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Abstract. We investigate the interplay between invariant varieties of vector
fields and the inflection locus of linear systems with respect to the vector
field. Among the consequences of such investigation we obtain a computational
criteria for the existence of rational first integrals of a given degree, bounds for
the number of first integrals on families of vector fields and a generalization of
Darboux’s criteria. We also provide a new proof of Gomez–Mont’s result on
foliations with all leaves algebraic.

1. Introduction

When studying algebraic curves one of the most fruitfull concept is the one of
inflection and higher order inflection points. For a smooth plane curve, i.e. a smooth
compact Riemann surface embedded in P2

C, the inflection points are precisely the
points were the tangent line has contact of order at least 3 with the curve. If C is
a curve then a point p ∈ C is an inflection point of order d if there exist an curve
of degree d that has higher order contact with the curve C at p. Here higher order
contact means that the order of contact is at least the dimension of the vector space
of polynomials of degree at most d.

For plane curves, the inflections points are computed through the Hessian and
the higher order inflection points are not so easy to obtain. As far as the author
knows, the first mathematician to pursue the question of determining higher order
inflection points for plane curves was Cayley, see [3]. He succeed in giving a formula
for the inflection points of order two. Although, the formula obtained by Cayley is
not very simple.

According to Cukierman the problem of giving formulas for inflection points of
order greater than three of plane curves does not seem to have been solved in the
classical literature. In [4], he gives an approach to obtain ”almost explicit” formulas
for the higher order inflection points of plane curves and complete intersection
curves on some projective space.

The goal of the first part of this paper is to introduce and show how to compute
inflection and higher order inflection points for holomorphic vector fields on the
complex projective plane. In more concrete terms, given a vector field X on P2

C,
we define effective divisors Ed(X) on P2

C, such that the restriction of the divisor to
any solution of the vector field X coincides with the inflection points of order d of
the solution.

In contrast with the case of plane curves, the formulas obtained for Ed(X) are
not very complicated. At first sight this seems to be paradoxical, but if C is a
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smooth algebraic curve invariant by the algebraic vector field X, then the divisor
Ed(X) restricted to the curve gives something more than the inflection points of
order d of the curve C. The fact is that besides the inflection points of order d,
Ed(X)|C also contains the singularities of the vector field along C.

The initial motivation for introducing such concepts was to have a tool for de-
tecting invariant algebraic curves of a given degree d of a vector field X, and bound
their number in function of d and the degree of X. In fact using the divisors Ed(X),
which we call extactic curves, we obtain such bounds. These bounds turn out to
be of different nature of Jouanolou’s bound which are obtained through Darboux’s
approach, see [7].

Among the applications of the extactic curves, one can find a computational
criteria for the existence of first integral of a given degree and some properties of
families of foliations on P2

C.
Since we believe that the concepts here introduced may be useful for studying

concrete examples of real and complex algebraic vector fields, we try to be as explicit
as possible in the first part of paper.

In the second part we use a more intrinsic approach and generalize the concepts
and some of the results for vector fields on arbitrary complex manifolds.

Developing the concepts in such generality we show that we can use our methods
to detect a class of solutions more general than the algebraic class. One illustrative
result of the method is a generalization of Darboux’s criteria for the existence of
first integrals in the spirit of [10]. Using the same sort of ideas we also obtain a
new proof of a result proved in [6] by Gomez–Mont about foliations with all leaves
algebraic.

I would like to thank P. Nogueira, for her help in working out the formal definition
of extactic divisors, L.G. Mendes, for showing me reference [5], and specially E.
Esteves for many helpful discussions about linear systems, inflection points and
algebraic vector fields.

Part 1. Extactic Curves on the Projective Plane

2. Affine and Projective polynomial Vector Fields

If X is a polynomial vector field on C2, then X can be written, in a unique way,
as

X = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y
+ g(x, y)

(
x

∂

∂x
+ y

∂

∂y

)
,

where g is a homogeneous polynomial of degree d and a, b are polynomials of degree
at most d. We define d as the degree of the vector field. When g is identically zero
we say that the line at infinity is invariant.

If we consider the homogeneous polynomials

a(x, y, z) = zd · a
(x

z
,
y

z

)
and b(x, y, z) = zd · b

(x

z
,
y

z

)
,

then the vector field

X = a(x, y, z)
∂

∂x
+ b(x, y, z)

∂

∂y
+ g(x, y, z)

∂

∂z

is a projectivization of X. If Y is any other projectivization of X then X − Y is a
multiple of the radial(or Euler) vector field R = x ∂

∂x + y ∂
∂y + z ∂

∂z .
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Reciprocally, if Y is a polynomial vector field on C3 with homogeneous coeffi-
cients then Y induces via the radial projection a field of directions on P2

C. Observe
that any homogeneous vector field on C3 whose difference with Y is a multiple of
the radial vector field, induces the same field of directions on P2

C. We abuse the
language and say that such a field of directions is a projective vector field, or just
a vector field on P2

C.

