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Abstract. We confirm a conjecture of Bernstein-Lunts which predicts that

the characteristic variety of a generic polynomial vector field has no homoge-

neous involutive subvarieties besides the zero section and fibers over singular
points.
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1. Introduction

1.1. Foliations. Let F be a one-dimensional singular holomorphic foliation on
a smooth projective variety X. The characteristic variety ch(F) of F is the
irreducible subvariety of E(T ∗X), the total space of the cotangent bundle of X,
with fiber over a non-singular point x ∈ X of F equal to the 1-forms at x which
vanish on TxF . More succinctly, if we write X0 = X \ sing(F) then the restriction
of N∗F , the conormal sheaf of F , at X0 is a vector sub-bundle of T ∗X and we can
write

ch(F) = E(N∗F|X0)
where the closure is taken in E(T ∗X).

Clearly ch(F) is a hypersurface of E(T ∗X). If ω is the non-degenerate 2-form
which induces the canonical sympletic structure on T ∗X then its restriction to
ch(F) induces a one-dimensional foliation F (1) on (the smooth locus of) ch(F)
which will be called the first prolongation of F .

In this work we are interested in the subvarieties of ch(F) invariant by F (1)

when F is sufficiently general. For no matter which F there is always at least one
subvariety of ch(F) invariant by F (1): the zero section of T ∗X. If the singular set of
F is non-empty but of dimension zero then the fibers over it, and some subvarieties
of these fibers, are also left invariant by F (1).
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We will say that ch(F) is a quasi-minimal characteristic variety if F has iso-
lated singularities; and every irreducible homogeneous ( on the fibers of ch(F)→ X
) subvariety of ch(F) left invariant by F (1) is either the zero section, or a subvariety
of a fiber over the singular set of F , or the whole ch(F).

Theorem 1. Let X be a smooth projective variety, L an ample line bundle over it,
and k � 0 a sufficiently large integer. If F ∈ PH0(X,TX ⊗L⊗k) is a very generic
foliation then ch(F) is a quasi-minimal characteristic variety.

In the statement of the theorem above and throughout, by a very generic point
of a given variety we mean a point away from a countable union of Zariski closed
subvarieties. The expression generic point will be reserved to points outside a finite
union of Zariski closed subvarieties.

Although Theorem 1 can be thought as a natural development of Jouanolou’s
Theorem and its subsequent generalizations, see [6] and references therein, it is
motivated by a problem coming from the representation theory of Weyl algebras
that we briefly review below.

1.2. Weyl algebras. Let An be the n−th Weyl algebra over C, that is An is the
algebra of C-linear differential operators on the polynomial ring C[x1, . . . , xn]. A
basic invariant of an irreducible An-module M is its Gelfand-Kirillov dimension
GK dimM . After Bernstein this invariant is subject to inequality GK dimM ≥ n
and equality holds true for important classes of irreducible An-modules, see [2]. If
GK dimM = n then M is, by definition, a holonomic An-module

For some time some believed that every irreducible An-module M is holonomic.
In 1985 Stafford came up with examples of An-modules of particularly simple form
and having Gelfand-Kirillov dimension equal to 2n − 1. His examples are of the
form An/IAn where I is a principal left ideal generated by an element of the form
ξ + f where ξ is a polynomial vector field and f is polynomial, see [10]. For those
not familiar with the Gelfand-Kirillov dimension it is useful to remark that when
I is a principal maximal left ideal then GK dimAn/IAn = 2n− 1, and the search
of examples of non-holonomic An-modules can be reduced to search of principal
maximal left ideals of An.

Stafford’s examples are explicit and his arguments are purely algebraic. In [3],
Bernstein and Lunts present two geometrically oriented approaches to construct
principal maximal left ideals of An, and implement them for the second Weyl al-
gebra. In rough terms, their strategy rely on the the study of a natural foliation
defined on the characteristic varieties of the module. More specifically they relate
the maximality of the ideal to the non-existence of proper invariant subvarieties
of this foliation. To define a characteristic variety for a An-module, a filtration of
An has to be fixed and their two approaches are determined by the choice of two
different filtrations.

In the first approach they look at the Bernstein filtration of An, the i-th piece
Ain consists of polynomials in {x1, . . . , xn, ∂x1 , . . . , ∂xn} of degree at most i. The
corresponding symbol maps are

σk : Akn −→
Akn
Ak−1
n

' Ck[x1, . . . , xn, y1, . . . , yn] .

