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1. Introduction

Let Γ be a finite set of points in the projective plane P2 defined as the inter-
section of two transverse curves of the same degree (we say that Γ is a complete

intersection set); let also π : SΓ → P
2 be the blow-up of P

2 at the points of Γ.

The surface SΓ admits a natural foliation F̃Γ: the strict transform of the pencil
FΓ : Fd G−Gd F = 0 generated by the curves {F = 0} and {G = 0} that define Γ.

A natural problem is to understand the families of reduced foliations of surfaces

(in the sense of [2]) containing (SΓ, F̃Γ); this is related to studying the foliations of
P2, in a neighborhood of FΓ, that have radial singularitied close to the points of Γ.

We consider in this paper the particular situation where the surface SΓ does not
change in the family (or, equivalently, we look at the foliations of P2 with radial

singularities at the points of Γ). The leaves of F̃Γ are fibers of the holomorphic

fibration (F/G)◦π → P1. In order to study a deformation F̃ of this fibration (in the

space of foliations of SΓ) we analyse how a generic fiber C̃ of F̃Γ is intersected by the

leaves of F̃ . If C̃ is not F̃-invariant then N �

F .C̃ = tang(F̃ , C̃) + χ(C̃), where N �

F is

the normal bundle of F̃ , χ(C̃) is the Euler characteristic of C̃ and tang(F̃ , C̃) is the

number of tangency points between F̃ and C̃. In our case tang(F̃ , C̃) ≥ 0 since C̃

is a smooth curve, and also N �

F .C̃ = N �

FΓ

.C̃ by continuity. Since C̃ is F̃Γ-invariant,

N �

FΓ

.C̃ = Z(F̃ , C̃) + C̃.C̃ , where Z(F̃ , C̃) denotes the number of singularities of

F̃Γ along C̃, and we get that tang(F̃ , C̃) = −χ(C̃).

Let c ∈ N be the common degree of the polynomials F and G. When c = 1 or

c = 2 we have χ(C̃) = 2 and we get a contradiction unless F̃ = F̃Γ ([9]). When

c = 3 we have tang(F̃ , C̃) = −χ(C̃) = 0 and therefore F̃ is transverse to the

generic fiber of F̃Γ, implying that the regular fibers are all isomorphic; this is not

possible for a generic choice of F and G, and we conclude again that F̃ = F̃Γ in
this case (see [10] for a related result). When c ≥ 4 this type of argument fails,

since tang(F̃ , C̃) > 0. Nevertheless we are able to prove for c ≥ 3:

Theorem 1. If Γ is a generic complete intersection set then FΓ is an isolated point

of the space of foliations of SΓ, ie, FΓ is rigid.

Date: April 13, 2007.
Key words and phrases. algebraic foliation, invariant curves, singulariites, indexes .
The first author is supported by Profix-CNPq.

1



2 J. V. PEREIRA AND P. SAD

In the statement generic complete intersection set refers to the set of base points
of a generic element of the space of lines of PH0(P2,OP2(c)); in other words, the
couple (F, G) of polynomials of degree c ∈ N is generically chosen in order to define
Γ. In §3.2 we exhibit some examples of non-rigidity to show that the hypothesis of
genericity is necessary.

We have no results when the surface SΓ changes in the family of reduced fo-

liations; but still we should mention that for c = 3 we can only deform F̃Γ as a

fibration (starting with a generic choice of Γ). In fact, F̃Γ has Kodaira dimension
equal to 1 and this dimension is constant along the family ([2]). We then apply
the Classification Theorem ([1]) to conclude that any foliation in the family is an
elliptic fibration.

The proof of Theorem 1 relies on the analysis of the indexes of a plane foliation
along a smooth invariant algebraic curve. Let {F = 0} be such a curve, of degree
c ∈ N, containing singularities of the foliation at the intersection points with another
curve {G = 0} of degree k ≤ c. We prove then that if (F, G) is generically chosen
the set of indexes is sufficient to identify completely the foliation (Theorem 2.2).
Application of this result in order to prove Theorem 1 is not immediate; we have to
show first that the defining curves for the set Γ are invariant curves of the foliation.

Acknowledgements. We are grateful to L.G. Mendes for posing the question that
originated this work.

