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Abstract. We study the subvariety of integrable 1-forms in a finite dimen-

sional vector space W ⊂ Ω1(Cn, 0). We prove that the irreducible components
with dimension comparable with the rank of W are of minimal degree.

1. Introduction

Let (Cn, 0) be the germ of Cn at the origin. For q ∈ {0, ..., n}, Ωq(Cn, 0) will
stand for the space of germs of holomorphic q-differential forms at 0 ∈ Cn.

In this work we are interested in describing the intersection of the set of integrable
1-forms in Ω1(Cn, 0) with a finite dimensional vector space W ⊂ Ω1(Cn, 0). In more
concrete terms, our main objects of study are the projective varieties

IW =
{

[ω] ∈ P(W ) |ω ∧ dω = 0
}

where W is as above and P(W ) is the space of complex lines in W .

Our motivation steams from the study of the irreducible components of the space
of foliations on Pn, see [5] and references therein. In the existing literature the usual
approach to study the space of foliations on Pn passes through the recognition of
distinguishing features of some classes of foliations, and the proof of the stability
of these features under small deformations. In this note, instead of looking at the
foliations we focus directly on the defining equations of IW . For that sake we make
use of a simple idea presented in [2] reminiscent of Steiner’s construction of rational
normal curves, see Section 2.

In order to state our main results we need first to introduce the rank of a finite
vector space W ⊂ Ω1(Cn, 0). By definition, rank(W ) is the greatest integer r for
which the natural map

r∧
W −→ Ωr(Cn, 0)

is not the zero map. Notice that rank(W ) ≤ min(dimW,n).

Theorem 1. Let W ⊂ Ω1(Cn, 0) be a finite dimensional vector space and let Σ
be an irreducible component of IW . If the codimension of Σ in P(W ) is at most
rank(W )− 2 then Σ is a variety of minimal degree.

Recall that a variety is of minimal degree if its degree exceeds by one its codi-
mension in its linear span, that is

X is of minimal degree ⇐⇒ degX = dim Span(X)− dimX + 1 .
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They are well understood, and in particular are completely classified (see [7] and
references therein). Any variety of minimal degree is either a linear subspace, a
quadric hypersurface (eventually singular), a rational normal scroll, the Veronese
surface in P5 or a cone over such a surface. When the rank and the dimension of
W coincide we explore this classification to obtain the more precise result below.

Theorem 2. If rank(W ) = dimW = n then every irreducible component of IW is
either a linear subspace or a rational normal curve in its linear span.

Theorem 2 turns out to be sharp as the concrete examples in Section 4 testify. In
Section 5 we characterize when a given rational normal curve of integrable 1-forms
is an irreducible component of IW using a beautiful geometric construction due to
Gelfand and Zakharevich, see Corollary 5.2.

It has to be pointed out that the hypothesis on the rank is rather restrictive,
and one should not expect similar results about the space of foliations on projective
varieties. For example, it is well known that for a fixed integer d ≥ 1, foliations
induced by generic pencils of degree d hypersurfaces in Pn, n ≥ 3, spread the
irreducible component Rn(d, d) of the space of foliations of degree 2d − 2. Its
codimension in the projective space PH0(Pn,Ω1

Pn(2d)) is

(n+ 1)N2d−1 −N2d + n− 1︸ ︷︷ ︸
dim PH0(Pn,Ω1

Pn (2d))

− 2Nd − 2︸ ︷︷ ︸
dimRn(d,d)

, where Nk =
(
n+ k

k

)
− 1

while its degree, according to [6, Section 5.1], is

1
Nd − 1

(
2Nd − 2
Nd

)
.

In particular, for n or d sufficiently large, it is clear that the degree is considerably
greater than the codimension. It does not seem to be easy to infer properties of
the degree and/or geometry of the irreducible components of the space of foliations
on projective varieties from Theorem 2. Nevertheless, at the other extreme of
the spectrum of compact complex manifolds, there are the manifolds of algebraic
dimension zero. Recall that the algebraic dimension of compact complex manifold
X, commonly denoted by a(X), is the transcendence degree over C of its field of
meromorphic functions. For this class of manifolds Theorem 2 has the following
consequence.

