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Abstract. We classify the irreducible components of the space of foliations

on Fano 3-folds with rank one Picard group. As a corollary we obtain a

classification of holomorphic Poisson structures on the same class of 3-folds.

1. Introduction

Let X be a projective manifold and N be a line bundle on it. A holomorphic
1-form with coefficients in L defines a codimension one foliation F if and only if it
satisfies the Frobenius integrability condition ω ∧ dω = 0 in H0(X,Ω3

X ⊗N⊗2). If
this is the case and ω has zeros of codimension at least two then N is called the
normal bundle of F . For a fixed line-bundle N on a fixed projective manifold X,
it is natural to study the irreducible components of the variety

Fol(X,N) =
{

[ω] ∈ PH0(X,Ω1
X ⊗N)

∣∣ ω ∧ dω = 0; codim sing(ω) ≥ 2
}

which we call the space of codimension one foliations on X with normal bundle N .
If X has dimension two then the integrability condition is automatically sat-

isfied and the space of foliations with a given normal bundle N is either empty
or has only one irreducible component which as open subset of the projective
space PH0(X,Ω1

X ⊗ N). The discussion from now one will focus on projective
manifolds of dimension at least three. When X = Pn the normal bundle of a
codimension one foliation F is OPn(d + 2) where d is the degree of the folia-
tion defined as the number of tangencies F with a general line. The irreducible
components of Fol(Pn, d) = Fol(Pn,OPn(d + 2)) for d = 0 and d = 1 are de-
scribed by Jouanolou in [18] using elementary methods. In the celebrated work [6],
Cerveau and Lins Neto give a complete description of the irreducible components of
Fol(Pn, 2) = Fol(Pn,OPn(4)), n ≥ 3. The methods are considerably more involved
and rely on the study of the Gauss map of the foliations, Dulac’s classification
of centers of degree 2 polynomial planar vector fields [12], and computer-assisted
calculations.

The canonical bundle of a foliation F with normal bundle N can be defined as
KF = KX ⊗ N∗, where KX is the canonical bundle of the ambient manifold.
Notice that in Pn the foliations with trivial canonical bundle are precisely those
of degree n − 1. In the particular case of P3, Cerveau-Lins Neto classification is
the classification of the irreducible components of the space of foliations on P3

with trivial canonical bundle. The main purpose of this paper is to extend this
classification to the other Fano 3-folds (3-folds with ample anticanonical bundle)
having Picard group isomorphic to Z. Our main result and Cerveau-Lins Neto
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classification of foliations of degree two on P3 are summarized in Table 1. For
more precise statements see Theorems 5.2, 6.1, 7.1, and 8.1. Our results also give
a classification of holomorphic Poisson structures on Fano 3-folds with rank one
Picard group, see Section 9.

Manifold Irreducible component dim

Projective space P3

Rat(1, 3) 21
Rat(2, 2) 16

Log(1, 1, 1, 1) 14
Log(1, 1, 2) 17

LPB(2) 17
Aff 13

Hyperquadric Q3
Rat(1, 2) 17

Log(1, 1, 1) 14
Aff 8

Hypersurface of degree 6 in P(1, 1, 1, 2, 3) Rat(1, 1) 2
Hypersurface of degree 4 in P(1, 1, 1, 1, 2) Rat(1, 1) 4

Cubic in P4 Rat(1, 1) 6
Intersection of quadrics in P5 Rat(1, 1) 8

X5
Rat(1, 1) 10

Aff 1
Mukai-Umemura 3-fold Aff 1

Table 1. Irreducible components of the space of foliations with
KF = 0 on Fano 3-folds with rank one Picard group.

Our main technical tool is the following result obtained by combining Theorem
3.5 and Theorem 3.8 of [23].

Theorem 1.1. Let (X,H) be a polarized complex projective manifold and F be
a codimension one foliation on X with numerically trivial canonical bundle and
semi-stable tangent sheaf. Suppose c1(TX)2 ·Hn−2 > 0. Then at least one of the
following statements holds true:

(1) TF is stable and F is a rationally connected foliation, i.e., the general leaf
of F is a rationally connected algebraic variety;

(2) TF is strictly semi-stable and there is a rationally connected foliation H
tangent to F and with KH ·Hn−1 = 0; or

(3) F is defined by a closed rational 1-form with coefficients in a flat line-bundle
and without divisorial components in its zero set.

Indeed we will show that when Pic(X) = Z, statement (1) implies statement
(3). This will be achieved through a study of fibers of rational maps F : X 99K P1,
which seen to have some independent interest.

1.1. Number of reducible fibers of first integrals. Let F be a codimension
one foliation on a projective manifold X defined by the levels of a rational map
F : X 99K C from X to some algebraic curve C. If we further assume that F has
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irreducible general fiber (what can always be done after replacing F by its Stein
factorization) and, following [29], define its base number as

r(F) = r(F ) =
∑
x∈C

(
#{ irreducible components of F−1(x)} − 1

)
.

then we obtain a rather strong bound on r(F) under the additional assumption
that TF is stable/semi-stable and has zero/positive first Chern class.

Theorem 1. Let F be such a codimension one foliation on a polarized projective
manifold (X,H) of dimension at least three. If TF is H-semi-stable and KF ·
Hn−1 < 0, or TF is H-stable and KF ·Hn−1 = 0, then

r(F) ≤ rankNS(X)− 1 ,

where NS(X) is the Neron-Severi group of X. In particular, if X = Pn, n ≥ 3,
then r(F) = 0.

Combining this result with a classical Theorem by Halphen about pencils on
projective spaces (which we generalize to simply connected projective manifolds in
Theorem 3.3) we are able to control the first integrals of (semi)-stable foliations
on Fano manifolds with rank one Picard group having (negative) zero canonical
bundle.

1.2. Plan of the paper. In Section 2 we have collected basic results about foli-
ations that will be used in the sequel. Section 3 studies the relationship between
the existence of invariant hypersurfaces and the semi-stability of the tangent sheaf.
Besides the proof of Theorem 1, it contains a generalization of a classical result of
Halphen, and the classification of foliations with KF < 0 on Fano 3-folds with rank
one Picard group (Proposition 3.7). Section 4 gives a rough classification (Theorem
4.1) of foliations with trivial canonical bundle on Fano 3-folds with rank one Picard
group. In Section 5 we give a complete classification of foliations with KF = 0 on
three-dimensional quadrics, Theorem 5.2. In Section 6 we recall the statement of
Cerveau-Lins Neto classification (Theorem 6.1), give a classification of the foliations
on Pn of degree one and arbitrary codimension (Theorem 6.2), and show how to
deduce the Cerveau-Lins Neto for n > 3 from the classification for n = 3 using the
classification of foliations of degree one. Sections 7 and 8 deals with cases of index
two (Theorem 7.1) and one (Theorem 8.1), respectively. And finally in Section 9
we spell out the classification of holomorphic Poisson structures on Fano 3-folds
with rank one Picard group in Theorem 9.1.

2. Basic concepts

2.1. Foliations as subsheaves of the tangent and cotangent bundles. A
foliation F on a complex manifold is determined by a coherent subsheaf TF of the
tangent sheaf TX of X which

(1) is closed under the Lie bracket (involutive), and
(2) the inclusion TF → TX has torsion free cokernel.

The locus of points where TX/TF is not locally free is called the singular locus of F ,
denoted here by sing(F). Condition (2) implies, in particular, that the codimension
of sing(F) is at least two. The dimension of F , dimF for short, is by definition
the generic rank of TF . The codimension of F , codimF , is defined as the integer
dimX − dimF .
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The dual of TF is the cotangent sheaf of F and will be denoted by T ∗F . The
determinant of T ∗F , i.e. (∧dimFT ∗F)∗∗ is what we will call the canonical bundle
of F and will be denoted by KF .

There is a dual point of view where F is determined by a subsheaf N∗F of
the cotangent sheaf Ω1

X = T ∗X of X. The involutiveness asked for in condition
(1) above is replace by integrability: dN∗F ⊂ N∗F ∧ Ω1

X where d is the exterior
derivative. Condition (2) is unchanged: Ω1

X/N
∗F is torsion free. The normal

bundle of F is defined as the dual of N∗F . Over the smooth locus X − sing(F) we
have the following exact sequence

0→ TF → TX → NF → 0 ,

but this is not valid over the singular locus. Anyway, as the singular set has
codimension at least two we obtain the adjunction formula

KX = KF ⊗ detN∗F
valid in the Picard group of X.

