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Abstract. We study completely reducible fibers of pencils of hypersurfaces
on Pn and associated codimension one foliations of Pn. Using methods from
theory of foliations we obtain certain upper bounds for the number of these
fibers as functions only of n. Equivalently this gives upper bounds for the di-
mensions of resonance varieties of hyperplane arrangements. We obtain similar
bounds for the dimensions of the characteristic varieties of the arrangement
complements.

1. Introduction

In this paper we focus on completely reducible fibers of a pencil of hypersurfaces
on Pn with irreducible generic fiber. Our main result (Theorem 2.1) gives an upper
bound for the number k of these fibers that depends only on n. For instance for
every n > 1 we obtain k ≤ 5. Or for every n ≥ 4 a pencil with k at least 3 is a
linear pull-back of a pencil on P4.

Despite the evident classical taste of the result we have not found it in the
literature although various restrictions on reducible fibers and even more special
completely reducible fibers were studied in [17, 7, 8].

In order to prove the result we use a combination of techniques from the theory
of codimension one singular foliations on Pn and the theory of hyperplane arrange-
ments. In particular we define a foliation associated with a pencil and consider its
Gauss map

Pn
99K (Pn)∨.

Our most technical result (Theorem 4.1) says that for a pencil with k ≥ 3 the Gauss
map of the associated foliation is dominant.

It turns out that the union of the linear divisors of all completely reducible
fibers of a pencil with k at least three can be characterized intrinsically, by means
of arrangement theory. In fact this characterization in terms are resonance varieties
of hyperplane arrangements is contained in the recent paper [5] and this was the
starting point of our study. We recall this characterization in a concise form in
Theorem 5.1. This and Theorem 2.1 give upper bounds on the dimensions of the
resonance varieties of arrangements whence on the dimension of cohomology of the
Orlik-Solomon algebras.

Much of the interest in the resonance varieties comes from the fact that they are
closely related to the support loci for the cohomology of local systems on arrange-
ment complements - the so called characteristic varieties. These relations have been
studied by many authors, see for instance [3],[9]. In a recent preprint [4] Dimca
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cleared some subtle points in these relations as well as in the relations of char-
acteristic components with pencils. Using this we are able to find upper bounds
for dimensions of these components too (Theorem 7.2). In order to do this in full
generality (at least for the positive dimensional components) we need to general-
ize Theorem 4.1 to more general pencils having at least two completely reducible
fibers and another fiber with irreducible components either of degree one or non-
reduced. Since this condition on pencils does not look natural we does not include
this generalization (Theorem 7.1) in Theorem 4.1.

We do not know if in all the cases the upper bounds given in Theorems 4.1 and
7.1 are strict. In section 6 we collect some old and new examples of pencils on Pn

(n > 1) with at least three completely reducible fibers.

2. Main result and reduction

2.1. Completely reducible fibers. Let F and G be polynomials of the same
degree d > 0 from C[x0, x1, . . . , xn] defined up to nonzero multiplicative constants.
They define the pencil P = {aF + bG | [a : b] ∈ P1} whose fibers aF + bG can
be identified with hypersurfaces in Pn. We are looking for upper bounds for the
number of the completely reducible fibers, i.e., products of linear forms. Without
loss of generality we can and will always assume that F and G are relatively prime
(equivalently, the generic fiber of P is irreducible) and F and G are completely
reducible themselves, whence there are at least two completely reducible fibers of
P . In the trivial case where d = 1, all fibers of the pencil P are hyperplanes whence
completely reducible.

The following theorem is the main result of the paper.

Theorem 2.1. If P is a pencil of hypersurfaces on Pn with irreducible generic fiber
and k is the number of completely reducible fibers of P then the following assertions
hold

(1) If k > 5 then P is a pencil of hyperplanes (equivalently, it is the linear
pull-back of a pencil on P1);

(2) If k > 3 then P is the linear pull-back of a pencil on P2;
(3) If k > 2 then P is the linear pull-back of a pencil on P4.

2.2. Reduction. The proof of Theorem 2.1 consists of two parts. In this subsection
we present an elementary reduction to the non-vanishing of a certain determinant.
The rest of the proof requires more techniques and will be given in the following
sections.

We are using the notation from the theorem. If k ≤ 2 there is nothing to prove.
So we assume that k ≥ 3.

Let Q̃ =
∏

αmi

i denotes the product of the completely reducible fibers of P and
Q =

∏
αi denotes the reduced polynomial with the same zero set. Then consider

the 1-form

ω =
Q

Q̃
ω0

where ω0 = FdG − GdF .
We will need the following properties of ω.
(i) ω does not depend (up to a nonzero multiplicative constant) on the choice of

F and G from the set of completely reducible fibers of P .



