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Abstract. We show that the singular holomorphic foliations induced by dom-

inant quasi-homogeneous rational maps fill out irreducible components of the

space Fq(r, d) of singular foliations of codimension q and degree d on the com-
plex projective space Pr, when 1 ≤ q ≤ r − 2. We study the geometry of

these irreducible components. In particular we prove that they are all rational

varieties and we compute their projective degrees in several cases.

1. Introduction

1.1. The space of codimension one holomorphic foliations on Pr. Let us
consider a differential 1-form in Cr+1

ω =
r∑

i=0

aidxi

where the ai are homogeneous polynomials of degree d + 1 in variables x0, . . . , xr,
with complex coefficients. Assume that

∑r
i=0 aixi = 0, so that ω descends to the

complex projective space Pr and defines a global section of the twisted sheaf of
1-forms Ω1

Pr (d + 2).
The space of codimension one foliations of degree d on Pr is the algebraic subset

of P
(
H0(Pr,Ω1

Pr (d + 2))
)

consisting of the 1-forms ω that satisfy the Frobenius
integrability condition and has zero set of codimension at least two, i.e.,

F(r, d) =
{
ω ∈ P

(
H0(Pr,Ω1

Pr (d + 2))
)
|ω ∧ dω = 0 and codim sing(ω) ≥ 2

}
.

For the study of the irreducible components of F(r, d) we refer to e. g. [2] and
[10].

1.2. Stability of quasi-homogeneous pencils. One of the first results on the
subject is due to Gómez-Mont and Lins Neto [7] who proved that there are ir-
reducible components R(r, d, d) ⊂ F(r, 2d − 2), r ≥ 3, whose generic element is
a foliation tangent to a Lefschetz pencil of degree d hypersurfaces. Their proof
explores the topology of the underlying real foliation and relies on the stability
of the Kupka components of the singular set and on Reeb’s Leaf Stability Theo-
rem. Using similar methods they recognized for r ≥ 4 other irreducible components
R(r, d0, d1) ⊂ F(r, d0+d1−2) with generic member tangent to a quasi-homogeneous
pencil 〈λF p0 − µGp1〉 with p0 and p1 relatively prime natural numbers satisfying
p0d0 = p1d1, di = deg Fi. Later Calvo-Andrade [1] extended Gómez-Mont-Lins
Neto result about quasi-homogeneous pencils to dimension three. His proof has an
extra dynamical ingredient –the stability of leaves carrying non-trivial holonomy.
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In fact in both of the above mentioned papers the authors do not restrict to Pr

and prove their results for foliations on an arbitrary projective manifold M with
dim M ≥ 3 and H1(M, C) = 0. An alternative proof of the above results based on
extension techniques of transversely euclidean structures has been carried out by
Scárdua in [15].

1.3. Infinitesimal stability of quasi-homogeneous pencils. Although full of
geometric insights the above mentioned works do not seem to shed any light on the
scheme structure or the geometry of R(r, d0, d1). The present article stems from an
attempt to understand these problems.

Using infinitesimal techniques, as in [4], we describe the Zariski tangent space
of R(r, d0, d1) at a generic point and arrive at a proof that R(r, d0, d1) –with the
natural scheme structure given by the Frobenius integrability condition– is generi-
cally reduced. More precisely if R(r, d0, d1) denotes the closure of the image of the
rational map

ρ : P
(
H0(Pr,OPr (d0))

)
× P

(
H0(Pr,OPr (d1))

)
99K P

(
H0(Pr,Ω1(d0 + d1))

)
(F0, F1) 7→ d0F0dF1 − d1F1dF0.

then our first result reads as follows.

Theorem 1. If r ≥ 3 then R(r, d0, d1) is an irreducible and generically reduced
component of F(r, d0 + d1 − 2).

As explained above the only novelty in Theorem 1, besides the method of its
proof, is what concerns the scheme structure over a generic point. For a more
precise statement see Theorem 2.1 in §2.

The main content of this article is the generalization of Theorem 1 to foliations
of higher codimension.

1.4. Foliations on Pr of higher codimension. Let ω be a homogeneous q-form
on Cr+1 with coefficients of degree d + 1 that is annihilated by Euler’s vector field.
As before ω can be interpreted as a section of the sheaf of twisted differential q-forms
Ωq

Pr (d + q + 1).
We recall from [13] (see also [4]) that ω defines a degree d holomorphic foliation

of codimension q on Pr if it satisfies both Plücker’s decomposability condition

(1) (ivω) ∧ ω = 0 for every v ∈
q−1∧

Cr+1,

and the integrability condition

(2) (ivω) ∧ dω = 0 for every v ∈
q−1∧

Cr+1.

It is therefore natural to set Fq(r, d), the space of codimension q holomorphic
foliations of degree d on Pr, as{

ω ∈ P
(
H0(Pr,Ωq

Pr (d + q + 1))
) ∣∣ ω satisfies (1), (2) and codim sing(ω) ≥ 2

}
.
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1.5. Infinitesimal stability of quasi-homogeneous rational maps. If one in-
terprets the elements of R(r, d0, d1) as foliations tangent to the fibers of rational
maps

Pr 99K P1

x 7→ (F p0 : Gp1)

then a possible counterpart in the higher codimension case are the foliations tangent
to dominant rational maps Pr 99K Pq.

When q = r− 1 there is no hope to establish a stability result even for a generic
rational map. Indeed, under this constraint both Plücker’s condition and the in-
tegrability condition are vacuous. Thus Fr−1(r, d) can be identified with an open
subset of P

(
H0(Pr,Ωr−1

Pr (d + r))
)

= P
(
H0(Pr, TPr(d− 1))

)
. It is well known that

for d ≥ 2 a generic element of this space has no algebraic leaves, see for instance
[3].

For 1 ≤ q ≤ r − 2 fix integers d0, . . . , dq and consider homogeneous polynomials
Fi of degree di for i = 0, . . . , q. Assume that the q-form

(3) ω = iR(dF0 ∧ · · · ∧ dFq),

is non-zero. It is easy to check that ω satisfies both (1) and (2) since ivω =∑
aijiR(dFi ∧ dFj), where the aij are homogeneous polynomials. Moreover, it

defines a foliation tangent to the fibers of the map

Pr 99K Pq

x 7→ (F e0
0 : . . . : F eq

q )

with ei = lcm(d0, . . . , dq)/di. We set

d =
∑

di − q − 1

and denote by
R(r, d0, . . . , dq) ⊂ Fq(r, d)

the closure of the set of foliations that can be written in the form (3). It is the
closure of the image of the rational map

ρ :
∏

i P
(
H0(OPr (di))

)
99K P

(
H0(Pr,Ω1(d + q + 1))

)
(Fi) 7→ iR(dF0 ∧ · · · ∧ dFq).

Notice that for q = 1 we recover the definition of R(r, d0, d1).

Theorem 2. If r ≥ 4 and 1 ≤ q ≤ r− 2 then R(r, d0, . . . , dq) is an irreducible and
generically reduced component of Fq (r,

∑
di − q − 1) .

As far as we know there is no information in the literature concerning the geom-
etry of the irreducible components of Fq(r, d) so far.

1.6. Geometry of the rational components. In Section 3 we initiate this study
through an investigation of the parameterization ρ. Besides computing the dimen-
sion of R(r, d0, . . . , dq), we prove the following.

Theorem 3. The irreducible components R(r, d0, . . . , dq) are rational varieties.
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By its definition, R(r, d0, . . . , dq) is unirational. The proof of rationality relies on
the construction of a variety X that sits as an open set in the total space of a tower of
Grasmmann bundles, together with a birational morphism p : X → R(r, d0, . . . , dq).

In general we do not know how to naturally compactify X to a projective variety
where p extends to a morphism. Albeit, in a number of cases we are able to do
that and obtain, with the aid of Schubert Calculus, formulas for the degree of the
projective subvarities

R(r, d0, . . . , dq) ⊂ P
(
H0(Pr,Ωq(d + q + 1))

)
.

For example the first few values for the degree of R(r, 2, 2, 2) are listed below.

r Degree
3 1324220
4 2860923458080
5 243661972980477736263
6 728440733705107831789517245858
7 704613096513585123585398408696231899176183

Several other cases are treated in Section 5.
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2. Infinitesimal stability of quasi-homogeneous pencils

In this first section we present our proof of Theorem 1. All the arguments will
be reworked later in greater generality. We felt the exposition of this particular
case of Theorem 2 would improve the clarity of the paper.

For simplicity, let us denote by

(4) Se = H0(Pr,OPr (e))

the vector space of homogeneous polynomials of degree e in r + 1 variables, and

F = F(r, d)

so that our rational map ρ is

(5) ρ : P (Sd0)× P (Sd1) 99K F ⊂ P
(
H0(Pr,Ω1(d + 2))

)
.

If p0 and p1 denote the unique coprime natural numbers such that p0d0 = p1d1

then
ρ(F0, F1) = d0F0dF1 − d1F1dF0 = p1F0dF1 − p0F1dF0

where the last equality of differential forms is up to multiplicative constant.
We remark that

d

(
F p0

0

F p1
1

)
=

F p0−1
0

F p1+1
1

(p1F0dF1 − p0F1dF0).

Therefore, the closure of the leaves of the singular foliation defined by the inte-
grable 1-form ρ(F0, F1) are irreducible components of the members of the pencil of
hypersurfaces of degree p0d0 = p1d1 generated by F p0

0 and F p1
1 .