2.2. Foliations as q-forms and spaces of foliations. If F is a codimension q
foliation on a complex variety X then the q-th wedge product of the inclusion

N∗F −→ Ω1
X

determines a differential q-form ω with coefficients in the line bundle detNF =
(∧qNF)∗∗ having the following properties:

• Local decomposability: the germ of ω at the general point of X decom-
poses as the product of q germs of holomorphic 1-forms

ω = ω1 ∧ · · · ∧ ωq.
• Integrability: the decomposition of ω at the general point of X satisfies

Frobenius integrability condition

dωi ∧ ω = 0 for every i = 1, . . . , q .

The tangent bundle of F can be recovered as the kernel of the morphism

TX → Ωq−1
X ⊗ detNF

defined by contraction with ω.
Reciprocally, if ω ∈ H0(X,Ωq ⊗N) is a twisted q-form with coefficients in a line

bundle N which is locally decomposable and integrable then the kernel of ω has
generic rank dimX − q, and it is the tangent bundle of a holomorphic foliation F .
Moreover, if the zero set of ω has codimension at least two then N = detNF .

Example 2.1 (Foliations on Pn and homogeneous forms). Let F be a codimension
q-foliation on Pn given by ω ∈ H0(Pn,ΩqPn ⊗ N). If i : Pq → Pn is a general
linear immersion then i∗ω ∈ H0(Pq,ΩqPq ⊗N) is a section of a line bundle, and its
zero divisor reflects the tangencies between F and i(Pq). The degree of F is, by
definition, the degree of such tangency divisor. It is commonly denoted by deg(F).
Since ΩqPq ⊗N = OPq (deg(N)− q − 1), it follows that N = OPn(deg(F) + q + 1).

The Euler sequence implies that a section ω of ΩqPn(deg(F)+q+1) can be thought
as a polynomial q-form on Cn+1 with homogeneous coefficients of degree deg(F)+1,
which we will still denote by ω, satisfying (*) iRω = 0 where R = x0

∂
∂x0

+· · ·+xn ∂
∂xn

is the radial vector field. Thus the study of foliations of degree d on Pn reduces to
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the study of locally decomposable, integrable homogeneous q-forms of degree d+ 1
on Cn+1 satisfying the relation (*).

2.3. Harder-Narasimhan filtration. Let E be a torsion free coherent sheaf on a
n-dimensional smooth projective variety X polarized by the ample line bundle H.
The slope of E (more precisely the H-slope of E) is defined as the quotient

µ(E) =
c1(E) ·Hn−1

rank(E)
.

If the slope of every proper subsheaf E ′ of E satisfies µ(E ′) < µ(E) (respectively
µ(E ′) ≤ µ(E)) then E is called stable (respectively semi-stable). A sheaf which is
semi-stable but not stable is said to be strictly semi-stable.

There exists a unique filtration of E by torsion free subsheaves

0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E

such that Gi := Ei/Ei−1 is semi-stable, and µ(G1) > µ(G2) > . . . > µ(Gr) . This
filtration is called the Harder–Narasimhan filtration of E . Of course E is semi-stable
if and only if r = 1. Usually one writes µmax(E) = µ(G1) and µmin(E) = µ(Gr).

We will say that a foliation F is stable/semi-stable/strictcly semi-stable when
its tangent sheaf TF is stable/semi-stable/strictcly semi-stable . When E is the
tangent sheaf of a foliation F , the proof of [20, Chapter 9, Lemma 9.1.3.1] (see also
[23, Proposition 2.1]) implies the following result.

Proposition 2.2. Let F be a foliation on a polarized smooth projective variety
(X,H) satisfying µ(TF) ≥ 0. If F is not semi-stable then the maximal destabilizing
subsheaf of TF is involutive. Thus there exists a semi-stable foliation G tangent to
F and satisfying µ(TG) > µ(TF) .

Example 2.3. If F is a foliation of Pn then the slope of TF is

µ(TF) =
dim(F)− deg(F)

dim(F)
.

Therefore TF is semi-stable if and only if for every distribution D tangent to F we
have deg(D)

dim(D) ≥
deg(F)
dim(F) . Of course, TF is stable if and only if the strict inequality

holds for every proper distribution D.
If F is unstable and deg(F) ≤ dim(F) then there exists a foliation G contained

in F satisfying
deg(G)
dim(G)

<
deg(F)
dim(F)

.

2.4. Miyaoka-Bogomolov-McQuillan Theorem. We recall that an algebraic
variety Y is rationally connected if through any two points x, y ∈ Y there exists
a rational curve C in Y containing x and y. Foliations with all leaves algebraic
and with rationally connected general leaf will be called rationally connected folia-
tions. Beware that there exists rationally connected foliation with some leaves non
rationally connected, see for instance [23, §2.3]. A fundamental result in the study
of holomorphic foliations is the Miyaoka-Bogomolov-McQuillan Theorem see [24,
Theorem 8.5], [20, Chapter 9], [3].

Theorem 2.4. Let F be a semi-stable foliation on a n-dimensional polarized pro-
jective variety (X,H). If KF ·Hn−1 < 0 then F is a rationally connected foliation.
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2.5. Closed 1-forms without divisorial components in theirs zero sets. Let
X be a simply-connected projective manifold of dimension at least three. If D =∑
λiHi is a C-divisor on X with zero (complex) first Chern class then there exists

a unique closed rational 1-form η = ηD on X with simple poles and residue equal to∑
λiHi. The associated foliation has normal bundle equal to OX((η)∞ − (η)0). If

we multiply η by the defining equations of the (reduced) hypersurfaces Hi then we
obtain a section of H0(X,Ω1

X ⊗ OX(
∑
Hi)). If X has Picard group Z (generated

by OX(1)) and the divisors Hi have degree di then we get a rational

Φ : Σ×

(
k∏
i−1

PH0(X,OX(di))

)
99K PH0

(
X,Ω1

X(
∑

di)
)

((λ1 : · · · : λk), f1, . . . , fk) 7→

(
k∏
i=1

fi

)(
k∑
i=1

λi
dfi
fi

)
,

where Σ ⊂ Pk−1 is the hyperplane {
∑
λidi = 0}. If the domain is not empty then

the closure of the image Φ will be denoted by Log(d1, . . . , dk) when k ≥ 3, and
by Rat(d1, d2) when k = 2. Under mild assumptions Calvo-Andrade [4] proved
that these subvarieties are irreducible components of the space of foliations on X
with normal bundle OX(

∑
di). They are usually called the logarithmic components

(when k ≥ 3) or the rational components (when k = 2) of the space of foliations.
Notice that in general the image of Φ is not closed: the confluence of hypersurfaces
may give rise to indeterminacy points of Φ, and at the closure of its image one
may find foliations defined by closed rational 1-forms with poles of higher order.
Nevertheless, it can be verified that for any 1-form [ω] ∈ PH0(X,Ω1

X(
∑
di)) in the

closure of the image of Φ there exists a section f of H0(X,OX(
∑
di)) such that

f−1ω is a closed rational 1-form.
Even if the assumptions of Calvo-Andrade’s result does not hold, a straightfor-

ward adaptation of the proof of [6, Lemma 8] shows that any foliation with normal
bundle OX(d) defined by a closed rational 1-form without divisorial components in
its zero set lies in a variety of the form Log(d1, . . . , dk) with

∑
di = d.

Lemma 2.5. Let X be a projective manifold with H0(X,Ω1
X) = 0. Let F be

codimension one foliation on X defined by a closed rational 1-form ω with zero set
of codimension at least two and polar divisor (ω)∞ =

∑k
i=1 riDi. Then there exists

a holomorphic family of foliations Ft, t ∈ (C, 0), such that
(1) F0 = F ;
(2) NFt = NF = OX(

∑k
i=1 riDi) for every t ∈ C; and

(3) Ft is defined by a logarithmic 1-form for every t 6= 0.

3. First integrals of (semi)-stable foliations

Miyaoka-Bogomolov-McQuillan Theorem (Theorem 2.4) tells us that semi-stable
foliations with negative canonical bundle have algebraic leaves and that the general
one is rationally connected. The goal of this section is to complement this result
for codimension one foliations by giving more information about the first integral.
We also deal with stable foliations with numerically trivial canonical bundle having
rational first integrals, and the results here presented will play an important role
in proof of the classification of codimension one foliations with KF = 0 on Fano
3-folds with rank one Picard group.
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3.1. Invariant hypersurfaces and subfoliations. Let F be a foliation of codi-
mension q on a compact Kähler manifold X. Let Div(F) ⊂ Div(X) be the subgroup
of the group of divisors of X generated by irreducible hypersurfaces invariant by F .
The arguments used in [15] to prove Jouanolou’s theorem lead us to the following
result.