3. Higher order inflection Curves of Vector Fields on P2
C

In this section we define the extactic curves, Ed for d ∈ N, for vector fields on P2
C.

These curves describe the inflection and higher order inflection points for solutions
of the vector field.

3.1. Extactic points of plane curves.

Definition 1. A n-inflection point of a curve in P2
C is a point where the multiplicity

of intersection of the curve with some algebraic curve of degree n is greater than

d(n) =
n(n + 3)

2
.

Note that d(n) is the dimension of the space of plane curves of degree n.

We use the term extactic point following V.I. Arnold, see [1].

Remark 1. Observe that when C is an algebraic curve in P2
C or P2

R, if every point
of C is a n-inflection point then the degree of C is at most n.

3.2. Extactic curves of vector fields. Our purpose is to describe in an uni-
fied way the inflections and higher–order inflections points of the solutions of the
vector field. If X = a(x, y) ∂

∂x + b(x, y) ∂
∂y is a vector field on C2 and (x, y(x)) a

parametrization of a solution we have that det ( a b
1 dy

dx
) = a dy

dx (x)− b = 0. Therefore,
dy
dx = b

a . To obtain the inflections of the curve (x, y(x)) we have to calculate the
determinant:

det

[
1 dy

dx

0 d2y
dx2

]
=

d

dx

b(x, y(x))
a(x, y(x))

=
( ∂a

∂x + ∂a
∂y

a
b )b− ( ∂b

∂x + ∂b
∂y

a
b )a

a2

Hence, in the open set C2 \ (a(x, y) = 0), the inflections points of the solutions
describe a curve given by the expression above. In an analogous manner we can
get equations for the inflection curve in the open set C2 − (b(x, y) = 0).

To calculate the 2-inflection points of the solutions we consider the image of the
curve (x, y(x)) under the 2-Veronese map. Such image is the curve parametrized
by

(x, x2, x · y(x), y(x), y(x)2)
in C5. If we calculate its flattening points we obtain the 2-inflection points of the
solution. Such calculation can be done evaluating the determinant of the matrix,




1 2x dxy(x)
dx

dy(x)
dx

dy(x)2

dx

0 2 d2xy(x)
dx2

d2y(x)
dx2

d2y(x)2

dx2

0 0 d3xy(x)
dx3

d3y(x)
dx3

d3y(x)2

dx3

0 0 d4xy(x)
dx4

d4y(x)
dx4

d4y(x)2

dx4

0 0 d5xy(x)
dx5

d5y(x)
dx5

d5y(x)2

dx5




.
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The n-inflection points can be obtained through the use of the n-Veronese map in
a completely similar way.

Until now we have been working locally, although it is possible to give global
expressions, on P2

C for these n-inflection curves. If X = A ∂
∂x + B ∂

∂y + C ∂
∂z is a

homogeneous vector field in C3 then the equation for the inflection curve, or the
first extactic curve (which we will denote by E1(X)) of the induced foliation on P2

C
is:

(1) E1(X) = det




x y z
X(x) X(y) X(z)
X2(x) X2(y) X2(z)


 ,

where Xk(f) = X(Xk−1(f)), for any polynomial f .

Example 1. Let

X = (x3 − z3)x
∂

∂x
+ (y3 − z3)y

∂

∂y
,

Y = −y2z2 ∂

∂x
+−x2z2 ∂

∂y
+ x2y2 ∂

∂z

and Z = tX + sY , (s, t) ∈ C2 and s · t 6= 0, be a projectivization of Lins Neto’s
example [8]. Then

E1(Z) = 2L9 · (t2sy3 − xyzs3 + 2xyzt3 + z3t2s + st2x3),

where L9 = (x3 − y3)(x3 − z3)(y3 − z3). Observe that the nine invariant lines for
any Z are contained in the first extactic curve of Z.

