
ON THE DIMENSION OF RESONANCE AND
CHARACTERISTIC VARIETIES
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Abstract. We study codimension one foliations on complex projective spaces
Pn associated to nontrivial resonance varieties of (complex projective) hyper-
plane arrangements. Using methods from theory of foliations we obtain certain
upper bounds on the dimensions of those varieties as functions of n. Equiva-
lently this gives upper bounds on the number of completely reducible fibers of
pencils of hypersurfaces of Pn. We obtain similar bounds for the dimensions
of the characteristic varieties of the arrangement complements.

1. Introduction

1.1. Resonance varieties. Let A = {H1, . . . , Hm} be an arrangement of lin-
ear hyperplanes in Cn+1, |A| its support, M = Cn+1 \ |A| its complement and
E =

∧
(e1, . . . , em) the exterior algebra over C generated by degree-one elements ei

corresponding to the hyperplanes Hi ∈ A. Define ∂ : E → E of degree −1 as a C-
linear map subject to

∂(ei1 · · · eip) =
p∑

j=1

(−1)j−1ei1 · · · êip · · · eip .

If I ⊂ E is the homogeneous ideal generated by

{∂(ei1 · · · eip) |Hi1 , . . . , Hip is a minimal dependent subset of A}
then the Orlik-Solomon algebra A = A(A) = E/I is a graded algebra. Notice that
I does not contain elements of degree 0 or 1 and therefore A0 = C and A1 = Cm.
By the celebrated theorem by Arnold-Breiskorn-Orlik-Solomon (for instance, see
[14]) A is naturally isomorphic to H∗(M ;C). The Orlik-Solomon algebra A(A) is
determined already by the combinatorics ofA, i.e., by its intersection lattice. In this
paper we consider mainly essential arrangements, i.e., those with the intersection
of all their hyperplanes equal to 0. For them the rank of an arrangement, that is
the rank of the intersection lattice, equals n + 1.

Each a ∈ A1 induces a cochain complex (A, a):

(A, a) : 0 → A0 → A1 → A2 → · · · → Ak → Ak+1 → 0

where the differential is defined by the multiplication by a. The degree l resonance
variety Rl(A) is defined as

Rl(A) = {[a] ∈ P(A1) ∼= Pm−1 |H l(A, a) 6= 0} .

In this paper we focus on the first resonance variety R1(A). If A′ ⊂ A is a
subarrangement then by definition R1(A′) ⊂ R1(A). The support of an irreducible
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component Σ of R1(A) is the smallest subarrangement A′ ⊂ A such that Σ ⊂
R1(A′). The irreducible components with support equal to the whole A are called
global components.

1.2. Dimension of the first resonance varieties. For our purposes it is con-
venient to projectivize linear arrangements, i.e., to deal with arrangements of hy-
perplanes in the projective space Pn. We still call it essential if its linear cone is
such. More explicitly this means that the rank n level of the intersection poset of
the projective arrangement consists of more than one point of Pn. In this case we
say that the rank of the arrangement is n. For the Orlik-Solomon algebra A(A)
of a projective arrangement A and the resonance varieties we still use those of the
linear cone of A.

Our main interest lies in the dimensions of the first resonance varieties of these
arrangements, very much in the spirit of [10, Problem 5.5] and [9, Problem 5.17].
Our main result can be stated as follows.

Theorem 1. If A is an arrangement of hyperplanes in Pn and Σ ⊂ P(A1) is an
irreducible component of R1(A) then the following assertions hold:

(1) If dim Σ > 3 then the rank of the support of Σ is one;
(2) If dim Σ > 1 then the rank of the support of Σ is at most two;
(3) If dim Σ > 0 then the rank of the support of Σ is at most four.

The result (1) has been proved in [11] for nets and in [6] for multinets with all
multiplicities of lines equal 1 (see 2.3). Roughly speaking Theorem 1 says that the
non-triviality of resonance varieties is a low-dimensional phenomenon.

The starting point of our study is the recent description in [6] of irreducible
components of R1(A) in terms of pencils with the union of completely reducible
fibers equal to A. We recall this description in Section 2.

1.3. Completely reducible fibers. It turns out that the description mentioned
in the previous paragraph implies that Theorem 1 is equivalent to the following
result.

