadratic form

IIp(w) := −〈dNpw,w〉

is called the second fundamental form of Mn at p. We also give

the same name to the associated symmetric tensor,

Ap := −dNp.

Def.: Let α : I → M be a regular curve through p = α(0) ∈ M .

The normal curvature of α at p is given by

κn := κ〈N, n〉,

where n is the normal vector of α at p and κ its curvature.

Remark 5 . (!!!!) It holds that (draw a picture)

II(α′(0)) = κn(0)

i.e., the normal curvature only depends on the direction of α′ (!!).
In particular, if v ∈ TpM and π is the plane spanned by v and

N(p), α = π ∩M ⊂ π is a plane curve whose curvature is II(v)

(beware of orientations).
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Examples: Second fundamental form of a graph; y = x4; Sn.

A self adjoint ⇒ principal curvatures {ki}, principal directions
{ei}, lines of curvature:

v =
∑

i

viei ⇒ II(v) =
∑

i

kiv
2
i .

For dimension 2, we have the Euler’s formula for ‖v‖ = 1:

v = cos(θ)e1 + sin(θ)e2 ⇒ II(v) = k1 cos(θ)
2 + k2 sin(θ)

2.

Remark 6. Ordering the principal curvatures k1 ≤ · · · ≤ kn
we see by Remark 5 that e1 is the direction where M “curves”

less (w.r.t. N) in the ambient space, while en is the one where it

curves more. This follows from the usual diagonalization process.

§9. The two curvatures for surfaces: K and H

For a symmetric endomorphism in dimension two, we have two

invariants (independent of orthonormal basis): the trace and the

determinant.

Def.: For a regular surface S ⊂ R
3 and p ∈ S, the Gaussian

curvature of S at p is given by

K(p) := det(Ap) = k1k2.

Def.: The mean curvature of S at p is H(p) = −trace(Ap)/2.

We will see in a while that the two curvatures have very different

nature.
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Notice that K does not depend on orientation, while H does.

Notice that both are smooth functions that determine k1 and k2:

ki = H ±
√

H2 −K.

Def.: A point p in S can be elliptic, hyperbolic, parabolic,

planar (or totally geodesic), minimal, umbilical. Accordingly,

S itself could be totally geodesic, minimal, umbilical.

Remark 7. The principal curvatures and their eigenspaces are

always continuous, and smooth along any open subset where their

multiplicities are constant. In particular, they are always smooth

along (the connected components of) an open dense subset W of

M . For surfaces, if V is the set of umbilical points of S, W can

be taken as V o ∪ S \ V .

Def.: Asymptotic direction and asymptotic curve of S ⊂ R
3.

Notice that there exists an asymptotic direction at p ⇐⇒
K(p) ≤ 0, while there are precisely two asymptotic directions

at p ⇐⇒ K(p) < 0.

Proposition 8. Let Mn ⊂ R
n+1 regular and connected.

Then, M is umbilical ⇐⇒ Mn is (an open subset of) a

round n-sphere or a hyperplane.

Def.: Conjugate directions.
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§10. II and K in coordinates, part 1

For a coordinate system ϕ = ϕ(u, v) in a surface S ⊂ R
3, let as

before

N =
∂ϕ
∂u ∧

∂ϕ
∂v

‖∂ϕ
∂u ∧

∂ϕ
∂v‖

.

Denote by (aij) the matrix of A in the coordinate basis,

Nu = a11ϕu + a12ϕv,

Nv = a21ϕu + a22ϕv.

Define the functions

e := −〈Nu, ϕu〉 = 〈N,ϕuu〉,

g := −〈Nv, ϕv〉 = 〈N,ϕvv〉,
f := −〈Nu, ϕv〉 = −〈Nv, ϕu〉 = 〈N,ϕuv〉.

Hence, if v = v1ϕu + v2ϕv, II(v) = ev21 + 2fv2v2 + gv22, and
(

a11 a12
a21 a22

)

=
−1

EG− F 2

(

e f

f g

)(

G −F

−F E

)

These are known as the Weingarten equations. In particular,

for the Gaussian curvature we obtain

K =
eg − f 2

EG− F 2
.

Example: The torus. For 0 < r < a, take the (almost global)

chart

ϕ(u, v) = ((a + r cos(u)) cos(v), (a + r cos(u)) sin(v), r sin(u)) .
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Hence,N = (cos(u) cos(v), cos(u) sin(v), sin(u)) (geometrically!),

and hence E = r2, G = (a + r cos(u))2, F = 0, and

K =
cos(u)

r(a + r cos(u))
.

Make the computation, make a picture, sign K interpretation,

elliptic/hyperbolic points, move a and r and see how K varies,

independence of v... see everything geometrically!

Remark 9. Observe that
∫

K = 0, independently of a and r!

Now, let’s compute K for any surface of revolution of a simple

closed curve p.b.a.l. as (a(s), 0, b(s)): K = −a′′/a,
∫

K = 0!!!!

Proposition 10. If p ∈ S ⊂ R
3 is elliptic ⇒ a neighborhood

of p is in one side of TpS. If p hyperbolic, it is not.

Proof: Differentiate g = 〈ϕ− ϕ(0), N(p)〉 at p = ϕ(0).

Def.: Lines of curvature.

If α(t) = ϕ(u(t), v(t)) is a line of curvature, then dN(α′)) = λα′,
or equivalently, (fF − eG)u′ + (gF − fG)v′ = λu′(EG − F 2),

(eF − fE)u′ + (fF − gE)v′ = λv′(EG− F 2), or

(fE − eF )(u′)2 + (gE − eG)u′v′ + (gF − fG)(v′)2 = 0,

known as the equation of the lines of curvature. In particular,

outside of the umbilical points:

the chart is by lines of curvature ⇔ F = f = 0.
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Proposition 11. Let p ∈ S ⊂ R
3, and a sequence of compact

regions Bi ⊂ S such that Bi → p. Then,

|K(p)| = lim
i→∞

Area(N(Bi))

Area(Bi)
.

Proof: Follows from |Nu∧Nv| = |K||ϕu∧ϕv|, even ifK(p) = 0.

Remark 12. At the non-flat points, N preserves orientation if

and only ifK > 0. Hence we can remove the modulus if we define

“oriented area”.

§11. Vector fields

Recall: Trajectories (= integral curves), F.T. ODE, local flux.

X(M) = Γ(TM)

For f : N → M , Xf = Γ(f ∗(TM)).

Exercise. If X, Y ∈ X(M) and ξ is the local flux of X around p, then

[X, Y ](p) = limt→0
1
t
((ξ−t)∗Y (ξt(p))− Y (p)) .

Lemma 13. Let M be any manifold, p ∈ M and X ∈ X(M)

with X(p) 6= 0. Then, there is a coordinate system around

p such that X|U = ∂/∂x1. In particular, if M is a surface,

there is a first integral of X in U , i.e., a function f : U → R

with dfp 6= 0 such that f is constant along trajectories of X.

Proof: Use the flux of X to construct a suitable chart in p for

which X|U is a coordinate vector field.

Lemma 14. Same hypothesis as in Lemma 13, and g ∈
F(U) ⇒ there is µ ∈ F(U), µ > 0, such that X(µ) = g.
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Proof: Use the flux of X to write this as an ODE.

Lemma 15. Two vector fields X, Y satisfy that [X, Y ] = 0

if and only if their fluxes commute: φX
t ◦ φY

s = φY
s ◦ φX

t ∀t, s.
Proof: At points whereX = Y = 0 it is obvious, so assumeX 6=
0. By the ‘ϕ-related’ property for Lie brackets of vector fields, we

can assume our manifold is Rn. Moreover, by Lemma 13, we can

assume X = ∂/∂x1 ∼= e1, and the lemma follows easily.

Lemma 16. Same hypothesis as in Lemma 13 and Y ∈ X(S)

linearly independent with X in p ⇒ there is a chart ϕ around

p whose coordinate vector fields are colinear with X and Y .

Proof: Write [X, Y ] = gX + fY and use Lemma 14 to find

µ, λ positive functions such that [X ′, Y ′] = 0, where X ′ = µX ,

Y ′ = λY . By Lemma 15 we can use them to build our chart.

Corollary 17. If p is not an umbilical point of S ⊂ R
3, there

is a coordinate system by lines of curvature around p.

Def.: Isometric and conformal maps, local isometries.

Proposition 18. Any surface (S, I) has isothermal charts.

Proof: Several proofs exist, few are elementary, and none easy...

§12. Ruled surfaces

ϕ(t, s) = α(s) + tv(s), v ∈ Xα, ‖v‖ = 1.

< {v(s)} > = geratrix line, α = directrix curve.

Remark 19. S ruled ⇒ K ≤ 0.
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Examples:

• v = α′: Tangent surface to α

• α(s) = (0, 0, as), v(s) = (cos(s), sin(s), 0) ⇒ helicoid.

• If v ≡ v0 constant ⇒ cylinder over a plane curve. Hence,

we say that S is noncylindrical if v′ never vanishes.
• α(s) = (cos(s), sin(s), 0), v = ±α′ + e3 ⇒ x2 + y2 − z2 = 1:

the hyperboloid of revolution is doubly ruled.

• α(s) = (s, 0, 0), v(s) = (0, 1, s) ⇒ xy = z, the hyper-

bolic paraboloid, that is also doubly ruled, since (s, t, st) =

te2 + s(1, 0, t).

Remark 20. Besides the plane, these are the only 2 doubly

ruled surfaces! How would you prove this??