COMPLETELY REDUCIBLE HYPERSURFACES IN A PENCIL 3

A proof is left to the reader.
(ii) ω is a polynomial form.
It suffices to check that αmi−1

i (for every i) divides the coefficients of ω0. If αi

divides F (or G) this is clear; otherwise it follows from (i).

For the future use we write ω =
∑n=1

i=1 aidxi for some ai ∈ C[x0, . . . , xn] and

denote by D the determinant of the Jacobi matrix
(

dai

dxj

)
.

(iii) For every linear factor αi of Q we have αi divides the coefficients of dαi∧ω.

Proof. It suffices to check that αmi

i divides dαi ∧ ω0. Again if αi divides F one
needs to check that αmi

i divides dαi ∧ dF which is clear. Otherwise one can apply
(i). �

(iv) Qn−1 divides D.

Proof. It suffices to prove that αn−1
i divides D for every i. Fix i and change the

coordinates so that αi = x0. Applying property (iii) we see that x0 divides aj for
j = 1, 2, . . . , n. In particular, except for the entries of the first row and the first

column, all the entries of the matrix
(

∂aj

∂xk

)
are divisible by x0. Using the cofactor

expansion of D with respect to the first row completes the proof. �

Now we can prove that the non-vanishing of D would imply Theorem 2.1.

Proposition 2.1. Suppose D is not identically 0. Then Theorem 2.1 follows.

Proof. It follows from property (iv) of ω that Q̃n−1 divides
(

Q̃

Q

)n−1

D .

Since deg(Q̃) = k deg(F ) = kd we obtain that

(n − 1)kd ≤ (n + 1)

(
2d − 2 − deg

(
Q̃

Q

))
+ (n − 1) deg

(
Q̃

Q

)

= (n + 1) (2d − 2) − 2 deg

(
Q̃

Q

)
.

Therefore

k ≤
n + 1

n − 1

(
2 −

2

d

)
−

2

(n − 1)d
deg

(
Q̃

Q

)
< 2

n + 1

n− 1
.

In particular

n ≥ 5 implies k ≤ 2 ,

n ≥ 3 implies k ≤ 3 ,

n ≥ 2 implies k ≤ 5 .

Theorem 2.1 follows. �

To prove that the polynomial D is not 0 we will use foliations on Pn and some

properties of the hyperplane multi-arrangement Q̃ = 0.
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3. The multinet property and its generalization

First in this section we recall certain results from [5] about the multi-arrangement

(A, m) defined by Q̃ = 0. We remark that we recall here only the facts about
arrangements that are needed for the proof of Theorem 2.1. For more details see
section 5.

The multi-arrangement (A, m) consists of the set A of hyperplanes Hi in Pn

determined by αi = 0 where αi is running through all linear divisors of Q. Besides
to each Hi the positive integer m(Hi) = mi is assigned where mi is the exponent

of αi in Q̃.
First we consider the case where n = 2. In this case, it was proved in [5] that

the partition
A = A1 ∪A2 ∪ · · · ∪ Ak

of A into completely reducible fibers (called classes in [5]) of the pencil P can be
equivalently characterized by the combinatorics of lines and points. In particular

(a)
∑

H∈Ai
m(H) is independent of i = 1, . . . , k;

(b) If p is the point in the base locus of P then the sum

n(p) =
∑

H∈Ai,p∈H

m(H)

is independent of i = 1, . . . , k.

The collection (A,X ) of lines and points satisfying conditions (a)-(d) is called a
k-multinet. If n(p) = 1 for all p ∈ X (whence m(H) = 1 for all H ∈ A) then it is a
k-net.

Intersecting an arrangement in Pn with a general position plane P2 one readily
sees that the similar properties hold for arrangements of hyperplanes in Pn where
the intersections of codimension 2 should be substituted for points. This definition
of multinets in Pn for n > 2 does not say anything about the intersections of higher
codimensions of hyperplanes in a multinet. We can prove and then use a property
of these intersections for k ≥ 3. In fact we prove this property under a weaker
assumption that we will use in section 7.

Proposition 3.1. Let P be a pencil of hypersurfaces on Pn with irreducible generic
fiber generated by two completely reducible fibers F and G. If there exists a third
fiber that is a product of linear forms and non-reduced polynomials then

∑

αH |F,p∈H

m(H) =
∑

αH |G,p∈H

m(H)

for every p in the base locus of P.

Proof. Let p be a point in the base locus of the pencil. Choose affine coordinates
(x1, . . . , xn) where p is the origin and write F = F1 · F2 and G = G1 · G2 where
F2, G2 /∈ m and all the irreducible components of F1 and G1 are in m, m being
the maximal ideal (x1, . . . , xn). The statement of the lemma is equivalent to the
homogeneous polynomials F1 and G1 having the same degree.