2.1. The Zariski tangent space of F. For a scheme X and a point x ∈ X we
denote by TxX the Zariski tangent space of X at x. If P (V ) is the projective space
associated to a C-vector space V and denoting π : V − {0} → P (V ) the canonical
projection, for each v ∈ V we have a natural identification

Tπ(v)P (V ) = V/(v)

where (v) denotes de one-dimensional subspace generated by v. With slight abuse
of notations, the Zariski tangent space TωF of F at a point ω is represented by the
forms η ∈ H0(Pr,Ω1(d + 2))/(ω) such that

(ω + εη) ∧ (dω + εdη) = 0 mod ε2

that is, such that

ω ∧ dη + η ∧ dω = 0 or, equivalently dω ∧ dη = 0,

where the equivalence is implied by the following variant of Euler’s formula for
homogeneous polynomials.

Lemma 2.1. If η is a homogeneous q-form with degree d coefficients then

iRdη + d(iRη) = (q + d)η

where R is the radial or Euler vector field and iR denotes the interior product or
contraction with R.

Proof. See [10, Lemme 1.2, pp. 3]. �
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Therefore to determine TωF is equivalent to solve dω ∧ dη = 0. Notice that in
the situation under scrutiny dω = (d0 + d1)dF0 ∧ dF1. The first step towards the
general η satisfying dω ∧ dη = 0 is given by Saito’s generalization of DeRham’s
division Lemma. In Lemma 2.2 we state variants of both DeRham’s and Saito’s
Lemmas fine tuned up for our purposes.

Lemma 2.2 ([14]). Let F0, . . . , Fq be homogeneous polynomial functions on Cr+1

and let Θ ∈ Ωq+1(Cr+1) be the (q + 1)-form given by

Θ = dF0 ∧ . . . ∧ dFq .

(a) Suppose that q < r and codim sing(Θ) ≥ 2. If η ∈ Ω1(Cr+1) is a homoge-
neous polynomial 1−form such that Θ∧η = 0 then there exist homogeneous
polynomials a0, . . . , aq such that

η =
q∑

i=0

aidFi.

(b) Suppose that q < r−1 and codim sing(Θ) ≥ 3. If η ∈ Ω2(Cr+1) is a homoge-
neous polynomial 2−form such that Θ∧η = 0 then there exist homogeneous
polynomial 1-forms α0, . . . , αq such that

η =
q∑

i=0

αi ∧ dFi.

Remark 2.1. The hypothesis q < r in (a) and q < r − 1 in (b) are not really
necessary. For instance in item (b) the singular set sing(Θ) equals the locus where
the (q + 1) × (r + 1) Jacobian matrix (∂Fi/∂xj) has rank ≤ q. Hence sing(Θ)
is empty or has codimension at most r + 1 − q. When q ≥ r − 1 it follows that
codim sing(Θ) ≥ 3 implies that Θ has no singularities. We conclude that F0, . . . , Fq

are linearly independent linear forms and the conclusion trivially holds true in this
case.

In face of Lemma 2.2 it is natural to define the open subset

(6) U = {ω ∈ R(r, d0, d1) | codim sing(dω) ≥ 3 and codim sing(ω) ≥ 2}.

The next result will imply the infinitesimal stability of quasi-homogeneous pencils
corresponding to points of U . It is a simple particular case of Proposition 3.1.
The iteration argument in the proof is generalized in Lemma 4.2. We feel it is
worthwhile to write it here for the sake of clarity.

Proposition 2.1. Let (F0, F1) ∈ P (Sd0)×P (Sd1) be such that ρ(F0, F1) = ω ∈ U .
Then the derivative

dρ(F0, F1) : T(F0,F1)(P (Sd0)× P (Sd1))→ TωF

is surjective. In other words, ρ is a submersion over U .

Proof. It is convenient to write

ρ(F0, F1) = d0F0dF1 − d1F1dF0 = iR(dF0 ∧ dF1).

Then, the derivative of ρ at the point (F0, F1)

dρ(F0, F1) : Sd0/(F0)× Sd1/(F1)→ TωF
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is calculated as

dρ(F0, F1)(F ′
0, F

′
1) = iR(dF ′

0 ∧ dF1 + dF0 ∧ dF ′
1).

Let η ∈ H0(Pr,Ω1(d +2)) represent an element of TωF, that is, dω ∧ dη = 0. We
shall prove that η belongs to the image of dρ(F0, F1), i.e.,

η = iR(dF ′
0 ∧ dF1 + dF0 ∧ dF ′

1)

for some F ′
0 ∈ Sd0 and F ′

1 ∈ Sd1 .
Since dω = dF0 ∧ dF1, applying the division Lemma 2.2 to dη it follows that

there exist homogeneous 1-forms α and β such that

dη = α ∧ dF0 + β ∧ dF1.

Notice that dη is a 2-form with coefficients homogeneous polynomials of degree
d = d0 + d1 − 2. Hence the coefficients of α (resp. β) are homogeneous of degree
d1 − 1 (resp. d0 − 1). Applying exterior derivative we find

dα ∧ dF0 + dβ ∧ dF1 = 0.

Multiplying by dF1 we get dα ∧ dF0 ∧ dF1 = 0. From lemma 2.2 applied to dα we
deduce

dα = α′ ∧ dF0 + α′′ ∧ dF1

where α′ and α′′ are 1-forms with coefficients homogeneous polynomials of respec-
tive degrees d1 − 2 − (d0 − 1) = d1 − d0 − 1 and d1 − 2 − (d1 − 1) = −1. Hence
α′′ = 0. Similarly,

dβ = β′ ∧ dF0 + β′′ ∧ dF1

where β′ and β′′ are 1-forms with coefficients homogeneous polynomials of respec-
tive degrees d0 − 2 − (d0 − 1) = −1 and d0 − 2 − (d1 − 1) = d0 − d1 − 1. Hence
β′ = 0.

Suppose that d0 = d1. By the considerations above regarding degrees, α′ =
β′′ = 0. Thus α and β are closed 1-forms. Therefore α = −dF ′

1 and β = dF ′
0

where F ′
i is some homogeneous polynomial of degree di. It follows that dη =

dF ′
0 ∧ dF1 + dF0 ∧ dF ′

1 and since iR(dη) = (d + 1)η we obtain that η is a scalar
multiple of iR(dF ′

0 ∧ dF1 + dF0 ∧ dF ′
1). Therefore the Proposition is proved in the

case d0 = d1.
Now suppose d0 6= d1, say d0 > d1. Then d1 − d0 − 1 < 0. Hence dα = 0 and

dβ = β′′ ∧ dF1. Repeating the argument of the previous case we obtain a sequence
of 1-forms βi, i ∈ N, such that

dβi = βi+1 ∧ dF1

Comparing degrees it follows that, for k � 0, βk = 0. Thus dβk−1 = 0 and
there exists a homogeneous polynomial bk−1 such that βk−1 = dbk−1. Then
dβk−2 = dbk−1 ∧ dF1 and hence βk−2 = bk−1dF1 + dbk−2 for a suitable homo-
geneous polynomial bk−2. Then dβk−3 = βk−2 ∧ dF1 = dbk−2 ∧ dF1. Hence there
exists bk−3 such that βk−3 = bk−2dF1 + dbk−3. Iterating this, we conclude that
β = β0 = b1dF1 + db0 and therefore

dη = dF ′
1 ∧ dF0 + dF ′

0 ∧ dF1

where dF ′
1 = α and dF ′

0 = db0, as wanted. �
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2.2. Proof of Theorem 1. As a matter of fact we prove the following slightly
more precise statement.

Theorem 2.1. If r ≥ 3 then R(r, d0, d1) is an irreducible component of F(r, d).
Moreover, F(r, d) is smooth and reduced at the points of U .

Proof. Write as before ρ : P 99K F, where P = P (Sd0) × P (Sd1), F = F(r, d) and
R = R(r, d0, d1) is the closure of the image of ρ. Put F = (F0, F1) ∈ P . Proposition
2.1 implies that for ω = ρ(F ), the derivative

dρ(F ) : TF P → TFω

is surjective and also factors through TωR ⊆ TωF. Then TωR = TωF. It follows
that R is an irreducible component of F and F is reduced at the generic point of
R. �

3. Stability of quasi-homogeneous rational maps

In this section we exhibit some previously unknown irreducible components
R(r, d0, . . . , dq) of Fq(r, d), generalizing the case q = 1 of the previous section.

A point of R(r, d0, . . . , dq) will be a twisted q-form ω ∈ H0(Pr,Ωq(d + q + 1)) of
type

(7) ω = iR(dF0 ∧ · · · ∧ dFq) =
∑

0≤j≤q

(−1)jdjFj dF0 ∧ · · · ∧ d̂Fj ∧ · · · ∧ dFq

where Fj ∈ Sdj is a homogeneous polynomial of degree dj in r + 1 variables, and

(8) d0 + · · ·+ dq = d + q + 1.

We call ω a rational q-form in Pr of type (d0, . . . , dq).
More precisely, R(r, d0, . . . , dq) is defined as the closure of the image of the ra-

tional map

(9) ρ : P (Sd0)× · · · × P
(
Sdq

)
99K P

(
H0(Pr,Ωq(d + q + 1))

)
induced by the multilinear map

µ : Sd0 × · · · × Sdq
→ H0(Pr,Ωq(d + q + 1))

such that µ(F0, . . . , Fq) = iR(dF0 ∧ · · · ∧ dFq). The base locus of ρ is described in
(16) below.