Singularities of a ruled surface are contained in the striction curve:

Def.: For a noncylindrical ruled surface S, the striction curve

is given by σ(s) = α(s) + t(s)v(s) for which 〈σ′, v′〉 = 0 (i.e.,

t(s) = −〈α′, v′〉/‖v′‖2).
Notice that the striction curve does not depend on the directrix

α. In particular, we can assume that σ = α, that is, 〈α′, v′〉 = 0.

§13. Minimal surfaces

The brachistochrone problem was formally posed by Johann

Bernoulli as a challenge (he knew the answer using the Fermat

Principle), but it appeared first in the Discorsi, of Galileo for

lines, and observed that there was a quicker non straight solution

(arguing then wrongly that the circle would be the fastest). Leib-
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niz persuaded Bernoulli to extend the six month limit to solve the

challenge for foreign mathematicians to be able to participate.

Five more mathematicians solved the problem: Tschirnhaus, Ja-

cob Bernoulli, Leibniz, de L’Hôpital, and... Isaac Newton, who

was teased by Bernoulli and Leibniz, and solved the problem in

one night. These solutions eventually lead to a general method by

Euler to solve these kind of problems: the calculus of variations.

When does a surface minimize the area for “close enough” sur-

faces?

Proposition 21. Let S ∈ R
3 be a compact surface (with or

without boundary). Then, S is a critical point of the area

functional A(S) if and only if H = 0.

Proof: It is enough to consider normal variations it(p) = p +

tfN(p). Now, compute a′(0), where a(t) = Area(it(S)).

Exercise. Conclude the same for hypersurfaces adapting the proof using

that the volume element is given by
√

det〈ϕui
, ϕuj

〉 du1 ∧ · · · ∧ dun.

The Plateau problem: Find a minimal surface whose boundary is

a given closed curve. Douglas (1931) and Radó (1933) prove gen-

eral existence for arbitrary simple closed curves, but the surface

could have singularities. Osserman (1970) and Gulliver (1973): a

minimizing solution cannot have singularities. Regular solutions

may not exist.

CMC (hyper)surfaces.
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§14. Intrinsic Geometry

Intrinsic objects of a Riemannian manifold are the ones that

only depend on the first fundamental form, i.e., invariant by

isometries: distance, angle, area, volume...

Cylinder ∼= plane ∼= cone (locally): they are intrinsically the same

thing, and hence the mean curvatureH is not an intrinsic concept.

If ϕ : U → M , ϕ′ : U → M ′ are charts such that gij = g′ij ⇒
ϕ(U) ⊂ M and ϕ′(U) ⊂ M ′ are isometric.

Example: For a surface of revolution

ϕ(u, v) = (f (v) cos(u), f (v) sin(u), g(v))

we have E = f 2, F = 0, G = f ′2 + g′2. In particular, the

catenoid, where f (v) = a cosh(v) and g(v) = av for a > 0, has

E = G = a2 cosh2(v), F = 0. Now, change variables on the

helicoid

ϕ(u, v) = v(cos(u), sin(u), 0) + aue3,

v = a sinh(v), u = u to get

ϕ(u, v) = a(sinh(v) cos(u), sinh(v) sin(u), u),

that also has E = G = a2 cosh2(v), F = 0. Therefore, the

catenoid and the helicoid are locally isometric (but not globally).

This is a general phenomenon for minimal surfaces in R
3: they

have a one parameter family of isometric deformations.

Def.: Isometries, conformal diffeomorphisms.

Existence of isothermal coordinates ⇒ any two surfaces are lo-

cally conformally equivalent.
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§15. The Gaussian curvature in coordinates, part 2

Given a chart ϕ = ϕ(u1, u2) : U → S on a surface S ⊂ R
3, we

have seen that K = (eg− f 2)/(EG−F 2). Let’s do this compu-

tation again in other way, by decomposing the second derivatives

on their tangent and normal components:

ϕij =
∑

k

Γk
ijϕk + rijN.

The functions Γk
ij (that of course depend on ϕ) are called the

Christoffel symbols. (In our previous notation, r11 = e, r22 =

g, r12 = f ). Taking inner product with ϕi, we have:

Γ1
11E + Γ2

11F = 〈ϕ11, ϕ1〉 =
1

2
Eu1,

Γ1
11F + Γ2

11G = 〈ϕ11, ϕ2〉 = Fu1 −
1

2
Eu2,

· · ·
that can be written as

(

E F

F G

)(

Γ1
11

Γ2
11

)

=

(

1
2Eu1

Fu1 − 1
2Eu2

)

and similarly for the other indexes. In other words, we have:

Proposition 22. The Christoffel symbols Γk
ij depend only on

the first fundamental form and its first derivatives.

Proof: Follows from the Koszul formula:

2〈ϕij, ϕk〉 = 〈ϕi, ϕk〉j + 〈ϕj, ϕk〉i − 〈ϕi, ϕj〉k.
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Exercise. Show that for a surface of revolution around a curve α(v) =

(f(v), g(v)), it holds that Γ1
11 = Γ2

12 = Γ1
22 = 0,Γ2

11 = ff ′/(f ′2+g′2),Γ1
12 =

f ′/f,Γ2
22 = (ff ′′ + gg′′)/(f ′2 + g′2).

Now, we get relations that come from taking the tangent and

normal components of ϕrij = ϕrji and Nij = Nji (3×3 equations

if n = 2) that have the form

n
∑

k=1

ckijrϕk + dkijrN = 0, ∀1 ≤ i, j, r ≤ n = 2. (2)

In particular, taking the ϕ2 component of ϕ112 = ϕ121 we obtain

the Gauss equation

K =
1

E

(

(Γ2
12)1 − (Γ2

11)2 + Γ1
12Γ

2
11 + Γ2

12Γ
2
12 − Γ2

11Γ
2
22 − Γ1

11Γ
2
12

)

.

We have proved the famous Gauss’ Egregium Theorem:

Theorem 23 (Theorema Egregium = “outstanding”). The

Gaussian curvature is an intrinsic concept (in fact, it depends

only on I, ∂I, and ∂2I). In particular:

K is invariant by (local) isometries.

Corollary 24. Kcatenoid(p) = Khelicoid(ξ(p)).

§16. The Codazzi-Mainardi equations

The other 5 tangential equations are other ways of writting the

Gauss equation, or give 0 = 0. But the normal components give
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two more equations, called the Codazzi-Mainardi equations:

ev − fu = eΓ1
12 + f (Γ2

12 − Γ1
11)− gΓ2

11.

fv − gu = eΓ1
22 + f (Γ2

22 − Γ1
12)− gΓ2

12.

Application: The relative nullity integrate as straight lines.

These are the straight lines we ‘see’ in some ruled surfaces: K≡0.

Remark 25. In a coordinate system by lines of curvature of a

surface without umbilic points, Codazzi-Mainardi equations have

the form

ev =
Ev

2

( e

E
+

g

G

)

, gu =
Gu

2

( e

E
+

g

G

)

.

§17. Global application: The rigidity of S2 ⊂ R
3

Lemma 26. Let p ∈ S ⊂ R
3 regular such that K(p) > 0,

and p is a local maximum of k2 and a local minimum of k1
(k1 ≤ k2). Then, p is umbilic.

Proof: Assume not, k1(p) < k2(p), and take a chart at p by lines

of curvature, 2H = k1 + k2 ⇒ k1 = e/E, k2 = g/G. Now,

by Remark 25 (Codazzi), ev = EvH , gu = GuH ⇒ E(k1)v =

ev− eEv/E = Ev(k2−k1)/2, and G(k2)u = −Gu(k2−k1)/2. In

particular, Ev(p) = Gu(p) = 0. But the Exercise in page 31 says

that −2KEG = Evv +Guu + (· · ·)Ev + (· · ·)Gu. Then, at p,

0>−2KEG=Evv+Guu=2(E(k1)vv−G(k2)uu)/(k2−k1) ≥ 0.

Theorem 27. (Liebman): If S ⊂ R
3 is a regular connected

compact surface with K = constant ⇒ S is a round sphere

(i.e., S is umbilic).
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Proof: Notice that K > 0 by compactness. Now, consider the

minimum of k1, and apply Lemma 26.

The same result follows with H = constant (Alexandrov). But a

weaker version of it (for K > 0) already follows exactly as above:

Theorem 28. If S ⊂ R
3 is a regular connected compact

surface with K > 0 and H = constant ⇒ S is a round

sphere (i.e., S is umbilic).

§18. The Fundamental Theorem of surfaces in R
3

We have seen that S ⊂ R
3 ⇒ Gauss eq. (intrinsic) + Codazzi

equations (extrinsic). It turns out that there is no more informa-

tion, or, equivalently, the converse holds locally:

Theorem 29 (FTS: Bonnet). Let E,F,G, e, f, g be differ-

entiable functions on V ⊂ R
2 with E,G > F 2 that sat-

isfy Gauss and Codazzi-Mainardi equations. Then, each q ∈
V has a neighborhood q ∈ U ⊂ V and a diffeomorphism

ϕ : U → ϕ(U) ⊂ R
3 such that E,F,G and e, f, g are the co-

efficients of the first and second fundamental forms of ϕ(U),

respectively, in the chart ϕ. In addition, if U is connected and

ϕ is another chart with the same E,F,G, e, f, g, then there is

a rigid motion T ∈ Iso(R3) such that ϕ = T ◦ ϕ.