Our hypothesis implies that there exists a hyperplane or a non-reduced hy-
persurface in the pencil passing through 0. In the former case, there is a lin-
ear form α ∈ C[x1, . . . , xn] that divides, say K = F − G. Thus α divides
K0 = F2(0)F1 − G2(0)G1. If deg F1 6= deg G1 then α divides, say F1 which is
a contradiction.
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In the latter case, there is an irreducible polynomial f ∈ m such that fm divides
K for some m > 1 whence f divides the coefficients of ω = FdG − GdF = KdF −
FdK. Now put R = x1

∂
∂x1

+ · · ·+xn
∂

∂xn
, i.e., R is the radial (or Euler) vector field

in Cn, and denote by iR the interior product of a form with it. Then the Leibniz
formula implies that

iRω = F2G2iR(F1dG1 − G1dF1︸ ︷︷ ︸
ω1

) + F1G1iR (F2dG2 − G2dF2) .

To prove the lemma it suffices to show that iRω1 = 0.
Suppose this is not true. Then we have iRω1 = cF1G1 for a c ∈ C∗ and iRω =

F1G1g where g is a polynomial in x1, . . . , xn such that g(0) 6= 0. Since f divides
the polynomial iRω it divides F1G1 which is again a contradiction. �

Sometimes it is convenient to assume that the pencil P is not a linear pull-
back from a smaller dimensional projective space. We will say in this case that P is
essential in Pn. This is equivalent to A being essential, i.e.,

⋂
H∈A H = ∅. This can

be expressed also by saying that the rank of A is n where rank is the codimension
of
⋂

H∈A H (see section 5). It is immediate from the multinet property that A is
essential if and only if the arrangement defined by all the linear divisors of F and
G is essential.

We will need the following property of essential arrangements that immediately
follows from definitions.

Proposition 3.2. Let A be the collection of the linear divisors of all the completely
reducible fibers of an essential pencil P on Pn. Then there exist two distinct points
p1, p2 ∈ Pn such that for j = 1, 2 the subarrangements

Bj =
⋃

pj∈H,H∈A

H

have rank n − 1.

4. Foliations and the Gauss map

4.1. Foliations. In this paper we will adopt an utilitarian definition for codimen-
sion one singular foliations on Pn, from now on just foliation on Pn. A foliation F
on Pn will be an equivalence class of homogeneous rational differential 1-forms on
Cn+1 under the equivalence relation

ω ∼ ω′ if and only if there exists h ∈ C[x0, . . . , xn] \ 0 for which ω = hω′,

such that iRω = 0 and ω ∧ dω = 0 for every representative ω. Here R and iR are
similar to the ones used in the proof of Proposition 3.1 but in Cn+1. Of course, to
ensure the validity of the two conditions for every representative it is sufficient to
check it just for one of them.

Among the representatives of F there are privileged ones — the homogeneous
polynomial 1-forms with singular, i.e. vanishing, set of codimension at least two.
Any two such forms that are equivalent differ by a nonzero multiplicative constant.
If such a form has coefficients of degree d + 1 then we say that F is a degree d
foliation. The shift in the degree is motivated by the geometric interpretation of
the degree. It is the number of tangencies between F and a generic line in Pn.

Outside the singular set the well-known Frobenius Theorem ensures the existence
of local submersions with connected level sets whose tangent space at a point is the
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kernel of a defining 1-form at this point. These level sets are the local leaves of F .
The leaves are obtained by patching together level sets of distinct submersions that
have nonempty intersection. Although the data is algebraic the leaves, in general,
have a transcendental nature.

Now we show how foliations appear from completely reducible fibers of a pencil
of hypersurfaces on Pn.

Lemma 4.1. Let P be the pencil on Pn generated by polynomials F and G and ω
the 1-form from 2. Then ω defines a foliation on Pn.

Proof. One needs to check the two conditions from definition of foliations for ω
or equivalently, for the closed form η = dG

G
− dF

F
. The condition iRη = 0 follows

immediately since F and G are homogeneous polynomials of equal degrees, while
the integrability condition is automatically satisfied thanks to the closedness of
η. �

The foliation defined by ω will be called the foliation associated to P .

4.2. Gauss map. Let ω be a homogeneous polynomial differential 1-form on Cn+1

such that iRω = 0 and ω∧ dω = 0. Let F be the foliation defined by ω on Pn. The
Gauss map of F is the rational map

Gω = GF : Pn
99K (Pn)∨

p 7→ TpF .

that takes every point p ∈ Pn \ sing(F) to the hyperplane tangent to F at p. Under
a suitable identification of Pn with (Pn)∨ the Gauss map Gω is nothing more than
the rational map defined in homogeneous coordinates by the coefficients of ω.