To understand why formula (1) works, suppose p ∈ C3 is a non–singular point
of X. Here non-singular means that the vector field X is not colinear with the
radial vector at p, or in other terms p is a non–singular point of the codimension
one foliation of C3 induced by X and R. By the existence of local solutions for
ordinary differential equations there is a germ of curve V around p ∈ C3 which is
a local orbit of X. As consequence the vector field X restricts to V ,which means
that X acts as a derivation on the local functions of V . Since V ,seen as a germ
of projective curve, has dimension 1 the restriction of X to V can be seen as the
derivative of a local parameter t. Hence formula (1) can be written on V as:

E1(X)|V (t) = det




x(t) y(t) z(t)
∂x(t)

∂t
∂y(t)

∂t
∂z(t)

∂t
∂2x(t)

∂t2
∂2y(t)

∂t2
∂2z(t)

∂t2


 ,

and in fact represents the infection points of V in a neighborhood of p.
Similarly, we have a global equation for the curve of 2-inflection points of the

vector field, or the second extactic curve E2(X), which is the determinant of :



x2 xy xz y2 yz z2

X(x2) X(xy) X(xz) X(y2) X(yz) X(z2)
X2(x2) X2(xy) X2(xz) X2(y2) X2(yz) X2(z2)
X3(x2) X3(xy) X3(xz) X3(y2) X3(yz) X3(z2)
X4(x2) X4(xy) X4(xz) X4(y2) X4(yz) X4(z2)
X5(x2) X5(xy) X5(xz) X5(y2) X5(yz) X5(z2)
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The d-th extactic curve Ed(X) can be described in a completely similar way. The
equation of Ed(X) is given by the determinant of a matrix such that the first row
is formed by a basis of the monomials in x, y and z of degree d, and the i-th row is
the derivation X applied in the (i− 1)-th row.

Proposition 1. Every algebraic curve of degree n invariant by the vector field X
is a factor of En(X).

Proof: Let F be an invariant algebraic curve of degree n. Since the choice of the
basis of the C–vector space plays no role in the definition of extactic curve, we can
choose a basis where F appears. Since

X(F ) = LF F ,
X2(F ) = X(LF F ) =

(
L2

F + X(LF )
)
F ,

Xk(F ) = X(Xk−1(F )) = ( polynomial ) F ,

where LF is a polynomial, one can see that F is a factor of En(X).

Theorem 1. X admits a first integral of degree d, but do not admit a first integral
of degree smaller than d if, and only if, Ed(X) = 0 and Ed−1(X) 6= 0.

Proof: Let p ∈ P2
C be a non-singular point of X. Suppose that the solution passing

through p is parametrized, locally, by (x, y(x)). Since Ed(X) vanishes identically,
the composition of our local solution with the d-Veronese map is contained in a
hyperplane, so (x, y(x)) must be contained in an algebraic curve of degree at most
d. Since every leaf is algebraic it follows from Darboux’s Criteria, see [10], that X
admits a first integral of degree at most d. The fact that Ed−1(X) 6= 0 implies that
the generical solution is of degree at least d.

If X admits a first integral of degree d then every invariant curve is of degree
at most d and hence every point is a d-inflection point, i.e., Ed(X) = 0. Since not
every invariant curve has degree d− 1, Ed(X) 6= 0.

From the Theorem 1 and the Proposition 1 we derive:

Theorem 2. Let X a vector field in P2
C. For every d ∈ N the equations of possibles

invariant curves of degree less than or equal to d appear as factors of Ed(X), and
if Ed(X) = 0 then X has a meromorphic first integral of degree at most d.

4. Counting algebraic solutions and field of definition of the
invariant curves

Jouanolou in [7] shows that a vector field of degree d on P2
C without rational

first integral has at most d(d + 2)/2 irreducible algebraic solutions. Observe that
he does not make any assumption on the degree of the algebraic leaves.

Using the extactic curves we are able to obtain different bounds for the number
of irreducible algebraic solutions. If X is a vector field on P2

C and we denote by
ni(X) the number of irreducible algebraic solutions of degree i of X the following
proposition holds.

Proposition 2. Let X be a homogeneous vector field, P2
C, of degree d. If it does

not have a first integral of degree ≤ n then
n∑

i=1

i · ni(X) ≤ d(n4 + 6n3 + 11n2 + 6n)− n4 − 2n3 + n2 + 2n

8
.
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Proof: One has just to observe that the left hand side of the inequality is bounded
by the degree of En(X). Since the space of monomials in x, y, z of degree n is
(n + 22), we have that the degree of En(X) is

( n+2
2

)−1∑

i=0

i(d− 1) + n = (( n+2
2 ))n + (d− 1)

( n+2
2 )(( n+2

2 )− 1)
2

=

=
d(n4 + 6n3 + 11n2 + 6n)− n4 − 2n3 + n2 + 2n

8
.

Corollary 1. Let X be a homogeneous vector field, P2
C, of degree d. If it does not

have a rational first integral of degree ≤ n then it has at most

d(n3 + 6n2 + 11n + 6)− n3 − 2n2 + n + 2
8

invariant curves of degree n.