Proof: (Sketch). For a chart ϕ, we define f := (ϕu, ϕv, N) :

V → GL(3,R) where N is given by (1). Hence, there are two

functions P,Q : V → R
3×3 such that fu = fP , fv = fQ. Gauss

and Codazzi equations are precisely the integrability conditions
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of this first order system of PDE: Pv − Qu = [P,Q] (Frobenius

Theorem). Integrating once more, we get ϕ, and it is easy to check

that it is a surface with the desired first and second fundamental

forms (for details, see R. Palais notes here).

Remark 30. Take a long time comparing this with the FTC.

§19. The covariant derivative: affine connections

We want to differentiate vector fields on our surface (submanifold)

S ⊂ R
3. For this, we agree that, if L ⊂ R

m is a subspace and

v ∈ L, (v)L denotes the orthogonal projection of v onto L.

Definition 31. Given X ∈ X(S) and v ∈ TpS, we define the

covariant derivative of X in the direction v by

∇vX = (X∗p(v))TpS .

• ∇ is an intrinsic operator: depends only on Γk
ij;

• ∇ coincides with the usual derivative for S = R
n, since Γk

ij = 0;

• ∇vX is linear in v (tensorial!). So, we define for each Y ∈ X(S)

the vector field ∇YX ∈ X(S) by

(∇YX)(p) := ∇Y (p)X,

and this is tensorial in Y : ∇fYX = f∇YX ;

• ∇vX is a derivation in X : ∀f ∈ F(S), X ∈ X(S), v ∈ TpS,

∇vfX = v(f )X(p) + f (p)∇vX,

or, for Y ∈ X(S),

∇Y fX = Y (f )X + f∇YX.
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a) In other words, we have:

∇ : X(S)× X(S) → X(S)

(Y,X) 7→ ∇YX , that is tensorial in Y and a derivation in X ;

b) ∇ is symmetric:

∇XY −∇YX = [X, Y ], ∀ X, Y ∈ X(M)

(it is enough to check for X = ∂i, Y = h∂j for any function h)

c) ∇ is compatible with the metric:

X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉, ∀ X, Y, Z ∈ X(M)

• Such an operator satisfying (a) + (b) + (c) always exists and is

unique by the Koszul formula:

2〈∇XY, Z〉 = X〈Y, Z〉 + Y 〈X,Z〉 − Z〈X, Y 〉

− 〈X, [Y, Z]〉 − 〈Y, [X,Z]〉 + 〈Z, [X, Y ]〉.
In the realm of Riemannian Geometry,∇ is called the Levi-Civita

connection of (S, 〈 , 〉).

§20. Affine connections in vector bundles

Now, observe that, to have an affine connection (i.e., property (a)

only), all we need is the vector bundle structure on the second

variable, and not necessarily TS. Hence, we have:

Definition 32. Given a vector bundle π : E → M , an affine

connection in E is an R−bilinear operator

∇ : X(M)× Γ(E) → Γ(E),
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(Y, ξ) 7→ ∇Y ξ, that is tensorial in Y and a derivation in ξ:

∇Y fξ = Y (f )ξ + f∇Y ξ,

∇fY ξ = f∇Y ξ,

∀ Y X(M), f ∈ F(M), ξ ∈ Γ(E).

Remark 33. Bump functions + local sections ⇒ affine connec-

tions are first order differential operators. In particular, they are

local: computations can be done in coordinates or local sections.

Therefore, if X, Y ∈ X(M) and ϕ : U → M is a chart, we write

on V = ϕ(U), X|V =
∑

i xi
∂
∂ui

, Y |V =
∑

i yi
∂
∂ui

, and since

∇ ∂
∂ui

∂
∂uj

=
∑

k Γ
k
ij

∂
∂uk

, in V we get for the Levi-Civita connection

(∇XY )|V =
∑

k





∑

i

xi
∂yk
∂ui

+
∑

ij

xiyjΓ
k
ij





∂

∂uk
. (3)

Remark 33 also implies:

Proposition 34. Suppose E is a vector bundle with a con-

nection ∇̂. Then, for each smooth map f : N → M , there is

a unique pull-back connection ∇̂f on f ∗E satisfying that

∇̂f
X(ξ ◦ f ) = ∇̂f∗Xξ, ∀ X ∈ X(N), ξ ∈ Γ(E).

Proof: Since connections are local objects, it is enough to do the

computation locally. But if {ξi} is a local frame of E in U ⊂ M ,

{ξi◦f} is a local frame of f ∗E in V = f−1(U). So, if η ∈ Γ(f ∗E),
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we write η on V as η|V =
∑

i zi ξi ◦ f . Just by the definition of

a connection and its local nature, on V we get

∇̂f
Xη =

∑

i

(

X(zi)ξi ◦ f + zi∇̂f∗Xξi

)

. (4)

This implies the uniqueness of ∇̂f . But we can define ∇̂f locally

with (4): it is easy to check that ∇̂f defined this way is well

defined, and a connection.

§21. Affine connections along maps

If (M, 〈 , 〉) is a Riemannian manifold, the ONLY affine connec-

tion∇ on TM that we will consider is the Levi-Civita connection

of 〈 , 〉. If M is an Euclidean submanifold, we know how to con-

struct ∇ from the standard vector field derivative on R
m (that is

itself the Levi-Civita connection of Rm with the standard inner

product seen as a Riemannian metric).

As a particular case of Proposition 34, we have:

Proposition 35. Given f : N → (M, 〈 , 〉), there is a unique

affine connection ∇f(= f ∗∇) in f ∗(TM),

∇f : X(N)× Xf → Xf ,

called the affine connection along f , that satisfies

∇f
X(Y ◦ f ) = ∇f∗XY, ∀X ∈ X(N), Y ∈ X(M).

In particular, for a curve α : I → M , we obtain:

• A notation: if X ∈ Xα,

X ′ := ∇d/dtX.

23



• We have the acceleration of α (intrinsic!):

α′′ := ∇d/dt α
′,

• and the geodesic curvature of α (intrinsic!):

κg = κα
g := ‖α′′‖.

• “Compute derivatives using curves”: For any Z ∈ X(M) ⇒
Z ◦ α ∈ Xα and

(Z ◦ α)′ = ∇d/dt(Z ◦ α) = ∇α′Z.

• For curves in a submanifold, α : I → M ⊂ R
m, if X ∈ Xα,

Z ∈ X(M), and v = α′(0) ∈ TpM , we have:

X ′ := ∇d/dtX =

(

dX

dt

)

TαM

∈ Xα

α′′ =

(

d2α

dt2

)

TαM

∈ Xα

∇vZ =

(

d

dt
|t=0(Z ◦ α)

)

TpM

(5)

and the three curvatures of α are related by

κ2 = κ2
g + κ2

n.

• Eq. (5) also implies that: if two submanifolds are tangent

along a curve α, their connections along α coincide.

• If M is a hypersurface, (v)TM = v−〈v,N〉N , and (5) becomes

∇vZ =
d

dt
|t=0(Z ◦ α)− 〈Apv, Z(p)〉N(p).
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Exercise. A connection is compatible with a metric 〈 , 〉 ⇔ 〈V,W 〉′ =
〈V ′,W 〉 + 〈V,W ′〉, for ever curve α and every V,W ∈ Xα (notice that

these are different “ ′”).

§22. Parallel transport

By (3), if we write a curve α locally as α = ϕ(α1, . . . , αn), and

Y =
∑

i yi
∂
∂ui

◦ α ∈ Xα, then

Y ′ =
∑

k



y′k +
∑

ij

α′
iyjΓ

k
ij ◦ α





∂

∂uk
◦ α (6)

We say that Y ∈ Xα is parallel if Y ′ = 0. Since the last equation

is linear, the set of parallel vector fields along α, denoted by X
‖
α,

is a vector space. Also by this equation we easily see:

Proposition 36. Given a curve α : I → M , p = α(t0),

for every v ∈ TpM there exists a unique parallel vector field

µv ∈ Xα such that µv(t0) = v.

So, this map v 7→ µv is an isomorphism between TpM and X
‖
α. In

particular, if t is another point in I , we get a linear isomorphism

P α
t0,t

: Tα(t0)M → Tα(t)M,

given by P α
t0,t

(v) = µv(t). Notice that it depends smoothly on

everything.

Def.: This isomorphism P α
t0,t

is called the parallel transport

along α between α(t0) and α(t).
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Beware: along α!! It does depend on α, not just on α(t0) and

α(t) (in contrast to R
m).

Examples: M = R
m: usual. Meridian in S

2: Cylinder. Parallel

in S
2: Cone ⇒ after a complete turn, the parallel transport does

not close ⇒ dependency on α.

Remark 37. By the previous exercise P α
t0,t

are linear isometries.

Exercise. Prove that a connection is compatible with the metric 〈 , 〉 ⇔
〈V,W 〉 is constant, for every curve α and every V,W ∈ X

‖
α.

§23. Geodesics

Lemma 38. Given ϕ : U ⊂ R
2 → M ⇒ ∇∂uϕv = ∇∂vϕu.

Proof: Use coordinates and the symmetry of∇ (it’s equivalent).

Proposition 39. A curve α parametrized by arc-length is a

critical point of the arc-length functional if and only if α′′ = 0.

Proof: Calculus of variations! :-)

Def.: A curve α with α′′ = 0 is called a geodesic.