As in the previous section, we define the open subset

(10) U = {ω ∈ R(r, d0, . . . , dq) | codim sing(dω) ≥ 3 and codim sing(ω) ≥ 2}.

With notation as above, our main purpose in this section is to prove the following
Theorem 3.1, which is a more precise version of Theorem 2 of the Introduction.

Theorem 3.1. Suppose r ≥ 3 and 1 ≤ q ≤ r − 2. Then R(r, d0, . . . , dq) is an
irreducible component of Fq(r, d). Moreover, Fq(r, d) is smooth and reduced at the
points of U .

The strategy is the same as the one used to prove Theorem 2.1. Let us denote
by F = Fq(r, d). The scheme F is defined by the quadratic equations

(11) i(vJ)ω ∧ ω = 0 and i(vJ)ω ∧ dω = 0

for all J ⊂ {0, . . . , r} of cardinality q − 1.
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The tangent space TωF of F at a point ω is represented by the forms ω′ ∈
H0(Pr,Ωq(d + q + 1))/(ω) such that ωε = ω + εω′ satisfies the conditions (11)
modulo ε2, that is

i(vJ)ωε ∧ ωε = 0 and i(vJ)ωε ∧ dωε = 0

modulo ε2, for all J ⊂ {0, . . . , r} of cardinality q − 1. Expanding, one obtains

(12) i(vJ)ω′ ∧ ω + i(vJ)ω ∧ ω′ = 0 and i(vJ)ω′ ∧ dω + i(vJ)ω ∧ dω′ = 0.

In order to work out ω′ from (12) we will need a pair of technical results.

3.1. Lemmata. The first technical Lemma is a generalization of Lemma 2.2 that
will be a central tool in the rest of this article.

Lemma 3.1. l Let F0, . . . , Fq be homogeneous polynomial functions on Cr+1 and
let Θ ∈ Ωq+1(Cr+1) be the (q + 1)-form given by

Θ = dF0 ∧ . . . ∧ dFq .

Suppose that codim sing(Θ) ≥ 3. If η ∈ Ωq+1(Cr+1) is such that η ∧ dFi ∧ dFj = 0
for every 0 ≤ i < j ≤ q then there exist holomorphic 1-forms α0, . . . , αq ∈ Ω1(Cr+1)
such that

η =
q∑

i=0

αi ∧ dF0 ∧ . . . d̂Fi . . . ∧ dFq.

Proof. For the second item let U be an open covering of Cr+1 \ sing(Θ). Since
codim sing(Θ) ≥ 3 we can assume that over each open set U ∈ U our set of functions
is part of a coordinate system on U . It is then clear that

η|U =
∑

αi,U ∧ dF0 ∧ . . . d̂Fi . . . ∧ dFq

for suitable 1-forms α0,U , . . . , αq,U ∈ Ω1(U).
A simple computation shows that over U ∩ V

(αi,U − αi,V ) ∧Θ = 0 .

It follows from Saito’s Lemma [14] that there exists a unique (q+1)×(q+1) matrix
AU∩V with entries in O(U ∩ V ) such that α0,U − α0,V

...
αq,U − αq,V

 = AU∩V ·

 dF0

...
dFq


Of course the collection of matrices AU∩V with (U, V ) ranging in U2 defines an
element of H1(Cr+1 \ sing(Θ), M⊗O) ∼= H1(Cr+1 \ sing(Θ),O)⊗M, with M being
the vector space of (q + 1)× (q + 1) matrices.

The hypothesis codim sing(Θ) ≥ 3 implies that this cohomology group is trivial,
see for instance [6, pg. 133]. Therefore we may write AU∩V = AU − AV where
AU , AV are matrices of holomorphic functions in U resp. V . We can thus set α0

...
αq

 =

 α0,U

...
αq,U

−AU ·

 dF0

...
dFq

 =

 α0,V

...
αq,V

−AV ·

 dF0

...
dFq
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as the sought global 1-forms at least over Cr+1 \ sing(Θ). To conclude one has
just to invoke Hartog’s extension Theorem to ensure that these 1-forms extend to
Cr+1. �

By expanding in its homogeneous components both sides of the equality

η =
q∑

i=0

αi ∧ dF0 ∧ . . . d̂Fi . . . ∧ dFq.

it can be easily seen that if η is a homogeneous polynomial q-form then the 1-forms
α0, . . . , αq can be assumed homogeneous polynomial 1-forms.

The second technical Lemma in this subsection replaces the iteration argument
in the proof of Theorem 2.1

Lemma 3.2. For j = 0, . . . , q let Fj ∈ Sdj be a homogeneous polynomial of degree
dj. Suppose ω = iR(dF0 ∧ · · · ∧ dFq) satisfies codim sing (dω) ≥ 3. Then, for
α ∈ H0(Pr,Ω1(e)) the following conditions are equivalent:

(a) dα =
∑

0≤k≤q Ak ∧ dFk for some Ak ∈ H0(Pr,Ω1(e− dk)).
(b) α = dG +

∑
0≤k≤q Hk dFk for some G ∈ Se and Hk ∈ Se−dk

.

Proof. It is clear that (b) implies (a). Let us prove the converse, by induction on
e ∈ N. If (a) holds, applying exterior derivative we get

0 = d2α =
∑

0≤k≤q

dAk ∧ dFk =⇒ dAk ∧ dF0 ∧ · · · ∧ dFq = 0.

By the hypothesis on the Fj and Lemma 2.2,

dAk =
∑

0≤h≤q

Akh ∧ dFh

for some Akh ∈ H0(Pr,Ω1(e− dk − dh)). Since e− dk < e, the inductive hypothesis
applies to Ak and yields

Ak = dGk +
∑

0≤h≤q

Hkh dFh

for some Gk ∈ Se−dk
and Hk ∈ Se−dk−dh

. Replacing in (a) we find

dα =
∑

k

dGk ∧ dFk +
∑
h,k

Hkh dFh ∧ dFk.

Since iRα = 0, we have e·α = iRdα. Applying iR we obtain, after a little calculation

e · α = dG +
∑

0≤k≤q

Hk dFk

where

G = −
∑

k

dkFkGk, Hk = (dk + e)Gk +
∑

h

dhFh(Hkh −Hhk)

as claimed. �
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3.2. Surjectivity of the derivative and proof of Theorem 2. Now we are
ready to complete the proof of Theorem 3.1 and hence of Theorem 2 of the Intro-
duction. The proof follows from Proposition 3.1 below combined with the same
argument used in the proof of Theorem 2.1.

Proposition 3.1. Suppose r ≥ 3 and 1 ≤ q < r − 1. If F = (F0, . . . , Fq) ∈∏
i P (Sdi

) is such that ρ(F ) = ω ∈ U then the derivative

dρ(F ) : TF (P (Sd0)× · · · × P
(
Sdq

)
)→ TωF

is surjective.

Proof. At a point F = (F0, . . . , Fq) belonging to the domain of ρ the derivative

(13) dρ(F ) : Sd0/(F0)× · · · × Sdq/(Fq)→ TωF

is calculated by multilinearity as

dρ(F )(F ′
0, . . . , F

′
q) =

∑
0≤j≤q

iR(dF0 ∧ · · · ∧ dF ′
j ∧ · · · ∧ dFq).

Let ω = ρ(F ) ∈ U and ω′ ∈ TωF. From (12) we have

i(vJ)ω′ ∧ dω = −i(vJ)ω ∧ dω′.

Since dω is a constant multiple of dF0 ∧ · · · ∧ dFq (see Lemma 2.1 ), by exterior
multiplication with dFj we obtain

dFj ∧ i(vJ)ω ∧ dω′ = 0

for all j, J .
Let Yj , (0 ≤ j ≤ q), be rational vector fields such that dFi(Yj) = δij . For

J = {0, . . . , q} \ {i, j} we have i(vJ)ω = λ(FidFj − FjdFi). Then,
0 = dFj ∧ i(vJ)ω ∧ dω′ = λdFj ∧ FjdFi ∧ dω′,

which implies that
dFi ∧ dFj ∧ dω′ = 0

for all 0 ≤ i, j ≤ q.
Lemma 3.1 implies that

(14) dω′ =
∑

0≤j≤q

αj ∧ dF0 ∧ · · · ∧ d̂Fj ∧ · · · ∧ dFq

for some αj ∈ H0(Pr,Ω1(dj)). Applying exterior derivative we find

0 = d2ω′ =
∑

0≤j≤q

dαj ∧ dF0 ∧ · · · ∧ d̂Fj ∧ · · · ∧ dFq.

Taking wedge product with dFj we get

dαj ∧ (dF0 ∧ · · · ∧ dFq) = 0

for all j. Therefore, thanks to Lemma 2.2,

dαj =
∑

0≤k≤q

Ajk ∧ dFk

for suitable Ajk ∈ H0(Pr,Ω1(dj − dk)). Lemma 3.2 implies that

αj = dGj +
∑

0≤k≤q

Hjk dFk
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for some Gj ∈ Sdj
and Hjk ∈ Sdj−dk

(we use the convention Se = 0 for e < 0).
Replacing in (14) above we have

(15) dω′ =
∑

0≤j≤q

dGj ∧ dF0 ∧ · · · ∧ d̂Fj ∧ · · · ∧ dFq + c dF0 ∧ · · · ∧ dFq

for some c ∈ C. Since iRω′ = 0, Lemma 2.1 yields (
∑

i di) ω′ = iRdω′. Applying
iR to (15) and taking (13) into account, we obtain

ω′ = dρ(F )(F ′
0, . . . , F

′
q)

where F ′
j = (−1)j

(
P

i di)
Gj . Therefore dρ(F ) is surjective, as claimed. �

4. Geometry of the parametrization

In this section we analyze the parametrization

ρ : P (Sd0)× · · · × P
(
Sdq

)
99K Rq(r, d̄) ⊂ P

(
H0(Pr,Ωq(d + q + 1))

)
,

where Sdi = H0(Pr,OPr (di)), d =
∑

di and d̄ = (d0, . . . , dq).