Lemma 3.1. Suppose the dimension of F is greater than or equal to two. If
D ∈ Div(F) satisfies c1(D) = m · c1(NF) for a suitable m ∈ Z then at least one of
the following assertions holds true:

(a) the integer m is non-zero and F is, after a ramified abelian covering of
degree m and a bimeromorphic morphism, defined by a meromorphic closed
q-form with coefficients in a flat line bundle; or

(b) the integer m is zero and F is tangent to a codimension one logarithmic
foliation with poles at the support of D and integral residues; or

(c) there exists a foliation G of codimension q + 1 tangent to F with normal
sheaf satisfying

detNG = detNF ⊗OX(−∆)

for some effective divisor ∆ ≥ 0.

Proof. Let N = detNF and ω ∈ H0(X,ΩqX ⊗N) be a twisted q-form defining F .
Write D as

∑
λαHα with λα ∈ Z.

Our hypothesis ensure the existence of an open covering of U = {Ui} where

Hα ∩ Ui = {h(i)
α = 0} and

∑
λα

(
dh

(i)
α

h
(i)
α

− dh
(j)
α

h
(j)
α

)
= m

dgij
gij

where {gij} ∈ H1(U ,O∗X) is a cocycle defining N , i.e. ω is defined by a collection
of q-forms {ωi ∈ ΩqX(Ui)} which satisfies ωi = gijωj .

On Ui, set ηi =
∑
λα

dh(i)
α

h
(i)
α

and define

θi = ηi ∧ ωi +m · dωi .
As the hypersurfaces Hα are invariant by F , θi is a holomorphic (q+ 1)-form. It is
also clear that θi is locally decomposable and integrable. Moreover, on Ui ∩ Uj we
have the identity

θi =
(
ηj −m

dgij
gij

)
∧ gijωj +m · d(gijωj) = gijθj .

Hence the collection {θi} defines a holomorphic section θ of Ωq+1
X ⊗N . If this section

is non-zero then it defines a foliation G with detNG = detNF ⊗ OX(−(θ)0). We
are in case (c).

Suppose now that θ is identically zero. If m = 0 then ηi = ηj on Ui ∩Uj and we
can patch then together to obtain a logarithmic 1-form η with poles at the support
of D. Clearly we are in case (b).

If m 6= 0 then on Ui the (multi-valued) meromorphic q-form

Θi = exp
(∫

1
m
ηi

)
ωi =

(∏
hλα/mαi

)
ωi

is closed. Moreover, if Ui ∩ Uj 6= ∅ then Θi = µijΘj for suitable µij ∈ C∗. It is a
simple matter to see that we are in case (a). �
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3.2. Number of reducible fibers of first integrals. Let F be a codimension one
foliation on a polarized projective manifold (X,H) having a rational first integral.
Stein’s factorization ensures the existence of a rational first integral F : X 99K C
with irreducible general fiber. We are interested in bounding the number of non-
irreducible fibers of f . More precisely we want to bound the number

r(F) = r(F ) =
∑
x∈C

(
#{ irreducible components of F−1(x)} − 1

)
,

where we do not count the multiplicity of the irreducible components of F−1(x).
This problem, for rational functions F : X 99K P1 has been investigated by A.
Vistoli and others. In [29] he obtains a bound in function of the rank of the Neron-
Severi group of X and what he calls the base number of F . In particular, when X is
Pn, he proves that r(F ) ≤ deg(F )2−1 where deg(F ) is the degree of a general fiber
of F . Our result below gives much stronger bounds for the first integrals obtained
through Theorem 2.4 when dimX ≥ 3.

Theorem 3.2. Suppose the dimension X is at least three. If F is semi-stable and
c1(TF) ·Hn−1 > 0, or F is stable and c1(TF) ·Hn−1 = 0 then

r(F) ≤ rankNS(X)− 1 ,

where NS(X) is the Neron-Severi group of X. In particular, if X = Pn, n ≥ 3,
then r(F) = 0.

Proof. Let x1, . . . , xk be the points of C for which F−1(x) is non-irreducible, and
let n1, . . . , nk be the number of irreducible components of F−1(xi). Choose ni − 1
irreducible components in each of the non-irreducible fibers and denote them by
F1, . . . , Fr(F). If r(F) ≥ rankNS(X) then an irreducible fiber F0 is numerically
equivalent to a Q-divisor supported on F1∪· · ·∪Fr(F). Thus there exists a nonzero
D ∈ Div(F) with zero Chern class and supported on F0 ∪ · · · ∪ Fr(F).

Lemma 3.1 implies that either there exists a codimension two foliation G con-
tained in F with detNG = NF ⊗ OX(−∆), for some ∆ ≥ 0; or F is defined by a
logarithmic 1-form η with poles in D. We will now analyze these two possibilities.

If there exists G as above and c1(TF) ·Hn−1 < 0 then

0 < c1(TF) ·Hn−1 = (c1(TG)−∆) ·Hn−1 ≤ c1(TG) ·Hn−1 ,

which implies µ(TG) > µ(TF) contradicting the semi-stability of F . Similarly,
when c1(TF) ·Hn−1 = 0 we deduce µ(TG) ≥ µ(TF) = 0 contradicting the stability
of F .

Suppose now that F is defined by η. As the general fiber of F is irreducible,
there exists a 1-form η′ on C such that η = F ∗η′. Consequently the polar set of η
is set-theoretically equal to a union of fibers of F . This contradicts the choice of
F1, . . . , Fr(F), and concludes the proof. �

3.3. Multiple fibers of rational maps to P1. A classical result of Halphen [16,
Chapitre 1] says that a rational map F : Pn 99K P1 with irreducible general fiber
has at most two multiple fibers. In this section we follow closely the exposition of
Lins Neto [22] to establish the following generalization.

Theorem 3.3. Let X be a simply-connected compact Kähler manifold and F :
X 99K P1 be meromorphic map. If the general fiber of F is irreducible then F has
at most two multiple fibers.
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We will say that a line bundle L is primitive if its Chern class c1(L) ∈ H2(X,Z)
generates a maximal rank 1 submodule of H2(X,Z). To adapt Lins Neto’s proof of
Halphen’s Theorem to other manifolds we will need the following lemma.

Lemma 3.4. Let X be a simply-connected compact complex manifold. If L ∈
Pic(X) is a primitive line bundle on X then the total space of L minus its zero
section is simply-connected.

Proof. Let E be the total space of L minus its zero section. As E is a C∗-bundle,
we can use Gysin sequence

H1(X,Z)→ H1(E,Z)→ H0(X,Z)
∧c1(L)−→ H2(X,Z)

to deduce that the fundamental group of E is torsion. If E is not simply-connected
then its universal covering is a C∗-bundle over X, and the associated line bundle
divides L. This contradicts the primitiveness of L. �

Proof of Theorem 3.3. Let L be a primitive line bundle and k a positive integer
such that L⊗k = F ∗OP1(1). If E is the total space of the C∗-bundle defined by L∗
then sections of L and its positive powers naturally define holomorphic functions
on E. Moreover, if f ∈ H0(X,L⊗k) then the element of H0(E,OE) determined by
f , which we still denote by f , is homogeneous of degree k with respect to C∗-action
on E given by fiberwise multiplication. In particular, if R is the vector field on E
with flow defining this C∗-action then we have the Euler identity iRdf = kf on E.

Now suppose F : X 99K P1 has three multiple fibers, of multiplicity p, q, r.
Assume that they are over the points [0 : 1], [1 : 0], [1 : −1]. Thus we can write
F = fp/gq with

(1) fp + gq + hr = 0,

and fp, gq, hr ∈ H0(X,L⊗k). If we interpret f, g, h now as functions on E then
taking the differential of the relation (1) we get

pfp−1df + qgq−1dg + rhr−1dh = 0 .

Taking the wedge product first with df and then with dg, we deduce the following
equalities between holomorphic 2-forms

df ∧ dg
hr−1

=
dg ∧ dh
fp−1

=
df ∧ dh
gq−1

where we have deliberately omitted irrelevant constants. If we contract these iden-
tities with R we get

ω =
k
pfdg −

k
q gdf

hr−1
=

k
q gdh−

k
rhdg

fp−1
=

k
pfdh−

k
rhdf

gq−1

and ω can be interpreted as holomorphic section of Ω1
X ⊗ La where

a

k
=
k

p
+
k

q
− (r − 1)k

r
=
k

q
+
k

r
− (p− 1)k

p
=
k

p
+
k

r
− (q − 1)k

q
.