We say that a foliation F has degenerate Gauss map when GF is not dominant,
i.e., its image is not dense in (Pn)∨. On P2 a foliation with degenerate Gauss map
has to be a pencil of lines. Indeed the restriction of the Gauss map to a leaf of the
foliation coincides with the Gauss map of the leaf and the only (germs of) curves
on P2 with degenerate Gauss map are (germs of) lines. Thus all the leaves of a
foliation with degenerate Gauss map are open subsets of lines. In order for this
foliation not to have every point singular, these lines should intersect at one point.

On P3 the situation is more subtle and a complete classification can be found in
[1]. Some results toward the classification of foliations with degenerate Gauss map
on P4 have been recently obtained by T. Fassarella [6].

In our special case where a foliation is associated to the pencil P we can prove
that the Gauss map cannot degenerate.

Theorem 4.1. Let P be an essential pencil of hypersurfaces on Pn with at least
three completely reducible fibers. Then the Gauss map of the associated foliation F
is non-degenerate.

Proof. We again denote by A the arrangement defined by the linear divisors of all
k completely reducible fibers of P and let A = A1 ∪ · · · ∪ Ak be its partition into
fibers. We assume that A1 and A2 correspond to F and G respectively. For each
H ∈ A we denote by m(H) the multiplicity of the respective linear form αH in the
its fiber.

Now we use induction on n. Suppose n = 2. The only way to have a pencil of
lines as the foliation associated to P is for A to be a pencil of lines itself. But a
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pencil of lines is not essential in P2. Thus the Gauss map is not degenerate in this
case.

Suppose that the result holds for essential pencils in Pn and let P be an essential
pencil in Pn+1. The foliation associated to P can be thus defined by the 1-form

ω0 = FdG − GdF ,

where

F =
∏

H∈A1

αH
m(H) and G =

∏

H∈A2

αH
m(H) .

Fix two points p1, p2 ∈ Pn+1 with the property from Proposition 3.2 and let

π1 : P̃n+1 → Pn+1 be the blow-up of Pn+1 at p1. Using notation from Proposition
3.2 the restriction to exceptional divisor E1

∼= Pn of the strict transforms of the
hyperplanes in B1 induces a non-degenerate arrangement of hyperplanes in E1 which
we will still denote by B1.

If ι : E1 → P̃n+1 is the natural inclusion then we claim that the closure of the
image of the rational map σ1 = GF ◦π1 ◦ ι (see the diagram) is the hyperplane H (1)

in (Pn+1)∨ dual to p1.

E1
∼= Pn ι

//

σ1

��

P̃n+1

π1

��

GF◦π1

''

Pn+1
GF

// (Pn+1)
∨

Indeed the arrangement B1 ⊂ E1 admits a partition

B1 =

k⋃

i=1

B1 ∩ Ai

and a function m1 = m|B1
satisfies the multinet properties with the initial multi-

plicities and the induced partition into classes. This follows from Propositions 3.1

and 3.2. Now the equivalence from section 3 implies that
∏

H∈Ai∩B1
α

m(H)
H is a

fiber of the pencil P1 on E1 generated by

F1 =
∏

H∈A1∩B1

α
m(H)
H and G1 =

∏

H∈A2∩B1

α
m(H)
H .

Now consider the associated foliations. On one hand the foliation F1 on Pn

associated to P1 can be defined by the 1-form F1dG1 − G1dF1.
On the other hand the first nonzero jet of FdG − GdF at p1 is F1dG1 − G1dF1

viewing now αH as linear forms on Cn+2. More precisely let us assume that p1 =
[0 : . . . : 0 : 1] and write F = F1F2, G = G1G2. Then the map GF (after division
by F2(p1)G2(p1)) can be written in the homogeneous coordinates [x0 : x1 : . . . :
xn : xn+1] of Pn+1 as

GF =

[
Fk

∂G1

∂x0
− G1

∂F1

∂x0
+ b0 : · · · : F1

∂G1

∂xn

− G1
∂F1

∂xn

+ bn : bn+1

]

=

[
F1dG1 − G1dF1 +

n+1∑

i=0

bidxi

]
,
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where bi ∈ m
2d (d = deg F ) for i = 0, . . . , n, n + 1, m being the maximal ideal of

C[x0, . . . , xn] supported at 0 ∈ Cn+1.
If we consider now (x0 : . . . : xn) ∈ Pn as a homogenous system of coordinates

on the exceptional divisor E1 then in these coordinates

σ1 =

[
F1

∂G1

∂x0
− G1

∂F1

∂x0
: · · · : F1

∂G1

∂xn

− G1
∂F1

∂xn

]
= [F1dG1 − G1dF1]

since the coefficients of F1dG1−G1dF1 lie in m
2d−1. Thus σ1 can be identified with

the Gauss map of the foliation F1 composed with φ, where φ is the isomorphism of
(Pn)∨ with H(1) defined by the coordinates.