4.1. Base locus. Let us start by describing the base locus B(ρ) of ρ.
If iR(dF0 ∧ · · · ∧ dFq) = 0, applying exterior differentiation and Lemma 2.1 we

obtain that dF0∧ · · ·∧dFq = 0. This means that the Jacobian matrix of F0, . . . , Fq

has rank < q + 1 everywhere, that is, the derivative of the map

F : Cr+1 → Cq+1

defined by F (x) = (F0(x), . . . , Fq(x)) has rank < q + 1 at every x ∈ Cr+1. This is
equivalent to the fact that F is not dominant, that is, f(F0, . . . , Fq) = 0 for some
non-zero polynomial f ∈ C[y0, . . . , yq] (i.e., the Fj are algebraically dependent).
We thus obtain

(16) B(ρ) = {(F0, . . . , Fq) ∈
∏

i

P (Sdi) |F : Cr+1 → Cq+1 is not dominant}.

For q = 1 the set theoretical description of ρ is rather simple:

(17) B(ρ) = {(F0, F1) ∈ P (Sd0)× P (Sd1) |F
d1
0 = F d0

1 } .

For general q we have a stratification

B(ρ)1 ⊂ B(ρ)2 ⊂ · · · ⊂ B(ρ)q = B(ρ)

where B(ρ)k = {(F0, . . . , Fq) |dim image(F ) ≤ k}. The first stratum B(ρ)1 is set-
theoretically equal to

{(F0, . . . , Fq) ∈
∏

i

P (Sdi
) |F d̂0

0 = . . . = F d̂q
q }

where d̂j =
∏

i 6=j di. For k > 1 the same set theoretical description is considerably
more complex and we will carry it out only in very particular cases in §5.

Beware that the scheme structure of B(ρ) is often non-reduced, see §5.4.
At any rate, we register the following easy consequence of Lemma 2.1.
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Proposition 4.1. Let

ρ̃ :
∏

i P (Sdi
) 99K P

(
Sd−1⊗

q+1
∧ S?

1

)
(F0, . . . , Fq) 7→ dF0 ∧ · · · ∧ Fq.

Then the base loci of ρ̃ and ρ are one and the same as schemes.

Proof. Let V ⊂ Se⊗
q
∧ S?

1 be the subspace of closed q–forms with coefficients of

degree e. Put W = iR(V ) ⊂ Se+1⊗
q−1
∧ S?

1. Then iR : V → W is a linear
isomorphism. We still denote by iR : P (V ) → P (W ) the projectivization. Since
the image of ρ̃ lies in P (V ) and ρ = iR ◦ ρ̃, the assertion follows. �

4.2. Weighted homogeneous polynomials. Fix d̄ = (d0, . . . , dq) ∈ Nq+1 and
e ∈ N. A polynomial f in C[y0, . . . , yq] is said to be weighted homogeneous of type
d̄ and degree e if

f(λd0y0, . . . , λ
dqyq) = λef(y0, . . . , yq)

for any λ ∈ C. Equivalently, f is a linear combination of monomials∏
0≤j≤q

y
αj

j such that d̄ · α :=
∑

0≤j≤q

djαj = e.

This is tantamount to declaring each variable yi to be of degree di.
We denote by

Sq,d̄,e

the C-vector space of all such polynomials and write its dimension as N(q, d̄, e).
Notice that N(q, d̄, e) = dimSq,d̄,e can be expressed by the Hilbert series

H(t) =
∑

e

N(q, d̄, e)te =
1∏q

i=1(1− tdi)
.

Throughout we will assume that the vector of natural numbers d̄ ∈ Nq+1 is
non-decreasingly ordered, i.e., d0 ≤ d1 ≤ · · · ≤ dq.

Define ē = ē(d̄) = (e1, . . . , ek) such that ei < ei+1 and ∪0≤i≤q{di} = ∪1≤i≤k{ei}.
If ni stands for the number of times the natural number ei appears in d̄ then the
pair (ē, n̄), where n̄ = (n1, . . . , nk), determines d̄.

Set qj = −1 +
∑

1≤i≤j ni, and for l = 1, . . . , k

d̄l = (e1, . . . , e1︸ ︷︷ ︸
n1 times

, e2, . . . , e2︸ ︷︷ ︸
n2 times

, . . . , el, . . . , el︸ ︷︷ ︸
nl times

).

Clearly, for each f ∈ Sq,d̄,ej
, no variable yi with weight di > ej occurs in f ; thus

Sq,d̄,ej
∼= Sqj ,d̄j ,ej

.

Denote by Eq+1 = End(Cq+1) the set of all polynomial maps f : Cq+1 → Cq+1.
It is a ring under sum and composition of maps. If f = (f0, . . . , fq) ∈ Eq+1, we say
that f is of type d̄ if fi is weighted homogeneous of type d̄ and degree di, for all
i = 0, . . . , q.

Lemma 4.1. Maps of type d̄ form a subring of Eq+1. More precisely, if f, g ∈ Eq+1

are of type d̄ then f ◦ g is of type d̄. Moreover, the set

GL(q, d̄) = {f ∈ Eq+1|f is of type d̄ and df(0) is invertible}
is a group.
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Proof. (fi◦g)(td0y0, . . . , t
dqyq) = fi(g0(td0y0, . . . , t

dqyq)), . . . , gq(td0y0, . . . , t
dqyq)) =

fi(td0g0(y0, . . . , yq), . . . , tdqgq(y0, . . . , yq)) = tdifi(g0(y0, . . . , yq), . . . , gq(y0, . . . , yq)) =
tdi(fi ◦ g)(y0, . . . , yq),

We have G = GL(q, d̄) is closed under compositions. It remains to show that
every element is invertible in G. Let us denote the block of variables of weight ei

by
y
1

= y0, . . . , yq1︸ ︷︷ ︸
(weight e1)

, y
2

= yq1+1, . . . , yq2︸ ︷︷ ︸
(weight e2)

, . . . , y
k

= yqk−1 , . . . , yqk︸ ︷︷ ︸
(weight ek)

.

The main point is that each f ∈ G has the following triangular shape,

(f
1
(y

1
), f

2
(y

1
, y

2
), . . . , f

k
(y

1
, . . . , y

k
)).

Here
f

i
(y

1
, . . . , y

i
) = (fi1(y1

, . . . , y
2
), . . . , f2ni

(y
1
, . . . , y

i
)),

with
fij(y1

, . . . , y
i
) = gij(y1

, . . . , y
i−1

) + hij(yi
) ∈ Sqi,d̄i,ei

where hij(yi
) is in fact linear in the block of variables y

i
of weight ei. Indeed, since

ei+1 > ei, no y
i+1

occurs in f
i
. Thus f can be written as

(h1(y1
), h2(y2

) + g
2
(y

1
), . . . , hk(y

k
) + g

k
(y

1
, . . . , y

k−1
)).

Now we see that df(0) is made up of blocks of the linear maps hi = dhi : Cni →
Cni . Hence invertibility of the former is equivalent to dhi ∈ GLni

∀i. Thus, given
(z1, . . . , zq) = (f(y)), one can solve successively

y
1

= h1
−1(z1), then

y
2

= h2
−1(z2 − g

2
(y

1
)),

...
y

k
= hk

−1(zk − g
k
(y

1
, . . . , y

k−1
)).

�

The group GL(q, d̄) naturally acts on the domain of µ (cf. 9):

GL(q, d̄)×
∏

0≤j≤q

Sdj −→
∏

0≤j≤q

Sdj

(f, (F0, . . . , Fq)) 7→ (f0(F ), . . . , fq(F )) .

In other words, considering F as a polynomial map F : Cr+1 → Cq+1, the action
is just composition with a polynomial map f : Cq+1 → Cq+1 which belongs to
GL(q, d̄).

4.3. The fibers of ρ. The key tool for the description of the fiber of ρ and the
proof of Theorem 3 is the following Proposition.

Proposition 4.2. Let F = (F0, . . . , Fq), G = (G0, . . . , Gq) ∈ Sd0×· · ·×Sdq Suppose
that both dF0 ∧ · · · ∧ dFq and dG0 ∧ · · · ∧ dGq are non-zero (q + 1)-forms. If
codim sing(dF0 ∧ · · · ∧ dFq) ≥ 2 then the following conditions are equivalent:
(a) iR(dF0 ∧ · · · ∧ dFq) = iR(dG0 ∧ · · · ∧ dGq) up to a constant multiple.
(b) dF0 ∧ · · · ∧ dFq = dG0 ∧ · · · ∧ dGq up to a constant multiple.
(c) dGj =

∑
0≤k≤q Ajk dFk for some Ajk ∈ Sdj−dk

, for all j.
(d) Gj = fj(F0, . . . , Fq) for some fj ∈ C[y0, . . . , yq], for all j.
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(e) Gj = fj(F0, . . . , Fq), for all j for a unique fj ∈ Sq,d̄,dj
. Moreover, (f0, . . . , fq)

belongs to GL(q, d̄).