Since X is Kähler and simply-connected, H0(X,Ω1
X⊗L⊗b) = 0 for any b ≤ 0. Thus

a > 0, and from this inequality we deduce that
1
p

+
1
q

+
1
r

= 1 + a > 1 .
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This implies that the triple (p, q, r), after reordering, must be one of the following:
(2, 2,m), (2, 3, 3), (2, 3, 4), or (2, 3, 5).

If (p, q, r) belongs to this list then C2 \{0} is the universal covering of the surface
Sp,q,r = {(x, y, z) ∈ C3\{0}|xp+yq+zr = 0}. Moreover, the entries of the covering
map p = (F,G,H) : C2\{0} → Sp,q,r are homogeneous polynomials in two variables
satisfying F p +Gq +Hr = 0, see [22, Introduction].

Recall that E is simply-connected according to Lemma 3.4. Since the indeter-
minacy set of F has codimension two, the manifold E \ {f = g = h = 0} is also
simply-connected. Therefore we can lift the map

ϕ : E \ {f = g = h = 0} −→ Sp,q,r

x 7−→ (f, g, h) .

through the covering map p to a map ϕ̃ : E \ {f = g = h = 0} → C2 \ {0}. The
particular form of the covering map described above implies that ϕ̃ sends fibers
of the C∗-bundle E to lines through origin of C2, and therefore it descends to a
rational map G : X 99K P1 which fits into the diagram below.

P1

��
X

G

>>~
~

~
~ F //___ P1

Since the vertical arrow is not invertible, the general fiber of F is not irreducible.
With this contradiction we conclude the proof. �

3.4. Codimension one stable foliations with first integrals. Having Theorem
3.3 at hand we are able to give precisions about the structure of the first integrals
of semi-stable foliations of codimension one having negative canonical bundle on
projective manifolds with rank one Picard group.

Proposition 3.5. Let X be a projective manifold with Pic(X) = Z and F be a
codimension one foliation on X. Suppose

(a) F is semi-stable and KF < 0, or
(b) F is stable, has a rational first integral, and KF = 0.

Then F admits a rational first integral of the form (fp : gq) : X 99K P1 where p, q
are relatively prime positive integers; and f, g are sections of line bundles L1,L2

which satisfy
L⊗p1 = L⊗q2 and NF = L1 ⊗ L2.

In particular F is defined by a logarithmic 1-form without divisorial components in
its zero set.

Proof. Let F : X 99K P1 be a rational first integral for F with irreducible general
fiber. Notice that the target has to be P1 since Pic(X) = Z. Theorem 3.2 implies
that every fiber of F is irreducible, and Theorem 3.3 tells us that there are at most
two non-reduced fibers. Assume that they are over 0,∞ ∈ P1 and write F−1(0) =
pH0, F−1(∞) = qH∞ where H0 and H∞ are reduced and irreducible hypersurfaces.
If we take the logarithmic 1-form on P1 given in homogeneous coordinates by dx/x−
dy/y and we pull-back it by F then the resulting logarithmic 1-form, which defines
F , has polar divisor equal to H0 + H∞ and empty zero divisor. Therefore NF =
OX(H0 + H∞) and the rational function F can be written as (fp : gq) with f ∈
H0(X,OX(H0)), g ∈ H0(X,OX(H∞)). The proposition follows. �
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Corollary 3.6. Let F be a semi-stable codimension one foliation on Pn, n ≥ 3. If
deg(F) < n − 1 then F admits a rational first integral of form (F p : Gq) where F
and G are homogeneous polynomials and p, q are relatively prime positive integers
such that p deg(F ) = q deg(G) and deg(F) = deg(F ) + deg(G)− 2.

3.5. Very negative foliations on Fano manifolds with rank one Picard
group. A projective manifold X is Fano if its anticanonical bundle −KX is ample.
Let H be an ample generator of the Picard group of a Fano manifold with ρ(X) = 1
(ρ(X) is the rank of the Picard group of X). The index of X, denoted by i(X),
is defined through the relation −KX = i(X)H. The index of a Fano manifold of
dimension n is bounded by n+ 1 and the extremal cases are Pn (i(X) = n+ 1) and
hyperquadrics Qn ⊂ Pn+1 (i(X) = n), see [19].

A codimension one foliation of degree one on Pn has canonical bundle KF equal
to OPn(2−n), see Example 2.1. Our next result can be thought as a generalization
of Jouanolou’s classification of codimension one foliations of degree one on Pn [18,
Chapter I, Proposition 3.5.1] to arbitrary Fano manifolds with ρ(X) = 1.

Proposition 3.7. Let X be a Fano manifold of dimension n ≥ 3 and Picard
number ρ(X) = 1. Let H be an ample generator of Pic(X). If F is a codimension
one foliation on X with KF = (2−n)H then F is a foliation of degree one on Pn,
or F is the restriction of a pencil of hyperplanes on Pn+1 to a hyperquadric Qn.

Proof. Assume first that F is semi-stable. Theorem 2.4 implies F has a rational
first integral. Proposition 3.5 implies NF ≥ 2H. Since KX = KF − NF , it
follows that KX ≤ −nH. Therefore KX = −(n + 1)H, NF = 3H and X = Pn,
or KX = −nH, NF = 2H and X = Qn. Proposition 3.5 implies F is a pencil of
quadrics with a non-reduced member in the first case, and a pencil of hyperplane
sections of Qn in the second case.

Suppose now that F is not semi-stable and let G be its maximal destabilizing
foliation. Therefore

−KG = c1(TG) >
−KF

dim(F)
· dim(G) ≥ (dim(G)− 1)H .

and, consequently, −KG ≥ dim(G)H and we can produce a non-zero section of
∧dim(G)TX ⊗OX(−dim(G)H). It follows from [1, Theorem 1.2] that X = Pn and
G is a foliation of degree zero on Pn. These have been classified in [7, Théorème
3.8]: a codimension q foliation of degree zero on Pn is defined by a linear projection
from Pn to Pq. It follows that F is the linear pull-back of a foliation of degree one
on Pn−dim(G). �

In [2] codimension one foliations with KF = (2 − n)H are called codimension
one del Pezzo foliations.

4. Rough structure

The goal of this section is to prove the following result.

Theorem 4.1. Let X be a Fano 3-fold with Pic(X) = Z, and let F be a codimension
one foliation on X with trivial canonical bundle. If F is not semi-stable then
X = P3 and F is the linear pull-back of a degree two foliation on P2. If F is
semi-stable then at least one of the following assertions holds true:

(1) TF = OX ⊕OX and F is induced by an algebraic action;
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(2) there exists an algebraic action of C or C∗ with non-isolated fixed points is
tangent to F ;

(3) F is given by a closed rational 1-form without divisorial components in its
zero set.

4.1. Division Lemma. To prove Theorem 4.1 we will use the following lemma.

Lemma 4.2. Let X be a projective 3-fold, G be a one-dimensional foliation on
X with isolated singularities, and F a codimension one foliation containing G. If
H1(X,KX⊗KG⊗−2⊗NF) = 0 then TF ∼= TG⊕TH for a suitable one-dimensional
foliation H.

Proof. Let v ∈ H0(X,TX⊗KG) be a twisted vector field defining G. By hypothesis
v has isolated zeros. Therefore (see for instance [13, Exercise 17.20]) contraction of
differential forms with v defines a resolution of the singular scheme sing(G) of G:

0→ Ω3
X → Ω2

X ⊗KG
Φ−→ Ω1

X ⊗KG⊗2 → KG⊗3 → Osing(G) → 0 .

After tensoring by NF ⊗ K⊗−2
G , we obtain from the exact sequence above the

following exact sequences

0→ ImΦ⊗KG⊗−2 ⊗NF → Ω1
X ⊗NF → KG ⊗NF ,

and

0→ Ω3
X ⊗KG⊗−2 ⊗NF → Ω2 ⊗NF ⊗KG−1 → ImΦ⊗KG⊗−2 ⊗NF → 0 .

If ω ∈ H0(X,Ω1
X ⊗ NF) defines F then, since F contains G, ω belongs to the

kernel of
H0(X,Ω1

X ⊗NF)→ H0(X,KG ⊗NF) .
The first sequence tells us that we can lift ω to H0(X, ImΦ⊗KG⊗−2⊗NF). The
second exact sequence, together with our cohomological hypothesis, ensures the
existence of θ ∈ H0(X,Ω2

X ⊗NF ⊗KG−1) such that ω = ivθ. The twisted 2-form
θ defines the sought foliation H. �

4.2. Automorphisms of a foliation. Let F be a codimension one foliation on a
projective manifold X. The automorphism group of F , Aut(F), is the subgroup
of Aut(X) formed by automorphisms of X which send F to itself. It is a closed
subgroup of Aut(X), and therefore the connected component of the identity is a
finite dimensional connected Lie group. We will denote by aut(F) its Lie algebra,
which can be identified with a subalgebra of aut(X) = H0(X,TX). If F is defined
by ω ∈ H0(X,Ω1

X ⊗ NF) then we define the fix(F) as the subalgebra of aut(F)
annihilating ω, i.e.

fix(F) = {v ∈ aut(F) | ivω = 0} .
Notice that fix(F) is nothing more than H0(X,TF). We also point out that fix(F)
is an ideal of aut(F), and that subgroup Fix(F) ⊂ Aut(F) generated by fix(F) is
not necessarily closed.