Proof: If C is an invariant curve of degree n then C is contained in En(X), so we
have at most

deg(En(X))
n

=
d(n3 + 6n2 + 11n + 6)− n3 − 2n2 + n + 2

8
invariant curves of degree n.

Example 2. Applying Proposition 2 to bound the number of invariant lines of a
vector field X, one can see that

n1(X) ≤ 3 · deg(X) .

This bound turns out to be sharp. For example, for each d ∈ N, consider the vector
fields Xd on P2

C, given in homogeneous coordinates by

Xd =
(
xd−1 − zd−1

)
x

∂

∂x
+

(
yd−1 − zd−1

)
y

∂

∂y
.

Then Xd leaves invariant the algebraic curve Cd, cutted out by the polynomial

Fd = xyz(xd−1 − zd−1)(yd−1 − zd−1)(xd−1 − yd−1) .

Since Fd can be expressed as a product of 3d distinct lines and Fd = E1(Xd), we
conclude that the vector field Xd admits exactly 3d invariant lines.

Observe that the same bound holds for real vector fields on RP (2). Although,
the sharpness fails. To understand better why this happens see [2]. ¤

Using the same methods we can obtain smaller bounds if we try to count, for
example, straight lines passing through a given point p. Instead of looking for the
solutions in the 3–dimensional vector space of lines, we have just to look for in the
codimension one subspace of lines passing through p. For example, if p = [0 : 0 :
1] ∈ P2

C then equation of any invariant line passing through p will appear as a factor
of the determinant of the following matrix:[

x y
X(x) X(y)

]
.

Hence, if the X has degree d, then the number of invariant lines passing through a
given point p is at most d + 1.
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Suppose now that we have an algebraic vector field on C2, and that its coefficients
are in a normal subfield K of C. The following question naturally arises: what can
be said about the field of definition of the invariant algebraic curves? In other
terms: what is the smallest extension L of K such that any invariant curve can be
defined by a polynomial with coefficients in L?

We can use the bounds for the number of invariant curves to obtain bounds on
the algebraic degree of the field of definition of algebraic invariant curves.

Proposition 3. Let K ⊂ C be a normal extension of Q and X = a ∂
∂x + b ∂

∂y

be a vector field on C2 of degree d, where a, b ∈ K[x, y]. Suppose that exists an
invariant algebraic curve of degree l, cutted out by a polynomial f ∈ L[x, y], where
L is a normal extension of K contained in C, that cannot be defined in any normal
subfield of L. If

[L : K] > min
(

d(n4 + 6n3 + 11n2 + 6n)− n4 − 2n3 + n2 + 2n

8
,
d(d + 2)

2

)
,

then X admits a first integral.

Proof: Since f is invariant by X, we have that X(f) = Lf · f , for some polynomial
Lf ∈ L[x, y]. Applying the Galois automorphisms of the extension [L : K], we
obtain [L : K] distinct invariant algebraic curves of degree l. Hence the Theorem
follows by Jouanolou’s bound and Proposition 2.

5. Families of holomorphic foliations on P2
C

In [8], Lins–Neto shows the existence of some very special families of foliations on
P2
C parametrized by the projective line. One interesting properties of such families

is that not all foliations admits a rational first integral, but for a dense set E in the
parameter space the corresponding foliation has a rational first integral. Since the
set in the parameter space admitting a rational first integral of degree at most d,
for a fixed positive integer d, is algebraic, we have that the rational first integrals
in the family have unbounded degree and E admits the filtration

E =
⋃

d∈N
Ed ,

where p ∈ Ed if, and only if the foliation corresponding to p admits a rational first
integral of degree at most d.

In remark 4 of [8], Lins Neto says that ”would be interesting to know what kinds
of properties this set has”. Here, we use the extactic curves to bound the growth of
the cardinality of Ed for any family of foliations parametrized by a projective line.

Definition 2. Let C ⊂ Fol(k) be a algebraic curve included in the space of folia-
tions of degree k. We define the counting function of C,

πC : N→ N ∪+∞,

by the following rule : πC(d) = n if the number of points in C representing a
foliation with rational first integral of degree at most d is exactly n.

Example 3. Let X = x ∂
∂x and Y = y ∂

∂y be vector fields on C2. The family of
vector fields tX + sY can be seen as CP (1) linearly embedded in Fol(1), which
we will denote by C. Whenever the ratio of t and s is a rational number then
tX + sY admits a rational first integral. Suppose that t/s = p/q and p and q do
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not have common factors. If t/s is positive then the degree of the first integral is
the maximum between p and q, otherwise it is |p|+ |q|.

