
ON THE DENSITY OF ALGEBRAIC FOLIATIONS
WITHOUT ALGEBRAIC INVARIANT SETS

S. C. COUTINHO AND J. V. PEREIRA

Abstract. Let X be a smooth complex projective variety of dimension greater

than or equal to 2, L an ample line bundle and k � 0 an integer. We prove

that a generic global section of the twisted tangent sheaf ΘX ⊗ L⊗k gives
rise to a foliation of X without any proper algebraic invariant subvarieties of

nonzero dimension. As a corollary we obtain a dynamical characterization of

ampleness for line bundles over smooth projective surfaces.

1. Introduction

The study of holomorphic foliations over projective varieties can be traced back
to the work of G. Darboux and H. Poincaré in the 19th century. In the papers
[6] and [19] they studied differential equations over the complex projective plane
and posed several questions concerning projective algebraic curves invariant under
holomorphic foliations, many of which are still actively pursued.

In the late 1970s, J. P. Jouanolou reworked and extended the work of Darboux
[6] in the framework of modern algebraic geometry. One of the key results of
Jouanolou’s celebrated monograph [10, théorème 1.1, p. 158] states that a very
generic holomorphic foliation of the projective plane, of degree at least 2, does not
have any invariant algebraic curves. Recall that a property P holds for a very
generic point of a variety V if the set of points on which it fails is contained in a
countable union of hypersurfaces of V . Jouanolou’s theorem has been extended in
various ways; see [11], [12], [13], [14], [16] and [20].

In this paper we prove a generalization of Jouanolou’s result for one dimensional
foliations over any smooth projective variety. Our result is related to a problem
posed by V. I. Arnold in [2, §10, pp. 6-7]. It also leads to a simpler proof of
[13, Corollary B] and of [14, Theorem 2, p. 533], from which we draw our general
strategy. Throughout the paper X denotes a smooth complex projective variety of
dimension d ≥ 2.

Theorem 1.1. Let L be an ample line bundle. Then, for k � 0, let f be a
very generic global section of the twisted tangent sheaf ΘX ⊗ L⊗k. The foliation
of X determined by f has no proper invariant algebraic subvarieties of nonzero
dimension.
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It should be noted that a similar result does not hold for foliations of codimension
1 when the underlying variety has dimension greater than 2. This follows from
the fact that the space of codimension one foliations of any degree over Pn has a
logarithmic component, in the sense of [5, Theorem 2, p. 580], whenever n ≥ 3.
The result also fails for varieties over fields of positive characteristic [18].

On the other hand, it is not difficult to extend Theorem 1.1 to fields of m-
vectors, or Pfaff equations as they are sometimes called, as we show in section 7.
As an application of Theorem 1.1, we prove in section 8, the following dynamical
characterization of ampleness when X is a surface.

Theorem 1.2. A line bundle L on a smooth projective surface X is ample if, and
only if, L2 > 0 and there exists a positive integer k such that the generic section of
ΘX ⊗ L⊗k induces a foliation of X without invariant algebraic curves.

We finish the introduction with a sketch of the proof of Theorem 1.1. Given
an ample line bundle L of X and an integer k � 0 (which depends on L), let
Σ = P(H0(X, ΘX ⊗ L⊗k)). Define two subsets of Σ × X, by Y = {([f ], x) :
[f ] is singular at x}, and

Sχ = {([f ], x) : x is in a subscheme, invariant under f , of Hilbert polynomial χ}.

Let p1 : Σ×X → Σ be the projection on the first coordinate. Since Sχ is a closed
set by Proposition 2.1, it follows that p1(Sχ) is a closed subset of Σ. Suppose, by
contradiction, that p1(Sχ) = Σ. Thus, every [f ] ∈ Σ admits an invariant algebraic
subvariety with Hilbert polynomial χ. However, by Proposition 5.3, every variety
invariant under f must contain a singularity of f . Therefore,

p1(Sχ ∩ Y) = Σ, and dim(Sχ ∩ Y) ≥ dim(Σ).

On the other hand, by Proposition 2.4, Y is a closed irreducible subset of Σ × X
whose dimension is equal to dim(Σ); so that Y = Sχ ∩ Y. In particular, we have
shown that, given [f ] ∈ Σ and a singularity x of [f ], there exists a subvariety with
Hilbert polynomial χ that is invariant under [f ] and contains x, which is in direct
contradiction with Proposition 4.1. Therefore, p1(Sχ) is a proper closed subset of
Σ. Since there are only countably many Hilbert polynomials, the proof of Theorem
1.1 is complete.
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2. Preliminaries

2.1. Fields of m-vectors. Throughout the paper X denotes a smooth complex
projective variety of dimension d ≥ 2. Let ΘX be the tangent sheaf of X and let
L be a line bundle over X. A field of m-vectors of X is an OX -homomorphism
f : Ωm

X → L.
A field of 1-vectors f determines a singular foliation of dimension one F of X.

The same foliation is also completely defined by the kernel of f . In fact there exists
a coherent sheaf NF∗ and an injective morphism α : NF∗ → Ω1

X such that the
kernel of f is generated, as a sheaf, by the image of α. Throughout the paper,
such an F is simply called a foliation of X. The bundle L is sometimes called the
cotangent bundle of the foliation F and NF∗ is its conormal sheaf. The dual of
NF∗ is the normal sheaf of F and will be denoted by NF .