Theorem 2. If P is a pencil of hypersurfaces on Pn with irreducible generic fiber
and k is the number of completely reducible fibers of P then the following assertions
hold

(1) If k > 5 then P is a pencil of hyperplanes;
(2) If k > 3 then P is the linear pull-back of a pencil on P2;
(3) If k > 2 then P is the linear pull-back of a pencil on P4.

Despite its evident classical taste the result seems to be new, i.e., we have not
found it in the classical literature. Of course this is not a guarantee of originality
and the possibility that a similar statement had been made by the end of the
nineteenth century is not completely excluded.

The proof of Theorem 2 is based on the projective geometry of codimension one
foliations on projective spaces reflected by some properties of theirs Gauss maps.

1.4. Characteristic varieties. Much of the interest in the resonance varieties
comes from the fact that they are strictly related to the support loci for the co-
homology of local systems on the complement of the arrangement – the so called
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characteristic varieties. If for every ρ ∈ Hom(π1(M),C∗) we write Lρ for the asso-
ciated rank one local system then the characteristic varieties V l(M) are defined as
follows

V l(M) =
{
ρ ∈ Hom(π1(M,C∗) |Hl(M,Lρ) 6= 0

}
.

The main result of [3] implies that the projectivization of the tangent cone of
V l(M) at the trivial representation is isomorphic to Rl(A).

Nevertheless there exist components of characteristic varieties that do not con-
tain the trivial representation, see [17].

In a recent preprint Dimca [4] clarified the link between the positive dimensional
irreducible components of V1(M) and pencils of hypersurfaces. Combining his
results with our methods we obtain an analogue of Theorem 1 for characteristic
varieties.

Theorem 3. If A is an arrangement of hyperplanes in Pn and Σ ⊂ V1(M) is an
irreducible component then the following assertions hold:

(1) If dim Σ > 4 then the rank of the support of Σ is one;
(2) If dim Σ > 2 then the rank of the support of Σ is at most two;
(3) If dim Σ > 1 then the rank of the support of Σ is at most four;
(4) If dim Σ > 0 then the rank of the support of Σ is at most six.

Notice that the difference with Theorem 1 in the dimensions of Σ is due to the
projectivization in that theorem. The definition of the support of Σ can be found
in Section 5.

We do not know if the bounds given in the Theorems 1, 2 and 3 are sharp in
all the cases. In Section 6.1 we collect some old and new examples of positive
dimensional resonance varieties.

We also do not know if there are restrictions on the rank of the support of the
zero-dimensional characteristic varieties.

2. Foliations and the structure of R1(A)

No new results are presented in this Section. Its purpose is to recall some basic
definitions and the structure of resonant arrangements.

As we mentioned in Introduction the Orlik-Solomon algebra A is graded isomor-
phic to the DeRham cohomology of the complement Cn+1 \ |Ac| where Ac is the
linear cone of a projective arrangement A. The generator ei of A can be identified
with the logarithmic 1-form ωi = d log αi where αi is linear polynomial cutting out
Hi. Under this identification the multiplication corresponds to the wedge product
and ∂ corresponds to the interior product with the radial (or Euler) vector field
R =

∑n
i=0 xi

∂
∂xi

.

2.1. Foliations. In this paper we will adopt a utilitarian definition for codimension
one singular foliations on Pn, from now on just foliation on Pn. A foliation F on Pn

will be an equivalence class of homogeneous rational differential 1-forms on Cn+1

under the equivalence relation

ω ∼ ω′ if and only if there exists h ∈ C(x0, . . . , xn) \ 0 for which ω = hω′,

such that iRω = 0 and ω ∧ dω = 0 for every representative ω. Of course, to ensure
the validity of the two conditions for every representative it is sufficient to check it
just for one of them.



4 J. V. PEREIRA AND S. YUZVINSKY

Among the representatives of F there are privileged ones - the homogeneous
polynomial 1-forms with singular, i.e. vanishing, set of codimension at least two.
Any two such forms that are equivalent differ by a non-zero multiplicative constant.
If such a form has coefficients of degree d + 1 then we say that F is a degree d
foliation. The shift in the degree is motivated by the geometric interpretation of
the degree. It is the number of tangencies between F and a generic line in Pn.

