Probabilidade I. 2017.1 2nd Exercise Sheet.

Due: 5/April/2017

The solutions of at least four of the following exercises should be presented until next Tuesday. Write your solutions as concise and clear as possible.

1. Let X, Y, Z be positive independent random variables with a common density λ . Let $F(t) = \mathbf{P}(X \in (0, t])$. Show that the probability that the polynomial $Xt^2 + Yt + Z$ has real roots is $\int_0^\infty \int_0^\infty F(t^2/4s)\lambda(t)\lambda(s)dsdt$.

2. Let $X_1, X_2, ...$ be independent Bernulli variables with the same success probability $p \in (0, 1)$. Define for each $k \in \mathbb{N}$ the time of kth success by:

$$T_k := \inf\{n \ge 1 : X_1 + \dots + X_n \ge k\}$$

with $T_k = \infty$ if $X_1 + \ldots + X_n < k$ for all n.

- Show that T_k is a random variable for all k.
- Show that

$$\mathbf{P}(T_k = n) = \frac{(n-1)!}{(k-1)!(n-k)!} p^k (1-p)^{n-k}$$

and

$$\mathbf{P}(T_k \le n) = \sum_{j=k}^n \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j}.$$

• Prove $T_k < \infty$ a.s. and conclude that $\lim_{n\to\infty} X_1 + \ldots + X_n = \infty$ a.s.

3. Let

$$\Omega = \{ \omega = (\omega_1, \omega_2, \ldots) : \omega_i \in \{0, 1\} \text{ for all } i \in \mathbb{N} \}$$

be the space of sequences of 0's and 1's and

$$X_n: \Omega \to \{0, 1\}$$

such that $X_n(\omega) = \omega_n$, the canonical n^{th} projection. Let $\mathcal{F} = \sigma(X_1, X_2, ...)$ be the canonical σ -algebra and let **P** be a probability measure on (Ω, \mathcal{F}) such that $X_1, X_2, ...$ are i.i.d. Let $\tau : \Omega \to \Omega$ be the shift operator

$$\tau((\omega_1,\omega_2,\ldots))=(\omega_2,\omega_3,\ldots).$$

Let $A \in \mathcal{F}$ such that $\tau^{-1}(A) = A$

- Give an example of a non-trivial event $A \in \mathcal{F}$ satisfying $\tau^{-1}(A) = A$.
- Let $B \in \sigma(X_1, X_2, ..., X_n)$. Show that A and B are independent.
- Show that for all $C \in \mathcal{F}$, A and C are independent.
- Show that $\mathbf{P}(A) \in \{0, 1\}$.

4. Let Ω be a countable set. The **total variation distance** between two probability distributions μ and ν on Ω is defined by

$$||\mu - \nu||_{TV} = \max_{A \subset \Omega} |\mu(A) - \nu(A)|.$$

A coupling of μ and ν is a pair of random variables (X, Y) defined on a single probability space such that the marginal distribution of X is μ and the marginal distribution of Y is ν . That is, a coupling (X, Y) satisfies $\mathbf{P}(X = x) = \mu(x)$ and $\mathbf{P}(Y = y) = \nu(y)$ for all $x, y \in \Omega$.

• Show that

$$||\mu - \nu||_{TV} = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

• Show that, if (X, Y) is a coupling of μ, ν then

$$||\mu - \nu||_{TV} \le \mathbf{P}(X \neq Y).$$

• Show that

$$||\mu - \nu||_{TV} = \inf \{ \mathbf{P}(X \neq Y) : (X, Y) \text{ coupling of } \mu, \nu \}$$

by constructing a particular coupling that attains the infimum.

5. Compute the minimum n such that the probability that there are two people that share the same birthday among a group of n people, is at least $\frac{1}{2}$. What if we want the probability to be at least $\frac{99}{100}$. Assume independence of birthday between different people.

6.

• Let X, Y random variables that satisfy $X \leq Y$ almost surely. Show that the cumulative distribution F_X, F_Y satisfy, for all $x \in \mathbb{R}$

$$F_X(x) \ge F_Y(x)$$

• Let μ , ν two probability measures on \mathbb{R} satisfying, for all continuous non-decreasing limited function $g: \mathbb{R} \to \mathbb{R}$,

$$\int g(x)\mu(dx) \le \int g(x)\nu(dx).$$

Show that the cumulative distribution satisfy, for all $x \in \mathbb{R}$,

$$F_{\mu}(x) \ge F_{\nu}(x).$$

- Show the converse of the previous item.
- Also related to the previous item, show that it is possible to construct a coupling (X, Y), defined on the same probability space Ω , such that X has distribution μ , Y has distribution ν , and $X \ge Y$ almost surely.