Still keeping to the case when f is a foliation we have an exact sequence

0 → NF∗ → Ω1
X → L.

Moreover, if f is surjective outside a set of codimension two, then we have the
following adjunction formula

(2.1) KX
∼= det(NF∗)⊗ L.

The field of m-vectors f : Ωm
X → L can also be defined by

(1) a global section of
∧m ΘX ⊗ L; or

(2) the OX -homomorphism f∨ : L∨ →
∧m ΘX ;

where L∨ = Hom(L,OX). We swap between these definitions, whenever needed,
without further comment. Moreover, we do not always distinguish between a foli-
ation F and the map or section f that is used to define it.

A singularity of the field of m-vectors f is a point x ∈ X such that f is not
surjective at x. The set of all singularities of f is denoted by Sing(f).

2.2. Invariant Subschemes. A subscheme Y of X is invariant under f if there
exists a map Ωm

Y → L|Y such that the diagram

Ωm
X |Y

��

f |Y // L|Y

Ωm
Y

<<

is commutative. In particular, if Y is an irreducible subvariety and dim(Y ) < m
then Ωm

Y = 0 over the generic point and, consequently, Y ⊆ Sing(f) since Sing(f)
is closed.

Let L be a line bundle, m be a positive integer and Σ denote the projective space
P(H0(X,

∧m ΘX ⊗ L)). For χ ∈ Q[t] define S, a subset of Σ×X, by

S = {([f ], x) : x is in a subscheme, invariant under f , of Hilbert polynomial χ}.

We will write Sχ if we need to call attention to the corresponding Hilbert polyno-
mial. The main result of this subsection is

Proposition 2.1. Sχ is a closed subset of Σ×X.
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Before proving Proposition 2.1 we need to settle some notation and establish
some technical lemmata.

Denote by T the trivial bundle with fibre H0(X,
∧m ΘX ⊗ L). There exists a

map of vector bundles u : T →
∧m TX ⊗ L which takes (x, θ) ∈ T to the m-vector

θ(x) ∈
∧m TxX ⊗ L.

If π : PT → X is the standard projection, there exists a diagram

(2.2) π∗(T)
π∗(u) // π∗(

∧m TX ⊗ L)

OT(−1).

j

OO
v

77oooooooooooo

Now v gives rise to a map

(2.3) Ωm
Σ×X/Σ → OT(1)⊗ π∗(L),

which plays the role of a universal field of m-vectors over X. Note that P(T) =
X × Σ. Let S be a scheme and consider the diagram

X = Σ×X × S
q1 //

q3

��

Σ× S

��
Σ×X // Σ

where q1 and q3 are the canonical projections. Then it follows from (2.3) by base
change that

g : Ωm
X/Σ×S → q∗3(OT(1)⊗ π∗(L)).

On the other hand, let V ⊂ X ×S be a flat family over S. The pull-back Ṽ ⊂ X of
V under the canonical projection q2 : X → X × S is a flat family over T = Σ× S.
Moreover, for a given t = ([f ], s) ∈ Σ×S the scheme Vs is invariant under the field
of m-vectors f : Ω1

X → L if and only if the map θ defined by

(2.4) 0

��
K

��

θ

((RRRRRRRRRRRRRRR

(Ωm
X/T )|eV

g|eV //

��

q∗3(OT(1)⊗ π∗(L))|eV

Ωm
eV /T

��
0

is zero at t. We want to show that the set

ZV = {([f ], s) ∈ T : Vs is invariant under f} = {t ∈ T : θt = 0}

is closed in T = Σ× S. But first we need a technical lemma.
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Lemma 2.2. Let p : X → T be a projective morphism. Assume that F is a p-flat
coherent OX-module such that R1p∗F = 0. If G is a quasi-coherent OT -module and
σ : p∗G → F is a homomorphism of OX-modules, then the set {t ∈ T : σt = 0} is
closed in T .

Proof. The result follows immediately from [1, Proposition 2.3, p. 16] if we prove
that p∗F is locally free, and that its formation commutes with base change.

However, p is projective and F is OX-coherent, so that p∗(F) is OT -coherent
by [9, Theorem 8.8, p. 252]. Since F is p-flat and R1p∗F = 0 it follows from [9,
Theorem 12.11, p. 290] that p∗F is locally free and that its formation commutes
with base change. �

Lemma 2.3. Let S be a scheme and let V ⊂ X × S be a flat family over S. The
set ZV is closed in T = Σ× S.

Proof. Let M be a very ample sheaf over Ṽ , the pullback of V under q2 : X → T .
Given an integer r � 0 it follows by Serre’s Theorem that, for some positive integer
N , there exists a surjective map α : ON

eV
→ K⊗M⊗r. Denote by σ the composition

O⊕N
eV

α //

σ

((
K ⊗M⊗r //

θ

**
(Ωm

X/T )|eV ⊗M
⊗r // q∗3(OT(1)⊗ L)|eV ⊗M

⊗r.

Since α is surjective, θt = 0, for some t ∈ T if and only if σt = 0. But this implies
that ZV = {t ∈ T : σt = 0}. We must show that this set is closed in T . In order to
do this we apply Lemma 2.2 with

F = q∗3(OT(1)⊗ L)|eV ⊗M
⊗r and G = O⊕N

T .