Corollary 3. Let X be a compact complex manifold and L be a line-bundle over
it. If a(X) = 0 then the irreducible components of the space of codimension one
foliations with conormal bundle L are either linear subspaces or rational normal
curves.

Proof. We are interested in the irreducible components of{
[ω] ∈ PH0(X,Ω1

X ⊗ L)
∣∣ω ∧ dω = 0

}
.

Localizing at a generic point x ∈ X, the sections of Ω1
X ⊗ L determine germs of

holomorphic 1-forms that span a finite dimensional vector space W of Ω1(X,x) '
Ω1(Cn, 0) of dimension m. If

∧m
W → Ωm(X,x) is the zero map then there exists

meromorphic functions a1, . . . , am ∈ C(X) and a basis ω1, . . . , ωm of H0(X,Ω1
X⊗L)

such that a1ω1 + . . . + amωm = 0. But the hypothesis C(X) = C leads to a
contradiction that implies dimW = rank(W ). The corollary follows from Theorem
2. �
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2. Rational normal curves and the proof of Theorem 1

2.1. Steiner’s construction of rational normal curves. A rational normal
curve in Pn is nothing more than a smooth non-degenerate rational curve of degree
n. Up to projective automorphisms there is only one rational normal curve in Pn,
and it can be seen as the image of natural morphism

P1 −→ Symn P1 ' Pn

p 7−→ p+ · · ·+ p︸ ︷︷ ︸
n times

.

Notice that this map is induced by the complete linear system |OP1(n)|.
Given n+ 3 points in general position in Pn, that is no n+ 1 points among them

are contained in a hyperplane, there is a unique rational normal curve containing
them. This curve can be synthetically constructed through the following procedure
which can be traced back to Steiner. Let p1, . . . , pn+3 be the n + 3 points under
consideration, and for i ranging from 1 to n let Πi be the Pn−2 spanned by the points
p1, . . . , pi−1, pi+1, . . . , pn. For a fixed i there is a pencil of hyperplanes containing
Πi. The elements of this pencil can be written as Hi(s : t) = {sFi+ tGi = 0} where
(s : t) ∈ P1 and Fi, Gi are linear forms on Cn+1. These linear forms can be chosen
in order that pn+1 ∈ Hi(0 : 1), pn+2 ∈ Hi(1 : 0) and pn+3 ∈ Hi(1 : 1). It turns out
that the map

(s : t) 7−→
n⋂
i=1

Hi(s : t)

parameterizes the unique rational normal curve through p1, . . . , pn+3. Indeed (0 : 1),
(1 : 0) and (1 : 1) are mapped to pn+1, pn+2 and pn+3 respectively. Furthermore,
for i = 1, . . . , n, there exists one and only one hyperplane in the pencil Hi(s : t)
containing pi, and pi belongs to Hj(s : t) for every j 6= i and every (s : t) ∈ P1.

2.2. Rational normal curves of integrable 1-forms. The following proposi-
tion is a rephrasing of the codimension one case of [2, Thm. 4.1]. The result, in
codimension one as well as in arbitrary codimension, is originally due to Panasyuk
[12] and settles a conjecture of Zakharevich [14]. In all these works rational normal
curves of integrable 1-forms appear under the label of Veronese webs, a terminology
introduced in [8].

Proposition 2.1. Let W ⊂ Ω1(Cn+1, 0) be a finite dimensional vector space with
dimW = rank(W ). If there are dimW + 2 classes of integrable 1-forms in general
position in P(W ) then the unique rational normal curve through them parametrizes
classes of integrable 1-forms.

Proof. For dimW ≤ 2, the proposition is evident. So we will assume that dimW ≥
3. Moreover, after taking generic hyperplane sections, we can also assume that
dimW = rank(W ) = n + 1. Let p1 = [ω1], . . . , pn+3 = [ωn+3] be n + 3 points in
general position in P(W ). Since rank(W ) = n+1, there exist germs of meromorphic
vector fields v1, . . . , vn+1 satisfying

ωi(vj) = δij , i, j ∈ {1, . . . , n+ 1} ,
where δij is the Kroenecker symbol. The hyperplanes in P(W ) are in one to one
correspondence with the lines in the space V generated by v1, . . . , vn+1. To wit, V
is a concrete realization of the dual of W .
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The hyperplanes Hi(s : t) containing p1, pi−1, pi+1, pn are thus defined by the
linear family of vector fields