Using also the point p2 and applying the inductive hypothesis we have now that
the closure of the image of GF contains at least two distinct hyperplanes. Since
Pn+1 is irreducible the closure of the image of GF must be (Pn+1)∨. This completes
the proof. �

Now Theorem 4.1 and Proposition 2.1 constitute a proof of Theorem 2.1.

4.3. Invariant hyperplanes. As another application of the Gauss map we can
exhibit an upper bound on the number of hyperplanes invariant with respect to a
foliation in Pn.

Let F be a foliation on Pn defined by a polynomial 1-form ω =
∑n

i=0 aidxi.
Recall that the invariance of a hyperplane H defined by a linear form αH with
respect to F means that αH divides all coefficients of the form ω ∧ dαH , i.e., the
property (iii) from subsection 2.2 holds for ω and αH . Then the property (iv) holds

also, i.e., αn−1
H divides the determinant D of the matrix

(
∂ai

∂xj

)
. Taking as ω a

polinomial form without a codimension one zero we have deg D = (n + 1) degF .
This gives the following proposition.

Proposition 4.1. If F is a foliation on Pn with the non-degenerate Gauss map
then the number of invariant hyperplanes is at most

(
n + 1

n − 1

)
· deg(F) .

Example 4.1. Here is an example showing that the bound in Proposition 4.1 is
sharp. Let F be a foliation on Pn, n ≥ 2, induced by a logarithmic 1-form

n∑

i=0

λi

dxi

xi

where
∑

λi = 0 and no λi is equal to zero. Then F has degree (n − 1) and its
Gauss map is non-degenerate. Also F leaves invariant all the n + 1 hyperplanes of
the arrangement.

For n = 2, 3 there are examples of foliations F on Pn with degF > n − 1 and
exactly n+1

n−1 deg(F) invariant hyperplanes. On P2 we are aware of three sporadic

examplesi: Hesse pencil, Hilbert modular foliation [11], and a degree 7 foliation
leaving invariant the extended Hessian arrangement of all the reflection hyperplanes
of the reflection group of order 1296 - see [12], p. 227. Also there is one infinite
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family [13], [5, Example 4.6], consisting of degree m, m ≥ 2, foliations leaving
invariant the arrangement

xyz(xm−1 − ym−1)(xm−1 − zm−1)(zm−1 − ym−1).

On P3 we are aware of just one example with degF > n−1 attaining the bound,
see 6.2 below.

5. Characterization of the union of completely reducible fibers

5.1. Hyperplane arrangements. First we need to recall some facts about hy-
perplane arrangements. Let A = {H1, . . . , Hm} be an arrangement of linear hyper-
planes in Cn. Recall that the rank of A is the codimension of

⋂
i Hi. In particular

if the rank is n the arrangement is essential. Let M = Cn \
⋃

H∈A H be the com-
plement of A. The cohomology ring H∗(M) is well-known (for instance, see [12]).
In particular it does not have torsion and working with complex coefficients does
not loose any generality.

Put A = H∗(M, C) and as before fix for each i = 1, 2, . . . , m a linear form αi

with the kernel Hi. By the celebrated Arnold-Brieskorn theorem (e.g., see [12]) the
algebra A is isomorphic under the deRham map to the subalgebra of the algebra
of the closed differential forms generated by { dαi

αi
, 1 = 1, 2, . . . , m}. Notice that A1

is a linear space of dimension m.
Since A is graded commutative each a ∈ A1 induces a cochain complex

(A, a) : 0 → A0 → A1 → A2 → · · · → Ak → Ak+1 → 0

where the differential is defined as the multiplication by a. The degree l resonance
variety Rl(A) is

Rl(A) = {[a] ∈ P(A1) ∼= Pm−1 |H l(A, a) 6= 0} .

In this paper we will need only the first resonance variety R1(A). If A′ ⊂ A is a
subarrangement then by definition R1(A′) ⊂ R1(A). The support of an irreducible
component Σ of R1(A) is the smallest subarrangement A′ ⊂ A such that Σ ⊂
R1(A′). For us the rank of the support of an irreducible component is important.
The irreducible components will be called global if the rank of its support equals the
rank of A. In the rest of the paper we call irreducible components of R1 resonance
components. It is well-known (see [3]) that the resonance components are linear
subspaces of A1.