2. Variation of Indexes

2.1. Division Lemma. All foliations, unless stated otherwise, are supposed to
have isolated singularities.

Let C ⊂ P2 be a smooth curve of degree c ∈ N, invariant by a plane projective
foliation F ∈ Fol(d) of degree d ∈ N. The Lemma below can be implicitly found in
[4, Proof of Proposition 3]; we assume that F is defined by ω = 0, ω a homogeneous
1-form of C3 of degree d+1 (or by a homogeneous vector field of C3 of degree d ∈ N),
and that C is defined by F = 0, F a homogeneous polynomial of degree c ∈ N. Let
us denote by R the radial vector field of C3.

Lemma 2.1. There exist a polynomial G of degree d − c + 2 and a 1-form η of

degree d − c + 1, both homogeneous, such that

ω = GdF −
deg(F )

deg(G)
FdG + Fη and iR(η) = 0.

Furthermore, the foliation Fη defined by η = 0 depends only on F and C when

d ≤ 2c− 2.

Proof. It follows from ([4, Proposition 1]) that there exist a homogenous polynomial
G of degree d − c + 2 and a homogenous 1-form α of degree d − c + 1 such that

(1) ω = GdF + Fα .

After contracting the above expression with the radial vector field we obtain

deg(F )FG + FiRα = 0 ,

We rewrite (1) as
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ω = GdF −
deg(F )

deg(G)
FdG + F

(
α +

deg(F )

deg(G)
dG

)
.

and define η := α + deg(F )
deg(G)dG; it follows that iR(η) = 0.

Let us replace (1) by ω′ = G′dF ′ + F ′α′, where ω′ = λω and F ′ = µF for
λ, µ ∈ C. Consequently:

ω =
(µ

λ
G′

)
dF + F

(µ

λ
α′

)
= GdF + Fα

and (µ

λ
G′ − G

)
dF = F

(
α −

µ

λ
α′

)
.

From
(

µ
λ
G′ − G

)
|C

≡ 0 we have µ
λ
G′ −G = P.F for some homogeneous polynomial

P ; two possibilities arise:

• d < 2c − 2; therefore µ
λ
G′ = G , µ

λ
α′ = α and we get

η′ = α′ +
deg(F )

deg(G)
dG′ =

µ

λ
η.

• d = 2c − 2, so that µ
λ
G′ − G = aF , α − µ

λ
α′ = adF for a ∈ C. It follows

that α − µ
λ
α′ = µ

λ
dG′ − dG and again η′ = µ

λ
η.

�

We observe that Fη may have a curve of singularities.

Our results follow from the analysis of the behaviour of Fη with respect to C
when d leq2c− 2. For the moment we remark that:

• the singularities of F contained in C are the points of {G = 0} ∩ C.
• C is not contained in the singular set of Fη (because deg(η) < deg(F )).
• C is not Fη-invariant (because otherwise deg(C) ≤ deg(Fη) + 1, see [4],

or c ≤ d − c + 1). Let us write k = deg(G) = d − c + 2 for simplic-
ity, so that deg(Fη) = k − 2. Since tang(Fη, C) = NFΓ

.C − χ(C) =

k.c −
(
2 − 2 c−1)(c−2)

2

)
, we find tang(Fη, C) = c(k + c − 3); the tangency

points between C and Fη are given by the common solutions of F = 0 and
dF (Zη) = 0 (Zη is the homogeneous vector field of C3 of degree k−2 which
defines Fη).

2.2. Indexes and Foliations. In [11] we have proved the existence of foliations
of sufficiently high degree with prescribed linear holonomy group with respect to a
given curve. Here we will consider the opposite situation when the degree of the
curve is comparable to the degree of the foliation. More precisely we will consider
foliations of degree d ∈ N which have an invariant smooth curve of degree c ∈ N

such that d ≤ 2c−2 (remark that in all cases c ≤ d+1). This inequality is equivalent
to Z(F , C) ≤ c2. As already pointed out it implies that the decomposition given
by Lemma 2.1 is essentially unique.