Outside the singular set the well-known Frobenius Theorem ensures the existence
of local submersions with connected level sets whose tangent space at a point is the
kernel of a defining 1-form at this point. These level sets are the local leaves of F .
The leaves are obtained by patching together level sets of distinct submersions that
have non-empty intersection. Although the data is algebraic the leaves, in general,
have a transcendental nature.

Lemma 2.1. If [ω] ∈ Rk(A) then ω defines a codimension one foliation Fω on Pn.

Proof. Since ω is homogenous, rational, and dω = 0 we have just to check that
iRω = 0, i.e., ∂ω = 0. This is well-known and follows directly from the condition
on ω (see [18], Proposition 2.1). ¤

2.2. The structure of the first resonance variety. In the result below we
collect some information of what is currently known about the structure of the
irreducible components of R1(A).

Theorem 2.1. The irreducible components of R1(A) are pairwise disjoint posi-
tive dimensional projective subspaces of P(A1). Moreover for any irreducible global
component of R1(A) of dimension d there exists a pencil of hypersurfaces with an
irreducible generic member and with d + 2 completely decomposable fibers whose
disjoined union is A.

The linearity of the irreducible components of R1(A) was proved in [3] answering
a conjecture of M. Falk. The proof that these irreducible components are disjoint
and positive-dimensional appeared in [11]. The relation of the dimension of the
irreducible global components with the number of completely decomposable fibers
of pencils of hypersurfaces first appeared in [11] for a special case and in [6] in
general.

We remark that the result does not hold for the Orlik-Solomon algebra defined
over a field of positive characteristic, cf. [5].

The irreducible components of R1(A) are precisely the projectivization of max-
imal linear subspaces E ⊂ A1 with dimension at least 2 and isotropic with respect
to the product A1×A1 → A2, cf. [11, Corollaries 3.5, 3.7]. In particular, if E is one
of these subspaces then all the homogeneous rational 1-forms, whose cohomology
classes belong to E, are proportional over rational functions whence correspond
to the same foliation. Moreover the foliation in question admits a rational first
integral F : Pn 99K P1 of a rather special kind. If we write F = A

B , where A,B are
relatively prime homogenous polynomials, then sA + tB is irreducible for generic
[s : t] ∈ P1 and the cardinality of the set

{
[s : t] ∈ P1 | all irreducible components of sA + tB have degree one

}

is dimE + 1.
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Figure 1. A3 arrangement (in bold) and Bol’s 5-web

Remark 2.1 (Webs associated to Resonant Arrangements). As we have just ex-
plained to each arrangement A with R1(A) 6= ∅ we can canonically associate a
finite collection of foliations on Pn induced by the rational maps F : Pn 99K P1, one
for each irreducible component of R1(A). This finite collection forms a global web
on Pn. The field of web geometry has a venerable history and the present days are
witnessing a lot of activity on webs and their abelian relations. From this viewpoint
one of the key problems, at least according to Chern, is the classification of planar
webs with the maximal number of abelian relations that are not algebrizable, cf. [2].
For a long time the only example that appeared in the literature was Bol’s example.
It consists of the 5-web formed by four pencils of lines through four generic points
on P2 and a pencil of conics through these four points. It is a rather intriguing
fact that the 5-web, canonically associated to the Coxeter arrangement of type A3,
is precisely Bol’s web. It corresponds to four resonance components supported on
pencils of lines and one global component. It would be rather interesting to pursue
the determination of the rank of the webs associated to resonant line arrangements
in P2.

2.3. The multinet property. When A is an arrangement in P2 a more precise
description of the rational maps induced by the irreducible components of R1(A)
is given in [6]. The description is based on the combinatorics of lines and points.
There it is shown that the existence of a global irreducible component Σ ⊂ R1(A)
of dimension d is equivalent to the existence of a partition

A = A1 ∪ A2 ∪ · · · ∪ Ad+2

in, so called, classes and a multiplicity function m : A → Z>0 satisfying
(a)

∑
H∈Ai

m(H) is independent of i = 1, . . . , d + 2;
(b) If p is the point of intersection of two lines from two different classes then

the sum
n(p) =

∑

H∈Ai,p∈H

m(H)

is independent of i = 1, . . . , d + 2.
Then the following can be additionally achieved.

(c) gcd
H∈A

m(H) = 1;
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(d) The partition into classes is the most refined for a fixed set X of all the
intersection points of lines from different classes.