Denoting by p the composition of the embedding of Ṽ in X with the projection q1,
we have that p∗G = O⊕N

eV
, and σ is a map p∗G → F . Moreover, Rip∗F = 0 for

i > 0 by [9, Theorem III.8.8, p. 252]. The result follows from Lemma 2.2. �

We are now ready to establish Proposition 2.1.

Proof of Proposition 2.1. Denote by Hilbχ(X) the Hilbert scheme of X with re-
spect to the Hilbert polynomial χ and recall that Hilbχ(X) is a projective scheme.
Let

Σ×X ×Hilbχ(X)
q1 //

q2

��

q3

))SSSSSSSSSSSSSSS
Σ×Hilbχ(X)

X ×Hilbχ(X) Σ×X

be the canonical projections, and let C be the universal family in X ×Hilbχ(X).
Denote by Cs the closed subscheme of X that corresponds to s ∈ Hilbχ(X). Then,
it follows from Lemma 2.3 that

ZC = {([f ], s) : Cs is invariant under f}
is a closed subset of Σ×Hilbχ(X). Thus,

S = q3(q−1
1 (ZC) ∩ q−1

2 (C))
is closed in Σ×X, as we wished to prove. �
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2.3. Irreducibility of the Universal Singular Set. Denote by [f ] the class of
f ∈ H0(X,

∧m ΘX⊗L)) in Σ = PH0(X,
∧m ΘX⊗L)), and define a subset of Σ×X

by

Y = {([f ], x) : [f ] ∈ Σ and x ∈ Sing(f)}.

Proposition 2.4. If
∧m ΘX ⊗ L is generated by global sections and

h0(X,
∧

mΘX ⊗ L) > rk(
∧

mΘX)

then Y is an irreducible subvariety of Σ×X of dimension

d + dim(Σ)−
(

d

m

)
.

Proof. It is clear that Y is a closed set, we must show that it is irreducible.
As in subsection 2.2, denote by T the trivial bundle with fiber H0(X,

∧m ΘX⊗L)
and by π : PT → X the standard projection. Since

∧m ΘX ⊗ L is generated by
global sections and h0(X,

∧m ΘX ⊗L) > rk(
∧m ΘX), there exists a surjective map

of vector bundles with nontrivial kernel u : T →
∧

mΘX ⊗L which takes (x, θ) ∈ T
to the vector θ(x) ∈ TxX. Moreover, since u is surjective, ker(u) is also a vector
bundle, and we have an exact sequence

π∗(ker u) // π∗(T)
π∗(u)// π∗(

∧m ΘX ⊗ L)

OT(−1).

j

OO

Now ([f ], x) ∈ Y if and only if π∗(u)j is zero when restricted to the fibre over ([f ], x).
Note that the zero scheme of π∗(u)j, which is Y, is isomorphic to P(ker(u)). But
P(ker(u)) is irreducible of dimension

dim(X) + h0(X,
∧

mΘX ⊗ L)− rk(
∧

mΘX)− 1 = d + dim(Σ)−
(

d

m

)
so the same holds for Y. �

The above result for X = Pn and m = 1 appeared in [8, Lemma 1.1].

Corollary 2.5. Let 2 ≤ m ≤ d− 2 be an integer and let f be a generic section of∧m ΘX ⊗ L. If
∧m ΘX ⊗ L is generated by global sections then:

(1) Sing(f) = ∅;
(2) any subscheme of Y invariant under m must have dimension at least m.

Proof. Let p : Σ×X → Σ be the projection on the first component of the product.
Since 2 ≤ m ≤ d−2, it follows from Proposition 2.4 that dim(Y) < dim(Σ). Hence,
p(Y) ( Σ. But, by the definition of Y we have that every f ∈ Σ \ p(Y) 6= ∅ has
an empty singular set. Now (2) follows from (1) and the fact that every closed
subscheme of X, invariant under a field of m-vectors and of dimension smaller than
m must be contained in Sing(f). �
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3. Local Analysis on the Singular Set

Let F be a foliation of X defined by the OX -homomorphism f : Ω1
X → L, where

L is a line bundle over X. Denote by (X, x) the germ of X at x. If x is a singularity
of F then, taking a local system of coordinates α : (Cd, 0) → (X, x), which maps 0
to x, we have the following commutative diagram:

Ω1
X,x

f //

α∗

��

Lx

α∗

��
Ω1

Cd,0
// OCd,0

In this way we can identify the foliation F on a neighbourhood of x with a germ
of section of Hom(Ω1

Cd ,OCd); that is, with a germ of holomorphic vector field Z

defined on a neighbourhood of 0 in Cd.
The algebraic multiplicity of Z at 0, or equivalently of F at x, denoted by m =

m(Z, 0) = m(F , x), is the total degree of the first nonzero jet of Z. In other words,

(3.1) Z =
+∞∑
i=m

Zi ,

where Zi is a homogeneous vector field of degree i, and Zm 6= 0. We say that 0 ∈ Cd

is a dicritical singularity of Z if m ≥ 0 and Zm is a multiple of the radial vector
field R =

∑d
i=1 xi∂/∂xi.