Local and intrinsic concept ⇒ invariant by local isometries

Remark 40. Let α be a non-constant curve in (M, 〈 , 〉).
• α is a geodesic ⇒ ‖α′‖ = constant ⇒ α is regular.

• α and α ◦ h are geodesics ⇔ h(t) = at + b.

• α is a geodesic ⇔ κα
g = 0.

• If α is a straight line segment in M ⊂ R
m ⇒ α is a geodesic

(once we parametrize it by arc length).
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Examples:

• Great circles in round spheres are geodesics;

•More generally, meridians in surfaces of revolution are geodesics;

• Any helix inside cylinders;

• Given two points in a cylinder (not in the same parallel), there

are infinitely many geodesics joining them. But if we take a line

from the cylinder, we recover uniqueness (and existence).

• In R
2 \ {0}, (1, 0) and (−1, 0) have no geodesic joining them.

α is a geodesic ⇔ α′ ∈ X
‖
α. Then, by (6), we have that α =

ϕ(α1, . . . , αn) is a geodesic ⇔

α′′
k = −

n
∑

i,j=1

α′
iα

′
jΓ

k
ij ◦ α. (7)

This is the differential equation of geodesics, and implies:

Proposition 41. For every p ∈ M and every v ∈ TpM ,

there is ǫ > 0 and a unique geodesic γv : (−ǫ, ǫ) → M such

that γv(0) = p, γ′
v(0) = v.

In fact, γv also depends smoothly on v.

§24. Geodesics in a surface of revolution

Let ϕ(u, v) = (f (v) cos(u), f (v) sin(u), g(v)) be a surface of revo-

lution with axis z and geratrix α(v) = (f (v), g(v)) parametrized

by arc length: ‖α′‖2 = f ′2 + g′2 = 1, f > 0. Notice that f is

the distance from the surface to the axis of revolution. Then, (7)

becomes

u′′ = −2
f ′

f
u′v′, v′′ = ff ′u′2. (8)
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We get from this:

• Meridians are geodesics (very easy to see without this!)

• Parallels are geodesics ⇔ the distance function r = f to the

axis is critical: we can see this also geometrically with a picture.

Remark 42. The first equation in (8) can also be written

as f 2u′ = c = constant. Now, the angle θ ∈ [0, π/2] be-

tween the geodesic and the parallel that it intersects is given by

cos(θ) = |〈ϕu/‖ϕu‖, u′ϕu + v′ϕv〉| = |u′f |. Therefore, we have

the Clairaut relation:

r cos(θ) = constant,

where r = distance to the axis, θ = angle with parallel.

Let γ be a geodesic (p.b.a.l.) that is neither a parallel nor a merid-

ian. Then, f 2u′ = c 6= 0 is constant. But 1 = ‖γ′‖2 = f 2u′2+v′2

(by differentiating again, this implies the second equation in (8)).

So, v′ =
√

f 2 − c2/f, u′ = c/f 2, and

u = c

∫

1

f
√

f 2 − c2
dv + u0.

In other words, we have integrated all the geodesic equations.

This is extremely rare, and we should thank the Clairaut relation,

that resumes the information about the geodesics.

Application: Let γ be a geodesic on the paraboloid of revolution

z = x2 + y2 that is not a meridian. Then, r cos(θ) = |c| 6= 0

⇒ θ grows with r, and θ = 0 (i.e. γ tangent to a parallel) only

at one point, the unique parallel r = |c| (limit of geodesics is a
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geodesic, so it cannot accumulate over the parallel). Therefore, γ

intersects itself infinitely many times since it cannot be asymptotic

to a meridian (u = constant), since otherwise

u− u0 = c

∫

1

v

√

1 + 4v2

v2 − c2
dv > c

∫

dv

v
→ +∞.

§25. The covariant derivative on oriented surfaces

Let (S2, 〈 , 〉) oriented. Then, the oriented rotation of angle π/2

on TS is a skew symmetric orthogonal tensor J with J2 = −Id.

For w ∈ TS we use the notation w = Jw.

Let c be a regular curve in S2, and w ∈ Xc with ‖w‖ = 1. Then,

w′ = λw along c for some function λ =: [w′], called the algebraic

value of w′. In other words, [w′] = 〈w′, w〉. Accordingly, if c is

a curve in S2 parametrized by arc-length, we have the (oriented)

geodesic curvature of c,

κc
g = [c′′].

Actually, for any manifold N and any map f : N → S2, if

w ∈ Xf is unitary, we have a 1-form [∇w] over N given by

[∇w](X) = 〈∇Xw,w〉.

Now, if w, e ∈ Xf are unitary ⇒ w = ae + be, a2 + b2 = 1 ⇒

Lemma 43. With the notations above, assume N is simply

connected, and fix p ∈ N . If cos ξ0 = a(p) and sin ξ0 = b(p),

then there is a unique differentiable function ξ = ∢(w, e) :

N → R such that cos ξ = a, sin ξ = b, and ξ(p) = ξ0.
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Proof: Define σ ∈ Ω1(N) by σ(X) = aX(b) − bX(a). Since

a2 + b2 = 1 we easily check that σ is closed, hence exact. Define

now ξ by dξ = σ, ξ(p0) = ξ0. The lemma follows simply by

differentiating (a−cos ξ)2+(b−sin ξ)2 = 2−2(a cos ξ+b sin ξ).

Def.: Given w and e ∈ Xf unitary, the differentiable function

∢(w, e) is called a determination of the angle between w and e.

For a non vanishingX ∈ X(S), we set ∢(w,X) := ∢(w, X
‖X‖◦f ).

Lemma 44. If f : N → S with N simply connected, and

w, e ∈ Xf are unitary ⇒ [∇w]−[∇e] = dξ, where ξ = ∢(w, e).

Proof: Just compute [∇w] using that w = cos(ξ) e + sin(ξ) e.

Remark 45. In particular, if α is parametrized by arc-length

and w ∈ X
‖
α ⇒ κα

g = [α′′] = ξ′, where ξ = ∢(w, α′). Therefore:
the geodesic curvature of a curve is the rate of change of the

angle of its tangent and a parallel vector field along it.

From now on, ϕ : U → S will be an orthogonal oriented chart of

S, and N any simply connected manifold.

Lemma 46. Let f : N → ϕ(U) ⊂ S, and write f (x) =

ϕ(u(x), v(x)) for some u, v : N → R. If w ∈ Xf is unitary,

[∇w] =
1

2
√
EG

(Gudv − Evdu) + dξ, where ξ = ∢(w,ϕu).

Proof: Define the vector fields V = ϕu/
√
E ∈ Xϕ (unitary), and

e(x) = V (u(x), v(x)) ∈ Xf . By Lemma 44, [∇w]−dξ = [∇e].

But

[∇V ](∂u) = 〈∇∂u(ϕu/
√
E), ϕv/

√
G〉 = 〈∇∂uϕu, ϕv〉/

√
EG

= −〈∇∂uϕv, ϕu〉/
√
EG = −Ev/2

√
EG,
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by Lemma 38. Analogously, [∇V ](∂v) = Gu/2
√
EG. The lemma

follows from ∇Xe = ∇X(V ◦ (u, v)) = ∇X(u)∂u+X(v)∂vV .

Corollary 47. If α(s) = ϕ(u(s), v(s)) is a curve p.b.a.l.,

κα
g =

1

2
√
EG

(Guv
′ − Evu

′) + ξ′, where ξ = ∢(α′, ϕu).

Exercise. In an orthogonal chart, −2K
√
EG =

(

Gu√
EG

)

u
+

(

Ev√
EG

)

v
.

§26. The local Gauss-Bonnet Theorem

Gauss: Geodesic triangles and excess.

In this section, S will be an oriented surface, charts will be com-

patible with its orientation, and α : I → S will be a simple,

closed, piecewise regular curve with vertices {α(t1), . . . , α(tn)}
⇒ oriented external angle θi ∈ [−π, π] at the vertex α(ti).

Let ϕ : U ∼= D2 := {x ∈ R
2 : ‖x‖ < 1} → S be a chart, α(I) ⊂

ϕ(U), and ξi = ∢(α′|[ti,ti+1], ϕu) : [ti, ti+1] → R (tn+1 := t1).

Proposition 48. (Turning tangents) With these notations,

n
∑

i=1

(ξi(ti+1)− ξi(ti)) +

n
∑

i=1

θi = ±2π,

where the RHS sign depends on the orientation of α.

Proof: The LHS is the total change of the angle between α′

and ϕu. Since α is closed, this is 2kπ, for some integer k, hence

invariant under homotopies of α. Since α is simple, k = ±1.
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Def.: We say that a compact region R ⊂ S is simple if R ∼= D2

and ∂R is the trace of a closed simple piecewise regular curve α,

that we orient in such a way that α′ points to the interior of R.

Theorem 49. (Gauss-Bonnet; local) Let R ⊂ S be a simple

region contained in the image of an orthogonal oriented chart

ϕ : U ∼= D2 → S, and let α : I → ∂R oriented p.b.a.l. with

vertices α(si) and external oriented angles θi. Then,

∑

i

∫ si+1

si

κα
g +

∑

i

θi +

∫

R

K = 2π.

Proof: Write α(s) = ϕ(u(s), v(s)). Integrating Corollary 47 and

using Green’s Theorem and the previous exercise we obtain
∑

i

∫ si+1

si

κα
g ds −

∑

i

(ξi(si+1)− ξi(si))

=
∑

i

∫ si+1

si

(

Gu

2
√
EG

v′ − Ev

2
√
EG

u′
)

ds

=

∫

ϕ−1(R)

((

Gu

2
√
EG

)

u

+

(

Ev

2
√
EG

)

v

)

dudv

= −
∫

ϕ−1(R)

(K ◦ ϕ)
√
EG dudv = −

∫

R

K.