They proved that if n = 2, k ≥ 4 and P ∈ Ck[x1, . . . , xn, y1, . . . , yn] is a very generic
polynomial then each operator d ∈ Akn satisfying σk(d) = P generates a maximal
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left ideal of Akn. Still under the assumption that k ≥ 4, Lunts extends the above
result to arbitrary n ≥ 2 in [7]. For k = 3 and n ≥ 2 the very same statement
has been proved by McCune [8]. All these results, in contrast with Stafford’s, do
not exhibit explicit examples of non-holonomic An-modules but instead prove that
they are generic in the above sense. For an algorithm to produce explicit examples
of the above form for n = 2 and its implementation see [1].

In their other approach, Bernstein and Lunts look at the standard filtration of
An. Now the i-th piece corresponds to differential operators of order ≤ i. If ξ is a
polynomial vector field, f a polynomial and I =< ξ + f > then the characteristic
variety of An/IAn coincides the characteristic variety of the foliation Fξ as defined
in the previous section. If Fξ has a quasi-minimal characteristic variety then ac-
cording to [3, Proposition 6] there exists f ∈ C[x1, . . . , xn] for which I =< ξ + f >
is maximal. While they do show that a generic ξ of degree ≥ 2 on C2 has this
property, they leave the general case as a conjecture, see [3, §4.2].

Conjecture (Bernstein-Lunts). Let n ≥ 2 and ξ be a very generic polynomial
vector field on Cn with coefficients of degree ≥ 2. Then ch(Fξ) is a quasi-minimal
characteristic variety.

The three dimensional case of the conjecture has been proved recently by
Coutinho [5]. In this paper we will settle the general case.

Theorem 2. Bernstein-Lunts conjecture holds true.

Even when specialized to n = 3, our proof is very different from the one of
Coutinho.

1.3. Acknowledgements. I am grateful to S. C. Countinho for, since 2003, bring-
ing periodically to my attention Bernstein-Lunts conjecture.

2. Characteristic varieties and prolongations

2.1. Characteristic variety. Let X be a quasi-projective manifold and F be a
foliation on X with cotangent bundle L, that is F = [ξ] ∈ PH0(X,TX ⊗ L) with
the representative ξ having no divisorial components in its singular set. As in the
introduction set X0 = X \ sing(F).

Contraction with the twisted vector field ξ determines a morphism of OX -
modules

T ∗X −→ L
whose kernel is N∗F , the conormal sheaf of F . At points x ∈ X0 the sheaf N∗F
is clearly locally free, but it is not locally free in general. For example it is never
locally free at an isolated singularity of F as one can promptly verify. Neverthe-
less, the restriction of N∗F at X0 determines a subbundle of T ∗X0 of corank one.
As mentioned in the introduction ch(F) is defined as the closure in E(T ∗X) of
E(N∗F|X0). We will use π to denote the natural projection π : E(T ∗X) → X as
well as its restriction π : ch(F)→ X.

If (x1, . . . , xn) are local coordinates at a open subset U ⊂ X then the vector
fields {∂xi

= ∂
∂xi
} can be thought as linear coordinates on T ∗U : the value of ∂xi

at a 1-form ω ∈ T ∗U is given by the contraction ω(∂xi
). Thus, if we set yi = ∂xi
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then (x1, . . . , xn, y1, . . . , yn) are global coordinate functions for T ∗U . In particular,
if ξ =

∑
ai∂xi then

ch(F)|π−1(U) =
{∑

aiyi = 0
}
.

The singular set of ch(F) is contained in π−1(sing(F)) and contains
π−1(sing(F)) ∩ X, where X sits inside E(T ∗X) as the zero section. Thus, un-
less F is a smooth foliation, ch(F) is always singular. It follows promptly from the
above local expression of ch(F) that its singular points away from the zero section
and over a fiber π−1(p) are the 1-forms at T ∗pX which annihilates the image of
Dξ(p). Thus, if the singular scheme of F is reduced and of dimension zero then
ch(F) is smooth away from the zero section.

2.2. Prolongation. Recall that T ∗X is endowed with a canonical sympletic struc-
ture which, in the above local coordinates, is induced by the 2-form

Ω =
∑

dxi ∧ dyi.