Lemma 4.3. The following assertions hold true:
(1) If fix(F) = aut(F) 6= 0 then there exists a non-trivial algebraic action with

general orbit tangent to F .
(2) If fix(F) 6= aut(F) then F is generated by a closed rational 1-form without

divisorial components in its zero set.
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Proof. The connected component of the identity of Aut(F) is closed. If fix(F) =
aut(F) then Fix(F) is also closed and therefore correspond to an algebraic subgroup
of Aut(X). Item (1) follows. To prove Item (2), let v be a vector field in aut(F)−
fix(F). If ω ∈ H0(X,Ω1

X ⊗NF) is a twisted 1-form defining F then [26, Corollary
2] implies (ivω)−1ω is a closed meromorphic 1-form. Since the singular set of ω has
codimension at least two, the same holds true for the zero set of (ivω)−1ω. �

4.3. Proof of Theorem 4.1. If TF is not semi-stable then Proposition 2.2 implies
the existence of a foliation by curves G tangent to F and with µ(TG) > 0. According
to Wahl’s Theorem [30], X is isomorphic to P3 and TG = OP3(1). Thus G is a
foliation of degree zero and, consequently, its leaves are the lines through a point
p ∈ P3. It follows that F is a pullback of foliation on P2 of degree two under the
linear projection π : P3 99K P2 determined by G.

Suppose now that TF is stable. If F is a foliation by algebraic leaves then
Proposition 3.5 implies that also in this case F is defined by a logarithmic 1-
form without codimension one components in its zero set. Since Fano manifolds
are simply-connected [10, Corollary 4.29], every flat line-bundle on X is trivial.
Theorem 1.1 implies that F is given by a closed rational 1-form without divisorial
components in its zero set.

Finally, we will deal with the case where TF is strictly semi-stable. Now we
have a foliation by curves G tangent to F with TG = OX . In other words, G is
induced by a vector field v ∈ H0(X,TX) with zeros of codimension at least two.
Notice that Cv ⊂ fix(F).

Suppose fix(F) = aut(F). If fix(F) = Cv then we claim G is defined by an
algebraic action of C or C∗ with non-isolated fixed points. Indeed Lemma 4.3
implies F is tangent to an action of a one-dimensional Lie group. Moreover, if the
action has only isolated fixed points then we can apply Lemma 4.2 to deduce that
the tangent bundle of F is OX ⊕OX . Notice that the hypothesis of Lemma 4.2 are
satisfied since KX ⊗KG⊗−2⊗NF = OX and H1(X,OX) = 0 for Fano manifolds.

If we still assume fix(F) = aut(F) but now with dim fix(F) > 1 then, as v has
no divisorial components in its zero set, any two elements in it will generate TF .
Thus TF = OX ⊕ OX in this case and F is defined by an algebraic action since
Aut(F) is closed.

Finally, if fix(F) 6= aut(F) then Lemma 4.3 implies F is given by a closed mero-
morphic 1-form with zero set of codimension at least two. �

5. Foliations on the 3-dimensional quadric

We will now classify the foliations with KF = 0 on the 3-dimensional quadric.
We start by presenting an example.

Example 5.1. Identify P4 with the set of 4 unordered points in P1. This identi-
fication gives a natural action of PSL(2,C) ' Aut(P1) on P4. Let p0 ∈ P4 be the
point defined by the set {1,−1, i,−i} ⊂ P1. The closure of the PSL(2,C)-orbit
of p0 is a smooth quadric Q3 ⊂ P4, see [25]. This quadric can be decomposed as
the union of three orbits of PSL(2,C): a closed orbit of dimension one isomorphic
to a rational normal curve Γ4 of degree 4 corresponding to points on P1 counted
with multiplicity 4; an orbit S of dimension two corresponding to two distinct
points on P1, one with multiplicity three and the other with multiplicity one(in
more geometric terms this orbit is the tangent surface of Γ4); and the open orbit
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of dimension three corresponding to 4 distinct points isomorphic to {1,−1, i,−i}
The affine subgroup Aff(C) ⊂ Aut(P1) acts on Q3 fixing the point p = 4∞, and
defines on it a codimension one foliation F with trivial tangent bundle. Notice
that the singular set of F has three irreducible components: Γ4; a twisted cubic Γ3

corresponding to points of the form 3p+∞; and a line corresponding to points of
the form p+ 3∞. Notice that the foliation F leaves invariant the surface S (which
belongs to the linear system |OQ3(3)|, see [5, §2.4]), and that the quadratic cone
through p (which belongs to |OQ3(1)|) is the unique hyperplane section invariant
by F . This is sufficient to show that F is not in Rat(1, 2) nor in Log(1, 1, 1). In-
deed, [8, §5.3.1] implies that the image of the rational parametrization of Rat(1, 2)
defined in §2.5 is closed. In particular, foliations in this component do not leave
irreducible elements of |OQ3(3)|, like S, invariant. The rational parametrization of
Log(1, 1, 1) do not have closed image, but if an element is not on the image then
the polar divisor of the corresponding closed rational 1-form η must 2H+H ′ or 3H
where H,H ′ are distinct elements of |OX(1)|. According to the structure of closed
rational 1-forms on projective manifolds [31, appendix to Chapter VII], in the first
case η is proportional to h2h′

(
dh
h −

dh′

h′ + d( fh )
)

, and in the second case η is pro-

portional to h3d
(
g
h2

)
, where f, h, h′ ∈ H0(Q3,OQ3(1)) and g ∈ H0(Q3,OQ3(2)). In

the former case, the general leaf is not algebraic while in the latter case the general
leaf if an element of |OQ3(2)|. In neither cases the foliation leaves an irreducible
element of |OQ3(3)| invariant. We conclude that F does not belong to Rat(1, 2)
nor to Log(1, 1, 1).

Theorem 5.2. The irreducible components of space of codimension one foliations
with KF = 0 on the hyperquadric Q3 are Rat(2, 1), Log(1, 1, 1), and Aff (the
general element is conjugated to the foliation presented in Example 5.1).

Theorem 5.2 follows from Theorem 4.1 combined with the next three propositions
and Lemma 2.5.

Proposition 5.3. Let F be a codimension one foliation on Q3 with KF = 0. If F
is tangent to an algebraic C∗-action with non-isolated fixed points then F is given
by a closed rational 1-form without divisorial components in its zero set.

Proof. We can assume that Q3 ⊂ P4 is given by the equation {x2
0+x1x2+x3x4 = 0}

and that C∗ ⊂ Aut(Q3) is a subgroup of the form

ϕλ(x0 : x1 : x2 : x3 : x4) = (x0 : λax1 : λ−ax2 : µbx3 : µ−bx4), ,

with a, b ∈ N relatively prime, since Aut(Q3) = PO(5,C) has rank two. If a and
b are distinct non-zero natural numbers then the fixed points of the action are
isolated. Thus we have to analyze only two cases: (a, b) = (0, 1) and (a, b) = (1, 1).

Let us start with the case (a, b) = (0, 1). Consider the rational map

Φ : P4 99K P(1, 1, 1, 2) ⊂ P6

(x0 : x1 : x2 : x3 : x4) 7→ (x2
0 : x0x1 : x0x2 : x2

1 : x1x2 : x2
2 : x3x4) ,

which identifies P(1, 1, 1, 2) with a cone over the Veronese surface in P5. Notice
that the quadric Q3 is mapped to a hyperplane section of P(1, 1, 1, 2) not passing
through the vertex (0 : 0 : 0 : 0 : 0 : 0 : 1), which is of course isomorphic to
P2. We will denote by Φ0 the induced rational map Φ0 : Q3 99K P2. The general
fiber of Φ0 is an orbit of ϕ, and therefore the foliation F must be the pull-back
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of a foliation H on P2. Notice also that Φ∗0OP2(1) is equal to OQ3(1). A simple
computation shows that the critical set of Φ0 has codimension greater than two.
Thus OQ3(3) = NF = Φ∗0NH. It follows that NH = OP2(3), i.e., H has degree
one. Since every foliation of degree one on P2 is induced by a closed meromorphic
1-form with isolated singularities [18, Chapter 1, Section 2] the proposition follows
in this case.