Now the result follows from Proposition 48.

Remark 50. Let α : I → S a regular simple closed curve

parametrized by arc-length, and w ∈ X
‖
α unitary. Then,

0 =

∫ ℓ

0

[w′] =

∫ ℓ

0

(

Gu

2
√
EG

v′ − Ev

2
√
EG

u′
)

ds +

∫ ℓ

0

ξ′
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= −
∫

R

K + ξ(ℓ)− ξ(0) = ∆ξ −
∫

R

K,

where ξ = ∢(w,ϕu). So, limR→p
∆ξ
A(R) = K(p), and we conclude:

The parallel transport is (locally)

independent of the path α ⇔ K ≡ 0.

§27. Gauss-Bonnet: What’s happening?

By Lemma 46 and the previous exercise, if w is any unit vector

field on an open set V ⊂ S, then on V it holds that

−KdA = d [∇w]. (9)

(Notice that Lemma 44 explains why the LHS does not depend

on w). Thus, if R is a small simple region with smooth boundary

parametrized by an oriented α, and ξ = ∢(α′, w), we get from

Lemma 44 and Stokes’ theorem applied to (9) that
∫

R

K = −
∫

∂R

[∇w] = −
∫ ℓ

0

[(w◦α)′] =
∫ ℓ

0

(ξ′−κα
g ) = 2π−

∫ ℓ

0

κα
g .

Now, we get Theorem 49 from this by approximating R with

domains with regular boundaries.

§28. The global Gauss-Bonnet Theorem

Recall: Triangulations and the Euler characteristic of manifolds

χ(M) (see Theorem 33 in our Analysis on Manifolds notes here).

Example: If n-torus := S
2+n handles ⇒ χ(n−torus) = 2−2n.
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For compact connected surfaces it holds that:

χ(S) = χ(S ′) ⇔ S is (diffeo)homeomorphic to S ′ (!!)

If S is orientable ⇒ 4 − χ(S) ∈ 2N. Therefore, by Jordan’s

Theorem, the only compact regular surfaces in R
3 are the n-tori

(up to diffeomorphism). Thus, the number g of “handles” of S,

g := 2−χ(S)
2 ∈ N0, is called the genus of S.

Def.: A region R ⊂ S is regular if it is compact and ∂R is a

disjoint union of simple closed piecewise differential curves.

Theorem 51. (Gauss-Bonnet; global) Let R be a regular re-

gion of an oriented surface S, and let ∂R = ∪k
i=1Ci positively

oriented with external angles θ1, . . . , θm. Then,
k

∑

i=1

∫

Ci

κα
g +

m
∑

j=1

θj +

∫

R

K = 2πχ(R).

Proof: Take a fine triangulation of R, T = {Ti, . . . , TF}, such
that each triangle lies in a simple orthogonal coordinate system,

and orient each triangle Ti according to the orientation of S. Let

E be the number of edges and V the number of vertices of the

triangulation, Ei and Ee the number of internal and external

edges, respectively, and Vi and Ve the number of internal and

external vertices, respectively. In addition, we have Ve = Vec+Vet,

where Vec is the number of external vertices that are vertices of

Ci, while Vet is the number of vertices on regular points of ∂R.

Adding the local Gauss-Bonnet Theorem 49 for each Ti gives
k

∑

r=1

∫

Cr

κα
g +

F
∑

r=1

3
∑

j=1

θrj +

∫

R

K = 2πF,
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where θrj are the 3 oriented external angles of Tr, since the

internal edges of each triangle get opposite orientations. Call

βrj := π − θrj the internal angles of the triangle Tr. Thus,

3πF −
∑

rj

θrj =
∑

rj

βrj = 2πVi + πVet +

m
∑

l=1

(π − θl).

Now, since each Cr is closed, Ee = Ve. Moreover, by counting

each triangle edges we get 3F = 2Ei + Ee. And, since m = Vec,

∑

rj

θrj−
m
∑

l=1

θl=π(2Ei+Ee−2Vi−Vet−m) = π(2E−2V ).

Corollary 52. The total curvature of a compact oriented

surface is a purely topological invariant:
∫

S K = 2πχ(S)

Corollary 53. Local Gauss-Bonnet for simple regions.

Corollary 54. S compact orientable surface with K ≥ 0 ⇒
S ∼= S

2 or S ≡ S1 × S1. If, in addition, S ⊂ R
3 ⇒ S ∼= S

2.

Corollary 55. S orientable with K ≤ 0 ⇒ 2 geodesics do

not enclose a simple region. In particular, a closed geodesic

or a geodesic loop do not enclose a simple region.

Corollary 56. S ∼= cylinder with K < 0 ⇒ S has at most

one closed geodesic (compare with the flat cylinder).

Corollary 57. S compact, K > 0 ⇒ two closed geodesics

intersect (compare with K ≥ 0: a flat cylinder with two caps).
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Corollary 58. (Gauss) The excess in the internal angles of

a geodesic triangle is equal to its total curvature. ⇒

Corollary 59. H
2: the fifth Euclid axiom is independent.

§29. Application: Total Index of a vector field

Def.: The index I(p) of isolated singularity p of a vector field

X ∈ X(S) is the integer given by

2πI(p) =

∫ ℓ

0

τ ′ = τ (ℓ)− τ (0) = ∆τ,

τ = ∢(X,ϕu) ◦ α, for a small curve α around p. By Remark 50,
∫

R

K − 2πI(p) = ∆(ξ − τ ) = ∆(∢(w,X)),

that does not depend on ϕ (it is also independent of α).

Therefore, if X is a vector field in a compact oriented surface

with isolated singularities {p1, . . . , pn} (a generic property), by

choosing a smart triangulation we get
∫

S K − 2π
∑

i I(pi) = 0,

since the boundaries of the triangles appear twice with opposite

orientations. By Corollary 52 we thus have for the total index
∑

i I(pi) of X :

Theorem 60. (Poincaré-Hopf) The total index of a vector

field in a compact oriented surface S with isolated singulari-

ties is equal to the Euler characteristic of S:
∑

i I(pi) = χ(S).
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PART II
Prerequisites (part II): Analysis on manifolds, Stokes and de Rham cohomology.

Bibliography: [KN] Vol.II, Ch.12; [S] Vol.V Ch.13; [MS]

§30. Fiber and principal bundles ([KN], Vol. I, Ch. 1.4, 1.5)

Lie group G; left-invariant vector fields ∼= Lie algebra g = TeG:

Vv(g) := (Lg)∗ev.

Proposition 61. v ∈ g ↔ one parameter subgroup βv
t of G.

Proof: If ξt(g) the flux of Vv, β
v
s = ξs(e) ⇒ βv

0
′ = v, and

Vv(β
v
sβ

v
t ) = (Lβvs )∗βvt Vv(β

v
t ) = (Lβvs )∗βvt β

v
t
′ ⇒ βv

sβ
v
t is an integral

curve of Vv passing at βv
s for t = 0 ⇒ βv

sβ
v
t = βv

s+t.

Exercise. Show that the flux of Vv is (g, s) 7→ gβv
s = Rβv

s
(g).

Representations; Adjoint representation: adG : G → End(g)

Lemma 62. If v ∈ g, [v, · ] = (adG)∗e(v) =
d
ds |s=0

adβvs .

Proof: By the exercise in §11, since Rβvs (g) is the flux of Vv,

[v, w] = [Vv, Vw](e) = lim
s→0

1

s
((Rβv−s

)∗Vw(β
v
s )− Vw(e))

= lim
s→0

1

s
((Rβv−s

)∗(Lβvs )∗ew − w) =
d

ds |s=0

adβvs (w).

Group actions on manifolds: R : E ×G → E; free actions

Fiber bundles F → E
π→ B with typical fiber Ep

∼= F , total

space E and base B

Transition functions: ξ̂UV : U ∩ V → Diff (F )

Structure group of a fiber bundle: G-bundles:
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Def.: A G-bundle is a fiber bundle F → E
π→ B together with

a left action on F by G, ρ : G×F → F , such that the transition

functions are given through ρ, that is, there are ξUV : U∩V → G

and ξ̂UV (x)(f ) = ρ(ξUV (x), f ).

(transition functions act on the left)

Exercise. Show that a rank k vector bundle is a Gl(k,R)-bundle.

Exercise. Show that the pull-back and Whitney sum of vector bundles is

a vector bundle.

Exercise. Show that the tangent bundle of S3 is trivial.

Example: Sphere bundles

Bundle maps, bundle isomorphism

Def.: A principal G-bundle is as a G-bundle π : E → B

with fiber G where the structure group acts on the fibers by left

multiplication.

Remark 63. By the associativity of the group, the right mul-

tiplication by G on the fiber commutes with the action of the

structure group (left multiplication). So we get an invariant right

action by G on E. This action preserves the fibers of E and acts

freely and transitively on them. Actually, principal bundles can be

defined with the use of a free right action transitive on the fibers.

Examples: Product B × G. If (S, 〈 , 〉) is an oriented surface,

the unit tangent bundle T1S is an S
1-principal bundle. The (or-

thonormal) frame bundle of a rank k vector bundle is a principal

(O(k)-bundle) GL(k,R)-bundle. Projective spaces.
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Exercise. Show that all these are principal bundles.