Proof. (a)⇔ (b): Use the identity d(iR(dF0 ∧ · · · ∧ dFq)) = (q + d)(dF0 ∧ · · · ∧ dFq)
from Lemma 2.1.

(b)⇒ (c): Multiplying by dGj we obtain dGj ∧ dF0 ∧ · · · ∧ dFq = 0. Since F is
generic, it follows by the division lemma that the dGj are linear combinations of
the dFk. The coefficients may be chosen as homogeneous polynomials, necessarily
of the stated degree.

(c)⇒ (b): Using the hypothesis and calculating wedges we have

dG0 ∧ · · · ∧ dGq = det(A) dF0 ∧ · · · ∧ dFq.

Now det(A) is a non-zero homogeneous polynomial, and its degree is zero, so it is
a constant, thereby proving the claim.

(d) ⇒ (e): Let fj =
∑

α cαyα, where α ∈ Nq+1 and cα ∈ C, so that Gj =∑
α cαFα. Write fj = gj + hj where gj is the sum over the exponents α such

that d̄ · α = dj . We have hj(F ) = 0 by the homogeneity of Gj and of the Fk.
Therefore we may take fj = gj , the weighted homogeneous polynomial that we
needed. Uniqueness is clear since the Fk are algebraically independent. Finally,
setting f = (f0, . . . , fq), since

dG0 ∧ · · · ∧ dGq = det(df)dF0 ∧ · · · ∧ dFq

it follows that det(df) = det(df(0)) is a nonzero constant.
(e)⇒ (d): obvious.
(d)⇒ (c): If Gj =

∑
α cαFα, taking exterior derivative we immediately get dGj

as a linear combination of the dFk.
(c)⇒ (d): It suffices to use Lemma 4.2 below. �

Lemma 4.2. Let F = (F0, . . . , Fq) ∈ Sd0 × · · · × Sdq
be generic. Let G be a

homogeneous polynomial of degree e such that dG =
∑

0≤k≤q Ak dFk for some Ak ∈
Se−dk

. Then G = f(F0, . . . , Fq) for a unique polynomial f ∈ Sq,d̄,e.

Proof. We proceed by induction on e. The assertion is clear for e = 0. Taking
exterior derivative we have d2G =

∑
k dAk∧dFk = 0. Thus dAk∧dF0∧· · ·∧dFq = 0

for all k. Since F is generic, we get dAk =
∑

h Bkh dFh for some Bkh ∈ Se−dk−dh
.

By the inductive hypothesis, Ak = fk(F0, . . . , Fq) for some polynomial fk. On
the other hand, applying iR to dG =

∑
k Ak dFk we obtain eG =

∑
k Ak dkFk.

Replacing here Ak by fk(F0, . . . , Fq) we obtain the claim. Uniqueness and weighted
homogeneity were argued before. �

Proposition 4.3. For general F = (F0, . . . , Fq) ∈
∏

0≤j≤q Sdj
we have a bijective

map
GL(q, d̄) // µ−1µ(F )

(f0, . . . , fq)
� // (f0(F ), . . . , fq(F ))

with µ the multilinear map inducing ρ as in (9).

Proof. The assertion follows from the equivalence (a)⇐⇒ (e) in 4.2. �

Corollary 4.1. We have the formula for the fiber dimension,

dim ρ−1ρ(F ) =
∑

0≤j≤q

(N(q, d̄, dj)− 1).
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4.4. A natural factorization and proof of Theorem 3. We will now proceed
to describe a tower of open subsets of Grassmann bundles birational to R(r, d̄). We
preserve the notation of Subsection 4.2.

Start with Y0 = G(n1,Se1), the grassmannian of n1-planes in Se1 . Let X1 ⊂ Y1

be the open subset defined as

X1 = {F1 ∧ · · · ∧ Fn1 ∈ G(n1, Se1) | codim sing(dF0 ∧ · · · ∧ dFn1) ≥ 2}.

Now let A2 → X1 be the vector subbundle of the trivial bundle Se2 ×X1 with fiber
over F 1 = F1 ∧ · · · ∧ Fn1 ∈ X1 given by

A2(F 1) = {G ∈ Se2 | dF1 ∧ · · · ∧ dFn1 ∧ dG = 0}.

Recalling Lemma 2.2(a), and the above considerations on weighted homogeneity,
we have in fact

A2(F 1) = {G ∈ Se2 |G = f(F 1), f ∈ Sq1,d̄1,e2
} ∼= Sq1,d̄1,e2

.

Let Y2 = G(n2,Se2/A2) be the Grassmann bundle over X1. Notice that, for
an element G2 = [G1] ∧ · · · ∧ [Gn2 ] ∈ G(n2,Se2/Sq,d̄,e2

(p)) over a point F 1 =
F1 ∧ · · · ∧ Fn1 ∈ X1, the (n1 + n2)-form

η(G2) = dF1 ∧ · · · dFn1 ∧ dG1 ∧ · · · ∧ dGn2

is well-defined up to a non zero multiplicative constant. Therefore we can set
X2 ⊂ Y2 as the open subset defined by

X2 = {G2 ∈ Y2 | codim sing η(G2) ≥ 2}

Continuing, we have a vector subbundle A3 of Se3 ×X2 with fiber

A3(F 1, G2) = {H ∈ Se3 | dF1 ∧ · · · ∧ dFn1 ∧ dG1 ∧ · · · ∧ dGn2 ∧ dH = 0}.

As before, this is isomorphic to Sq2,d̄2,e3
. Proceeding this way, we arrive at an open

subset X = Xk ⊂ Yk where Yk → Xk−1 is the Grassmann bundle G(nk,Sek
/Ak−1).

Clearly X is a rational variety just like all Grassmann bundles over rational varieties.
Using Proposition 4.2, we arrive at a birrational map from X to R(r, d̄). It follows
that R(r, d̄) is rational and this concludes the proof of Theorem 3 �

5. Degree calculations

Let d̄ = (d0, . . . , dq), ē, n̄, . . . be as in the previous section. Here we proceed to
find the degree of the projective variety

R(r, d̄) ⊂ P
(
H0(Pr,Ωq(d + q + 1))

)
in some cases. We shall time and again profit from the following consequence of
Proposition 4.1. We consider

ρ̃ :
∏

i

P (Sdi
) 99K R̃(r, d̄) = (iR)−1R(r, d̄) ⊂ P

(
Sd−1⊗

q+1
∧ S?

1

)
.

Thus we see that all degree calculations can be lifted from P (W ) ⊂
P

(
H0(Pr,Ωq(d + q + 1))

)
to P (V ).
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5.1. Linear projections of grassmannians. When q1 = q, i.e. all the degrees
di are equal to e1, the variety X constructed in §4.4 is an open subset of the
grassmannian G(q,Se1). It follows that the morphism ρ̄ : X → R(r, d̄) gives rise to
a rational map

ρ̃ : G(q + 1,Se1) 99K R̃(r, d̄) ⊂ P
(
Sd−1⊗

q+1
∧ S?

1

)
.

Notice that ρ̄ is the composition of Plücker’s embedding with a central projection

P
(∧q+1

Se1

)
99K P

(
Sd−1⊗

q+1
∧ S?

1

)
F0 ∧ · · · ∧ Fq 7→ dF0 ∧ · · · ∧ dFq.

It is a simple exercise to show that G(q+1,Se1) is disjoint from the center of this
projection if, and only if, q = 1 or d0 = · · · = dq = 1. In both cases the degree of
these components is equal to the degree of the corresponding grassmannians under
Plücker’s embedding (see e. g. [12]). More precisely, setting N = (q + 1)(r − q) =
dim G(q + 1, r + 1), we have

(18)

deg(R(q, 1, . . . , 1)) = deg G(q + 1,S1) = 1!2!···q!N !
(r−q)!(r−q+1)!...r!

deg(R(1, d, d)) = deg G(2,Sd1) = 1
Nd−1

(
2Nd−2

Nd

)
,

where Nd =
(
r+d

r

)
− 1.

Remark 5.1. The scheme-theoretic structure of the base locus of a rational map
φ : Y 99K P

(
CN

)
is defined as follows (cf. [9, 7.17.3, p. 168]). We are given a line

bundle (=invertible sheaf) L over Y together with a homomorphism ON
Y → L,

surjective over the open dense subset U ⊆ Y where φ is a morphism. The image,
J , of the induced homomorphism

ON
Y ⊗ L∨ //

## ##H
HHHHHHHHH
OY

J
?�

OO

is the sheaf of ideals defining the base locus. If D denotes an effective Cartier divisor
such that J = OY (−D) · J ′ for some ideal sheaf J ′, then the set of zeros, V (J ′)
is contained in V (J ). Clearly φ extends to the complement U ′ = Y \ V (J ′) ⊇ U
in such a way that the pullback of the hyperplane bundle is

φ?
|UOP(CN )(1) = L ⊗O(−D).

5.2. (2,2,2). When q = 2 and d0 = d1 = d2 = 2 the situation is still manageable.
It turns out that the indeterminacy locus of the rational map

ρ̃ : X = G(3,S2) 99K R̃(r, d̄) ⊂ P(S3⊗
3
∧S?