Twisting the Euler sequence [9, Example 8.20.1, p. 182] with OPd−1(m− 1), we
obtain

0 → OPd−1(m− 1) → OPd−1(m)d+1 → ΘPd−1(m− 1) → 0 ,

Thus, if Zm is not a multiple of R, then it induces a holomorphic foliation Fx

of Pd−1 with cotangent bundle given by OPd−1(m − 1). Let φ be the blowup of
Cd at 0. A simple computation shows that Fx coincides with the restriction to
φ−1(0) ∼= Pd−1 of φ∗(Z), the pullback of the (local) foliation induced by Z under
the blowup at 0. Note that the singular set of φ∗(Z) may have codimension 2 on the
underlying variety, while its restriction to the exceptional divisor has codimension
one.

Lemma 3.1. Let F be a foliation of X and let x ∈ X be a nondicritical singularity
of F . Denote by φ the blowup of X at x. If (W,x) is an irreducible germ of
subvariety invariant under F , then the restriction of W̃ , the strict transform of W
under φ, to the exceptional divisor φ−1(x) is invariant under Fx.

Proof. By hypothesis x is a nondicritical singularity and therefore the exceptional
divisor E = φ−1(x) is invariant under Fx. Since W̃ is invariant under Fx, so is its
intersection with E, and the lemma follows. �

Let Ξr be the coherent subsheaf of ΘX generated by the sections of ΘX whose
germs at x have algebraic multiplicity at least r. Denote by mx the sheaf of sections
of OX vanishing at x.

Lemma 3.2. Let x ∈ X and let G be a holomorphic foliation of Pd−1 of degree r,
i.e., G is induced by a global section of ΘPd−1(r − 1). If H1(X, Ξr ⊗ mx ⊗ L) = 0
then there exists a section of ΘX ⊗ L which induces a foliation F of X such that:
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(1) F has a singularity at x, and
(2) Fx = G.

Proof. Since the germ of a section of Ξr at x is given by equation (3.1) with m = r,
we have an exact sequence

0 → Ξr ⊗mx → Ξr → H0(Pd−1,OPd−1(r))d → 0 ,

where the rightmost sheaf is the skyscraper sheaf supported at x whose stalk is the
C-vector space H0(Pd−1,OPd−1(r))d.

Since H1(X, Ξr ⊗ mx ⊗ L) = 0, if Z ∈ H0(Pd−1,OPd−1(r))d is a homogeneous
vector field on Cd inducing G then there exists f ∈ H0(X, Ξr⊗L) ⊂ H0(X, ΘX⊗L)
inducing a foliation F of X with the required properties. �

Before stating the next lemma we need to recall some terminology from the local
theory of holomorphic foliations. Assume that the germ of vector field Z has an
isolated singularity at the origin. Let µ1, . . . , µd be the eigenvalues of the 1-jet of Z
at 0. Then, Z is in the Poincaré domain if the convex hull of µ1, . . . , µd in C does
not contain the origin. The singularity 0 of Z is hyperbolic if

µi/µj ∈ C \ R

for every 1 ≤ i < j ≤ d; and it is resonant if there exist non-negative integers
m1, . . . ,md such that

d∑
i=1

miµi = µj and
d∑

i=1

mi ≥ 2,

for some 1 ≤ j ≤ d. A germ of a vector field will be called adequate if it belongs to
the Poincaré domain, and if its singularity at 0 is nonresonant and hyperbolic. Let
Md(C) be the space of d× d matrices with coefficients in C, and let A ∈ Md(C). If
the linear vector field

Z = ZA = (x1, . . . , xd) ·A ·
(

∂

∂x1
, . . . ,

∂

∂xd

)T

,

is adequate, then we say that the matrix A is adequate. As the next lemma shows,
if we choose a matrix B that is sufficiently general, then I + εB is adequate for
small choices of ε.

Lemma 3.3. For most diagonal matrices B ∈ Md(C) there exists κ > 0 such that
the matrix I + εB is adequate for all ε ∈ (0, κ) ⊂ R.

Proof. Let β1, . . . , βd be the eigenvalues of B. Most diagonal matrices B ∈ Md(C)
satisfy

(1) 1, β1, . . . , βd are linearly independent over Q,
(2) B is hyperbolic; that is βi/βj ∈ C \ R, for 1 ≤ i < j ≤ d.

We claim that for every B satisfying the assumptions (1) and (2) there exists a
positive real number κ such that I + εB is adequate for every ε ∈ (0, κ).

By assumption (1), the matrix sI + tB is nonresonant for every [s : t] ∈ P1
R.

Since R is a closed subset of C in the real Zariski topology, it follows from (2) that

V = {[s : t] ∈ P1
R : sI + tB is not hyperbolic}
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is a proper closed subset of P1
R in the real Zariski topology. Therefore, V is finite.

Moreover, [1 : 0] ∈ V . Hence, there exists κ1 > 0 such that I + εB is nonresonant
and hyperbolic for every ε ∈ (0, κ1).

On the other hand,

U = {A ∈ Md(C) : A is in the Poincaré domain},
is an open subset of Md(C). Since the identity matrix belongs to U , there exists
κ2 > 0 such that I + εB is in the Poincaré domain for every ε ∈ (0, κ2). Now take
κ = min{κ1, κ2}. �

A germ of irreducible analytic curve Γ at 0 is called a separatrix of a vector field
germ Z if Γ is invariant under Z. In particular, Γ\{0} is a leaf of the local foliation
induced by Z. The following lemma is well-known to the experts, we include it here
only for the sake of completeness.