Since we study pencils in projective spaces we need to projectivize linear arrange-
ments, i.e., to deal with arrangements of hyperplanes in the projective space Pn.
We still call it essential if its linear cone is such. More explicitly this means that the
intersection of all hyperplanes is empty. According to Proposition 3.2 there are at
least two points among intersections of hyperplanes and the subarrangement of the
hyperplanes passing through any of those points is isomorphic to a linear arrange-
ment of rank n. We say that the rank of the essential projective arrangement is n.
More generally the rank of an arbitrary projective arrangement is the rank of its
linear cone minus one. For the resonance varieties of a projective arrangement we
still use those of the linear cone of it.
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5.2. Pencils and resonance components. In this subsection we give a charac-
terization of the unions of completely reducible fibers of pencils of hypersufaces on
Pn in terms of resonance components. We also interpret the partition of such an
arrangement into fibers and give a corollary of our main result for the dimensions
of the resonance components of arrangements.

The first part is not really new; the following theorem is just a reinterpretation
of results from [5], in particular Corollary 3.12. Although these results have been
proved there only for pencils in P2 they can be immediately generalized to arbitrary
dimensions using intersection with a general position plane.

Theorem 5.1. Let A be a projective arrangement in Pn. The following are equiv-
alent:

(i) A supports a resonance component of dimension k − 1 (k ≥ 3);
(ii) There is a pencil P on Pn with k completely reducible fibers such that A is

the union of the zero loci of the linear divisors of all k completely reducible fibers.
Moreover assume (ii) holds and F1, F2, . . . , Fk are the completely reducible fibers

of P. Then the 1-forms

ωi =
dFi

Fi

−
dFk

Fk

, i = 1, 2, . . . , k − 1,

form a basis of the corresponding resonance component of A.

Now Theorem 5.1 and our main result Theorem 2.1 give the upper bounds on
the dimensions of resonance components in terms of ranks of their supports.

Corollary 5.1. If A is an arrangement of hyperplanes in Pn and Σ ⊂ P(A1) is an
irreducible component of R1(A) then the following assertions hold:

(1) If dim Σ > 3 then the rank of the support of Σ is one;
(2) If dim Σ > 1 then the rank of the support of Σ is at most two;
(3) If dim Σ > 0 then the rank of the support of Σ is at most four.

If the rank of a resonance component is one (for projective arrangement) then
the component is called local and is very simple. The result (1) of the corollary
says that the (projective) dimension of non-local component is at most 3. This in
turn implies that the dimension of H1(A, a) is at most 3 for a not from a local
component. This result has been proved in [9] for nets and in [5] for multinets with
all multiplicities of lines equal 1. Roughly speaking the results (2,3) of Corollary 5.1
say that the non-triviality of resonance varieties is a low-dimensional phenomenon.

Combining Theorem 5.1 with lemma 4.1 we see that for every resonance compo-
nent there is a foliation on Pn. More directly the irreducible components of R1(A)
are precisely the projectivization of maximal linear subspaces E ⊂ A1 with dimen-
sion at least 2 and isotropic with respect to the product A1 × A1 → A2, cf. [9,
Corollaries 3.5, 3.7]. In particular, if E is one of these subspaces then all the homo-
geneous rational 1-forms, whose cohomology classes belong to E, are proportional
over rational functions whence correspond to the same foliation. Moreover the fo-
liation in question admits a rational first integral F : Pn

99K P1 of a rather special
kind. If we write F = A

B
, where A, B are relatively prime homogenous polynomials,

then sA + tB is irreducible for generic [s : t] ∈ P1 and the cardinality of the set
{
[s : t] ∈ P1 | all irreducible components of sA + tB have degree one

}

is dim E + 1.
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Figure 1. A3 arrangement (in bold) and Bol’s 5-web

Remark 5.1 (Webs associated to Arrangements). As we have just explained to
each arrangement A with R1(A) 6= ∅ we can canonically associate a finite collection
of foliations on Pn induced by the rational maps F : Pn

99K P1, one for each irre-
ducible component of R1(A). This finite collection forms a global web on Pn. The
field of web geometry has a venerable history and the present days are witnessing a
lot of activity on webs and their abelian relations. From this viewpoint one of the
key problems, at least according to Chern, is the classification of planar webs with
the maximal number of abelian relations that are not algebraizable, cf. [2, 14]. For
a long time the only example that appeared in the literature was Bol’s example.
It consists of the 5-web formed by four pencils of lines through four generic points
on P2 and a pencil of conics through these four points. It is a rather intriguing
fact that the 5-web, canonically associated to the Coxeter arrangement of type A3,
is precisely Bol’s web. It corresponds to four resonance components supported on
pencils of lines and one global component. It would be rather interesting to pursue
the determination of the rank of the webs associated to resonant line arrangements
in P2.