¿From the considerations of the previous paragraph we can show that

πC(n) ≤ K · n2.

Considering a family of foliations parametrized by a projective line linearly em-
bedded in the space of foliations, we obtain:

Proposition 4. Suppose C is a CP (1) linearly embedded in Fol(k). If πC(d) < ∞
for every d ∈ N, then there exist a constant K such that

πC(d) ≤ Kd4.

Proof: If we take two distinct projective vector fields in C, say X and Y , we can
recover C by considering the linear combinations sX + tY . From the definition of
Ed, one can see that:

Ed(sX + tY ) =
∑

α+β+γ=deg(Ed(X)

Pα,β,γ(s, t)xαyβzγ .

Since πC(d) < ∞ then there exist a triple (α0, β0, γ0) such that Pα0,β0,γ0 does not
vanish identically. Hence the number of projective parameters (s : t) that has first
integral of degree at most d is bounded by the degree of Pα0,β0,γ0 .

Part 2. Extactic Divisors on Complex Manifolds

6. Extactics divisors for holomorphic foliations

Here we generalize some of the results of Part 1 to foliations by curves on ar-
bitrary non-singular complex manifolds. In order to do this, is imperative the re-
formulation of the concepts in a more intrinsic way, and to accomplish that we use
freely the language of algebraic geometry(for example line bundles, tensor products
and so on).

6.1. Holomorphic foliations as morphisms. Let M be a complex manifold. An
1-dimensional holomorphic foliation is given by the following data

• an open covering U = Ui of M ;
• for each Ui an holomorphic vector field Xi ;
• for every non-empty intersection, Ui ∩ Uj 6= ∅, a holomorphic function

gij ∈ O∗M (Ui ∩ Uj);
subject to the conditions :

• Xi = gijXj in Ui ∩ Uj

• gijgjk = gik in Ui ∩ Uj ∩ Uk.
If we denote by L the line bundle defined by the cocycle gij we can understand

the collection Xi as a holomorphic section σ of the bundle TM ⊗ L. Such section
induces a morphism that goes from the cotangent bundle, denoted by Ω1

M , to the
line bundle L. This morphism, in the open set Ui, is given by the interior product
with the vector field Xi.

Hence given an holomorphic foliation F we have an morphism:

ΦF : Ω1
M → L
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Reciprocally, given such morphism Φ we can canonically associate a holomorphic
foliation to it. We leave the details for the reader.

6.2. Jet Bundles and Extactic Divisors. Suppose now that we have a foliation
F on M , i.e., a morphism ΦF of Ω1

M to an invertible sheave E . If we have a linear
system V ⊆ H0(M,L) we are going to define the extactic divisor, E(F , V ), with
respect to V . The extactic divisor E(F , V ) can be understood geometrically as the
inflection locus of the linear system V with respect to the morphism Φ.

First of all, consider the local Taylor expansion of a section s ∈ V with respect
to the vector field defining F . Formally if you have a morphism

ΦF : Ω1
M → E

and a linear system V ⊆ H0(M,L), we choose a covering U of M which trivializes
both L and E . In a open set U ∈ U we can consider the morphism

T
(k)
|U : H0(M,L)⊗OU → Ok

U

defined by

(2) T (k)(s) = s + XF (s) · t + X2
F (s) · t2

2!
+ · · ·+ Xk

F (s) · tk

k!
where XF (·) = ΦF (d(·)) and s ∈ OU is an element of H0(M,L)⊗OU expressed in
the chosen trivialization.

If we take open sets Uλ ∈ U we have that

L|Uλ
= OUλ

· αλ ,

E|Uλ
= OUλ

· βλ .

Hence, for any sλ ∈ H0(M,L)⊗OUλ
, we obtain :

sλ = s
(0)
λ · αλ,

XF (sλ) = XF (s(0)
λ ) · βλ = s

(1)
λ · βλ .

And generally,
Xk
F (sλ) = XF (s(k−1)

λ ) · βλ = s
(k)
λ · βλ .

When Uλ ∩ Uµ 6= ∅ :

sλ = s
(0)
λ · αλ = lλµs(0)

µ · αµ ,

XF (sλ) = s
(1)
λ · βλ = XF (s(0)

λ ) · βλ = (XF (lλµ) · s(0)
µ + lλµ · s(1)

µ )) · eλµ · βµ .