Lemma 3.4. Let Z be a germ of vector field in a neighbourhood of 0 ∈ Cd with
an isolated singularity at 0. If Z is adequate then it has exactly d separatrices at
0. Moreover, the topological closure of a leaf sufficiently close to 0 contains at least
one of the separatrices.

Proof. Since Z is adequate, it follows, by the Poincaré-Dulac Theorem [3, p. 183],
that there exists an analytic change of coordinates which carries Z to its linear
part. The remainder of the argument is a straightforward generalization to higher
dimensions of the two dimensional case dealt with in [22, Corollary 3.18]. �

4. Existence of Singularities without Algebraic Separatrices

Let x and y be two distinct points of X. Denote by ΘX,x,y the coherent subsheaf
of ΘX generated by the sections vanishing at x and y and by mx the sheaf of ideals
vanishing at x. Identifying Hom(TxX, TxX) with the skyscraper sheaf which has
this vector space as its stalk at x, we have an exact sequence,

(4.1) 0 → ΘX,x,y⊗mx⊗my → ΘX,x,y → Hom(TxX, TxX)⊕Hom(TyX, TyX) → 0.

Observe that the image of the last map in this sequence is obtained by taking the
linear part of the local vector fields at the singular points x and y.

Proposition 4.1. Let χ ∈ Q[t] and L be a line bundle. Suppose that

H1(X, ΘX,x,y ⊗mx ⊗my ⊗ L) = 0.

Then, there exists f ∈ ΘX ⊗ L such that the corresponding foliation F of X has a
singularity at x which is not contained in any algebraic curve with Hilbert polynomial
χ that is invariant under f .

Proof. We begin by fixing some notation. If x ∈ X, then Hom(TxX, TxX) ∼=
Md(C). Choose y 6= x in X, and A ∈ Hom(TyX, TyX) such that the corresponding
matrix is adequate; see section 3 for the definition. Let

λ : Md(C) → Hom(TxX, TxX)⊕Hom(TyX, TyX)

be given by λ(B) = (B + Id, A) where B ∈ Hom(TxX, TxX). By hypothesis
H1(X, Θx,y ⊗ mx ⊗ my ⊗ L) = 0. Thus, it follows from the long exact sequence
derived from (4.1) that λ lifts to a morphism Λ : Md(C) → H0(X, ΘX ⊗ L).

Let φ : X → X be the blowup of X at x, and extend it to a morphism

Φ : Σ×X → Σ×X,
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by Φ(θ, z) = (θ, φ(z)). Denote by S the Zariski closure of Φ−1(Sχ \ (Σ × {x})) in
Σ×X. On the other hand, given a matrix B ∈ Md(C), let

Xε = Sχ ∩ ([Λ(εB)]×X).

Since Sχ is closed by Lemma 2.3 it follows that Xε is also closed. Denote by Xε the
Zariski closure of Φ−1(Xε \ {(Λ(εB), x)}). We identify the set

Dε = Φ−1(Λ(εB)× {x}) ∩ Xε,

with a subset of the exceptional divisor E = φ−1(x) ∼= Pd−1. Thus, every point of
Dε corresponds to a separatrix of Λ(εB) passing through x, and contained in the
support of subschemes with Hilbert polynomial χ that are left invariant by Λ(εB).

Let Σx ⊂ Σ be the subset of foliations with a singularity at x. Suppose now that,
for every foliation [θ] ∈ Σx = P(H0(X, ΘX,x ⊗ L)) there exists a one dimensional
subscheme, with Hilbert polynomial χ, that is invariant under θ and contains x.
We will aim at a contradiction.

We show first that D0 = E. Note that the singularity of Λ(0) at x has the
identity as its linear part. Thus, the origin is a nonresonant singularity of Λ(0)
that belongs to the Poincaré domain. Hence, by the Poincaré-Dulac Theorem [3, p.
183], Λ(0) is locally conjugated to the foliation induced by the radial vector field.
Therefore, for every line ` through the origin of the tangent space of X at x, the
foliation Λ(0) has a smooth separatrix through x whose tangent is `.

Suppose, by contradiction, that D0 is a proper closed subset of E. Fix a basis
β of TxX such that the d points of E determined by this basis are disjoint from
D0. Once we have fixed a basis we have a natural identification of Hom(TxX, TxX)
with Md(C). By Lemma 3.3 there exists a diagonal matrix B ∈ Hom(TxX, TxX)
and a positive real number κ such that Λ(εB) is adequate at x for all 0 < ε < κ.

Let Fε be the foliation associated to Λ(εB). Thus, Fε has an isolated singularity
at x. Moreover, this singularity is adequate for all ε ∈ (0, κ). Hence, by Lemma 3.4,
Fε has precisely d separatrices at x whose tangents at x correspond to the vectors
of β. Thus, the points of Dε correspond to the one dimensional subschemes with
Hilbert polynomial χ that are invariant under Fε and tangent to some vector of β
at x. Note that, by hypothesis, Dε 6= ∅. Since β is finite, there exists p ∈ Dε and
an infinite sequence εk such that

lim
k→∞

εk = 0 and (Λ(εkB), p) ∈ S.

But S is a closed set, so that

lim
k→∞

(Λ(εkB), p) = (Λ(0), p) ∈ S.