Let us take a pair of transverse algebraic curves C = {F = 0} and E defined by
polynomials of degree c ∈ N and k ∈ N respectively; C is supposed to be a smooth
curve and F a reduced polynomial. Denote by FolC,C∩E(d) the space of foliations
of degree d = c + k − 2 which leave C invariant and have C ∩E as the singular set
along C. We define the Index Map I(C, E) = I as
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I : FolC,C∩E(d) → A(C ∩ E, C)

F 7→ (p 7→ i(F , C, p))

where A(C ∩ E, C) is the space of maps from Γ to C and i(F , C, p) is in the index
of F with respect to C at the point p (cf. [3]).

According to Lemma 2.1 , a foliation F ∈ FolC,C∩E(d) is defined by a 1-form
ω = GdF − (c/k)FdG + Fη = 0; we may assume that E = {G = 0}. A simple
computation shows that

(2) i(F , C, p) =
c

k
− Res

(( η

G

)

|C
, p

)
,

where
(

η
G

)
|C

means i∗
(

η
G

)
for the inclusion i : C → P2.

When C and E are transverse to each other at p ∈ C ∩ E, we have

(3) i(F , C, p) =
c

k
⇔ i∗η (p) = 0

The equality i∗η (p) = 0 means that Fη is tangent to C at p.

If the foliation is the pencil FΓ : GdF − (c/k)FdG = 0, all k.c indexes at the
points of C ∩E are equal to c/k; a natural question to ask is whether the converse
is true. This is not always the case (see [12] for a counterexample). Before stating
the main result of this Section, we need a Lemma; set Sl = H0(P2,O(l)) and
Sl = PH0(P2,O(l))) for l > 0.

Lemma 2.2. Let c ≥ k. There exists a Zariski open subset U0(c, k) ⊂ Sc ×Sk such

that if (C, E) ∈ U0(c, k) then C and E are transverse to each other and no foliation

of degree k − 2 is tangent to C at the points of C ∩ E.

Proof. Let Xh(n) be the set of homogeneous vector fields of C3 of degree n, and H
the set

{(F, G) ∈ Sc × Sk; ∃(Z, A, B) ∈ Xh(k − 2) × Sk−3 × Sc−3; dF (Z) = A.F + B.G}

Then H is an algebraic subvariety of Sc × Sk. Let us show that H is a strict
subvariety. For that we take F0 ∈ Sc as the equation of a plane rational curve of
degree c with nodal singularities and G0 defining a plane curve of degree k which
is transverse to {F0 = 0}. We know from the genus formula that {F0 = 0} has
(c−1).(c−2)

2 nodal singularities. If (F0, G0) ∈ H , one has Df0(Z0) = A0.F0 + B0.G0

for a (Z0, A0, B0) ∈ Xh(k − 2) × Sc−3 × Sk−3. Let us compute the number of
intersection points between {dF0(Z0) = 0} and {F0 = 0}:

• k.c points of {F0 = 0} ∩ {G0 = 0}, which are smooth points of {F0 = 0}.
• (c − 1)(c − 2) points corresponding to the nodal singularities of {F0 = 0}

We have then k.c + (c− 1).(c− 2) = (k + c− 3).c = (k + c− 3).c, contradiction.

Let now U(c, k) be the open subset of Sc ×Sk of pairs of curves (C, E) such that
C and E are transverse to each other; finally we set U0(c, k) = U(c, k)∩(Sc×Sk\H).
Consider (C̄, Ē) = ({F̄ = 0}, {Ḡ = 0}) ∈ U0(c, k); let dF̄ (Z̄)(p) = 0 at all points in
C̄ ∩ Ē and some Z̄ ∈ Xh(k−2). By Noether’s Theorem ([13]), dF̄ (Z̄) = Ā.F̄ + B̄.Ḡ
for some (Ā, B̄) ∈ Sc−3 × Sk−3, so that (C̄, Ē) ∈ H , contradiction unless Z̄=0. �
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Remark. The argument above is inspired in Severi’s idea to prove the Brill-
Noether Theorem ([14],pg. 240-244).

We have as a consequence:

Theorem 2. Let c ≥ k. There exists a Zariski open subset U1(c, k) ⊂ Sc × Sk such

that if (C, E) ∈ U1(c, k) then C is smooth, C and E are transverse to each other

and I(C, E) is injective.