6. Examples and open questions

6.1. Pencils on P2. The inequalities of Theorem 2.1 allow pencils on P2 with five
completely reducible fibers. However no such pencils (of full rank) are known. This
existence problem is not even settled for the case of nets, cf. [18, Problem 2]. The
smallest possible example would be a (5,7)-net in P2 realizing an orthogonal triple
of Latin squares of order 7.

Concerning pencils with four completely reducible fibers just one example is
known - the Hesse pencil based on the (4,3)-net. This pencil can be succinctly
described as the pencil generated by a smooth cubic and its Hessian.

Concerning pencils on P2 with three completely reducible fibers, plenty of them
are known, including families with analytic moduli. The existence of such families
with analytic moduli can be inferred from the realization result for nets given in
[18, Theorem 4.4]. For explicit examples one can consider hyperplane sections of
the examples presented in 6.2.
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Figure 2. Arrangement of 12 hyperplanes on P3 associated to D4

6.2. Pencils on P3. Let d be a positive integer and consider the pencil on P3

generated by

Fd =
(
xd

0 − xd
1

) (
xd

2 − xd
3

)

Gd =
(
xd

0 − xd
2

) (
xd

1 − xd
3

)
.

Then

Fd − Gd =
(
xd

0 − xd
3

) (
xd

2 − xd
1

)
.

The arrangements Ad corresponding to these pencils have many interesting prop-
erties. Each Ad consists of 6d hyperplanes that are the reflecting hyperplanes for
the monomial group G(d, d, 4) generated by complex reflections (e.g., see [12]). For
d = 1, 2 the group is the Coxeter group of type A3 or D4 respectively. For all d ≥ 2
the arrangements Ad are essential and carrying each a global irreducible resonance
component of dimension one.

Moreover these arrangements are (3,d)-nets in P3 (for d ≥ 2). This implies that
the intersection of Ad with a generic plane gives a net in P2. On the other hand, the
intersection with a special plane (say, the one defined by x3 = 0) gives the family
of multinets mentioned at the end of Section 3 whence representing these multinets
as limits of nets.

Let us look closer at the combinatorics of Ad, i.e., at the corresponding Latin
square (see [18]). For each ζ such that ζd = 1 denote by Hi,j(ζ) the hyperplane
defined by xi = ζxj (1 ≤ i < j ≤ 4). Then identify the collection of hyperplanes
corresponding to the linear divisors of Fd, Gd. and Fd − Gd via

aζ = H1,2(ζ
−1) = H1,3(ζ) = H2,3(ζ),

and

bζ = H3,4(ζ) = H2,4(ζ) = H1,4(ζ).

After the identification the Latin square corresponding to Ad is the multiplication
table of the dihedral group Dd with aζ forming the cyclic subgroup of order d and
{bζ} being the complementary set of involutions. Intersecting Ad for d ≥ 3 with a
general plane we obtain a series of 3-nets in P2 realizing noncommutative groups
(cf. [18]). In particular these nets are not algebraizable. We remark that another
non-algebraizable example of a 3-net in P2 has been found by J. Stipin in [15]. He
has exhibited a (3,5)-net that does not realize Z5.
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Finally (as we learned from [15]) the general fibers of the above pencil for d = 2
were studied by R. M. Mathews in [10] under the name of desmic surfaces. Thus
for arbitrary d these fibers can be considered as generalizations of desmic surfaces.

The foliations Fd induced by ωd = FddGd − GddFd have degree 4d − 2. Thus
the bound of Proposition 4.1 is attained by F2 and no other foliation in the family.

6.3. Pencils on P4. We do not know any example of a pencil on P4 with three
completely reducible fibers that is not a linear pullback of a pencil from a smaller
dimension. One can deduce from careful reading of the proof of Proposition 2.1
that the degree of such a pencil must be at least 10.

7. Pencils and characteristic varieties

Let A be an arrangement in Pn and M its complement. If for every ρ ∈
Hom(π1(M), C∗) we write Lρ for the associated rank one local system then the
characteristic varieties V l(M) are defined as follows

V l(M) =
{
ρ ∈ Hom(π1(M, C∗) |Hl(M,Lρ) 6= 0

}
.

If A′ ⊂ A is a subarrangement with complement M ′ then the inclusion of M into M ′

induces an inclusion of Hom(π1(M
′), C∗) into Hom(π1(M), C∗) and also of V1(M ′)

into V1(M). As in the case of resonance varieties, the support of an irreducible
component Σ of V1(M) is the smallest subarrangement A′ such that Σ ⊂ V1(A′).

The main result of [3] implies that the projectivization of the tangent cone of
V l(M) at the trivial representation is isomorphic to Rl(A). Thus if Σ ⊂ V1(M)
is an irreducible component of dimension d > 0 containing 1 ∈ Hom(π1(M), C∗)
then the projectivization of its tangent space is an irreducible component of the
resonance variety.