Exercise. Show that the S
1 and S

3 Hopf bundles are principal bundles.

Exercise. Show that the lens spaces S3/Zk for Zk ⊂ S
1 are circle bundles

over S
2.

Fact: Principal G-bundles “generate” all G-bundles, via the as-

sociated bundles (we will see this in §34).
(Cross-)sections

Local sections ⇔ (equivariant) local trivializations

Obs.: A principal bundle E has a global section ⇔ E is trivial.

Compare to vector bundles, that always have 0 as a global section.

§31. Connections ([KN], Vol. I, Ch. 2.1, 2.5)

Def.: The vertical subbundle V ⊂ TE is the vector bundle over

B given by V = Ker π∗.

Fundamental vec. fields: If ξp(g)=Rg(p)=pg, v∈g 7→v∗∈X(V),

v∗(p) :=
d

dt |t=0

(pβv
t ) = ξp∗e(v).

Notice that (t, p) 7→ pβv
t = Rβvt

(p) is the flux of v∗.

Exercise. Show that v∗ ◦ ξp = ξp∗ ◦ Vv, i.e., v
∗ ξp∼ Vv for all p ∈ E. In

particular, [v∗, w∗] = [v, w]∗, i.e., v 7→ v∗ is an algebra homomorphism.

Def.: A connection on a principal bundle E is a differentiable

map that assigns to each x ∈ E a subspace Hx ⊂ TxE such that:

• TE = V ⊕H;
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• H is G-invariant: Hpg = (Rg)∗p(Hp), ∀ p ∈ E, g ∈ G.

Obs.: TE = V ⊕H ⇒ π∗p|Hp : Hp → Tπ(p)B is isomorphism

Def.: A type adG k-form on E is a g-valued k-form σ : TE ×
· · · × TE → g that satisfies

R∗
gσ = adg−1 ◦ σ, ∀ g ∈ G.

Def.: A principal connection on E is a type adG 1-form w :

TE → g such that H = Kerw, and w(v∗) = v for all v ∈ g.

Exercise. There is a 1-1 correspondence between the two type of connec-

tions (w is of type adG ⇔ H is G-invariant).

Exercise. Principal connections always exist (use partitions of unitiy).

H and V components: X = Xh +Xv. Define h(X) := Xh.

Obs.: GivenX ∈ X(B), there is a uniqueX∗ ∈ X(E), called the

lift of X , such that X ∈ H and π∗(X∗) = X ◦π (i.e., X∗ π∼ X).

Moreover, the lift is G-invariant (i.e., X∗ Rg∼ X∗), and, conversely,
every G-invariant horizontal vector field on E is a lift.

Exercise. [X∗, Y ∗]h = [X, Y ]∗.

Lemma 64. If v∗ is a fundamental vector field and Y ∈ H,

[v∗, Y ] ∈ H. If, in addition, Y is a lift, then [v∗, Y ] = 0.

Proof: By exercise in §11, [v∗, Y ] = limt→0
1
t ((ξ−t)∗Y ◦ ξt−Y ),

where ξt = Rβvt
is the flux of v∗. Thus, ((ξ−t)∗Y )(ξt(p)) ∈ Hp.

Def.: A k-form σ on E is horizontal if V ⊆ Ker σ, i.e., if it

vanishes if one of the entries is vertical.
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Lemma 65. Let σ be a horizontal k-form in E that is G-

invariant, i.e., R∗
gσ = σ. Then, σ projects to σ, i.e., there

exist a k-form σ in B such that σ = π∗σ.

Proof: Define σ(Z1, . . . , Zk)(x) = σ(Z∗
1 , . . . , Z

∗
k)(p), where p ∈

π−1(x). This is independent of p since the lift is G-invariant.

If σ is a k-form on E, we define the k-form σh by

σh(X1, . . . , Xk) := σ(Xh
1 , . . . , X

h
k ).

If σ is of type adG, then so dσ and σh are (because (Rg)∗ ◦ h =

h ◦ (Rg)∗). In addition, σh is always horizontal. So:

Def.: The horizontal (k + 1)-form Dσ = (dσ)h is called the

exterior covariant derivative of σ (it is of type adG if σ is).

Lemma 66. If σ projects to σ, then Dσ = dσ.

Proof: The obvious: dσ(Y0, . . . , Yk) = d(π∗σ)(Y0, . . . , Yk) =

dσ(π∗Y0, . . . , π∗Yk)=dσ(π∗Y h
0 , . . . , π∗Y

h
k )=dσ(Y h

0 , . . . , Y
h
k ).

§32. The curvature of a principal connection

Def.: If w is a connection form on E, the horizontal 2-form Dw

is of type adG and is called the curvature form of E.

From now on, Ω := Dw will be the curvature 2-form of (E,w).

Proposition 67. (Structure equation) Ω = dw + [w,w], i.e.,

Ω(X, Y ) = dw(X, Y ) + [w(X), w(Y )], ∀X, Y ∈ TE.
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Proof: If X, Y ∈ H, follows from the definition of D. If

X = A∗ ∈ V is fundamental, Ω(A∗, ·) = 0 because it is verti-

cal. Now, if B∗ ∈ V is fundamental, dw(A∗, B∗) = A∗(w(B∗))−
B∗(w(A∗))−w([A∗, B∗])=A∗(B)−B∗(A)− [A,B]=−[A,B] =

−[w(A∗), w(B∗)]. Now, if Y ∈ H, [w(A∗), w(Y )] = 0 and

dw(A∗, Y ) = −w([A∗, Y ]) = 0 by Lemma 64.

Proposition 68. (Bianchi’s identity) DΩ = 0.

Proof: We need to check that dΩ = d([w,w]) = 0 for 3 horizontal

vector fields, but this is immediate from H ⊂ Kerw.

Lemma 69. If σ is a horizontal 1-form of type adG,

Dσ = dσ + [σ, w] + [ω, σ].

Proof: The only nontrivial case is for v∗ ∈ V fundamental and

Y ∗ ∈ H a lift. ButDσ(v∗, Y ∗) = 0, and dσ(v∗, Y ∗) = v∗(σ(Y ∗))
since [v∗, Y ∗] = 0 by Lemma 64. Since Y ∗ is G-invariant, by

Lemma 62,

v∗(σ(Y ∗))(p) = σ(Y ∗(pβv
s ))

′ = σ((Rβvs )∗pY
∗(p))′

= ((R∗
βvs
σ)(Y ∗(p)))′ = (adβ−v

s
(σ(Y ∗(p))))′

= [−v, σ(Y ∗(p))] = −[w(v∗), σ(Y ∗)](p).

§33. Weil homomorphism ([KN], Vol. II, Ch. 12.1)

Let Ik(G) be the set of symmetric k-multilinear maps over g, f :

g× · · ·× g → R and adG-invariant, i.e. f (adgX1, . . . , adgXk) =

f (X1, . . . , Xk). This is a vector space, and I(G) = ⊕∞
k=0I

k(G)

is a graded algebra with the natural product (fg)(t1, . . . , tk+s) =
1

(k+s)!

∑

σ f (tσ1, . . . , tσk)g(tσk+1
, . . . , tσk+s

).
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Now, let E be a principal G-bundle with principal connection

1-form w and curvature 2-form Ω. For f ∈ Ik(G), we define the

2k-form f (Ω) = f (Ω, . . . ,Ω) on E by

f (Ω)(X1, . . . , X2k)

=
1

(2k)!

∑

σ

sign(σ)f (Ω(Xσ1, Xσ2), . . . ,Ω(Xσ2k−1
, Xσ2k)).

Theorem 70. (A.Weil) For each f ∈ Ik(G), the (2k)-form

f (Ω) ∈ Ω2k(E) projects to a unique closed (2k)-form f (Ω) ∈
Ω2k(B). Moreover, its cohomology class

ωf = [f (Ω)] ∈ H2k(B)

is independent of the choice of the connection, and ω: I(G) →
H∗(B) is an algebra homomorphism, called Weil homomorp..

Proof: Since Ω is horizontal by definition, so is f (Ω). Since

Ω is of type adG and f is adG-invariant, f (Ω) is G-invariant:

R∗
g(f (Ω))=f (Ω). By Lemma 65 f (Ω) projects: f (Ω) = π∗f (Ω).

Proposition 68 says that DΩ = 0, and hence D(f (Ω)) = 0. By

Lemma 66, f (Ω) is closed, and so is f (Ω) since π∗ is onto.

For the second part, take w1 and w2 two principal connections

on E, and define wt := w0 + t(w1 − w0). Obviously, wt and

α = w1 − w0 are also of type adG, and α(V) = 0. Let Dt and

Ωt be the exterior covariant differentiation and curvature form of

wt, respectively. By Proposition 67, Ωt = Dtwt = dwt + [wt, wt],

so, by Lemma 69, d
dtΩt = Dtα. Therefore, by Proposition 68,

d

dt
f (Ωt) = kf (Dtα,Ωt, . . . ,Ωt) = kDt(f (α,Ωt, . . . ,Ωt))

= kd(f (α,Ωt, . . . ,Ωt)),
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where the last equality follows from Lemma 65 and Lemma 66:

since both α and Ωt are horizontal and of type adG, and f is adG-

invariant, so βt := f (α,Ωt, . . . ,Ωt) is horizontal and G-invariant.