The collection of lines and points (A,X ) satisfying conditions (a)-(d) is called a
(d+2)-multinet. If n(p) = 1 for all p ∈ X (whence m(H) = 1 for all H ∈ A) then
it is a (d+2)-net.

Intersecting an arrangement in Pn with a general position plane P2 one readily
sees that the similar equivalence holds for arrangements of hyperplanes in Pn.

3. The Gauss map of foliations

3.1. Gauss map. Let ω be a homogeneous polynomial differential 1-form on Cn+1

such that iRω = 0 and ω∧ dω = 0. Let F be the foliation defined by ω on Pn. The
Gauss map of F is the rational map

Gω = GF : Pn 99K (Pn)∨

p 7→ TpF .

that takes every point p ∈ Pn \ sing(F) to the hyperplane tangent to F at p. Under
a suitable identification of Pn with (Pn)∨ the Gauss map Gω is nothing more than
the rational map defined in homogeneous coordinates by the coefficients of ω.

We say that a foliation F has degenerate Gauss map when GF is not dominant,
i.e., its image is not dense in (Pn)∨. On P2 a foliation with degenerate Gauss map
has to be a pencil of lines. Indeed the restriction of the Gauss map to a leaf of the
foliation coincides with the Gauss map of the leaf and the only (germs of) curves
on P2 with degenerate Gauss map are (germs of) lines. Thus all the leaves of a
foliation with degenerate Gauss map are open subsets of lines. Now it is clear that
these lines should have just one intersection point whence the foliation has to be a
pencil of lines.

On P3 the situation is more subtle and a complete classification can be found in
[1]. Some results toward the classification of foliations with degenerate Gauss map
on P4 have been recently obtained by T. Fassarela [7].

Proposition 3.1. Let A be an essential arrangement of hyperplanes in Pn. If Σ
is a global irreducible component of R1(A) then the Gauss map of the associated
foliation is non-degenerate.

Proof. We use induction on n. Suppose n = 2. The only way to have a pencil of
lines as the foliation associated to Σ is for A to be a pencil of lines itself. But a
pencil of lines is not essential in P2. Thus the Gauss map is not degenerate in this
case.

Suppose that the result holds for essential arrangements in Pn and let A be an
essential arrangement in Pn+1 with Σ a global irreducible component of R1(A) of
dimension d. Let A = A1 ∪ · · · ∪ Ad+2 be the corresponding partition of A and
m : A → Z≥0 the multiplicity function , cf. 2.3. The foliation associated to Σ can
be thus defined by the 1-form

ω = FdG−GdF ,

where
F =

∏

H∈A1

αH
m(H) and G =

∏

H∈A2

αH
m(H) .

and αH is a linear form on Cn+1 whose kernel is H.
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Using the definitions of essential arrangements and multinets one can find two
distinct points p1, p2 ∈ Pn+1 such that

(1) For k = 1, 2 the subarrangements

Bk =
⋃

pk∈H,H∈A
H

have rank n;
(2) For k = 1, 2 the point pk belongs to

⋂
i |Ai|.

Let πk : P̃n+1 → Pn+1 be the blow-up of Pn+1 at pk. The restriction to excep-
tional divisor Ek

∼= Pn of the strict transforms of the hyperplanes in Bk induces a
non-degenerate arrangement of hyperplanes in Ek which we will still denote by Bk.

If ι : Ek → P̃n+1 is the natural inclusion then we claim that the closure of the
image of the rational map σk = GF ◦πk ◦ ι (see the diagram) is the hyperplane H(k)

in (Pn+1)∨ dual to pk.

Ek
∼= Pn ι //

σk

»»

P̃n+1

πk

²²

GF◦πk

''
Pn+1

GF // (Pn+1)∨

Indeed the arrangement Bk ⊂ Ek admits a partition

Bk =
d+2⋃

i=1

Bk ∩ Ai

and a function mk = m|Bk
satisfying the multinet properties. Notice that due to

choice of the point pk we have Bk ∩Ai 6= ∅ for every i = 1, . . . , d+2. Therefore the
irreducible component Σ ⊂ R1(A) induces an irreducible component Σk ⊂ R1(Bk)
of the same dimension.

On the one hand the foliation on Pn induced by Σk can be defined by the 1-form
FkdGk −GkdFk with

Fk =
∏

H∈A1∩Bk

α
m(H)
H and Gk =

∏

H∈A2∩Bk

α
m(H)
H .