1)
F0 ∧ F1 ∧ F2 7→ dF0 ∧ dF1 ∧ dF2

is schematically equal to the image of the Veronese-like embedding

Y = G(2,S1)
v� � // X = G(3,S2)

〈L0, L1〉 7−→ 〈L2
0, L0L1, L

2
1〉.



18 F. CUKIERMAN, J. V. PEREIRA, AND I. VAINSENCHER

Thus a single blowup π : X̃ → X along Y resolves the indeterminacy i.e., the in-
duced map ρ̃ : X̃ → R̃(r, d̄) is a morphism. Indeed, write the tautological sequence
of G(3,S2)

(19) R2
// // S2

// // Q2

and likewise for G(2,S1),

(20) R1
// // S1

// // Q1.

The fiber of R2 over F ∈ X is the space 〈F0, F1, F2〉 spanned by three independent
quadratic forms. In order to find the pullback of the hyperplane class via the
resolved map

X̃ //

eρπ
++

X //___ R̃(r, d̄),

we have at first

ρ̃?O(−1) =
3
∧R2

//

&&NNNNNNNNNNN
3
∧S2

��

3 F0 ∧F1 ∧F2_

��
S3⊗

3
∧S?

1
3 dF0 ∧dF1 ∧dF2.

The indeterminacy locus, Z ⊂ X, of ρ̃ : X 99K R̃(r, d̄) is the scheme of zeros of the

slant arrow,
3
∧R2 −→ S3⊗

3
∧S?

1. Dualizing, we find
3
∧R?

2 ←− (S3⊗
3
∧S?

1)
?, whence

the ideal sheaf of Z appears as the image

(21) (S3⊗
3
∧S?

1)
?⊗

3
∧R2

// // I(Z) ⊂ OX .

We claim that Z is equal to the image of v : G(2,S1) � � // G(3,S2). Indeed,
first note that Z is invariant under linear change of coordinates in Pr. Since it is
closed, it must contain a closed orbit of G(3,S2). There are just two closed orbits,
to wit those given by the representatives: 〈x2

0, x0x1, x0x2〉 and 〈x2
0, x0x1, x

2
1〉. Only

the latter one lies in Z. The calculation of the tangent space to Z at the point
〈x2

0, x0x1, x
2
1〉 performed below shows that Z is of dimension at most 2(r−1). Since

Z contains the image of G(2,S1), it is in fact smooth and equal to that image. The
tangent space is given by the equation

d(x2
0 + εF0) ∧d(x0x1 + εF1) ∧d(x2

1 + εF2) =
2εdx0 ∧dx1 ∧(x2

0dF2 − 2x0x1dF1 + x2
1dF0) = 0,

where the Fi ∈ S2

/
〈x2

0, x0x1, x
2
1〉.

Equivalently:
x2

0

∂F2

∂x2
− 2x0x1

∂F1

∂x2
+ x2

1

∂F0

∂x2
=

∂

∂x2
(x2

0F2 − 2x0x1F1 + x2
1F0) = 0,

...

x2
0

∂F2

∂xr
− 2x0x1

∂F1

∂xr
+ x2

1

∂F0

∂xr
=

∂

∂xr
(x2

0F2 − 2x0x1F1 + x2
1F0) = 0.

We’d like to deduce that the subspace consisting of triples

(F0, F1, F2) ∈
(
S2

/
〈x2

0, x0x1, x
2
1〉

)⊕3
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defined by the system just above must be of dimension

dim G(2,S1) = 2(r − 1).

We see that x2
0F2−2x0x1F1+x2

1F0 is independent of x2, . . . , xr. Thus, no monomial
xmxn, 2 ≤ m,n ≤ r appears in the Fi. It follows that the Fi are of the form

Fi = ai0x0 + ai1x1

with the aij ∈ C[x2, . . . , xr] homogeneous of degree one. We have then

x2
0(a20x0 + a21x1)− 2x0x1(a10x0 + a11x1) + x2

1(a00x0 + a01x1) =
a20x

3
0 + (a21 − 2a10)x2

0x1 + (a00 − 2a11)x0x
2
1 + a01x

3
1 ∈ C[x0, x1].

This implies
a20 = a21 − 2a10 = a00 − 2a11 = a01 = 0.

Hence the Fi depend exactly on 2(r− 1) parameters. This achieves the verification
that Z = v(G(2,S1)).

Pulling back the surjection (21) to the blowup π : X̃ → X, we find the surjections

π?(S3⊗
3
∧S?

1)
?⊗

3
∧R2

// // π?I(Z) // // O eX(−E) = I(E),

with E = π−1Z, the exceptional divisor. This yields the formula

ρ̃OeF(1) = π? 3
∧R?

2 ⊗O eX(−E).

It follows that the pullback of the hyperplane class is given by

ρ̃?h = π?q1 − E,

where q1 = c1Q2 (see 19). Since ρ̃ is generically injective, the degree of the image
can be calculated as

deg R(r, 2, 2, 2) =
∫
eX

ρ̃?hdim X .

Setting N = dim X = dim G(3,S2) = 3(
(
r+2
2

)
− 3), we see that the degree is given

by ∫
eX

ρ̃?hN =
∫

X

π?

N∑
0

(
N

i

)
π?qi

1 · (−E)N−i.

Using projection formula, we are reduced to the calculation of
• the Plücker’s degree of G(3,S2) for the term with i = N ,

and
• the contribution of π?(E)j = (−1)j−1v?sj−δN ,

where N stands for the normal bundle of the embedding v and

δ = rankN = dim G(3,S2)− dim G(2,S1).

The minus signs come from the formula

ι?O eX(E) = ON (−1).

The Segre classes of the normal bundle are obtained from the usual exact sequence

(22)
TY // // TX|Y // // N
|| ||

Hom(R2, Q2) v?Hom(R3, Q3)

By definition of v, we have v?R3 = Sym2 R2. Using schubert [11], we find,
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r deg
3 1324220
4 2860923458080
5 243661972980477736263
6 728440733705107831789517245858
7 704613096513585123585398408696231899176183

d0 = d1 = d2 = 2

A maple script is available at [16].

5.3. Bundles of projective spaces. When k = 2 and n2 = 1, the variety X
constructed in §4.4 is an open subset of a projective bundle over an open subset of
a grassmannian. In general we do not know a manageable compactification. Even
when we can compactify X as above, the scheme structure of the base locus of ρ̄
can be non reduced and is far form being understood in general.

Nevertheless in the following three cases we are able to handle the degree:
• q = 1 and d0 divides d1.
• arbitrary q but k = 2 and d1 = 1, i.e., d̄ = (1, . . . , 1, e).
• q = 1, d0 = 2 and d1 = 3.

5.3.1. First Case: q = 1 and d0 divides d1. This is in fact the only case for which
we got a closed formula. Now the natural parameter space is the projective bundle

X −→ P (Sd0)

described in the sequel.
Write the tautologic line subbbundle over P (Sd0),

OSd0
(−1) // // Sd0 .

Set κ = d1/d0. Taking symmetric power, we have the exact sequence

OSd0
(−κ) // // Sd1

// // Sd1 ,

which defines the vector bundle Sd1 . The fiber of Sd1 over each F0 ∈ P (Sd0) is the
quotient vector space Sd1/〈Fκ

0 〉. Thus we have

ρ̃ : X = P
(
Sd1

)
−→ R̃(r, d0, d1) ⊆ P

(
Sd1+d0−2⊗

2
∧S?

1

)
.

(F0, F 1) 7−→ dF0 ∧ dF1.

The pullback of the hyperplane class via the map ρ̃ is obtained as follows. Form
the diagram

(23) OSd0
(−1)⊗ Sd1

α ((QQQQQQQQQQQQQ
// // Sd0 ⊗ Sd1

��

Sd1+d0−2⊗
2
∧S?

1

where the vertical map is defined by

F0 ⊗ F1 7→ dF0 ∧dF1.

Composing the slant arrow α with the natural homomorphism

OSd0
(−1)⊗OSd0

(−κ) // // OSd0
(−1)⊗ Sd1
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we get zero since dF0 ∧d(Fκ
0 ) = 0. Hence α passes to the quotient,

OSd0
(−1)⊗ Sd1

α
--

// // OSd0
(−1)⊗ Sd1 ᾱ

// Sd1+d0−2⊗
2
∧S?

1.

Composing ᾱ with

OSd0
(−1)⊗OSd1

(−1) // // OSd0
(−1)⊗ Sd1

we finally find the line subbundle,

OSd0
(−1)⊗OSd1

(−1) // // Sd1+d0−2⊗
2
∧S?

1.

The last map is injective at the point (xd0
1 , xd1−1

1 x2), which is a representative of
the unique closed orbit of P

(
Sd1

)
. Hence it is injective everywhere. Alternatively,

since Fκ
0 , F1 are linearly independent, the rational map Pr 99K P1 they define is

non-constant, hence dF0 ∧ dF1 6= 0. Thus, the pullback to X of the hyperplane

class of the projective space P
(
Sd1+d0−2⊗

2
∧S?

1

)
is

H = h + h′

where h = c1OSd0
(1), which comes from the base P (Sd0), and h′ = c1OSd1

(1),
the relative hyperplane class. With the notation as in (18), we have

rankSd1 − 1 = Nd1 − 2

for the fiber dimension of P
(
Sd1

)
→ P (Sd0). The sought for degree is

(24)

deg R(r, d0, d1) =
∫

P(Sd1)
HNd1+Nd0−1 =

∑
i

(
Nd1+Nd0−1

i

)
hisNd0−i(Sd1)

=
(

Nd1 + Nd0 − 1
Nd0

)
− d1

d0

(
Nd1 + Nd0 − 1

Nd0 − 1

)
.