Or in matrix notation[
s
(0)
λ

s
(1)
λ

]
=

[
lλµ 0

XF (lλµ) · eλµ lλµ · eλµ

]
·
[
s
(0)
µ

s
(1)
µ

]

By analogous computations one can show that :

(3)




s
(0)
λ

s
(1)
λ

s
(2)
λ
...

s
(k)
λ




=




lλµ 0 0 0 0
XF (lλµ) · eλµ lλµ · eλµ 0 0 0

. . . . . . lλµ · e2
λµ 0 0

. . . . . . . . . . . . 0

. . . . . . . . . . . . lλµ · ek
λµ



·




s
(0)
µ

s
(1)
µ

s
(2)
µ

...
s
(k)
µ
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Therefore, we define the vector bundle Jk
XFL as the vector bundle with rank

k + 1 and transition functions given by the matrix above. Now we are ready to
consider the global Taylor expansion of the sections in V with respect to F . More
precisely, we are able to patch together the morphisms of the form (2) to obtain
just one morphism :

(4) T (k) : H0(M,L)⊗OM → Jk
XFL

We are almost ready to describe the inflection points of the linear system V ⊂
H0(M,L) with respect to XF . If we set k as the dimension over C of V , and take
the determinant of (4),

(5) detT (k) : ΛkV ⊗OM → ΛkJk−1
XF L .

then after tensorizing we obtain a section of ΛkJk−1
XF L ⊗ (ΛkV )∗

(6) OM → ΛkJk−1
XF L ⊗ (ΛkV )∗ .

Finally :

Definition 3. The extactic curve of F with respect to the linear system V , E(F , V )
is given by the zero locus of the section (6).

Remark 2. The extactic curves, Ed(X), defined in subsection 3.2 coincide with
the extactics curves of the foliation induced by X with respect to the linear system
H0(P2

C,OP2C(d)). To verify this fact one has just to check locally, and is not very
hard to show that locally the constructions are the same.

6.3. Order of Contact and Extactic Ideals. So far we have defined the extactic
divisors for 1–dimensional holomorphic foliations on complex manifolds. One of the
motivations to do that is to obtain an analogous of Theorem 2. In fact by a very
similar argument we obtain the following:

Proposition 5. Let F be a 1–dimensional foliation on the complex manifold M . If
V is a finite dimensional linear system, then every invariant hypersurface contained
in the zero locus of some element of V , must be contained in the zero locus of
E(F , V ).

Since we are working on a manifold of arbitrary dimension, the extactic divisors
are far from detecting precisely the invariant curves. To overcome this difficult we
shall now introduce the extactic ideals. If we fix a finite dimensional linear system
V , the main idea is to consider the points such that the contact with V is of infinite
order.

Before defining the extactic ideals, let’s make the notion of contact more precise.

Definition 4. Let XF be an holomorphic vector field on the complex manifold M
and s a holomorphic section of some line bundle. We say that the solution through
p has contact of order k with s when k is the least non negative integer such that the
radical of the ideal generated by s, X(s), X2(s), . . . , Xk(s) is the local ring OM,p.
If such a k does not exist we say that s has flat contact with X. Here X means a
local representant of XF on a suitable open set and s means the image of any local
representant of s under the canonical morphism OM → OM,p. We shall denote by
ν(s, XF , p) the contact of s with XF at the point p.

Observe that any s vanishing at a singular point p of X, has flat contact with
X at p.



VECTOR FIELDS, INVARIANT VARIETIES AND LINEAR SYSTEMS 11

Example 4. Let X = ∂
∂x be a polynomial vector field on C3 and f a polynomial.

If f does not vanish at the origin then ν(f, X, 0) = 0, otherwise ν(f, X, 0) ≥ 1. For
example if

f(x, y, z) =
n∑

i=k

fi(y, z)xi ,

with fk(0, 0) 6= 0, then ν(f, X, 0) = k.

Proposition 6. Let F be a 1–dimensional foliation on the complex manifold M .
Suppose V is a finite dimensional linear system and s ∈ V . If ν(s,F , p) ≥ dimCV
then p ∈ E(F , V ). Reciprocally if p ∈ E(F , V ) then exists an element s ∈ V such
that ν(s,F , p) ≥ dimCV .

Proof: Choose a basis of V starting with s. Using Lagrange’s rule to expand E(F , V )
in terms of the first column of the matrix one can see that E(F , V ) belongs to the
maximal ideal correspondent to the point p.

When E(F , V )(p) = 0, we have that the columns of the matrix used to compute
E(F , V ) are linearly dependent in the point P . But that means that exists an
element s ∈ V , such that s(p) = X(s)(p) = . . . = X l(s)(p) = 0, where l = dimC V .
Hence the result follows.