But then βt also projects to a (k−1)-form on B, and so does Φ =

k
∫ 1

0 βtdt. We conclude from the above that dΦ = f (Ω1)−f (Ω0)

also projects, and thus f (Ω1)− f (Ω0) = dΦ is exact.

It’s easy to check that ω is an algebra homomorphism (exercise).

Remark 71. Notice that the homology class is in the base B,

not in the total space E!!

Def.: The class ωf is called the characteristic class of E associ-

ated to f , that, by Theorem 70, depends only on the isomorphism

class of the bundle, and not on the choice of the connection.

§34. Associated bundles

Take a G-bundle F → E → B with its G-action ρ : G×F → F

and transition functions ξUV : U ∩ V → G. If F ′ is another

manifold where G acts via ρ′ : G × F ′ → F ′, we can construct

another G-bundle F ′ → E ′ → B associated to the original one

by using the same transition functions ξUV but simply changing

F by F ′ and ρ by ρ′ (see here for details).
In particular, we can take F ′ = G and ρ′ = left multiplication to

get the G-principal bundle associated to the original one.

This allows us to define the characteristic classes of any G-bundle

as the characteristic classes of its associated principal bundle.

In particular, for a real vector bundle of rank k its associated

Gl(k,R)-principal bundle is nothing but its frame bundle.
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§35. The shortcut for vector bundles ([MS], Appendix C)

Let’s show a much more direct approach for vector bundles. No-

tice that, since G = Gl(n,R) ⊂ R
n×n is open, g = R

n×n.

Let Rn → P
π→ M be a real rank n vector bundle over a manifold

M , and ∇ an affine connection on P . Given a local frame e =

{ξ1, . . . ξn} of π−1(U) ∼= U × R
n, U ⊂ M , write

∇Xξj =
∑

i

Γi
j(e)(X)ξi.

So, ω(e) = (Γi
j(e)) are g-valued 1-forms on U that determine ∇.

Exercise. For g:U → G, ω(eg) = g−1dg + adg−1(ω(e)).

Define the g-valued curvature 2-form Ω(e) of ∇ by

∇X∇Y ξj −∇Y∇Xξj −∇[X,Y ]ξj =
∑

i

Ωi
j(e)(X, Y )ξi.

It is easy to check that Ω satisfies the structure equation (com-

pare with Proposition 67):

Ω(e) = dω(e) + [ω(e), ω(e)],

the Bianchi identity (compare with Proposition 68):

dΩ(e) = [Ω(e), ω(e)]

(i.e., [Ω, ω]ij =
∑

k(Ω
i
k∧wk

j −wi
k∧Ωk

j ), or [Ω, ω](X1, X2, X3) =
1

2

∑

σ∈S3
[Ω(Xσ1

, Xσ2
), ω(Xσ3

)])

and changes as Ω(eg) = g−1Ω(e)g = adg−1(Ω(e)) (exercises).

Thus, if f is an adG-invariant homogeneous polynomial of degree

k as before, f (Ω) is a well defined (i.e. independent of the local

frames e) and thus global (2k)-form on Mn. In addition, f (Ω) is

closed (easy exercise using Bianchi), so [f (Ω)] ∈ H2k(M).
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Now, [f (Ω)] does not depend on the affine connection. If ∇1,∇2

are two affine connections on P , then ∇t = (1 − t)∇0 + t∇1

is also an affine connection on P . Consider the projection π1 :

M × R → M and it : M → M × R, it(x) = (x, t). The

connection ∇̂ = π∗
1∇t is an affine connection on the vector bundle

π∗
1(P ) → M ×R, so the corresponding f (Ω̂) is closed on M ×R.

But i∗ǫ(f (Ω̂)) = f (Ωǫ), for ǫ = 0, 1 and, since i0 and i1 are

homotopic, [f (Ω0)] = [f (Ω1)].

35.1 Affine connections ⇔ principal connections

Let’s see that the two constructions agree. Given P the vector

bundle above, its frame bundle of G → F(P )
π̂→ M is a principal

G-bundle, a trivializing neighborhood of which is F(π̂−1(U)) ∼=
U × G. If w is a principal connection on F(P ), and e : U ⊂
M → π̂−1(U) ⊂ F(P ) is a local section, the equation

ω(e) = e∗w (10)

relates w with the affine connection form ω. Then, check that

Ωω(e) = e∗Ωw, and so the forms f (Ωw) project precisely to f (Ωω):

π̂∗(f (Ωω)) = π̂∗(f (e∗Ωw)) = π̂∗e∗(f (Ωw)) = f (Ωw), (11)

where for the last equality we used that f (Ωw) projects.

Exercise. If ω and w are forms related by (10), then ω is well defined,

and it is a principal connection ⇔ w is an affine connection (form).

Now, put a Riemannian metric on P and work with the orthonor-

mal frame bundle. If e is an orthonormal frame and ∇ is com-

patible we get Γi
j(e) = −Γj

i (e), so ω(e) is still a g-valued 1-form

on U but now for g = o(n), and we play as before.
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In particular, all this holds for P = TM when M is Riemannian.

35.2 Gauss-Bonnet: What’s REALLY happening??

We can now understand more deeply the Gauss-Bonnet theorem:

1. TS as an oriented vector bundle. If S is a oriented Rieman-

nian surface, its Levi-Civita connection (form) of an orthonormal

oriented frame e = {e1, e2} is a standard 1-form since so(2) = R,

and is given by ω(e) = −[∇e1]. Its curvature form is Ω(e) =

dω(e) = KdA by (9). Taking f (t) = t, Ω = f (Ω(e)) = KdA is

a well-defined and global closed 2-form, whose cohomology class

is independent of the compatible affine connection, in particular,

independent of the metric, and so is
∫

K.

Now, if e1 is globally defined but in a finite set {pi} the curvature

form is then exact almost everywhere. We remove ǫ-small disks

Dǫ
i around each pi and we use Stokes and Theorem 60 to get
∫

K=lim
ǫ→0

∫

M\∪iDi

Ω =
∑

i

lim
ǫ→0

∫

∂Dǫ
i

−[∇e1] = 2π
∑

i

I(pi) = 2πχ(S).

2. T1S as a SO(2) = S
1-principal bundle. The S

1 action

on T1S is given by uθ = cos(θ)u + sin(θ)u. We can choose as a

principal connection 1-form w(u∗(X)) = −[∇u](X), where u is

a section of T1S and X ∈ TS. Since S1 is abelian, the curvature

2-form of w is Ω̂ = dw and projects to a closed two form on S

whose cohomology class does not depend on the metric. Indeed,

u∗Ω̂ = u∗dw = du∗w = dω({u, u}) = Ω({u, u}) = Ω

does not depend on u and therefore π∗Ω = Ω̂.
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§36. Invariant polynomials ([KN], Vol. II, Ch. XII.2)

Let P k(V) be the homogeneous polynomial functions on the (fi-

nite dimensional) vector space V of degree k (polynomial by tak-

ing a basis), and P (V)=⊕∞
k=0P

k(V) the natural algebra of poly-

nomial functions. Let Sk(V) be the set of symmetric k-multilinear

functions on V, with S(V)=⊕∞
k=0S

k(V) its natural commutative

algebra.

Proposition 72. (Polarization). The map τ :S(V) 7→ P (V)

given by τ (h)(t)=h(t, . . . , t) is an algebra isomorphism.

Proof: If {ξ1, . . . , ξn} is a basis of V∗, f ∈ P k(V ) can be written

as
∑

fi1...ikξ
i1 · · · ξik , for some fi1...ik ∈ R symmetric in the in-

dexes. The function Φ(f )(t1, . . . , tk) =
∑

fi1...ikξ
i1(t1) · · · ξik(tk)

is the inverse of τ (exercise).

Exercise. If G ⊂ L(V) is a subgroup, the isomorphism above induces an

isomorphism between the G-invariant subalgebras SG(V) and PG(V).

Corollary 73. I(G) ∼= P (G), where P (G) are the adG-

invariant polynomial functions in g.

36.1 The unitary group: U(n) = {X ∈ C
n×n : XX

t
= I}.

Its Lie algebra is u(n) = {A ∈ C
n×n : A

t
= −A}. If A ∈ u(n),

det(λI+
i

2π
A) = λn−σ1(A)λ

n−1+σ2(A)λ
n−2−· · ·+(−1)nσn(A).

Then, the polynomial functions σi are adU(n)-invariant. In fact,

if it1, . . . , itn are the eigenvalues of A, then σi(A) is the i-th

symmetric function on t1, . . . , tn. And these are all:
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Proposition 74. The polynomial functions σ1, . . . , σn are

adU(n)-invariant, algebraically independent, and generate (as

algebra) PU(n)(u(n)).

Proof: See Theorem 2.5 in Kobayashi-Nomizu, Vol 2, Cap. XII.

Corollary 75. The characteristic classes ck(E) := ωσk ∈
H2k(B), 1 ≤ k ≤ n, generate all the characteristic classes

of an U(n)-principal bundle U(n) → E → B as an algebra.

They are called the Chern classes of the bundle.

36.2 The orthogonal group: O(n) = {X ∈ R
n×n : XX t = I}.

Its Lie algebra is o(n) = {A ∈ R
n×n : At = −A}. Define

det(λI − 1

2π
A) = λn + p1(A)λ

n−2 + p2(A)λ
n−4 + · · · + · · ·

Then, the polynomial functions p1, . . . , p[n/2] are adO(n)-invariant.