Suppose now that (a, b) = 1, and consider the rational map

Φ : P4 99K P4

(x0 : x1 : x2 : x3 : x4) 7→ (x2
0 : x1x2 : x1x4 : x2x3 : x3x4) .

Its image is contained in a cone over a smooth quadric surface in P3. The quadric
Q3 is mapped into a smooth hyperplane section of this cone which is isomorphic
to P1 × P1. If we denote by Φ0 : Q3 99K P1 × P1 the induced rational map then
Φ∗0OP1×P1(c, d) = OQ3(c + d). The only divisorial component of the critical set
of Φ0 is the intersection of the hyperplane {x0 = 0} with Q3. The image of this
critical set is a (1, 1) curve C in P1 × P1. If G is a foliation on P1 × P1 with normal
bundle NG = OP1×P1(c, d) then

NΦ∗0G =
{
OQ3(c+ d) if C is not G-invariant
OQ3(c+ d− 1) if C is G-invariant .

Therefore if F = Φ∗0G and NF = OQ3(3) then c = d = 2 and C is G-invariant. A
foliation G on P1 × P1 with NG = OP1×P1(2, 2) is given by a closed rational 1-form
ω = π∗1ω1 + π∗2ω2 where π1, π2 : P1 × P1 → P1 are the natural projections and the
1-forms ωi have polar set of degree two. Since the (1, 1)-curve C is G-invariant, we
must have ω1 = −ω2 = dx0/x0 − dx1/x1 in a suitable choice of coordinates where
C = {x0y1 − y0x1 = 0}. Therefore

ω =
dx0

x0
− dx1

x1
− dy0

y0
+
dy1

y1
.

Notice that ω is proportional to

α =
(
d(x0y1 − y0x1)
x0y1 − y0x1

− dx0

x0
− dy1

y1

)
.

and the pull-back of α under Φ0 is closed 1-form without divisorial components in
its zero set. �

Proposition 5.4. Let F be a codimension one foliation on Q3 with KF = 0. If
F is tangent to an algebraic C-action with non-isolated fixed points then F is given
by a closed rational 1-form without divisorial components in its zero set.

Proof. Let ϕ : C ×Q3 → Q3 be an algebraic C-action. As such, it must be of the
form ϕ(t) = exp(t · n) where n is a nilpotent element of the Lie algebra aut(Q3) =
so(5,C). In so(5,C) there are exactly three Aut(Q3) = PO(5,C)-conjugacy classes
of non-zero nilpotent elements. The Jordan normal forms of the corresponding
matrices in End(C5) have: (1) only one Jordan block of order 5; (2) one Jordan
block of order 3 and two trivial (order one) Jordan blocks ; or (3) two Jordan blocks
of order 2 and one trivial Jordan block.

The action in case (1) has isolated fixed points and is excluded by hypothesis.
To deal with case (2) we can assume that n = x1

∂
∂x0

+ x2
∂
∂x1

and that the quadric
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Q3 is {x2
1 − 2x0x2 + x2

3 + x2
4 = 0}. The general fiber of the rational map

Φ : P4 99K P6

(x0 : x1 : x2 : x3 : x4) 7→ (x2
1 − 2x0x2 : x2

2 : x2x3 : x2x4 : x2
3 : x3x4 : x2

4)

coincides with an orbit of ϕ, and sends P4 to a cone over the second Veronese
embedding of P2. The image of the quadric Q3 avoids the vertex of this cone and
is isomorphic to P2. Moreover, the critical set of Φ0 : Q 99K P2 (the restriction of
Φ to Q) has no divisorial components. Therefore every foliation F on Q3 tangent
to ϕ is of the form Φ∗0G for some foliation on P2 and its normal bundle satisfies
NF = Φ∗0NG. Since Φ∗0OP2(1) = OQ(1), it follows that F is the pull-back of a
foliation G on P2 of degree one and, as such, is given by a closed 1-form without
zeros of codimension one [18, Chapter 1, Section 2].

Case (3) is very similar to case (2). Now the vector field n is of the form
x1

∂
∂x0

+x3
∂
∂x2

, the quadric is Q = {x0x3−x1x2 +x2
4 = 0} and the quotient map is

Φ : P4 99K P6

(x0 : x1 : x2 : x3 : x4) 7→ (x0x3 − x1x2 : x2
1 : x1x3 : x1x4 : x2

3 : x3x4 : x2
4) .

The restriction of Φ to Q has critical set of codimension at least two, and therefore
the conclusion is the same: F is the pull-back under Φ|Q of a foliation on P2 of degree
one, and as such is defined by a closed rational 1-form with zeros of codimension
at least two. �

Proposition 5.5. Let F be a codimension one foliation on Q3 with trivial canonical
bundle. Suppose that F is induced by an algebraic action of a two dimensional
Lie subgroup of Aut(Q3). Then F is defined by a closed 1-form without zeros of
codimension one, or F is conjugated to the foliation presented in Example 5.1.

Proof. Let G ⊂ Aut(Q3) be the subgroup defining F , and g ⊂ so(5,C) the cor-
responding Lie subalgebra. If G is abelian then it must be of the form C∗ × C∗,
C × C∗, or C × C. In the first case every element in g, the Lie algebra of G, is a
semi-simple element of so(5,C). Since the rank of so(5,C) is two, g is a Cartan
subalgebra of so(5,C). Therefore, we can find C∗ ⊂ G inducing an algebraic action
with non-isolated fixed points tangent to F . We can apply Proposition 5.3 to con-
clude that F is induced by a closed 1-form without codimension one zeros. In the
two remaining cases, g contains a nilpotent element n which defines an algebraic
subalgebra C ⊂ G. If the corresponding action has non-isolated fixed points then
Proposition 5.4 implies F is defined by a closed rational 1-form without divisorial
components in its zero set.

If the corresponding action has only isolated fixed points then we can assume
that Q is defined by the quadratic form q = x2

2−2x1x3 + 2x0x4 and that n, seen as
an element of so(q,C), has only one Jordan block of order 5. The centralizer C(n)
of n in so(q,C) is thus formed by nilpotent matrices of the form

0 α 0 β 0
0 0 α 0 β
0 0 0 α 0
0 0 0 0 α
0 0 0 0 0

 .
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In particular, since g ⊂ C(n), g contains another nilpotent element which defines a
C-action with non-isolated fixed points. Proposition 5.4 implies F is defined by a
closed 1-form without codimension one zeros.

Suppose now that G is not abelian. Its Lie algebra g is isomorphic to the affine
Lie algebra Cx ⊕ Cy with the relation [x, y] = y. This relation implies that y is a
nilpotent element of so(5,C) ⊂ sl(5,C). As before, using Proposition 5.4, we can
reduce to the case where y is in Jordan normal form and has only one Jordan block
of order 5. The elements x ∈ so(q,C) satisfying [x, y] = y are of the form

2 α 0 β 0
0 1 α 0 β
0 0 0 α 0
0 0 0 −1 α
0 0 0 0 −2

 .

After one last conjugation by an element of SO(q,C) we can suppose that β = 0.
We have just proved that up to automorphisms of Q3 there is only one foliation
defined by an algebraic action of an algebraic subgroup G ⊂ Aut(Q3) which is not
invariant an algebraic action of a one-dimensional Lie group with non-isolated fixed
points. Therefore it must be the foliation described in Example 5.1. �

6. Foliations on projective spaces

Let us recall the main result of [6].

Theorem 6.1. The irreducible components of the space of codimension one folia-
tions of degree 2 on Pn, n ≥ 3, are Rat(2, 2), Rat(1, 3), Log(1, 1, 1, 1), Log(2, 1, 1),
LPB(2), and Exc(2). The general element of Exc(2) is a linear pull-back from the
foliation on PC3[x] induced by the natural action of the affine group.

For a detailed description of the general element of Exc(2) on P3 see [5].
Following essentially the same steps as used to proof Theorem 5.2 one can recover

Theorem 6.1 for n = 3 without using Dulac’s classification of quadratic centers [12]
(see also [6, Theorem 7]) and bypassing the computer-assisted calculations used
to prove [6, Theorem E’]. Nevertheless, to establish analogues of Propositions 5.3,
and 5.4 following the same strategy as above, one would be lead to a lengthy case-
by-case analysis which we have chosen to not carry out here for details but which
can be found in version 2 of [23] at the arXiv. Instead, we will present below a
proof of Theorem 6.1 for n > 3 assuming that it holds true for n = 3, as it may
serve as a model to extend the results of the previous section to higher dimensional
hyperquadrics. We start with the classification of degree one foliations of arbitrary
codimension on Pn, a result of independent interest which is used in [2].