On the other hand the first non-zero jet of FdG − GdF at pk is FkdGk − GkdFk

viewing now αH as linear forms on Cn+2. More precisely let us assume that pk =
[0 : . . . : 0 : 1] and write F = FkF ′k, G = GkG′k. Then the map GF (after division
by F ′k(pk)G′k(pk)) can be written in the homogeneous coordinates [x0 : x1 : . . . :
xn : xn+1] of Pn+1 as

GF =
[
Fk

∂Gk

∂x0
−Gk

∂Fk

∂x0
+ b0 : · · · : Fk

∂Gk

∂xn
−Gk

∂Fk

∂xn
+ bn : bn+1

]

=

[
FkdGk −GkdFk +

n+1∑

i=0

bidxi

]
,

where bi ∈ m2 deg F for i = 0, . . . , n, n+1, m being the maximal ideal of C[x0, . . . , xn]
supported at 0 ∈ Cn+1.
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If we consider now (x0 : . . . : xn) ∈ Pn as a homogenous system of coordinates
on the exceptional divisor Ek then in these coordiantes

σk =
[
Fk

∂Gk

∂x0
−Gk

∂Fk

∂x0
: · · · : Fk

∂Gk

∂xn
−Gk

∂Fk

∂xn

]
= [FkdGk −GkdFk]

since the coefficients of FkdGk−GkdFk lie in m2 deg F−1. Thus σk can be identified
with the Gauss map of the foliation Fk on Pn induced by Σk composed with φ,
where φ is the isomorphism of (Pn)∨ with H(k) defined by the coordinates.

Using the inductive hypothesis we have now that the closure of the image of GF
contains at least two distinct hyperplanes. Since Pn+1 is irreducible the closure of
the image of GF must be (Pn+1)∨. This completes the proof. ¤

3.2. The parabolic divisor. We will need some simple properties of the parabolic
divisor of F .

Definition 3.1. Let F be a foliation on Pn with non-degenerate Gauss map. If
ω =

∑n
i=0 aidxi is a homogeneous polynomial 1-form without codimension one

zeroes defining F then PF , the parabolic divisor of F , is the divisor in Pn defined
by the vanishing of the polynomial

D = det
(

∂ai

∂xj

)

(with multiplicities taken into account).

Proposition 3.2. If F is a foliation on Pn with non-degenerate Gauss map and
H is a hyperplane invariant with respect to F then

(n− 1)H ≤ PF ,

i.e., αn−1
H divides D.

Proof. Without loss of generality we can assume that αH = x0. If ω =
∑n

i=0 aidxi is
a homogenous polynomial 1-form defining F then the F-invariance of H means that
all the coefficients of ω ∧ dx0 are divisible by x0. Thus x0|ai for every i = 1, . . . , n.
In particular except for the entries of the first collum and the first row all the
elements of the matrix

(
∂ai

∂xj

)
are divisible by x0. Using the Laplacian expansion of

D with respect to the first column it is then clear that D is divisible by xn−1
0 . ¤

It is immediate from the definition of the parabolic divisor that

deg(D) = (n + 1) deg(F) .

This simple observation together with Proposition 3.2 allows us to exhibit an upper
bound on the number of hyperplanes invariant with respect to a foliation with non-
degenerate Gauss map.

Corollary 3.1. If F is a degree d foliation on Pn with non-degenerate Gauss map
then the number of invariant hyperplanes is at most

(
n + 1
n− 1

)
· deg(F) .
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Example 3.1. Here is an example showing that the bound in Corollary 3.1 is
sharp. Let F be a foliation on Pn, n ≥ 2, induced by a logarithmic 1-form

n∑

i=0

λi
dxi

xi

where
∑

λi = 0 and no λi is equal to zero. (This form represents a degree one
generic element from the Orlik-Solomon algebra of the coordinate arrangement).
Then F has degree (n − 1) and its Gauss map is non-degenerate. Also F leaves
invariant all the n + 1 hyperplanes of the arrangement.