In particular, there exists a one dimensional subscheme with Hilbert polynomial χ
that is invariant under Fε and tangent to some vector of β at x. This contradicts
the choice of β and shows that D0 = E.

But if D0 = E, then X0 is a Zariski closed set which contains a full analytic
neighbourhood of [Λ(0)]× {x}. Thus X0 = [Λ(0)]×X. In particular, every leaf of
F0 is algebraic. However, it follows from the hypotheses on A and from Lemma 3.4
that the foliation Λ(0) has an isolated singularity at y, analytically conjugated to
the foliation of Cd determined by the linear vector field induced by A. Moreover,
this foliation has exactly d separatrices, and every leaf of Λ(0) that is sufficiently
close to y contains at least one of the separatrices on its closure. Therefore, the
leaves that are sufficiently close to y, and that are not contained in one of the d
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separatrices, must be nonalgebraic. But this contradicts the fact that all leaves are
algebraic, thus proving the proposition.

�

5. Singularities Meet Invariant Subschemes

Lemma 5.1. Let F be a foliation of X. If W is an irreducible closed subvariety
of X invariant under F then the singular locus of W is invariant under F . In
particular, if the singularities of W are isolated then

Sing(W ) ⊂ Sing(F).

Proof. We may assume, without loss of generality, that W is a subvariety of X
whose singular locus is not contained in Sing(F). Thus, in order to prove the
global statement it is enough to show that Sing(W ) is invariant under F in the
neighbourhood of every point which is not a singularity of F .

Let p ∈ Sing(W ) \ Sing(F), and let U be a neighbourhood of p over which F|U
is described by a nowhere vanishing holomorphic vector field Z. Let V ⊂ U be a
neighbourhood of p where the local flow of Z is defined. In other words, there exists
a holomorphic map Φ : (C, 0)×V → U such that for every t, Φ(t, ·) is biholomorphic
onto its image and

(5.1)
d

dt
Φ(t, z) = Z(Φ(t, z)) and Φ(0, z) = z.

Since W is invariant under Z it follows that Φ(t, W ∩ V ) ⊂ W ∩ U , for every
t ∈ (C, 0). Moreover, Φ(t, ·) is a biholomorphism, so it must preserve the singular
set of W . In other words,

Φ(t, Sing(W ) ∩ V ) ⊂ Sing(W ) ∩ U,

for every t ∈ (C, 0). This proves that Sing(W ) is invariant under F .
When p is an isolated singularity of W we have that Φ(t, p) = p, for every

t ∈ (C, 0). Together with (5.1) this implies that Z(p) = 0, which shows that every
isolated singularity of W must be a singularity of F . �

Lemma 5.2. Let G be a foliation of X such that the determinant of its normal sheaf
is ample. If an irreducible smooth closed algebraic subvariety V of X is invariant
under G then Sing(G) ∩ V 6= ∅.

Proof. Suppose, by contradiction, that G does not have singularities on V . Then,
by [21, Theorem 6.4, p. 195 ], any polynomial of degree n = dim(V ) on the Chern
classes of the normal sheaf NG must vanish when restricted to V . In particular,

c1(NG)n · V = det(NG)n · V = 0,

which contradicts the ampleness of det(NG). �

Proposition 5.3. Let θ ∈ H0(X, ΘX⊗L) for some line bundle L such that K∨
X⊗L

is ample. If Sing(θ) has codimension at least 2 and W is a closed subscheme of X
invariant under θ then W ∩ Sing(θ) 6= ∅.

Proof. By the adjunction formula (2.1) we have that

det(NF ) = K∨
X ⊗ L .

Thus det(NF ) is an ample line bundle. If W is contained in the singular set of θ,
then there is nothing to do. Otherwise, W is invariant under F , the foliation of
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X induced by θ. But this implies that each irreducible component of the reduced
scheme Wred is also invariant under F . Therefore, we may assume that W is an
irreducible closed subvariety of X.

We proceed by induction on dim(W ). If dim(W ) = 0 then W is an invariant
point, hence a singularity of F . Suppose that the result holds for all invariant closed
subvarieties of dimension less than r. If W is an invariant subvariety of dimension
r, then either W is smooth, or it has a singularity set V of dimension smaller than
r. In the first case, the result follows from Lemma 5.2. If W is singular, then its
singularity set V is invariant under F by Lemma 5.1. Thus,

∅ 6= V ∩ Sing(F) ⊆ W ∩ Sing(F),

by the induction hypothesis; and the proposition is proved. �

6. Proof of Main Theorem

The following notation will hold throughout this section. Let L be an ample line
bundle and choose k > 0 such that

(1) ΘX ⊗ L⊗k is generated by its global sections;
(2) K∨

X ⊗ L⊗k is ample;
(3) H1(X, ΘX,x,y ⊗mx ⊗my ⊗L⊗k) = 0 for some distinct points x, y ∈ X (see

section 4 for the definition of Θx,y);
(4) H1(X, Ξ2 ⊗ mz ⊗ L⊗k) = 0 for some point z ∈ X (see section 3 for the

definition of Ξr).
Note that it follows from Serre’s Vanishing Theorem that all the conditions above
are automatically satisfied for k � 0. Note also that (1) together with (3) imply
h0(X, ΘX ⊗ L⊗k) > rk(ΘX); and that for (X,L) = (Pd,OPd(1)) we can choose
k = 1.