Proof. It is enough to define U1(c, k) ⊂ U(c, k) (obtained in Lemma 2.2) as the set
of pairs (C, E) ∈ U(c, k) such that C is a smooth curve, and use (3). �

Before proceeding let us take a closer look at the case E is a conic.

Example 2.1. When E is a conic then η induces a degree 0 foliation of P2. These
foliations are pencils of lines and, as such, are completely determined by the base
point of the pencil.

If ηp is the degree 0 foliation corresponding to the pencil of lines through p =
[a : b : c] ∈ P2 then the tangency points between Fηp

and C are the points of
intersection of C with its polar curve centered at p, i.e.,

TqC ⊂ ker ηp(q) ⇐⇒

(
a
∂F

∂x
+ b

∂F

∂y
+ c

∂F

∂z

)
(q) = 0 ,

where F is an irreducible polynomial defining C. It follows from Noether’s Theorem
that the map I(C, E) is not injective if, and only if, there exists [a : b : c] ∈ P2 such
that

G divides

(
a
∂F

∂x
+ b

∂F

∂y
+ c

∂F

∂z

)
,

where G is quadratic polynomial which defines E.

When C is a conic then this never happens since a polar curve of C has degree
1. Thus for any C and any E the map I(C, E) is always injective.

When C is a cubic then the map I(C, E) is not injective if, and only if, E is a
polar curve of C.

Suppose now that C is a quartic; let us identify the set of polar curves of C
with a projective plane Λ, linearly embedded in the projective space S3. If I(C, E)
is not injective then there exists a point in Λ intersecting W1,2 , the image of the
multiplication map S1×S2 → S3. Since W1,2 has codimension 2 in S3 then a generic
Λ will intersect W1,2 is a finite set of points. Moreover it can be easily verified that
W1,2 is a linear projection of the Segre Variety S2,5 ⊂ P(C3 ⊗ C6) ∼= P(S1 ⊗ S2)
to S3 from a center that does not intersect S2,5. Since the degree of S2,5 (cf. [6,

page 233]) is
(
5+2
2

)
= 21 then the degree of W1,2 is also 21. Thus a generic Λ will

intersect W1,2 in 21 points counted with multiplicity. Translating to our situation
we obtain that for a generic C ∈ S4 the cardinality of

{E ∈ S2 | I(C, E) is not injective}

is 21.

For C of degree at least 5 we can argue as follows. Let ∆ = P(C ∂
∂x

⊕C
∂
∂y

⊕C
∂
∂z

)

and Σ ⊂ Sc−3 × S2 × ∆ × Sc be defined by the relation

([B], [G], [∂], [F ]) ∈ Σ ⇐⇒ [∂(F )] = [B · G]
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Notice that every ∂ ∈ C
∂
∂x

⊕C
∂
∂y

⊕C
∂
∂z

acting as a derivation induces a surjective

linear map ∂ : Sc → Sc−1. Thus if π1 : Σ → Sc−3 ×S2 ×∆ is the natural projection
to Sc−3 × S2 × ∆ then π1 induces a structure of P

c+1-bundle on Σ. In particular

dim Σ = c + 8 +
c(c − 3)

2
.

Since c ≥ 5, dim Σ < dim Sc and consequently U = Sc\π2(Σ) 6= ∅ where π2 : Σ → Sc

is the natural projection to Sc.
We conclude that for every C ∈ U and every E ∈ S2 the map I(C, E) is injective.

We summarize the discussion above in the following table.

degree of C type of C {E ∈ Sk | I(C,E) is not injective }
2 arbitrary empty
3 arbitrary {aFx + bFy + cFz = 0}[a:b:c]∈P2

4 generic finite with 21 elements
≥ 5 generic empty

3. The Rigidity of a generic FΓ: Proof of Theorem 1

The proof of Theorem 1 will follow from the above results. We start with a
simple lemma:

Lemma 3.1. Let Γ be the intersection of two transversal curves C = {F = 0} and

E = {G = 0} of degree c and k respectively and let F be a holomorphic foliation of

degree c + k − 2 with singular set containing Γ. Then F is induced by a 1-form

ω = GdF −
deg(F )

deg(G)
FdG + Fα + Gβ ,

where α and β are homogenous 1-form satisying iRα = iRβ ≡ 0. In particular α
and β define foliations of P2 of degrees k − 2 and c − 2 respectively.