For n = 2, 3 there are examples of degree d, d > n− 1, foliations F on Pn with
exactly n+1

n−1 deg(F) invariant hyperplanes. On P2 we are aware of three sporadic
examples (Hesse pencil, Hilbert modular foliation [13], and a degree 7 foliation
leaving invariant the extended Hessian arrangement of all the reflection hyperplanes
of the reflection group of order 1296 - see [14], p. 227) and one infinite family [15],
[6, Example 4.6], consisting of degree d, d ≥ 2, foliations leaving invariant the
arrangement

xyz(xd−1 − yd−1)(xd−1 − zd−1)(zd−1 − yd−1).

On P3 we are aware of just one example with d > n− 1 attaining the bound, see
6.2 below.

4. Resonance versus pencils: proofs of Theorems 1 and 2

It follows from Theorem 2.1 that Theorem 2 is equivalent to Theorem 1. We will
prove Theorem 2.

Let P be a pencil of hypersurfaces on Pn with generators F and G and k com-
pletely reducible fibers. If k ≤ 2 there is nothing to prove. So we will assume that
k ≥ 3. Let ω0 = FdG − GdF be a representative of the associated foliation F . It
is a classical ( and elementary ) result of Darboux that the divisor of zeros of ω0 is
equal to ∑

(m(A)− 1)A ,

where A runs over all irreducible components of elements of P and m(A) denotes
the multiplicity of A in the pencil. In particular, if Q̃ ∈ C[x0, . . . , xn] denotes the
product of the completely reducible fibers and Q denotes the reduced polynomial
with the same zero set then the 1-form

ω =
Q

Q̃
ω0

is an homogeneous polynomial 1-form defining F . Notice that

deg(F) ≤ 2 deg(F )− 2− deg

(
Q̃

Q

)
.

In the rest of the proof we will assume that the pencil P has full rank, i.e., the
arrangement Q = 0 is essential. Proposition 3.1 implies that the Gauss map of F
is non-degenerate. It follows from Proposition 3.2 that Q̄n−1 divides

(
Q̃

Q

)n−1

det
(

∂ai

∂xj

)
,



10 J. V. PEREIRA AND S. YUZVINSKY

where ω =
∑

aidxi. Since deg(Q̃) = k deg(F ) we obtain that

(n− 1)k deg(F ) ≤ (n + 1)

(
2 deg(F )− 2− deg

(
Q̃

Q

))
+ (n− 1) deg

(
Q̃

Q

)

= (n + 1) (2 deg(F )− 2)− 2 deg

(
Q̃

Q

)
.

Therefore

k ≤ n + 1
n− 1

(
2− 2

deg(F )

)
− 2

(n− 1) deg(F )
deg

(
Q̃

Q

)
< 2

n + 1
n− 1

.

In particular

n ≥ 5 implies k ≤ 2 ,

n ≥ 3 implies k ≤ 3 ,

n ≥ 2 implies k ≤ 5 .

Theorem 2 follows. ¤

5. Characteristic varieties versus pencils: proof of Theorem 3

If A is an arrangement on Pn, M = Pn \ |A| its complement and A′ ⊂ A is a
subarrangement with complement M ′ then the inclusion of M into M ′ induces an
inclusion of Hom(π1(M ′),C∗) into Hom(π1(M),C∗) and also of V1(M ′) into V1(M).
As in the case of resonance varieties, the support of an irreducible component Σ of
V1(M) is the smallest subarrangement A′ such that Σ ⊂ V1(A′).

If Σ ⊂ V1(M) is an irreducible component of dimension d > 0 containing
1 ∈ Hom(π1(M),C∗) then, as it was already pointed out in the introduction, the
projectivization of its tangent space is a irreducible component of the resonance va-
riety. In particular the description of the resonance varieties carried out in Section
2 applies.

The description of the translated components of V1(M), i.e. the irreducible
components not containing 1, has some extra ingredients. We invite the reader to
consult [4] for a more extensive description. Here we will recall just what is strictly
necessary for our purposes.

If Σ is a translated component of dimension at least two then after translating
it to 1 one obtains an irreducible component of V1(M) through 1.

If Σ is a translated component of dimension one then there exists a pencil of
hypersurfaces with generic irreducible fiber and exactly two completely reducible
fibers with support contained in the support of Σ. The support of Σ is the union
of the hyperplanes that appear as components of elements of the pencil. Moreover
there is at least one extra fiber such that its components are either hyperplanes in
the support of Σ or non reduced hypersurfaces.