There exist translated components of characteristic varieties, i.e., those that do
not contain the trivial representation, see [16]. In a recent preprint Dimca [4] found
more precise properties of shifted components and clarified the link between the
positive dimensional irreducible components of V1(M) and pencils of hypersurfaces.
We invite the reader to consult [4] for a more extensive description. Here we will
recall just what is strictly necessary for our purposes.

If Σ is a translated component of dimension at least two then after translating
it to 1 one obtains an irreducible component of V1(M) through 1.

If Σ is a translated component of dimension one then there exists a pencil of
hypersurfaces with generic irreducible fiber and exactly two completely reducible
fibers with support contained in the support of Σ. The support of Σ is the union
of the hyperplanes that appear as components of fibers of the pencil. Moreover
there is at least one extra fiber such that its components are either hyperplanes
in the support of Σ or non-reduced hypersurfaces. Combining these results with
our methods we can prove the upper bound for the dimension of characteristic
components.

The proof of the following theorem repeats almost verbatim the proof of Theorem
4.1 using now Proposition 3.1 in full. So we omit its proof.

Theorem 7.1. Let P be an essential pencil of hypersurfaces on Pn with irreducible
generic fiber, two completely reducible fibers, and a third fiber that is a product of
linear forms and non-reduced polynomials. Then the Gauss map of the associated
foliation F is non-degenerate.
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Now using again Dimca’s results and Theorem 7.1 we can prove an analogue of
Corollary 5.1 for characteristic varieties.

Theorem 7.2. If A is an arrangement of hyperplanes in Pn and Σ ⊂ V1(M) is
an irreducible component then the following assertions hold:

(1) If dim Σ > 4 then the rank of the support of Σ is one;
(2) If dim Σ > 2 then the rank of the support of Σ is at most two;
(3) If dim Σ > 1 then the rank of the support of Σ is at most four;
(4) If dim Σ > 0 then the rank of the support of Σ is at most six.

(Notice that the difference with Corollary 5.1 in the dimensions of Σ is due to
the projectivization in the corollary.)

Proof. The statements (1)-(3) follow immediately from Corollary 5.1 and the re-
lations between resonance and characteristic components. In order to prove (4) it
suffices to show that n < 7 if there exists a pencil P of hypersurfaces on Pn with
completely reducible generators F and G inducing a full rank arrangement and at
least one extra fiber, say K = F − G, that can be written as

K = Ũ · Ṽ

where Ũ ∈ C[x0, . . . , xn] is a product of linear forms and Ṽ ∈ C[x0, . . . , xn] is a
product of non-trivial powers of irreducible polynomials of degree at least two. We

denote by U, V the reduced polynomial with the same zero set of Ũ , Ṽ and point
out that

(1) 2 deg

(
Ṽ

V

)
≥ deg(V̄ ) .

If Q̃ ∈ C[x0, . . . , xn] denotes the product FG and Q denotes the reduced poly-
nomial with the same zero set then

ω =
U

Ũ

V

V̄

Q

Q̃
ω0

is a homogeneous polynomial 1-form defining the foliation F associated to P . In
particular

deg(F) ≤ deg(Q̃) − 2 − deg

(
Ũ Ṽ Q̃

UV Q

)
.

Theorem 7.2 implies that the Gauss map of F is non-degenerate. The property
(iv) of the forms proved in section 2 can be immediately generalized to ω and it

implies that (ŨQ̃)n−1 divides
(

ŨQ̃

UQ

)n−1

det

(
∂ai

∂xj

)
,

where ω =
∑

aidxi. We obtain that

(n − 1) deg(ŨQ̃)) ≤ (n + 1)

(
deg(Q̃) − 2 − deg

(
Ũ Ṽ Q̃

UV Q

))
+ (n − 1) deg

(
ŨQ̃

UQ

)

= (n + 1)
(
deg(Q̃) − 2

)
− 2 deg

(
ŨQ̃

UQ

)
− (n + 1) deg

(
Ṽ

V

)
.
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Therefore, if we suppose that n ≥ 3, delete the term −2 deg
( �

U
�

Q
UQ

)
and use (1) then

(n − 1) deg(Q̃) < (n + 1)
(
deg(Q̃) − 2

)
−

n + 1

2
deg

(
Ṽ
)
− (n − 1) deg(Ũ)

≤ (n + 1)
(
deg(Q̃) − 2

)
−

n + 1

2
deg

(
Ũ Ṽ

)
<

3(n + 1)

4
deg

(
Q̄
)
.

In particular n < 7 and the statement follows. �

We do not know if the bounds given in the theorem are sharp.
We also do not know if there are restrictions on the rank of the support of the

zero-dimensional characteristic varieties.
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