ζi(s, t) = s(avi + bvn+1) + t(cvi + dvn+1)

where a, b, c, d are complex numbers satisfying ad − bc 6= 0. Hence the unique
rational normal curve through [ω1], . . . , [ωn+3] is parametrized by

〈ζ1(s, t) ∧ · · · ∧ ζn(s, t) , ω1 ∧ . . . ∧ ωn+1〉 .

where 〈·, ·〉 stands for the natural inner product.
Suppose now that the 1-forms ω1, . . . , ωn+3 are integrable. If this is the case

then for every i, j ∈ {1, . . . , n}

[ζi(s, t), ζj(s, t)] ∧ ζ1(s, t) ∧ · · · ∧ ζn(s, t)

vanishes at n+ 3 distinct points (s : t) ∈ P1. But its coefficients have degree n+ 2
in the variables (s, t). Thus the above expression vanishes identically, which proves
the proposition. �

2.3. Proof of Theorem 1. Replace W by a generic vector subspace W ′ of dimen-
sion equal to the codimension of Σ plus two. Thus, since W is generic, dimW ′ =
rank(W ′) and P(W ′) intersects Σ at a curve C. Moreover, we can assume that C
is an irreducible component of IW ′ .

If Σ is not of minimal degree then C is also not of minimal degree. Replacing W ′

by the linear span of C and applying Proposition 2.1 to sufficiently many points in
C away from the other irreducible components of IW ′ one arrives at a contradiction
which proves the theorem. �

3. Varieties of minimal degree and the Proof of Theorem 2

Suppose W ⊂ Ω1(Cn, 0) is vector subspace satisfying dimW = rank(W ), and let
Σ be an irreducible component of IW of dimension at least two. Theorem 1 implies
that Σ is a variety of minimal degree. If it is not a linear subspace of P(W ) then,
after replacing W by a generic vector subspace of appropriate dimension, we can
assume that Σ has dimension exactly two and it is a not a plane linearly embedded
in P(W ). Moreover, it is harmless to assume that P(W ) is the linear span of Σ.

To prove Theorem 2 we aim at a contradiction. To obtain it we will analyze
each of the classes of surfaces of minimal degree. But first we recall in detail their
classification.

3.1. Surfaces of minimal degree. If X ⊂ Pn is a surface of minimal degree
then X is P2, or the embedding of P2 into P5 through the complete linear system
|OP2(2)| ' P5, or a rational normal scroll S(a, b) with (a, b) ∈ N2 − {(0, 0)}, and
a+ b+ 1 = n.

The rational normal scrolls S(a, b) ⊂ Pa+b+1 can be described as follows. First
consider two disjoint linear subspaces Pa and Pb in Pn. Consider now two rational
normal curves Ca ⊂ Pa and Cb ⊂ Pb, and let ϕa : P1 → Ca and ϕb : P1 → Cb be
their parametrizations. In case i = 0, ϕi : P1 → C0 ⊂ P0 is nothing more then
the constant map. In all other cases ϕi is an isomorphic embedding. The rational
normal scroll S(a, b) is the union of the lines ϕa(t)ϕb(t) for t varying in P1. Note
that when a = 0 we have a cone over a rational normal curve in Pn−1.
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3.2. Veronese surface. We start the case by case analysis, excluding Veronese
surfaces.

Lemma 3.1. The surface Σ is not a Veronese surface.

Proof. Assume Σ is a Veronese surface. Consider eight points in general position
contained in Σ but not contained in any other irreducible component of IW . Let C
be the unique rational normal curve C passing through them.

On the one hand C is not contained in Σ, since degC = 5 is odd and every curve
in Σ has even degree. Indeed, intersecting a curve in Σ with an hyperplane is the
same as intersecting its pre-image under the Veronese embedding P2 → P5 with a
conic.

On the other hand, Proposition 2.1 ensures that C ⊂ IW . The choice of the
eight points implies C must also be contained in Σ. This contradiction proves the
lemma. �

3.3. Pencils of integrable 1-forms. Now we turn our attention to the possibil-
ity of Σ be a rational normal scroll. We will first exclude the degenerate cases
Σ = S(0, n − 1), n ≥ 3. Notice that these cases are characterized by their non-
smoothness.