6.1. The space of foliations on Pn of degree one (arbitrary codimension).
We already recalled the classification of the foliations of degree zero in the proof
of Proposition 3.7: a codimension q foliation of degree zero on Pn is defined by a
linear projection from Pn to Pq. The classification of foliations of degree one can
be easily deduce from Medeiros classification of locally decomposable integrable
homogeneous q-forms of degree one ([9, Theorem A]) as we show below.

Theorem 6.2. If F be a foliation of degree 1 and codimension q on Pn then we
are in one of following cases:
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(1) F is defined a dominant rational map Pn 99K P(1q, 2) with irreducible gen-
eral fiber determined by q linear forms and one quadratic form; or

(2) F is the linear pull back of a foliation of induced by a global holomorphic
vector field on Pq+1.

Proof. We start by recalling [9, Theorem A]: if ω is a locally decomposable inte-
grable homogeneous q-form of degree 1 on Cn+1 then

(a) there exist q − 1 linear forms L1, . . . , Lq−1 and a quadratic form Q such
that ω = dL1 ∧ · · · ∧ dLq−1 ∧ dQ ; or

(b) there exist a linear projection π : Cn+1 → Cq+1, and a locally decomposable
integrable homogeneous q-form ω̃ of degree 1 on Cq+1 such that ω = π∗ω̃.

Let ω be a locally decomposable, integrable homogeneous q-form on Cn+1 defin-
ing F . Since F has degree 1, the degree of the coefficients of ω is 2. It is imme-
diate from the definitions that the differential of a locally decomposable integrable
q-form is also locally decomposable and integrable. Therefore we can apply [9, The-
orem A] to dω. To recover information about ω we will use that iRω = 0 implies
iRdω = (q + 2) · ω .

If dω is in case (a) then dω is the pull-back of dx0 ∧ · · · ∧ dxq under the map

Cn+1 3 (x0, . . . , xn) 7→ (L1, . . . , Lq, Q) ∈ Cq+1,

and (q + 2)ω = iRdω is the pull-back of iR(1q,2)dy0 ∧ · · · ∧ dyq where R(1q, 2) =
y0

∂
∂y0

+ · · ·+ yq
∂
∂yq

+ 2yq+1
∂

∂yq+1
. We are clearly in case (a) of the statement with

rational map from Pn 99K P(1q, 2) described in homogeneous coordinates as above.
It still remains to check that the general fiber is irreducible. As ω has zero set of
codimension at least two, the same holds true for dω and consequently the map
considered does not ramify in codimension one. Since Pn is simply-connected, the
irreducibility of the general fiber follows.

If dω is in case (b) then, in suitable coordinates, dω depends only on q + 2
variables, say x0, . . . , xq+1. Being a (q+ 1)-form with coefficients of degree 1, there
exists a linear vector field X such that dω = iXdx0 ∧ · · · ∧ dxq+1. The result
follows. �

Corollary 6.3. The space of foliations of degree 1 and codimension q on Pn has
two irreducible components.

Proof that Theorem 6.1 for n = 3 implies Theorem 6.1 for n > 3. Notice
that when n > 3, a foliation of degree two has negative canonical bundle. Thus, if
F is semi-stable Proposition 3.5 implies that F is either a pencil of quadrics or a
pencil of cubics having a hyperplane with multiplicity three as a member.

Suppose now that F is unstable and let G be its maximal destabilizing foliation.
Recall from Example 2.3 that

deg(G)
dim(G)

<
deg(F)
dim(F)

.

Therefore deg(G) < 2. If G has degree zero then F is a linear pull-back of a
foliation of degree two on a lower-dimensional projective space and we can proceed
inductively. Suppose now that the degree of G is one. The classification of foliations
of degree one, Theorem 6.2, implies that the semi-stable foliations of degree one are
either defined by a rational map to P(1q, 2) or have dimension one. The maximal
destabilizing foliation G, which is semi-stable by definition, does not fit into the
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former case as we would have 1 < deg(F)/dim(F). Thus G must be defined by a
rational map to P(1q, 2). It is not hard to verify that in this case the foliation F
must be in the component Log(1, 1, 2). �

7. Foliations on Fano 3-folds of index two

It remains to deal with foliations with KF = 0 on Fano 3-folds of index one
and two. Unlikely in the cases where the index is four (projective space) or three
(quadric), these 3-folds have moduli. As will be seen below the space of folia-
tions with KF = 0 on them behaves rather uniformly with respect to the moduli,
with only two exceptions. The exceptions are the quasi-homogeneous PSL(2,C)–
manifolds of index one and two.

Let X be a Fano 3-fold with Pic(X) = ZH and index i(X) = 2 which means, by
definition, −KX = 2H. In this case the classification is very precise (see [17] and
references therein) and says that X is isomorphic to a 3-fold fitting in one of the
following classes:

(1) H3 = 1. Hypersurface of degree 6 in P(1, 1, 1, 2, 3);
(2) H3 = 2. Hypersurface of degree 4 in P(1, 1, 1, 1, 2);
(3) H3 = 3. Cubic in P4;
(4) H3 = 4. Intersection of two quadrics in P5;
(5) H3 = 5. Intersection of the Grassmannian Gr(2, 5) ⊂ P9 with a P6.

Although not evident from the description above, the 3-folds falling in class (5)
are all isomorphic to a 3-fold X5 ⊂ P6. In [25] X5 is described as an equivariant
compactification of Aut(P1)/Γ where Γ is the octahedral group. Explicitly, if we
consider the point p0 ∈ Sym6 P1 defined by the polynomial xy(x4 − y4) then X5 is
the closure of the Aut(P1)-orbit of p0 under the natural action.

Theorem 7.1. Let X be a Fano 3-fold with Pic(X) = ZH and index i(X) = 2. If
X 6= X5 then the space of codimension one foliations on X with trivial canonical
bundle is irreducible. If X = X5 then the space of codimension one foliations on X
with trivial canonical bundle has two irreducible components.

As we will see from its proof the result is much more precise as it describes quite
precisely the irreducible components. We summarize the description in the Table
below.

Manifold Irreducible component dim
Hypersurface of degree 6 in P(1, 1, 1, 2, 3) Rat(1, 1) 2
Hypersurface of degree 4 in P(1, 1, 1, 1, 2) Rat(1, 1) 4
Cubic in P4 Rat(1, 1) 6
Intersection of quadrics in P5 Rat(1, 1) 8

X5
Rat(1, 1) 10

Aff 1

Lemma 7.2. The dimension of H0(X5, TX5) is 3, and every v ∈ H0(X5, TX5)
has isolated singularities.

Proof. Let Σ be the variety of lines contained in X5. According to [14], Σ is isomor-
phic to P2. The induced action of Aut(P1) on it has one closed orbit isomorphic to
a conic C ⊂ P2, and one open orbit isomorphic to P2 \C. It can be identified with
the natural action of Aut(P1) in Sym2 P1 ' P2. If an automorphism of X5 induces
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the identity on Σ then it must be identity since through every point of every line
contained in X5 passes at least another line, loc. cit. Corollary 1.2. This suffices
to show that h0(X5, TX5) = 3.

Let now v ∈ H0(X5, TX5) be a non-zero vector field, and H = exp(Cv) ⊂
Aut(X5) be the one-parameter subgroup generated by it. The description of the
induced action of Aut(X) on Σ implies that the induced action of H on Σ has
isolated fixed points. Therefore, if the zero set of v has positive dimension then it
must be contained in a finite union of lines. If we take ` as one of these lines then
the action of H on Σ would fix all the lines intersecting `. This contradicts the
description of the induced action of Aut(X) on Σ. �

Lemma 7.3. Let P = P(q0, q1, q2, q3, q4) be a well-formed weighted projective space
of dimension four with q0 ≤ q1 ≤ q2 ≤ q3 ≤ q4, and X ⊂ P be a smooth hypersur-
face. If deg(X) ≥ q2 + q3 + q4 then h0(X,TX) = 0.

Proof. Set d = deg(X) and Q =
∑4
i=0 qi. By [11, Theorem 3.3.4], Ω3

X = OX(d−Q).
Consequently TX = Ω2

X ⊗OX(Q− d). From the long exact sequence associated to

0→ Ω1
X ⊗N∗X ⊗OX(Q− d)→ Ω2

PX(Q− d)→ Ω2
X(Q− d)→ 0

we see that h0(X,TX) = 0 when h0(X,Ω2
PX(Q− d)) = h1(X,Ω1

X(Q− 2d)) = 0.
To compute h1(X,Ω1

X(Q− 2d)), consider the conormal sequence of X ⊂ P ten-
sored by OX(Q− 2d)

0→ N∗X(Q− 2d)→ Ω1
PX(Q− 2d)→ Ω1

X(Q− 2d)→ 0 .