The last equality follows from the calculation of the Segre class s(Sd1) = 1 − κh,
so si(Sd1) is zero in degrees i ≥ 2.

If r = 3, d1 = 2, d0 = 1, one finds
(
3+8
3

)
− 2

(
11
2

)
= 55. By constrast, the degree

of the Segre variety P̌3 × P9 ⊂ P39 of which the image of ρ is a rational projection,
is equal to

(
12
3

)
.

5.3.2. Second case: k = 2 and d0 = 1. We are now looking at foliations defined
by ω = iR(dF0 ∧ · · · ∧ dFq) where deg F0 = · · · = deg Fq−1 = 1; deg Fq = d ≥ 2.
A natural parameter space is the projective bundle over the grassmannian G =
G(q,S1) defined as follows. Write the tautological sequence

Rq
// // S1

// // Q.

The fiber of Rq over F ∈ G is the space 〈F0, . . . , Fq−1〉 spanned by linear
forms. Now the last polynomial Fq is taken as a class in the projective space
P

(
Sd/〈F d

0 , F0 · F d−1
1 , . . . , F d

q−1〉
)
. The natural homomorphism Symd Rq → Sd is

injective; it corresponds to an instance of the vector bundle A2 described in 4.4.
Form the projective bundle

π : X = P (Sd/ Symd Rq) −→ G.
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Note that the rational map

X
ρ̄ //______ P(Sd−1⊗

q
∧S?

1)
(〈F0, . . . , Fq−1〉, F q)

� // dF0 ∧ · · · ∧ dFq−1 ∧ dFq

is in fact regular everywhere. Indeed, regularity is an open condition; the map is
invariant under the natural action of GLr+1 and is regular at the representative
(〈x0, . . . , xq−1〉, xd−1

q x0) of the unique closed orbit. Thus the sought for degree can
be computed by Schubert calculus in the following manner. Set

(25)
g = q(r + 1− q) = dim G

N =
(
r+d

r

)
−

(
q−1+d

q−1

)
− 1,

so that presently the dimension of the component is δ = N + g. The pullback of
the hyperplane class from P(Sd−1⊗

q
∧ S?

1) is equal to h + q1, where h stands for
the relative hyperplane class of the projective bundle X → G and q1 = c1Q. By
general principles, the degree is given by∫

X

(h + q1)δ =
g∑
0

(
δ

i

) ∫
G

π?(hδ−i)qi
1 =

g∑
0

(
δ

i

) ∫
G

sg−i · qi
1.

Here si = ci(Symd R). For q = 2, r = 3 we find

d2(d− 1)(d + 3)(d2 + 2)(d2 + 4d + 6)(d + 2)2(d + 1)2
/
(26 · 35),

a polynomial of degree 12 in d. For q = 2; r = 4, 5, 6, 7, 8 we find polynomial
formulas of respective degrees 24, 40, 60, 84, 112. This suggests a polynomial degree
like 2r(r − 1). Now for q = 3, r = 4, 5, 6, 7, 8 we get polynomial formulae of
degrees 3r(r−2) with respect to d. Further experiments (cf. [16]) suggest polynomial
formulas of degrees qr(r − q + 1). Here is a sample for small values of r, q, d.

(r, q) = (5, 2)
d 2 3 4 5

deg 2390850 10457430102 9654013512864 3099059696318355

(r, q) = (6, 2)

d 2 3 4 5

deg 1139133688 91451421683006 1118409272891730904 3524857658574891999976

(r, q) = (6, 3)

2 3 4 5

8983484048 9350781792221835 1060759743612735149417 22044166363067583367287424

5.4. (2, 2m + 1). Assume q = 1, d0 = 2 and d1 = 3. Set for short X = P (S2) ×
P (S3). Put as before Nd =

(
r+d

d

)
− 1. We have

dimX = N2 + N3.

We look closer at the indeterminacy locus of

ρ̃ : X 99K P
(
S3⊗

2
∧S?

1

)
(F,G) 7→ dF ∧dG.

It is, set-theoretically,

B(ρ̃) = {(L2, L3) |L ∈ P (S1)}.
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Lemma 5.1. The tangent space to the scheme of indeterminacy B = B(ρ̃) is the
subspace

{(F ′, G′) ∈ T(L2,L3)X = S2/〈L2〉 ⊕ S3/〈L3〉 |G′ =
3
2
F ′}.

Proof. The tangent space to the scheme of indeterminacy is the set of pairs (F ′, G′)
such that d(L2 + εF ′) ∧ d(L3 + εG′) = 0. Expanding we get

(26) 2dL ∧ dG′ + 3LdF ′ ∧ dL = dL ∧ (2dG′ − 3LdF ′) = 0.

By division, we must have 2dG′ − 3LdF ′ = F ′′dL for some F ′′ ∈ S2. This implies
dF ′′ ∧ dL = 3dF ′ ∧ dL. Hence again by division, dF ′′ − 3dF ′ = AdL for some
A ∈ S1. This implies A = aL for some constant c. Thus d(F ′′ − 3F ′ − 1

2aL2) = 0
so that in fact F ′′ = 3F ′ + 1

2aL2. Plugging back in a previous relation, we find
2dG′ − 3LdF ′ = (3F ′ + 1

2aL2)dL whence 2dG′ − 1
6adL3 = 3d(LF ′). This yields

2G′− 1
6aL3 = 3LF ′, hence G′ = 3

2LF ′ in S3/〈L3〉. Conversely, it is easy to see that
for such G′ = 3

2LF ′, the differential form 2dG′ − 3LdF ′ is a multiple of dL, hence
(26) holds. �

Set V = Bred
∼= P (S1). Thus B is a multiple structure or thickenning of V.

The tangent sheaf to B is in fact a vector bundle of rank dim P (S2). We have the
exact sequence of vector bundles over V,

TV // // TB|V // // NV/B

where NV/B stands for the normal bundle of V ⊂ B. We register the formula

rankNV/B =
(

r + 2
2

)
− r =

(
r + 1

2

)
+ 1.

We look at the blowup X′ → X along V. Denote by E ⊂ X′ the exceptional
divisor. Recall we have E′ = P

(
NV/X

)
, the projectivization of the normal bundle

of V ⊂ X

Lemma 5.2. We assume r ≤ 5. Let ρ′ : X′ 99K P
(
S3⊗

2
∧S?

1

)
be the rational map

induced by ρ̃ and denote by B′ ⊂ X′ the indeterminacy scheme of ρ′. Then we have

B′ = P
(
NV/B

)
⊂ P

(
NV/X

)
= E′,

the projectivization of the normal bundle of V in its thickenning B.

Proof. We look at the diagram of tangent/normal bundles over V,

(27) TV
��

��

TV
��

��
TB|V

����

// // TX|V

����

// // NB/X|V

NV/B // // NV/X // // NB/X|V

which tells us that P
(
NV/B

)
embeds naturally into E′ = P

(
NV/X

)
. Let x′ ∈ E′.

Thus we may represent it as x′ = limε→0(L2 + εF ′, L3 + εG′) for some (F ′, G′) ∈
T(L2,L3)X with nonzero image in NV/X. Here we think of (L2 + εF ′, L3 + εG′) as
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a small arc in X \V for ε 6= 0. Hence it lifts to an arc in X′ \E′ which hits x′ ∈ E′

for ε = 0. As in (26) we find for ε 6= 0,

(28)
ρ(L2 + εF ′, L3 + εG′) = εLdL ∧ (2dG′ − 3LdF ′) + ε2dF ′ ∧ dG′

= LdL ∧ (2dG′ − 3LdF ′) + εdF ′ ∧ dG′.

Now if x′ is not in the indeterminacy locus, B′, then we must have

ρ′(x′) = lim
ε→0

ρ(L2 + εF ′, L3 + εG′).

This limit is ρ′(x′) = LdL ∧ (2dG′ − 3LdF ′) provided the expression is 6=0. It is
zero if and only if G′ = 2

3LF ′, i.e., x′ is in P
(
NV/B

)
. In this case, recalling (28),

ρ′(x′) = dF ′ ∧ dG′ =
2
3
F ′dF ′ ∧ dL.

Since the right hand side must be (projectively) independent of representatives of
F ′ ∈ S2/〈L2〉, we must have dL ∧ dF ′ = 0, a contradiction. Thus LdL ∧ (2dG′ −
3LdF ′) must be 6=0, i.e., x′ is not in P

(
NV/B

)
. This yields P

(
NV/B

)
⊆ B′.

The dimension is given by

dimB′ = dimV + rankNV/B − 1 = r +
(
r+2
2

)
− 1− r − 1 = N2 − 1 =

(
r+2
2

)
− 2.

Thus we also have codimB′ = rankNB′/X′ = N3 + 1.
Unfortunately, for the other inclusion we don’t know how to proceed coordinate-

freewise. Using coordinates, with the help of computer algebra (singular), it can
be checked (see [16]) that B′ is smooth and of the right dimension dim P

(
NV/B

)
.

This requires fixing r to low values, e.g., r ≤ 5. Here is an outline of the calculation
for r = 2. We take affine coordinates a1, . . . , a5, b1, . . . , b9 for P (S2)×P (S3). Set

F = x2
0 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2,

G = x3
0 + b1x

2
0x1 + b2x

2
0x2 + · · ·+ b8x1x

2
2 + b9x

3
2.

