Probabilidade I. 2017.1

2nd Exercise Sheet.
Due: 5/April/2017
The solutions of at least four of the following exercises should be presented until next Tuesday. Write your solutions as concise and clear as possible.

1. Let X, Y, Z be positive independent random variables with a common density λ. Let $F(t)=\mathbf{P}(X \in(0, t])$. Show that the probability that the polynomial $X t^{2}+Y t+Z$ has real roots is $\int_{0}^{\infty} \int_{0}^{\infty} F\left(t^{2} / 4 s\right) \lambda(t) \lambda(s) d s d t$.
2. Let X_{1}, X_{2}, \ldots be independent Bernulli variables with the same success probability $p \in(0,1)$. Define for each $k \in \mathbb{N}$ the time of k th success by:

$$
T_{k}:=\inf \left\{n \geq 1: X_{1}+\ldots+X_{n} \geq k\right\}
$$

with $T_{k}=\infty$ if $X_{1}+\ldots+X_{n}<k$ for all n.

- Show that T_{k} is a random variable for all k.
- Show that

$$
\mathbf{P}\left(T_{k}=n\right)=\frac{(n-1)!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}
$$

and

$$
\mathbf{P}\left(T_{k} \leq n\right)=\sum_{j=k}^{n} \frac{n!}{j!(n-j)!} p^{j}(1-p)^{n-j} .
$$

- Prove $T_{k}<\infty$ a.s. and conclude that $\lim _{n \rightarrow \infty} X_{1}+\ldots+X_{n}=\infty$ a.s.

3. Let

$$
\Omega=\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots\right): \omega_{i} \in\{0,1\} \text { for all } i \in \mathbb{N}\right\}
$$

be the space of sequences of 0 's and 1 's and

$$
X_{n}: \Omega \rightarrow\{0,1\}
$$

such that $X_{n}(\omega)=\omega_{n}$, the canonical $n^{\text {th }}$ projection. Let $\mathcal{F}=\sigma\left(X_{1}, X_{2}, \ldots\right)$ be the canonical σ-algebra and let \mathbf{P} be a probability measure on (Ω, \mathcal{F}) such that X_{1}, X_{2}, \ldots are i.i.d. Let $\tau: \Omega \rightarrow \Omega$ be the shift operator

$$
\tau\left(\left(\omega_{1}, \omega_{2}, \ldots\right)\right)=\left(\omega_{2}, \omega_{3}, \ldots\right) .
$$

Let $A \in \mathcal{F}$ such that $\tau^{-1}(A)=A$

- Give an example of a non-trivial event $A \in \mathcal{F}$ satisfying $\tau^{-1}(A)=A$.
- Let $B \in \sigma\left(X_{1}, X_{2}, \ldots X_{n}\right)$. Show that A and B are independent.
- Show that for all $C \in \mathcal{F}, A$ and C are independent.
- Show that $\mathbf{P}(A) \in\{0,1\}$.

4. Let Ω be a countable set. The total variation distance between two probability distributions μ and ν on Ω is defined by

$$
\|\mu-\nu\|_{T V}=\max _{A \subset \Omega}|\mu(A)-\nu(A)| .
$$

A coupling of μ and ν is a pair of random variables (X, Y) defined on a single probability space such that the marginal distribution of X is μ and the marginal distribution of Y is ν. That is, a coupling (X, Y) satisfies $\mathbf{P}(X=x)=\mu(x)$ and $\mathbf{P}(Y=y)=\nu(y)$ for all $x, y \in \Omega$.

- Show that

$$
\|\mu-\nu\|_{T V}=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)| .
$$

- Show that, if (X, Y) is a coupling of μ, ν then

$$
\|\mu-\nu\|_{T V} \leq \mathbf{P}(X \neq Y)
$$

- Show that

$$
\|\mu-\nu\|_{T V}=\inf \{\mathbf{P}(X \neq Y):(X, Y) \text { coupling of } \mu, \nu\}
$$

by constructing a particular coupling that attains the infimum.
5. Compute the minimum n such that the probability that there are two people that share the same birthday among a group of n people, is at least $\frac{1}{2}$. What if we want the probability to be at least $\frac{99}{100}$. Assume independence of birthday between different people.
6.

- Let X, Y random variables that satisfy $X \leq Y$ almost surely. Show that the cumulative distribution F_{X}, F_{Y} satisfy, for all $x \in \mathbb{R}$

$$
F_{X}(x) \geq F_{Y}(x)
$$

- Let μ, ν two probability measures on \mathbb{R} satisfying, for all continuous non-decreasing limited function $g: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\int g(x) \mu(d x) \leq \int g(x) \nu(d x)
$$

Show that the cumulative distribution satisfy, for all $x \in \mathbb{R}$,

$$
F_{\mu}(x) \geq F_{\nu}(x)
$$

- Show the converse of the previous item.
- Also related to the previous item, show that it is possible to construct a coupling (X, Y), defined on the same probability space Ω, such that X has distribution μ, Y has distribution ν, and $X \geq Y$ almost surely.