In fact, if ±it1, . . . ,±it[n/2] are the eigenvalues of A (besides

the 0 if n is odd), then pi(A) is the i-th symmetric function on

t21, . . . , t
2
[n/2]. And these are all:

Proposition 76. The polynomial functions p1, . . . , p[n/2] are

adO(n)-invariant, algebraically independent, and generate (as

algebra) PO(n)(o(n)).

Proof: See Theorem 2.6 in Kobayashi-Nomizu, Vol 2, Cap. XII.

Corollary 77. The characteristic classes pk(E) := ωpk ∈
H4k(B), 1 ≤ k ≤ [n/2], generate all the characteristic classes

of an O(n)-principal bundle as an algebra. They are called

the Pontrjagin classes of the bundle.
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36.3 Special orthogonal group: SO(n)={X ∈ O(n): det(X) = 1}.

Being SO(n) the connected component of O(n) containing the

identity, their Lie algebras coincide so(n) = o(n), and the situa-

tion is very similar to that of O(n). However, for n = 2m even,

there is a (unique up to sign) SO(n) invariant homogeneous poly-

nomial function pf such that pf 2 = pm, called the pfaffian. In

terms of matrixes, pf (A)2 = det(A), and is given by

pf (A) =
1

2mm!

∑

σ∈S2m

sign(σ)
m
∏

i=1

aσ(2i−1)σ(2i). (12)

Hence, we have:

Proposition 78. For n = 2m − 1 (resp. n = 2m) the

polynomial functions p1, . . . , pm−1 (resp. p1, . . . , pm−1, pf) are

adSO(n)-invariant, algebraically independent, and generate (as

algebra) PSO(n)(so(n)).

Proof: See Theorem 2.7 in Kobayashi-Nomizu, Vol 2, Cap. XII.

Corollary 79. The characteristic classes pk(E) := ωpk ∈
H4k(B), 1 ≤ k ≤ [n−1

2 ], together with e(E) := (2π)−n/2ωpf ∈
Hn(B) if n is even, generate all the characteristic classes of

an SO(n)-principal bundle as an algebra. The classes pi(E)

are called the Pontrjagin classes of the bundle, while, for n

even, e(E) is called the Euler class of the bundle.

Remark 80. In particular, the three subsections apply for com-

plex, real, and oriented real vector bundles, where the terminology

Chern, Pontrjagin and Euler classes are usually applied (resp.),
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by means of Section 35. By definition, the classes of a vector

bundle are the classes of its frame principal bundle.

Total Chern and Pontrjagin classes:

c(E) = 1 + c1(E) + c2(E) + · · · ∈ H∗(B),

p(E) = 1 + p1(E) + p2(E) + · · · ∈ H∗(B).

§37. The axiomatic approach

Suppose E1 ⊕ E2 is a Whitney sum of two (real or complex)

vector bundles. By the previous section, since the classes come

from determinants, the total class for E is the product of the

total classes of E1 and E2: c(E1 ⊕ E2) = c(E1) ∧ c(E2) (for

complex) p(E1 ⊕ E2) = p(E1) ∧ p(E2) (for real). Moreover,

extending the definition of the Euler class to odd dimensional

real vector bundles as 0, for the Euler class it also holds that

e(E1 ⊕ E2) = e(E1) ∧ e(E2); see [S], Vol.5, Ch.13, Theorem 22.

In particular: if the orientable vector bundle E has a nowhere

vanishing section, then e(E) = 0.

In fact, there is a way of defining characteristic classes for vector

bundles in an axiomatic way: we proved that they exist, and it

is not hard to see that they are unique. For example, for Chern

classes for complex vector bundles (CVB) we have:

• Axiom 1: For each CVB E over M , and each integer k ≥ 0,

there exist a class ck(E) ∈ H2k(M), with c0(E) = 1 (so we can

define c(E)=
∑∞

i=0 ck(E)∈H∗(M), the total Chern class of E.)

• Axiom 2 (Naturality): IfE is a CVB overM and f : M ′ → M

is smooth, then c(f ∗E) = f ∗c(E).
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• Axiom 3 (Whitney sum formula): If E,E ′ are CVBs over M
and E1⊕E ′ their Whitney sum, then c(E⊕E ′) = c(E)∧ c(E ′).
• Axiom 4 (Normalization): If CP1 is the complex projective

line and P its canonical complex line bundle, then
∫

CP1
c1(P)=−1.

Exercise. Show that the Chern classes for CVBs as we defined satisfy

the four axioms above, thus proving existence; see §35 and [KN] II c.13.

Axiomatically, the Pontrjagin classes of a real vector bundle E

are defined simply by pk(E) = c2k(E ⊗ C).

For oriented real vector bundles of rank k, the Euler class is de-

fined with the same axioms as the Chern classes, except that, in

Axiom 1, we require e(E) ∈ Hk(M), and e(M) = 0 if k is odd.

§38. The Poincaré-Hopf Theorem in all dimensions

Let X ∈ X(Mn) be a vector field on an oriented Mn with an

isolated singularity at p ∈ Mn. If we restrict X to the boundary

of a small ball Bǫ around p, we have Sn−1
p := T1M ∩ TpM and

V = X/‖X‖ : ∂Bǫ
∼= S

n−1 → T1Bǫ
∼= Bǫ × S

n−1
p

for some trivializing chart ϕ : Bǫ × S
n−1
p → T1Bǫ with ϕ ◦ ip

being the inclusion S
n−1
p ⊂ T1Bǫ, where ip : S

n−1
p → Bǫ × S

n−1
p ,

ip(v) = (p, v). We define the index of X at p as the integer

I(p) = deg(V̂ ),

where V̂ = π2 ◦ ϕ−1 ◦ V : ∂Bǫ
∼= S

n−1 → S
n−1
p . Notice that, for

ǫ small, V ∼= ϕ ◦ ip ◦ V̂ as smooth functions.
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With these definitions, the Poincaré-Hopf Theorem 60 holds for

any compact oriented manifold and any vector field with isolated

singularities, and not just for surfaces. Indeed, by the proof of

the Gauss-Bonnet-Chern Theorem 83 below it follows that the

total index of a vector field is a topological invariant, i.e., does

not depend on the vector field. But it is easy to construct a

vector field whose total index is the Euler characteristic: for a

triangulation T , define VT as having precisely one singularity on

the ‘center’ of each simplex of T in a way so that the flow lines

of the vector field point from the centers of higher dimensional

simplexes towards the lower dimensional simplexes. Such a vector

field has total index equal to the Euler characteristic.

§39. The Gauss-Bonnet-Chern Theorem ([L])

Consider a compact oriented even dimensional Riemannian man-

ifold M 2m. Its tangent bundle is an SO(2m)-bundle, and so it

has its Euler Class, e(TM) ∈ H2m(M) ∼= R. So its integral
∫

e(TM) ∈ R

is a topological invariant that does not depend on the Rie-

mannian metric. In terms of the curvature Ω of the Levi-Civita

connection, (12) ⇒ (2π)me(TM) is represented by the 2m-form

pf (Ω) =
1

2mm!

∑

σ∈S2m

sign(σ) Ωσ1
σ2
∧ · · · ∧ Ωσ2m−1

σ2m
.

Now, consider the sphere bundle π : T1M → M . Then,

π∗(pf (Ω)) ∈ Ω2m(T1M).
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Lemma 81. (S.S.Chern; Transgression Lemma) There is

λ ∈ Ω2m−1(T1M) such that π∗(pf (Ω)) = dλ. In addition,
∫

S
2m−1
p

λ|
S
2m−1
p

= (2π)m, for all p ∈ M .

Proof: A long algebraic construction... See [L], Lemma 3.2.3.

Remark 82. For m = 1, since G = SO(2) ∼= S
1 is abelian,

by (9), (10), (11) and Proposition 67 we can take λ = w in

Lemma 81.

Theorem 83. (Generalized Gauss-Bonnet-Chern Theorem)

If M 2m is compact and orientable, then
∫

e(TM) = χ(M 2m).

Proof: Let X be a vector field with isolated singularities only

{p1, . . . , pr}. Remove small balls Bǫ(pi) from M , and define

Mǫ = M \ ∪iBǫ(pi) and V = X/‖X‖ : Mǫ → T1Mǫ. Then,

by the Transgression Lemma 81 and Stoke’s Theorem,
∫

wpf = lim
ǫ→0

∫

Mǫ

pf (Ω) = lim
ǫ→0

∫

Mǫ

V ∗(π∗(pf (Ω)))

= lim
ǫ→0

∫

Mǫ

V ∗(dλ) = lim
ǫ→0

∫

Mǫ

d(V ∗λ)

=
∑

i

lim
ǫ→0

∫

∂Bǫ(pi)

V ∗λ =
∑

i

lim
ǫ→0

∫

∂Bǫ(pi)

V̂ ∗((ϕ ◦ ipi)∗λ)

=
∑

i

I(pi)

∫

S
2m−1
pi

λ|
S
2m−1
pi

= (2π)m
∑

i

I(pi).

Therefore, the total index is a topological invariant, independent

of the vector field X . But we saw in §38 that there exists a vector
field whose total index is equal to χ(M 2m).
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Remark 84. The above is essentially Chern’s original proof in

[C]. For an alternative proof using characteristic classes more

deeply, see [S], Vol 5, Ch. 13, Theorem 26.

Remark 85. Again, notice that we not only proved the Gauss-

Bonnet-Chern Theorem, but also Poincaré-Hopf Theorem 60 for

any dimensions.
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