Lemma 3.2. The surface Σ is smooth.

Proof. If Σ is not smooth then it must be the cone S(0, n − 1) over a rational
normal curve in Pn−1 with n ≥ 3. The idea is to look at the line of integrable
1-forms through the vertex of S(0, n− 1). For that sake, let ω0 be a representative
of the vertex and ω1, . . . , ωn be representatives of points in Σ away from the vertex
such that these (n+ 1) differential forms constitute a basis of W .

It will convenient to assume that all the non-zero 1-forms in W are non-zero
at the origin. Notice that this can be achieved after taking representatives and
localizing outside the singular locus of ω0 ∧ . . . ∧ ωn, which is non-zero thanks to
the assumption dimW = rank(W ). Therefore there exists a choice of coordinates
x0, . . . , xn in Cn+1 for which ωi = gidxi where g0, . . . , gn are suitable germs of
invertible functions. Furthermore, after dividing all the 1-forms by g0, we can also
assume that ω0 = dx0.

For a fixed i ∈ {1, . . . , n}, consider the linear family sω0 + tωi of integrable 1-
forms parametrized by (s, t) ∈ C2. It is well known, see for instance [3], that there
exists a unique meromorphic 1-form ηi such that

d (sω0 + tωi) = ηi ∧ (sω0 + tωi)

for every (s, t) ∈ C2. When (s, t) = (1, 0), the above equation reads as ηi∧dx0 = 0.
The differentiation of this identity leads to dηi ∧ dx0 = 0. Combining these two
identities with the one obtained when (s, t) = (0, 1), one promptly infers that
ηi = hi(x0, xi)dx0 for a suitable two variables function hi.

Let now ω =
∑n
i=1 λiωi be another integrable 1-form distinct from the previous

ones. Of course, there exists such 1-form since we are assuming that Σ has dimen-
sion two. As before we consider the linear family sω0 + tω and the corresponding
1-form η = hdx0 satisfying

dω = η ∧ ω =
n∑
i=1

λihfidx0 ∧ dxi .
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Comparing this last identity with

dω =
n∑
i=1

λidωi =
n∑
i=1

λiηi ∧ ωi =
n∑
i=1

λihifidx0 ∧ dxi

one deduces that hi = h = h(x0). Thus all the elements in W are integrable
contradicting the hypothesis that S(0, n − 1), n ≥ 3, is an irreducible component
of IW . �

We have shown slightly more. The proof above also shows the following

Lemma 3.3. If a rational normal scroll of the form S(0, k), k ≥ 1, is contained in
IW then its linear span is also contained in IW .

Notice that in the the extremal case k = 1, S(0, 1) is nothing more than P2.

3.4. Projections versus restrictions and the proof of Theorem 2. To con-
clude the proof of Theorem 2 it remains to consider the rational normal scrolls
S(a, b) with a, b ≥ 1. This is done in the next proposition.

Proposition 3.4. If a rational normal scroll of the form S(a, b) is contained in
IW then its linear span is also contained in IW .

Proof. Assume P(W ) coincides with the linear span of S(a, b). We will proceed by
induction, with the basis being given by Lemma 3.3. To prove the result for S(a, b),
with a, b ≥ 1, assume it holds for S(a− 1, b) and S(a, b− 1).

We can suppose, see the proof of Lemma 3.2, that every non-zero 1-form in W
is non-zero at the origin. Thus, if ω ∈ W is an integrable 1-form then it defines
a smooth foliation Fω on (Cn+1, 0). Let L ' (Cn, 0) be an arbitrary leaf of Fω.
Notice that we are abusing the notation here. The leaf L does not necessarily
passes through the origin of Cn+1. We are thinking in terms of a representative
of ω defined on a connected neighborhood of the origin where the foliation Fω is
defined by a submersion with connected fibers, and L is an arbitrary fiber of such
submersion.