Let XF be an 1–dimensional foliation on the manifold M . If L is an invertible
sheaf then we can consider, as in 6.2, the morphisms

T (l) : H0(M,L)⊗OM → J l
XFL ,

for any positive integer l. Suppose V is a finite dimensional vector space contained in
H0(M,L) and k is its dimension. Now, after taking the determinant and tensorizing
by (ΛkV )∗, we obtain sections

σl : OM → ΛkJ l
XFL ⊗ (ΛkH0(M, V )∗ .

Definition 5. The sheaf of ideals generated by kerσl, where l is any positive
integer, is the extactic ideal of XF with respect to the linear system V . We shall
denote it by I(XF , V ).

Example 5. If X is a vector field on P2
C the extactic ideal of X with respect

to the linear system V = H0(P2
C,OP2C(k)), I(X, V ), is generated, in homogeneous

coordinates, by σ(k1,...,kl), where

σ(k1,...,kl) = det




Xk1(v1) Xk1(v2) · · · Xk1(vl)
Xk2(v1) Xk2(v2) · · · Xk2(vl)

...
... · · · ...

Xkl(v1) Xkl(v2) · · · Xkl(vl)


 ,

where 0 ≤ k1 < k2 < · · · < kl and the ki’s are integers, v1, v2, . . . , vl is a basis of
the space of homogeneous polynomial of degree k in three variables.

Proposition 7. The subvariety N of M associated to the radical of any extactic
ideal of XF is invariant.

Proof: Fix a linear system V on M . If every element of I(X, V ) vanishes at p,
then p belongs to the radical ideal of XF associated to V . Hence for every natural
number l ≥ dimC V one has a linear subspace Ll ⊂ V such that any nonzero element
f ∈ Ll satisfies f(p) = X(f)(p) = . . . = X l(f)(p) = 0. Being the projectivization
of V compact we can find a element f∞ which vanishes at p together with all its
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derivatives with respect to the local vector field X. In other words f∞ has flat
contact with XF at p.

Hence N can be identified with the set of points p ∈ M such that there exists a
element of V with flat contact with XF at p, and the invariance follows.

Example 6. In [7], Jouanolou proved that the vector fields on P2
C given in homo-

geneous coordinates by

Xd = yd ∂

∂x
+ zd ∂

∂y
+ xd ∂

∂z
,

do not admit any invariant algebraic curve for any integer d greater than 1.
To consider any linear system V on P2

C, is the same as to consider a finite
dimensional space of homogeneous polynomials V in three variables. Since we do
not have any invariant algebraic leaves for Xd and the singular points of Xd are
clearly invariant, we have that the radical of the extactic ideal I(Xd, V ) is exactly
the ideal defining the singular set of Xd, for any d ≥ 2.

Remark 3. If F is a holomorphic foliation on a complex manifold M , then, for
us, a first integral for F is any non–constant holomorphic map f : M → N , where
N a complex manifold, such that the fibers of f are F–invariant.

Theorem 3. Let F be a 1–dimensional foliation on the complex manifold M . If
V is a finite dimensional linear system, such that E(F , V ) vanishes identically then
there exists an dense open set U where F|U admits a first integral. Moreover, if M
is a projective variety then F admits a meromorphic first integral.

Proof: Suppose that dimC C = k, set s1, . . . , sk a basis of V and consider N ⊂
M × Pk−1

C defined as follows

N =

{
(p; a1 : . . . : ak) | ν

(
k∑

i=1

ai · si,F , p

)
= ∞

}
.

To see that N is a closed set consider, for each positive integer j, the sets
Nj ⊂ M × Pk−1

C defined by

Nj =

{
(p; a1 : . . . : ak) | ν

(
k∑

i=1

ai · si,F , p

)
≥ j

}
.

In an open set U that trivializes F and the line bundle that supports V we can
write Nj as

Nj =

{
(p; a1 : . . . : ak) | X l

(
k∑

i=1

ai · si

)
(p) = 0, l = 0, . . . , j

}
.

Hence Nj is a closed set. Since

N =
∞⋂

j=1

Nj ,

it follows that N is also a closed set.
Observe that every fiber of the natural projection π : N → M is a projective

space linearly embedded on Pk−1
C . It is well known that there exists a dense open

set U where the dimension of the fibers are the same, say l. Hence, we can define
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a natural holomorphic function from U ⊂ M to the Grassmanian of (l + 1)–planes
on Ck. This function, defined in a dense open subset U of M is a first integral for
F|U .

When M is a projective variety we can extend this function to all M , obtaining
in such way a meromorphic first integral to F .

7. A generalization of Darboux’s Criteria

In [10], Jean-Marie Lion proposed the following generalization to Darboux’s cri-
teria for the existence of meromorphic first integral.