Proof. A direct application of Noether’s Theorem ([13]) gives that F is induced
by a 1-form ω = Fα0 + Gβ0. Thus iRω = 0 implies that FiRα0 = −GiRβ0. To

conclude it is sufficient to take α = α0 + deg(F )
deg(G)FdG and β = β0 + (−GdF ). �

Let C = {F = 0} and E = {G = 0} be transverse curves of degree c in P
2 and

let Γ = C ∩ E. Recall from the introduction that we denote by π : SΓ → P2 the

blow-up of P
2 at the points of Γ and by F̃Γ the strict transform of the foliation FΓ

induced by FdG − GdF = 0. If F̃ is a foliation close to F̃Γ then both F̃ and F̃Γ

are transversal to the exceptional divisor of SΓ. Thus F = π∗F̃ is a foliation of P2

with radial singularities on Γ. Let now U2(c, c) ⊂ U1(c, c) ⊂ U0(c, c) be the Zariski
open subset of Sc × Sc with the property that if (C, E) ∈ U1(c, c) then both C and
E are smooth curves.

Using Lemma 3.1 we see that F is induced by

ω = GdF − FdG + Fα + Gβ

where both α and β induce foliations of degree c − 2. We write this equality using
homogeneous vector fields in C3:

Z = ZΓ + F.Zα + G.Zβ
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where Z defines F , ZΓ defines the pencil FΓ and Zα, Zβ define the foliations
associated to α = 0 and β = 0, respectively.

We claim that β = 0, that is, C is F-invariant. If not, we observe that
tang(F , C, p) ≥ 2 at any point p ∈ Γ; therefore the points of Γ contribute at
least 2c2 to tang(F , C). The points of tangency between F and C are the common
solutions to dF (Z) = 0 and F = 0, or G.dF (Zβ) = 0 and F = 0. Since we have
already c2 solutions to G = 0 and F = 0, it follows that the points of Γ are also
solutions to dF (Zβ) = 0 and F = 0. Consequently Fβ is tangent to C along the
points of Γ, which is impossible since (C, E) ∈ U2(c, c) ⊂ U0(c, c) (Lemma 2.2).
Therefore β = 0.

Finally we may apply Theorem 2 to (C, E) ∈ U2(c, c) ⊂ U1(c, c) to conclude that
α = 0. This concludes the proof of Theorem 1.

Remarks. When c > 3 we do not really understand for which pair of curves the
conclusion of the Theorem holds. For instance we do not know if the conclusion
holds if we suppose that the pencil is a Lefschetz pencil, i.e., all singularities have
multiplicity one and every element of the pencil has at most one singularity.

Theorem 1 is also true for for generic complete intersection sets defined as the
the intersection of curves {F = 0} and {G = 0} of degrees k and c with k < c;
the fibration which is the desingularisation of GdF − c

k
FdG = 0 is rigid. The same

proof as above applies with minor modifications.

3.1. Fermat Curves and Non-Rigid Foliations. In order to conclude we ex-
hibit below a family of examples showing that Theorem 1 does not hold for arbitrary
Γ when c ≥ 3.

Example 3.1. For every c ≥ 3 there exists a complete intersection Γ ⊂ P2 of

degree c2 such that FΓ is not rigid.

Proof. If C = {xc − yc = 0} and E = {yc − zc = 0} then the pencil generated
by C and E is a pencil whose generic element is isomorphic to the Fermat curve
of degree c and three singular elements: C, E and {xc − zc = 0}. Let ω2c−2 be a
1-form which defines the associated foliation.

The pencil generated by {xc(yc − zc) = 0} and {yc(xc − zc) = 0} defines a
foliation of degree

c + 1 = 4c − 2︸ ︷︷ ︸
is a pencil of degree 2c curves

− 3(c − 1)︸ ︷︷ ︸
with 3 singular fibers of degree 1 and multiplicity c

and has radial singularities at Γ = C∩E. Denote by ηc+1 the 1-form which induces
this foliation. Thus for arbitrary Pc−3 ∈ Sc−3 the strict transform of the foliation
associated to the 1-form

ω2c−2 + Pc−3ηc+1

is a deformation of FΓ. �
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