5.1. A multinet-like property.

Lemma 5.1. Let P be a pencil of hypersurfaces on Pn with irreducible generic fiber
generated by two completely reducible fibers F and G. If there exists a third fiber
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that is a product of linear forms and non-reduced polynomials then
∑

αH |F,p∈H

m(H) =
∑

αH |G,p∈H

m(H)

for every p in the base locus of P.

Proof. Let ω = FdG − GdF and p be a point in the base locus of the pencil.
Choose affine coordinates (x1, . . . , xn) where p is the origin and write F = F1 · F2

and G = G1 · G2 where F2, G2 /∈ m and all the irreducible components of F1 and
G1 are in m, m being the maximal ideal (x1, . . . , xn).

Put now R = x1
∂

∂x1
+ · · · + xn

∂
∂xn

. Notice that unlike in the previous sections
R is now the radial vector field in Cn. Then the Leibniz formula implies that

iRω = F2G2iR (F1dG1 −G1dF1) + F1G1iR (F2dG2 −G2dF2) .

To prove the lemma it suffices to show that iR(F1dG1 −G1dF1) = 0.
Suppose this is not true. Then we have iR(F1dG1 − G1dF1) = cF1G1 for a

c ∈ C∗ and iRω = F1G1g where g is a polynomial in x1, . . . , xn such that g(0) 6= 0.
Our hypothesis implies that there exists a hyperplane or a non reduced hyper-
surface passing through 0. In the latter case, there is an irreducible polynomial
f ∈ C[x1, . . . , xn] such that fm divides, say K = F − G for some m > 1 whence
f divides the coefficients of ω. Thus f divides the polynomial iRω whence it also
divides F1G1 which is a contradiction.

In the former case, there is a linear form α ∈ C[x1, . . . , xn] that divides K.
Thus α divides K0 = F2(p)F1 − G2(p)G1 whence α divides also the polynomial
iR(F1dG1 −G1dF1) = cF1G1. This is again a contradiction. ¤

Let A be the arrangement formed by the hyperplanes that appear as irreducible
components of elements of a pencil P as in Lemma 5.1. Combining Lemma 5.1
with (the proof of) Proposition 3.1 we obtain the following Corollary.

Corollary 5.1. If A has full rank then the Gauss map of the foliation induced by
P is non-degenerate.

With this result at hand we will mimic below the proof of Theorem 1 to obtain
Theorem 3.

5.2. Proof of Theorem 3. From the discussion at the beginning of this Section
it suffices to show that n < 7 if there exists a pencil P of hypersurfaces on Pn with
completely reducible generators F and G inducing a full rank arrangement and at
least one extra fiber, say K = F −G, that can be written as

K = Ũ · Ṽ
where Ũ ∈ C[x0, . . . , xn] is a product of linear forms and Ṽ ∈ C[x0, . . . , xn] is a
product of non-trivial powers of irreducible polynomials of degree at least two. We
will denote by U, V the reduced polynomial with the same zero set of Ũ , Ṽ . We
point out that

(1) 2 deg

(
Ṽ

V

)
≥ deg(V̄ ) .
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If Q̃ ∈ C[x0, . . . , xn] denotes the product FG and Q denotes the reduced poly-
nomial with the same zero set then the 1-form

ω =
U

Ũ

V

V̄

Q

Q̃
ω0

is a homogeneous polynomial 1-form defining F . In particular

deg(F) ≤ deg(Q̃)− 2− deg

(
Ũ Ṽ Q̃

UV Q

)
.

Corollary 5.1 implies that the Gauss map of F is non-degenerate. It follows from
Proposition 3.2 that (ŨQ̃)n−1 divides

(
ŨQ̃

UQ

)n−1

det
(

∂ai

∂xj

)
,

where ω =
∑

aidxi. We obtain that

(n− 1) deg(ŨQ̃)) ≤ (n + 1)

(
deg(Q̃)− 2− deg

(
Ũ Ṽ Q̃

UV Q

))
+ (n− 1) deg

(
ŨQ̃

UQ

)

= (n + 1)
(
deg(Q̃)− 2

)
− 2 deg

(
ŨQ̃

UQ

)
− (n + 1) deg

(
Ṽ

V

)
.