If ι : L → Cn+1 denotes its inclusion into Cn+1, then WL := ι∗W is a vector
space of Ω1(Cn, 0) satisfying dimWL = dimW − 1 and rank(WL) = rank(W )− 1.
The induced rational map

ι∗ : P(W ) 99K P(WL)

is nothing more than the linear projection centered at [ω0]. Notice that IWL
is

contained in the image of IW .
Suppose S(a, b) is an irreducible component of IW and that [ω] belongs either to

Ca or Cb in S(a, b). The projection of S(a, b) centered at a point in Ca, resp. Cb,
is clearly S(a− 1, b), resp. S(a, b− 1). By induction hypothesis IWL

must coincide
with P(WL). Since L is arbitrary, this implies that for every α ∈ W the 4-form
ω ∧ α ∧ dα is identically zero.

Let ω1, . . . , ω4 ∈W be four linearly independent 1-forms with classes in Ca∪Cb.
The argument above shows that for every α ∈ W and every i ∈ {1, 2, 3, 4}, the
4-form α ∧ dα ∧ ωi = 0. Thus α ∧ dα = 0 for any α ∈ W . The proposition
follows. �
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4. Examples

4.1. Left-invariant 1-forms on Lie groups. Let G be a complex Lie group and
g be its Lie algebra. The vector space of left-invariant 1-forms on G is naturally
identified with W = g∗. The classes of integrable 1-forms in PW are in one to one
correspondence with codimension one Lie subalgebras of g.

For example, if g = sl(2,C) then the irreducible components of Ig∗ ⊆ P(g∗) are
easily described: if α, β, γ is one basis of g∗ satisfying dα = α ∧ β, dβ = α ∧ γ,
dγ = β ∧ γ, then ω = xα+ yβ + zγ ∈ g∗ is integrable if and only if

(2xz − y2)α ∧ β ∧ γ = 0.

Thus Ig∗ ⊆ P(g∗) has only one irreducible component which is a conic.
More generally, if g is any Lie algebra then main result of [11] implies that the

irreducible components of Ig∗ ⊆ P(g∗) are either linear subspaces or conics of the
type described above.

4.2. Godbillon-Vey sequences. Another natural source of rational curves of in-
tegrable 1-forms is the development of foliations with finite Godbillon-Vey sequence
as studied in [4]. Given a meromorphic integrable 1-form on a projective mani-
fold X (or more generally pseudo-parallelizable compact manifold) there exists a
sequence of 1-forms (ω0, ω1, . . . , ωk, . . .) such that the formal 1-form (defined on X
times a formal neighborhood of the origin of C)

Ω = dz +
∞∑
i=0

zi

i!
ωi ,

is integrable and ω0 = ω. A sequence with such properties is called a Godbillon-
Vey sequence of ω, and Ω is a development of ω. When this sequence is finite, i.e.
ωi = 0 for i > i0, the restriction of Ω to {z = const.} produces a rational normal
curve of integrable 1-forms in the vector space W generated by ω0, . . . , ωi0 .

When i0 = 2 we are in a situation not essentially different from the example as-
sociate to sl(2,C). In this case the foliation induced by ω is transversely projective,
and at neighborhood of a generic point of X there is a a map to SL(2,C) such that
the sequence (ω0, ω1, ω2) is the pull-back of a sequence of left-invariant 1-forms on
SL(2,C).

When i0 > 2, although one can obtain rational normal curves of degree equal to
dim P(W ), no example of this kind fall under our hypothesis. Indeed, according to
[4, Lemma 2.3], ωi ∧ ωj = 0 for every i, j ≥ 2. In particular rank(W ) ≤ 3.

4.3. Rational normal curves of arbitrary degree. Fix an integer n ≥ 2. Set
ω0 = dx0 and, for j ranging from 1 to n, set

ωj = fjdxj where fj = (j + 1) + j(x0 + · · ·+ xn) .

Consider the vector space W ⊂ Ω1(Cn+1, 0) generated by ω0, . . . , ωn. Clearly
dimW = rank(W ) = n+ 1.