We compute dF ∧ dG expanding the 2×2 minors of the 2×3 matrix with rows the
gradients of F,G. We find three cubics as coefficients of dx0 ∧ dx1, dx0 ∧ dx2, dx1 ∧
dx2. The indeterminacy locus, B, is given by the ideal spanned by those thirty
coefficients. Its jet of order one is spanned by nine independent linear equations,
in agreement with the expected tangent space dimension, to wit, 5, the freedom
of the quadric F . Continuing, we find next the local equations of the bi-Veronese,
eliminating c1, c2 from the 5+9 equations obtained from the conditions

F = (x0 + c1x1 + c2x2)2, G = (x0 + c1x1 + c2x2)3.

We find that the ideal of the bi-Veronese is spanned by the 12 polynomials

2b1 − 3a1, 4b3 − 3a2
1, 8b6 − a3

1, 2b2 − 3a2, 2b4 − 3a1a2, 8b7 − 3a2
1a2,

4b5 − 3a2
2, 8b8 − 3a1a

2
2, 8b9 − a3

2, a2
1 − 4a3, a1a2 − 2a4, a2

2 − 4a5.

Accordingly, the blowup is covered by 12 affine patches, one for each choice of
the principal generator for the exceptional ideal. The 9 generators involving a
b−coefficient belong to the ideal of B. It follows that the indeterminacy locus
B′ is disjoint from these nine neighborhoods. We are left with the 3 equations
4a3−a2

1, 2a4−a1a2, 4a5−a2
2; these define the Veronese in P5. Choosing ε = a2

1−4a3
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as the exceptional generator, the blowup is written as

b1 = 1
2εc1 + 3

2a1, b2 = 1
2εc2 + 3

2a2,

b3 = 1
4εc3 + 3

4a2
1, b4 = 1

2εc4 + 3
2a1a2,

b5 = 1
4εc5 + 3

4a2
2, b6 = 1

8εc6 + 1
8a3

1,

b7 = 1
8εc7 + 3

8a2
1a2, b8 = 1

8εc8 + 3
8a1a

2
2,

b9 = 1
8εc9 + 1

8a3
2, a4 = − 1

2εc10 + 1
2a1a2,

a5 = − 1
4εc11 + 1

4a2
2.

Substituting into the ideal of the indeterminacy locus, the original 30 generators
become divisible by the local equation, ε, of the exceptional ideal. Dividing, we
obtain the ideal of the indeterminacy locus upstairs, that is, of the induced rational
map ρ′ (cf. Lemma 5.2). We find the ideal of B′ is presently generated by

c1, c2, 2c4 + 3c10, 2c7 + 6c10a1 − 3a2, 2c5 + 3c11,
2c8 + 6c10a2 + 3c11a1, 2c9 + 3c11a2, 2c3 − 3, 2c6 − 3a1, a

2
1 − 4a3︸ ︷︷ ︸

ε

.

Thus we see that the indeterminacy locus is contained in the exceptional divisor
and we also learn that it is in fact a projective subbundle of the exceptional divisor
E′, in agreement with 5.2. �

Remark 5.2. Lemma 5.2 is valid only for small values of r, as stated and explained
in the proof. But we conjecture that it is true for all r. It seems that a more
conceptual proof is needed and probably it would involve some new idea.

At any rate, for each value of r, the validity of Lemma 5.2 is all we need to find
the degree: We consider the following diagram displaying the resolution of the map

ρ̃ : X 99K P
(
S3⊗

2
∧S?

1

)
.

E′′

��

⊂ X′′

��
ρ′′

eρ′
  A

AA
AA

AA
AA

AA
AA

B′ ⊂ E′

��

⊂ X′

��
''N

NNN

V ⊂ X
eρ //___ P

(
S3⊗

2
∧S?

1

)
The pullback of the hyperplane class via ρ′′ can be written as

ρ′′−1h = m1h1 + m2h2 + m3e′ + m4e′′

for suitable integers mi, where we’ve denote the cycles e′ = [E′], e′′ = [E′′] and hi

the hyperplane class of each factor in X = P (S2)×P (S3). The coefficients mi will
be determined using the Remark 5.1 and excision (cf. [5, 1.8, p. 21]). Over U = X\V
only h1,h2 survive and we have ρ′′−1

U h = ρ̃−1
U h = h1 + h2 since ρU is defined by a

bihomogeneous expression of bidegree 1,1. Put U′ = X′ \B′ = X′′ \E′′. The local

calculations show that the image of (S3⊗
2
∧S?

1)
?⊗OP(S2)(−1)⊗OP(S3)(−1)→ OX′

is equal to OX′(−E′) · I(B′). Blowing-up B′, we find the surjection

(S3⊗
2
∧S?

1)
? ⊗OP(S2)(−1)⊗OP(S3)(−1)⊗OX′′(E′)� OX′′(−E′′) = I(B′)OX′′ .
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Thus, we have
(ρ̃)−1h = h1 + h2 − e′ − e′′.

The degree is computed as∫
X′′

(h1 + h2 − e′ − e′′)N2+N3 .

Apart from the term
∫
X′′(h1 + h2)N2+N3 =

(
N2+N3

N2

)
, all others lie over V. Since

h1∩V = 2h,h2∩V = 3h and hr+1 = 0, we see that terms like hi
1h

j
1(e

′)k(e′′)l give
zero whenever i + j > r. Thus the relevant part of the integrand is

r∑
0

(
N2 + N3

i

)
(5h)i(−e′ − e′′)N2+N3−i.

First we collect coefficients of e′′, then take the pushforward to X′ using our knowl-
edge of the normal bundle of B′ ⊂ X′ and so on till X. Thus

(e′′)i = (e′′)i−1e′′  (−1)i−1si′(NB′/X′) ∩ [B′],

with i′ = i− codimB′ = i−N3 − 1. The sum above pushes forward to
r∑
0

(
N2+N3

i

)
(5h)i(−1)N2+N3−i

(
−(e′)N2+N3−i +

N2+N3−i∑
j=dimB′

(
N2+N3−i

j

)
(e′)N2+N3−i−j(−1)j−1sj′

)
,

setting for short sj′ = sj′(NB′/X′) ∩ [B′], with j′ = j − codimB′ = j − N3 − 1.
(Thus sj′ is a cycle of dimension N2 − 1− j′ = N2 + N3 − j.) These Segre classes
can be derived from 5.2 as follows. We have the exact sequence

(29) NB′/E′ // // NB′/X′ // // OE′(E′)|B′ .

We also recall that, for any exact sequence of vector bundles

E ′ // // E // // E ′′

we have the formula for the normal bundle of P (E ′) ⊂ P (E)
NP(E′)/P(E) = E ′′ ⊗OE′(1).

In view of (27), this yields

NB′/E′ = NB/X|V ⊗ONV/B
(1).

The actual calculation is best performed using computer algebra. A script using
Singular [8] is available at [16]. A sample of the first few values is listed below.

r deg
2 770
3 6254612
4 481152797320
5 803161672838504856
6 36968358460592709286459400
7 53639021695280557844870264612516640
8 2759237622445467221610266591396121818496881016

(2,3)
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As a final remark we mention that there is compelling computer algebra evidence
indicating that the case of bidegree (2,3) carries over to the case (2, 2m + 1) with
slight modifications. The indeterminacy locus of the rational map X = P (S2) ×
P (S2m+1) 99K P(S2m+1⊗

2
∧S?

1) given by (F,G) 7→ dF ∧ dG is again a thickening of
the biveronese {(L2, L2m+1) |L ∈ P (S1)}. Blowing up the reduced structure, the

indeterminacy locus, B′, of the induced rational map X′ 99K P(S2m+1⊗
2
∧ S?

1) is
no longer reduced for m > 1. Nevertheless, it still is a rather manageable complete
intersection. In fact, we find local equations of B′ of the form em, f1, ..., fu, with
e denoting the equation of the exceptional divisor, and the fi’s define a projective
subbundle of the exceptional divisor just as in the case (2,3).

deg R(r, d0 = 2, d1 = 2m + 1)
d1 deg (P3)
5 27500627268
7 19062120397608
9 3910289698588916
11 341013122932980120

d1 deg (P4)
5 5858652068789831804
7 2734930355086609774678630
9 118796991387599661786404269060
11 955667356931740162987705236374200

Interpolating the first few values of odd d1, we find for P3 the polynomial
(t− 1)

(
t26 + 55t25 + 1450t24 + 24616t23 + 305020t22 + 2961172t21 + 23561656t20 +

158392960t19 +918866662t18 +4670514826t17 +21033417148t16 +84615935632t15 +
305921226844t14 + 998318576836t13 + 2949392111320t12 + 7903552056256t11 +
19229223618721t10 + 41774679574903t9 + 72390849730794t8 + 15945324910344t7−
541088235621216t6 − 2539188961011216t5 − 315410776482528t4 +
14933666207688192t3 + 85822791395378688t2 − 247712474710388736t +
162893498195312640

)
/3656994324480.

It fits all values of deg R(3, 2, t), t = 2m + 1, up to m = 35, d1 = 71,
presently the physical limit of our computer’s memory. It should be noted
that deg R(3, 2, 2t) =

(
N2t+N2−1

N2

)
− 2t

2

(
N2t+N2−1

N2−1

)
is a polynomial in t of the same

degree 27 as above.
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