On the one hand, as the intermediary cohomology of OX(n) vanishes for every
n ∈ Z [11, Theorem 3.2.4 (iii)], h2(X,N∗X(Q− 2d)) = h2(X,OX(Q− 3d)) = 0. On
the other hand H1(X,Ω1

PX(Q− 2d)) can be computed with the exact sequence

0→ Ω1
P(Q− 3d)→ Ω1

P(Q− 2d)→ Ω1
P|X(Q− 2d)→ 0 .

Now [11, Theorem 2.3.2] tell us that h2(P,Ω1
P(n) = 0 for every n ∈ Z, and

h1(P,Ω1
P(n)) = 0 if and only if n 6= 0. But d ≥ q2 + q3 + q4, as we have assumed,

implies 2d > Q. Thus h1(X,Ω1
PX(Q− 2d)) = 0 as wanted.

It remains to show that h0(X,Ω2
P|X(Q − d)) = 0. To do it, consider the exact

sequence

0→ Ω2
P(Q− 2d)→ Ω2

P(Q− d)→ Ω2
P|X(Q− d)→ 0 .

The vanishing of h1(P,Ω2
P(Q− 2d)) is assured by [11, Theorem 2.3.4]. Finally, [11,

Corollary 2.3.4] implies h0(P,Ω2
P(Q− d)) 6= 0 if and only if

d < Q− q0 − q1.

The lemma follows. �

Lemma 7.3 together with the classification of Fano 3-folds of index two imply
the following corollary.

Corollary 7.4. If X is a Fano 3-fold with ρ(X) = 1 and i(X) = 2 then
h0(X,TX) 6= 0 if and only if X is isomorphic to X5.
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Proof of Theorem 7.1. Let X be a Fano 3-fold of index two with Pic(X) = Z ·H,
where H is an ample divisor, and F a codimension one foliation on X with KF = 0.
If H3 ≤ 4 then Corollary 7.4 implies X has no vector fields. Therefore by Theorem
4.1 any foliation on X with KF = 0 is given by a closed 1-form without codimension
one zeros and with polar divisor linearly equivalent to 2H. The result follows
Lemma 2.5. Notice that the dimension of H0(X,OX(H)) is equal to H3 + 2, [21,
Chapter V, Exercise 1.12.6].

Suppose now that H3 = 5, i.e., X = X5. Lemma 7.2 implies that every algebraic
action of C or C∗ has isolated fixed points. Theorem 4.1 tells us that a foliation
on X5 with trivial canonical bundle is either induced by an algebraic action of
two dimensional Lie group or is given by a closed 1-form without codimension
one zeros and with polar divisor linearly equivalent to 2H. The Lie algebra of
regular vector fields on X5 is isomorphic to sl(2,C) (Lemma 7.2) and the two
dimension subalgebras are all PSL(2,C)-conjugated, and isomorphic to the affine
Lie algebra aff(C). Let F be a foliation of X5 determined by any of the affine
Lie algebras contained into sl(2,C). The induced action of Aff(C) ⊂ Aut(X) on
PH0(X,Ω1

X(H)) has only one fixed point, therefore Aff(C) is tangent to only one
hyperplane section of X5 ⊂ P6. It follows that F is not defined by a closed 1-form
without codimension one zeros since in this case the action would have to preserve
a pencil of hyperplane sections. As there is a smooth P1 of affine Lie subalgebras
of sl(2,C) we conclude that the space of foliations on X5 with KF = 0 has two
disjoint irreducible components: one corresponding to foliations defined by closed
1-forms and the other defined by affine subalgebras of aut(X5). Notice that they
are both smooth, with the second one corresponding to a closed orbit of Aut(X5)
in PH0(X5,Ω1

X5
(2H)). �

8. Foliations on Fano 3-folds of index one

Most of the work for the classification of foliations with KF = 0 on Fano 3-folds
with Pic(X) = Z and of index one has already been done by Jahnke and Radloff
in [17]. In [17, Proposition 1.1] it is proved that h0(X,Ω1

X(1)) 6= 0 implies that
the genus of X, which by definition is g(X) = h0(X,−KX) + 2 = 1

2KX
3 + 1, is

10 or 12. This considerably reduces the amount of work to prove the final bit in
the classification of foliations with KF = 0 on Fano 3-folds with rank one Picard
group.

Theorem 8.1. If F is a codimension one foliation with trivial canonical bundle
on a Fano 3-fold with Pic(X) = Z and i(X) = 1 then X is the Mukai-Umemura
3-fold and F is induced by an algebraic action of the affine group.

Recall that the Mukai-Umemura 3-fold is the quasi-homogeneous 3-fold obtained
by the closure of the Aut(P1)-orbit of the point of in Sym12 P1 determined by the
polynomial xy(x10 + 11x5y5 + y10). It is an equivariant compactification of the
quotient of Aut(P1) by the icosahedral group A5, [25].

Proof. In [28] the Fano 3-folds of index one and g ≥ 7 carrying vector fields are
classified. There are two rigid examples (Mukai-Umemura 3-fold with Aut0(X) =
PSL(2,C) and a 3-fold with Aut0(X) = (C,+)) and a one parameter family of
examples with Aut0(X) = (C∗, ·). All the cases can be obtained from X5, the Fano
3-fold of index two and degree 5, by means of a birational transformation defined
by a linear system on X5 of the form |3H − 2Y | where Y is the closure of a (C,+)
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or (C∗, ·)-orbit in X5. Thus Lemma 7.2 implies that the vector fields in X have,
exactly as the vector fields in X5, isolated fixed points.

Theorem 4.1 implies that any codimension one foliation on X with KF = 0
must be induced by an algebraic group. It follows that X is the Mukai-Umemura
3-fold and that F is induced by an action of the affine group. �

Remark 8.2. In the main result of [17] there is an imprecision. They claim that a
general section of H0(X,Ω1

X(1)) for a general deformation of the Mukai-Umemura
3-fold is integrable. This cannot happen since h0(X,Ω1

X(1)) = 3 for any suffi-
ciently small deformation of the Mukai-Umemura 3-fold ([17, Proposition 2.6]) and
therefore the closedness of Frobenius integrability condition would imply that ev-
ery element of H0(X,Ω1

X(1)) ' (sl2)∗ is integrable. Apparently, their mistake is
at the proof of their Proposition 2.16. More specifically, at the determination of
the integer a from the exact sequence 0 → OP1 → OP1(2) ⊕ OP1 ⊕ OP1(−1) →
OP1(−a+ 1)⊕ τ → 0, where τ is a torsion sheaf.

9. Holomorphic Poisson structures

A (non-trivial) holomorphic Poisson structure on projective manifold X is an
element of [Π] ∈ PH0(X,

∧2
TX) such that [Π,Π] = 0, where [·, ·] is the Schouten

bracket, see [27]. In dimension three, a Poisson structure is equivalent to a pair
(F , D) where F is a codimension one foliation with KF = OX(−D) and an effective
divisor D. Our classifications of irreducible components of the space of foliations
with KF very negative (Proposition 3.7) and with KF = 0 on Fano 3-folds with
rank one Picard group implies at once a description of the irreducible components
of the space of Poisson structures

Poisson(X) =

{
Π ∈ PH0(X,

2∧
TX)

∣∣∣ [Π,Π] = 0

}
on these manifolds.

Theorem 9.1. If X is a Fano 3-fold with rank one Picard group then Poisson(X)
has 9 irreducible components when X = P3; 4 irreducible components when X =
Q3; 2 irreducible components when X = X5; 1 irreducible component when X
has index two and is distinct from X5; 1 irreducible component when X is the
Mukai-Umemura 3-fold; and is empty when X has index one and is not the Mukai-
Umemura 3-fold.

To wit, when X = P3 then besides the irreducible components of the space of foli-
ations of degree two we have three extra irreducible components: one parametrized
by the product of PH0(P3,OP3(2)) and Rat(1, 1); one parametrized by the prod-
uct of PH0(P3,OP3(1)) and Rat(1, 2); and one parametrized by the product of
PH0(P3,OP3(1)) and Log(1, 1, 1). When X = Q3, we have just one extra compo-
nent corresponding to the product of PH0(Q3,OQ3(1)) and Rat(1, 1). For manifolds
of index one or two there are no extra components.
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