Notice that ω1, . . . , ωn are all integrable 1-forms. A computation shows that
ωn+1 =

∑
ωi as well as ωn+2 =

∑n
i=0

1
(i+2)ωi are also integrable. Thus, according

to Proposition 2.1, the unique rational normal curve C through [ω0], . . . , [ωn+2] is
contained in IW . But, as another computation shows, the 1-form

∑n
i=0(i+ 1)ωi is

not integrable. Hence Theorem 2 implies that C is an irreducible component of IW .
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5. Gelfand-Zakharevich correspondence

Although concrete, the previous example says nothing about the underlying ge-
ometry of rational normal curves of integrable 1-form. Here we are going to review a
beautiful geometric construction from [9, pages 79–80], that puts in correspondence
analytic equivalence classes of germs of holomorphic surfaces along smooth rational
curves endowed with a morphisms to P1, and rational normal curves of integrable 1-
forms. Using this correspondence we will characterize when rational normal curves
are irreducible components of IW in terms of properties of the associated surface.

5.1. From rational normal curves to surfaces. Set X equal to (Cn+1, 0). As
above, X should be thought as a sufficiently small connected neighborhood of the
origin. Let W ⊂ Ω1(X) be a vector subspace of dimension and rank equal to n+ 1.
Suppose that all the non-zero 1-forms in W are non-singular at every point of X.

Let γ : P1 → P(W ) be a parametrization of a rational normal curve of integrable
1-forms in P(W ). For any λ ∈ P1, let Fλ be the foliation associated to γ(λ). Since
the 1-forms in W have no singular points, Fλ is a smooth foliation on X and as
such has leaf space naturally isomorphic to (C, 0). Considering the union of the
leaf spaces of all the foliations Fλ with λ varying in P1, one obtains a germ of
complex surface X(2). To each point x ∈ X, there is a smooth rational curve
Cx corresponding to the union of the leaves of the foliations Fλ through x. Let
C = C0 the curve corresponding to the origin 0 ∈ X. It is not hard to see that
C2 = C ·Cx = n: just take the point x in the intersection of leaves of Fλ1 , . . . ,Fλn

through the origin. Notice also that X(2) comes endowed with a holomorphic map
π : X(2) → P1 that associates to a leaf of Fλ the point λ ∈ P1. Of course the
restriction π|C : C → P1 is an isomorphism.

If Γ ⊂ X ×X(2) is the point-leaf correspondence, that is

Γ =
{

(x, L) ∈ X ×X(2)
∣∣x ∈ L} ,

and ρ1 : Γ→ X, ρ2 : Γ→ X(2) are the natural projections then: for any λ ∈ P1 and
any leaf L ⊂ X of Fλ, ρ2ρ

−1
1 (L) is a point ofX(2); and for any section σ : P1 → X(2),

the intersection ⋂
λ∈P1

ρ1

(
ρ−1

2

(
σ(λ)

))
is a point of X, see [9, Theorem 2.2].

The triple (X(2), C, π) will be called the Gelfand-Zakharevich triple associate to
the rational normal curve of integrable 1-forms γ(P1). On the one hand the pair
(X(2), C), seen as a germ of surface along a rational curve modulo isomorphisms,
does not depend on the parametrization of the rational normal curve. On the other
hand, the morphism π does depend on the parametrization but its equivalence class
modulo composition on the left with automorphism of P1 does not. In other words,
the linear system that defines π does not depend on the parametrization. Thus, it
is fair to say that the Gelfand-Zakharevich triple is canonically associated to the
rational normal curve γ(P1).

5.2. From surfaces to rational normal curves. Start now with a triple (S,C, π),
where S is a germ of smooth surface S along a smooth rational curve C of self-
intersection n and endowed with a morphism π : S → P1, and assume π|C : C → P1

is a isomorphism.
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Deformation theory tell us that the space of deformations X of C is smooth and
X ' (H0(C,NC), 0) ' (Cn+1, 0). To each λ ∈ P1, let Fλ be the foliation of X
which has as leaves deformations of C intersecting π−1(λ) at a fixed point. It is
possible to show that there exists a vector space W ⊂ Ω1(X , 0) of dimension and
rank equal to n+1, and a family of foliations Fλ parametrized by a rational normal
curve of integrable 1-forms contained in P(W ), see [9, Theorem 2.3]. Hence, the
two constructions just presented are inverse two each other modulo the respective
natural equivalence relations.