Therefore, if we suppose that n ≥ 3, delete the term −2 deg
(

ŨQ̃
UQ

)
and use (1) then

(n− 1) deg(Q̃) < (n + 1)
(
deg(Q̃)− 2

)
− n + 1

2
deg

(
Ṽ

)
− (n− 1) deg(Ũ)

≤ (n + 1)
(
deg(Q̃)− 2

)
− n + 1

2
deg

(
Ũ Ṽ

)
<

3(n + 1)
4

deg
(
Q̄

)
.

In particular n < 7. Theorem 3 follows. ¤

6. Some Examples

6.1. Pencils on P2. The inequalities of Theorem 2 allow pencils on P2 with five
completely reducible fibers. However no such pencils (of full rank) are known. This
existence problem is not even settled for the case of nets, cf. [19, Problem 2]. The
smallest possible example would be a (5,7)-net in P2 realizing an orthogonal triple
of Latin squares of order 7.

Concerning pencils with four completely reducible fibers just one example is
known - the Hesse pencil based on the (4,3)-net. This pencil can be succinctly
describe as the pencil generated by a smooth cubic and its Hessian.

Concerning pencils on P2 with three completely reducible fibers, plenty of them
are known, including families with analytic moduli. The existence of such families
with analytic moduli can be inferred from the realization result for nets presented
in [19, Theorem 4.4]. For an explicit example one can consider hyperplane sections
of the examples presented in 6.2.
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Figure 2. Arrangement of 12 hyperplanes on P3 associated to D4

6.2. Pencils on P3. Let d be a positive integer and consider the pencil on P3

generated by

Fd =
(
xd

0 − xd
1

) (
xd

2 − xd
3

)

Gd =
(
xd

0 − xd
2

) (
xd

1 − xd
3

)
.

Then
Fd −Gd =

(
xd

0 − xd
3

) (
xd

2 − xd
1

)
.

The arrangements Ad corresponding to these pencils have many interesting prop-
erties. Each Ad consists of 6d hyperplanes that are the reflecting hyperplanes for
the monomial group G(d, d, 4) generated by complex reflections (e.g., see [14]). For
d = 1, 2 the group is the Coxeter group of type A3 and D4 respectively. For all
d ≥ 2 the arrangements Ad are essential and carrying each a global irreducible
resonance component of dimension one.

Moreover the combinatorics of these arrangements can be called a (3,d)-net in
P3 (for d ≥ 2) if one substitutes in the definition of a net in P2 planes for lines and
lines for points. This implies that the intersection of Ad with a generic plane gives
a net in P2. On the other hand, the intersection with a special plane (say, the one
defined by x3 = 0) gives the family of multinets mentioned at the end of Section 3
whence representing these multinets as limits of nets.

Let us look closer at the combinatorics of Ad. For each ζ such that ζd = 1 denote
by Hi,j(ζ) the hyperplane defined by xi = ζxj (1 ≤ i < j ≤ 4). Then identify the
collection of hyperplanes corresponding to the linear divisors of Fd, Gd. and Fd−Gd

via
aζ = H1,2(ζ−1) = H1,3(ζ) = H2,3(ζ),

and
bζ = H3,4(ζ) = H2,4(ζ) = H1,4(ζ).

It is straightforward to check that the Latin square of Ad becomes after the iden-
tification the multiplication table of the dihedral group Dd with aζ forming the
cyclic subgroup of order d and {bζ} being the complementary set of involutions.
Intersecting Ad with d ≥ 3 with a general plane we obtain a series of 3-nets in
P2 realizing non-commutative groups (cf. [19]). In particular these nets are not
algebrizable. We remark that another non-algebraizable example of a 3-net in P2

has been found by J. Stipin in [16]. He has exhibited a (3,5)-net that does not
realize Z5.
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Finally (as we learned from [16]) the general fibers of the above pencil for d = 2
were studied by R. M. Mathews in [12] under the name of desmic surfaces. Thus
for arbitrary d these fibers can be considered as generalizations of desmic surfaces.

The foliations Fd induced by ωd = FddGd − GddFd have degree 4d − 2. Thus
the bound of Corollary 3.1 is attained by F2 and no other foliation in the family.

6.3. Pencils on P4. We do not know any example of a pencil on P4 with three
completely reducible fibers that is not a linear pullback of a pencil from a smaller
dimension. One can deduce from careful reading of the proof of Theorem 2 that
the degree of such a pencil must be at least 10.
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