Write Σ = P(H0(X, ΘX ⊗ L⊗k)). The class of f ∈ H0(X, ΘX ⊗ L⊗k) in Σ will
be denoted by [f ]. Before we proceed, recall from sections 2.2 and 2.3 that for a
given χ ∈ Q[t] we have two subsets of Σ×X, namely

S = {([f ], x) : x is in a subscheme, invariant under f , of Hilbert polynomial χ}.

and
Y = {([f ], x) : [f ] ∈ Σ and x ∈ Sing(f)}.

We will write Sχ if we need to call attention to the corresponding Hilbert poly-
nomial. Let p be the restriction to the subvariety S of the projection of Σ×X on
the first coordinate.

Lemma 6.1. Let U ⊂ Σ be an open Zariski subset. Suppose that
(1) p−1([f ]) ∩ Sing(f) 6= ∅ for every [f ] ∈ U for which p−1([f ]) 6= ∅, and that
(2) there exists a foliation F of X with cotangent bundle L⊗k and a singularity

x of F which is not contained in any positive dimensional closed subscheme
of X with Hilbert polynomial χ invariant under F .

Then p(S) is a proper closed subset of Σ.

Proof. Since p is a proper map, it is enough to show that p(S) 6= Σ. We will assume,
by contradiction, that p(S) = Σ. Thus, for every [f ] ∈ Σ the subvariety p−1([f ]) is
invariant under f . Moreover, (1) implies that p(S ∩ Y) ⊇ U and therefore

p(S ∩ Y) = Σ.
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Since dim(Y) = dim(Σ), it follows that dim(S ∩ Y) = dim(Y). However, Y is
irreducible by Proposition 2.4, therefore S ∩ Y = Y. This means that given f ∈ Σ
and x ∈ Sing(f), there exists a closed subscheme Cx of X, with Hilbert polynomial
χ such that x ∈ Cx, which contradicts (2). �

We are ready to prove Theorem 1.1

Proof of Theorem 1.1 For every (d, r) ∈ N2 with d ≥ 2 and 1 ≤ r ≤ d− 1, consider
the following statement:

A(d, r): if X is a d-dimensional smooth projective variety and L is an ample line
bundle then a very generic section of ΘX ⊗L⊗k does not have any invariant closed
r-dimensional subschemes.

Note, first of all, that since Σ is irreducible, and since there are only countably
many Hilbert polynomials, then A(d, r) follows if we prove that

p(Sχ) 6= Σ = P(H0(X, ΘX ⊗ L⊗k)),

for all χ ∈ Q[t] of degree r. Thus we may assume, from now on, that χ ∈ Q[t] is
such a polynomial.

We begin by proving that A(d, 1) holds for all d ≥ 2. Suppose that χ has degree
one. It follows from Proposition 5.3 that

p−1([f ]) ∩ Sing([f ]) 6= ∅

for every [f ] ∈ U ⊂ Σ, where U is the set of foliations whose singular sets have
codimension at least 2. Thus, by Proposition 4.1 and Lemma 6.1, p(Sχ) is a proper
closed subset of Σ. As we noted above this is enough to prove A(d, 1).

In order to prove the theorem by induction it is enough to show that A(d, r)
follows from A(d − 1, r − 1), for every r ≥ 2. But, just as in the case r = 1 dealt
with above, A(d, r) follows from Proposition 5.3 and Lemma 6.1 if we prove the
following statement

there exists a foliation F of X, with cotangent bundle L⊗k, and a
singularity x of F which is not contained in any closed r-dimensional
subscheme of X invariant under F .

The case d = 2 is covered by A(d, 1). We show that for d ≥ 3, the statement
follows from A(d − 1, r − 1) applied to X = Pd−1. If f is a very generic section
of ΘPd−1(k) then A(d − 1, r − 1) implies that the only proper closed subschemes
invariant under f are its singularities. By Lemma 3.2 there exists a foliation F of
X, singular at x, and such that, restricting the pullback of F under the blowup at
x to the exceptional divisor, we get the foliation induced by f .

If there exists a germ of r-dimensional subvariety at x invariant under F then,
by Lemma 3.1, f admits a proper invariant algebraic set of dimension r − 1. But
this is impossible by the choice of f . Therefore x is a singularity of F which is not
contained in any invariant r-dimensional germ of subvariety. We have proved the
statement above, and the proof of the theorem is complete.

Remark. In the above proof, the integer k depends on the variety X and on the line
bundle L. However, the choice of k does not interfere with the inductive step since
we use that A(d− 1, r− 1) holds only for Pd−1. Moreover, the induction argument
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also shows that, for the projective space Pd−1, the result is true for L = OPd−1(1)
and for every k ≥ 1.

7. Density of Pfaff Equations without Algebraic Solutions

Let k � 0 and m be positive integers. As in section 2, L denotes an ample line
bundle, and Σ the projective space P(H0(X,

∧m ΘX ⊗L⊗k)). For i = 1, . . . ,m, let
ki � 0, be positive integers which add up to k, and write

Ψ :
m⊕

i=1

H0(X, ΘX ⊗ L⊗ki) → H0(X,
∧

mΘX ⊗ L⊗k)

for the natural map.