5.3. Rational normal curves as irreducible components of IW . Let now
W ⊂ Ω1(Cn+1, 0) be a vector space of dimension and rank equal to n + 1, and
C ⊂ IW be a rational normal curve. If (S,C, π) is the Gelfand-Zakharevich triple
associated to C then S has algebraic dimension1 a(S) equal to one or two. Indeed,
a(S) it is at least one because the morphism π : S → P1 induces a inclusion of
C(P1) into C(S); and a(S) is at most two because C2 > 0 what allow us to apply
[1, Théorème 6] or [10, Theorem 6.7].

Theorem 5.1. Assume n ≥ 2. The algebraic dimension of S is two if and only if
IW coincides with P(W ).

Proof. If IW coincides with P(W ) then the same arguments used to prove Lemma
3.2 imply that W is in a suitable system of coordinates the vector space generated
by hdx0, . . . , hdxn for a fixed meromorphic function h. In these coordinates, the
foliations induced by elements of W globalize to smooth foliations on Cn+1. The leaf
space of each one of these foliations is isomorphic to C, and the Gelfank-Zakharevich
triple is isomorphic to (E(OP1(n)), C0, π) where E(OP1(n)) is the total space of
OP1(n), C0 is the zero section, and π : E(OP1(n)) → P1 is the natural projection.
Since E(OP1(n)) is an algebraic surface its algebraic dimension is at least two. Thus
IW = P(W ) implies a(S) = 2.

Suppose now that a(S) = 2. Therefore, there exists a projective surface Z
containing S as an open subset. Moreover, if i : S → Z is the inclusion then the
Theorems of Andreotti and Hartshorne refereed to above imply that the induced
morphism i∗ : C(Z)→ C(S) is surjective. Thus the morphism π : S → P1 extends
to a rational map, still denoted by π, π : Z 99K P1. Since its indeterminacies, if any,
are away from C, it is harmless to assume that π is indeed a regular map defined
on all of Z.

We claim that the surface Z is a rational surface and that the fibers of π are
rational curves. The arguments are essentially the same as the ones laid down in
[13, Section 5.4.3] which we refer for further details. First notice that the abundance
of rational curves on Z implies that there are no holomorphic 1-forms on it. Hence
linear and algebraic equivalence coincide thanks to Hodge theory. After blowing-up
Z at n distinct points of C, one obtains a fibered surface π : Z → P1 containing
a section C of self-intersection zero which moves in a linear system of projective
dimension one. This suffices to show that fibers of π, and hence also the fibers of
π, are rational curves. Successive contractions of the (−1)-curves on the fibers of π
that do not intersect the curve C lead us to a relative minimal model Z0 of Z which
has to be the Hirzebruch surface P(OP1(n)⊕OP1). The complement of the section
of self-intersection −n is isomorphic to E(OP1(n)) with the curve C identified with

1As in the case of compact surfaces we are considering the algebraic dimension of S as the
transcendence degree over C of its field of germs of meromorphic functions C(S).
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C0. Thus we conclude that the Gelfand-Zakharevich triple (S,C, π) extends to the
triple (E(OP1(n)), C0, π) associate to W = ⊕ni=0Cdxi. The naturalness of Gelfand-
Zakharevich correspondence implies the result. �

Corollary 5.2. Assume n ≥ 2. The curve C is an irreducible component of IW if
and only if the algebraic dimension of S is one.

When n = 1 all the elements of P(W ) = P1 correspond to integrable 1-forms.
Neverthless, there is a natural analogue of Theorem 5.1 in this case. It reads as:
a(S) = 2 if and only if the there exists a closed meromorphic 1-form η such that
dω = η ∧ ω for every ω ∈ W . The reader can easily infer such result from the
proof of Theorem 5.1. Notice that only the first paragraph has to be adapted, the
remaining of the proof works as it is.

§

It would be interesting to investigate if, and if yes how, the Gelfand-Zakharevich
correspondence globalizes when studying rational normal curves of foliations on
compact complex manifolds. For instance a structure theorem for foliations in
these curves along the lines of [3] would be a welcome addition to the literature.
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concaves. Bull. Soc. Math. France 91, (1963), 1–38.

[2] T. B. Bouetou and J.-P. Dufour, Veronese curves and webs: interpolation. Internat. J.
Math. Math. Sci. 2006, (2006), 1–11.
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