Theorem[Lion] Let F be a holomorphic foliation given by an integrable 1-form, ω,
defined in a nighbourhood of the closure of U , where U is a bounded open set of Cn.
Suppose that exists infinitely many leaves Vi of F contained in different algebraic
hypersurfaces Qi = 0 of the same degree d. Then every leaf of F is contained in an
irreducible algebraic hypersurface of degree at most d, and ω admits a meromorphic
first integral. If 0 ∈ (∩iVi), then exists a meromorphic first integral such that the
graph is a n-dimensional algebraic subset of Cn × P1

C.

Here, using the ideas developed earlier in this paper, we obtain a further gener-
alization of the first part of Lion’s result. The main improvement is that we do not
need to restrict ourselves to algebraic leaves and open sets of Cn. We work with
sections of any linear system defined on a complex manifold which, in principle, do
not have to be compact.

Theorem 4. Let F be a holomorphic foliation, of arbitrary codimension,on a com-
plex manifold M , and V finite dimensional linear system on M . Suppose that there
exists a collection {Li}i∈Λ, such that each leaf Li has flat contact with some element
of V . If the analytic closure of ⋃

i∈Λ

Li

is equal to M then F admits a first integral and every leaf of F has flat contact
with some element of V .

Proof:Let U be a Stein open set of M . If we consider the OU–module X (F) formed
by all vector fields in U tangent to F|U , then for every Y ∈ X (F) we have that
E(Y, V ) = 0. Hence, as in the proof Theorem 3, we can consider for each Y ∈ X (F)
a set NU,Y ⊂ U × Pk−1

C describing the elements of V with flat contact with Y .
Defining N ⊂ M × Pk−1

C locally as

N|U×Pk−1
C

=
⋂

Y ∈X (F)

NU,Y ,

we obtain a closed analytic subset of M ×Pk−1
C whose fibers under the natural pro-

jection to M are projective spaces linearly embedded in Pk−1
C . And as in Theorem

3 the result follows.

Corollary 2. Let F be a codimension one holomorphic foliation on a complex
manifold M , and V finite dimensional linear system on M . Suppose that there
exists an infinite collection {Li}i∈Λ, such that each leaf Li has flat contact with
some element of V . If there exists an relatively compact open set U ⊂ M such that
Li ∩ U 6= ∅ for every i ∈ Λ then F admits a first integral.
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8. Foliations with all leaves algebraic

Gomez–Mont, in [6], proved that a singular holomorphic foliation of codimension
q with all leaves algebraic admits a first integral, whose generic fiber has codimen-
sion q. His proves uses Grothendieck’s deep Theorem asserting the existence of the
Hilbert scheme. Here, we propose a different proof using the ideas developed earlier
in this paper.

Theorem[Gomez–Mont] Let F be a holomorphic foliation (with singularities) of
codimension q in the projective integral variety M , and assume that every leaf L of
F is a quasiprojective subvariety of M ; then there is a projective integral variety V
of dimension q and a rational map f : M → V such that the closure of a general
f–fibre is the closure of a leaf of F .

Proof: Suppose, without loss of generality, that M is a subvariety of Pn
C and take

L to be the restriction of the hyperplane bundle OPn(1) to M .
Denote by Lp the leaf through p and ρ(Lp) the least positive integer l such that

Lp is an open subset of variety defined through sections of L⊗l. Now, define

Bd = {p ∈ M \ Sing(F) | ρ(Lp) ≤ d} .

Since every leaf is algebraic, we have that

M \ Sing(F) =
⋃

d∈N
Bd ,

and as consequence there exists d0 such that Bd0 has positive Lebesgue measure
and consequently its analytic closure is equal to M .

Taking V = H0(M,L⊗d0) we have from Theorem 4 that there exists a projective
variety N and a morphism g : M → N such that the fiber over any p ∈ N is
invariant by the foliation.

Taking a closer look at the proof of Theorem 4 one can see that the fiber over a
generic p ∈ Bd0 will have codimension q. Using Stein’s factorization Theorem, see
[5], one can assure the existence of the commutative diagram,

M
f−−−−→ N

Id

y π

y
M

g−−−−→ N

where N is a projective variety, π is a morphism and f is a morphism whose generic
fiber is irreducible. Hence f satisfies the assertions of the Theorem.

9. Final Remarks

The applications of the extactic curves and extactic divisors, certainly are not
exhausted in this work. For example, in [11] the extactic curves are used to in-
troduce the notion of algebraic multiplicity of an algebraic curve invariant by a
polynomial vector field on C2. There, the relation of this algebraic multiplicity
with the existence of exponential cofactors are explored to enrich Darboux’s theory
of integrability.
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