Lemma 7.1. For i = 1, . . . ,m, let ki � 0, be positive integers which add up to k.
If f is a generic element of

⊕m
i=1 H0(X, ΘX ⊗ L⊗ki) then

dim Sing(Ψ(f)) = m− 1.

Proof. For m = 1 the result follows from Proposition 2.4. Suppose that the result
holds for m−1 and let g = (g1, . . . , gm−1) be an element of

⊕m−1
i=1 H0(X, ΘX⊗Lki)

such that
dim Sing(Ψ(g)) = m− 2.

Denote by U the complement of Sing(Ψ(g)) in X. Consider the trivial bundle
TU over U with fibre H0(U,ΘU ⊗L⊗km

|U ). Since the codimension of Sing(Ψ(g)) is at

least 2, it follows that H0(X, ΘX ⊗ L⊗km) ∼= H0(U,ΘU ⊗ L⊗km

|U ). Thus, TU is the
restriction to U of the bundle T defined in section 2. Once again we have a map of
vector bundles u : TU →

∧m
TU ⊗ L⊗k

|U , of constant rank, which takes (x, θ) ∈ TU

to the m-vector (g ∧ θ)(x) ∈
∧m

TxU . Hence, ker(u) has dimension

dim X + h0(U,ΘU ⊗ L⊗k
|U )− rank(Im(u)).

But, rank(Im(u)) = dim X−(m−1), so that dim ker(u) = h0(U,ΘU⊗L⊗k
|U )+(m−1).

Thus for a generic θ,
dim Sing(Ψ(g ∧ θ)) = m− 1 .

�

We may now prove the main result of this section.

Proposition 7.2. Let L be an ample line bundle. Suppose that k � 0 is an integer
and that f is a very generic section of

∧m ΘX ⊗ L⊗k.
(1) If 1 ≤ m ≤ d − 1, then f has no proper invariant algebraic subvarieties of

nonzero dimension.
(2) If 2 ≤ m ≤ d− 2, then f has no singular points.

Proof. If m = 1 then the theorem has already been proved, so we may assume that
m > 1.

Since Q[t] is a countable set, it is enough to prove that, for a given χ ∈ Q[t],
the generic field of m-vectors does not have any invariant subvariety of Hilbert
polynomial χ.

But the set of m-vectors which do not admit an invariant closed subvariety of
Hilbert polynomial χ is open in Σ by Proposition 2.1. Thus, the result follows if
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we prove that this open set is nonempty. If m > deg(χ) this is a consequence of
Corollary 2.5. So we may assume that m ≤ deg(χ).

For 1 ≤ i ≤ m choose integers ki � 0 which add up to k. It follows from Theorem
1.1 that there exist sections gi of ΘX⊗L⊗ki which do not have any proper invariant
closed algebraic subvarieties apart from their singularities. Write g = (g1, . . . , gm).
By Lemma 7.1 the singularity set of Ψ(g) has dimension m−1 < d. But, if a proper
closed subvariety Y of X, invariant under Ψ(g), goes through a non-singular point
of Ψ(g) then it must be invariant under each gi. Thus dim Y = 0 and the proof of
(1) is complete. (2) follows from Corollary 2.5.

�

8. Dynamical Characterization of Ampleness

We will use some results of the birational theory of foliations. For more in-
formation on the subject see [15, 17], and specially the last three chapters of [4].
Throughout this section S denotes a smooth complex projective surface and F a
foliation f : Ω1

S → L over S.
Let C be a curve on S and p a point of C. Denote by Op the local algebra of

S at p. If the curve has local equation f = 0 and the foliation is described by a
vector field v in a neighbourhood of p, let

tang(F , C, p) = dimC
Op

(f, v(f))
.

Note that this number is 0 except at the finite number of points where f is not
transverse to C. Define the tangency number between F and C by

tang(F , C) =
∑
p∈C

tang(F , C, p).

Lemma 8.1. If F is a foliation without algebraic invariant curves, then L ·C ≥ 0
for every irreducible curve C.

Proof. By Miyaoka’s Theorem [4, Theorem 7.1, p. 89] L is pseudo-effective. Thus,
by [7, Theorem 1.12, p. 108], L can be decomposed in the form P + N , where P
is a semi-positive Q-divisor and P ·C = 0 for each irreducible component C of the
support of N . The result follows if we show that the support of N is empty.

Assume, by contradiction, that the support of N is nonempty. Then, by [7,
Theorem 1.12(c), p. 108] it contains an irreducible component E such that L·E < 0
and E2 < 0. Since F does not have any invariant algebraic curves, E cannot be
invariant under F . Then, by [4, Proposition 2.2, p.23],

L · E = tang(F , E)− E2,

so that L · E > 0, contradicting the choice of E. �

Proof of Theorem 1.2 Let F be a foliation of S with no algebraic invariant curves
and suppose that L · C = 0 for some irreducible curve C on S. Since L2 > 0, by
hypothesis, it follows from the Hodge Index Theorem [9, Theorem 1.9 , p. 364] that
C2 < 0. However, [4, Proposition 2.2, p.23] implies that C2 = tang(F , C) ≥ 0, and
we conclude that there exists no such C. Hence, it follows from Lemma 8.1 that
L · C > 0 for every irreducible curve C. Thus L is ample by the Nakai-Moishezon
criterion [9, Theorem 1.10,p. 365]. The converse is a straightforward consequence
of the main theorem. �
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