If F is a holomorphic function on (an open subset of) T ∗X then the hamiltonian
of F is by definition the vector field ξF determined by the formula

dF (·) = Ω(ξF , ·) .

Notice that the vector field ξF is tangent to the hypersurface determined by F
since ξF (F ) = 0. Leibniz’s rule implies that ξuF = uξF + Fξu.Consequently the
restriction of the direction field determined by ξF to {F = 0} is the same as the one
of determined by ξuF for an arbitrary unit u. Therefore, the sympletic structure
determines a one-dimensional foliation on reduced and irreducible hypersurface
H ⊂ T ∗X: one has just to factor out eventual divisorial components of the singular
set of ξF |H to end up with a foliation on H, usually called in the literature the
characteristic foliation of H. When H = ch(F) ⊂ T ∗X, is the characteristic variety
of a foliation F on X we will denote its characteristic foliation by F (1) and call it
the first prolongation of F .

If U ⊂ X is an open set with coordinates as in §2.1 and ξ =
∑
ai∂xi

is a vector
field inducing F on U then the vector field

(2.1) ξ̂ =
n∑
i=1

ai∂xi −
n∑

i,j=1

(
∂xjai

)
yi∂yj

is the hamiltonian vector field of
∑
aiyi, and hence defines the prolongation of F|U .

3. Warn-up: Proof of Theorem 1 in dimension three

In this section we present a proof of Theorem 1 in dimension three. We believe
this will make the general case easier to understand.

3.1. Making sense of the F (1)-invariance. We start by clarifying the meaning
of F (1)-invariance. The first result is well-known and holds in arbitrary dimension.

Lemma 3.1. If Y ⊂ ch(F) is F (1)-invariant then π(Y ) is F-invariant.

Proof. If p is a smooth point of ch(F) then equation (2.1) makes clear that π sends
TpF (1) into Tπ(p)F , and that the restriction of F (1) to the zero section is nothing
more than F . Together these two facts promptly imply the lemma. �
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Our next result holds only in dimension three, and it is the lack of a direct
analogue in higher dimensions which will make the proof in the general case more
involved.

Proposition 3.2. Suppose n = 3 and let Y ( ch(F) be a homogenous, and irre-
ducible subvariety with dominant projection to X. If Y is F (1)-invariant then F is
tangent to a codimension one web WY on X.

Proof. Since we are in dimension three, over the smooth locus of F , ch(F) is a
rank two vector subbundle of Ω1

X . A subvariety Y as in the statement, determines
k distinct lines on N∗Fx for generic points x ∈ X. Therefore Y can be seen as the
graph of a rational section $ of SymkΩ1

X . Moreover, the foliation F is tangent to
the multi-distribution determined by $. Notice that so far, we have not used the
F (1)-invariance of Y , we just explored the fact that Y is contained in ch(F).

It remains to prove the integrability of the multi-distribution determined by $.
For that sake we can place ourselves at a neighborhood of a point x ∈ X where $ is
holomorphic and equal to the product of k pairwise distinct 1-forms, say ω1, . . . , ωk,
and F is smooth. Choose a local coordinate system (x1, . . . , xn) where F is induced
by the vector field ξ = ∂x1 . Hence F (1) is still induced by ∂x1 now seen as a vector
field on the total space of N∗F .

If ω is any of the 1-forms {ωi}i∈k then ω = adx2 + bdx3 for suitable holomorphic
functions a, b. Notice that ω is integrable if and only if the quotient a/b does not
depend on x1. Finally, the F (1)-invariance of Y ensures that a/b is constant along
the orbits of ξ̂ and thus ω is integrable and so is the multi-distribution induced by
$. �

3.2. Invariant subvarieties from singular points.

Proposition 3.3. Let F be a foliation on X a smooth projective variety of dimen-
sion three. Suppose F is tangent to a codimension one web W. If p ∈ sing(F) is an
isolated singularity then there exists an irreducible F-invariant subvariety Y ( X
of positive dimension containing p.

Proof. Suppose W is a k-web with k ≥ 1. If k ≥ 2, let ∆(W) ⊂ X be the
discriminant of the web W. By definition, ∆(W) is the set where W is not the
product of k pairwise transverse foliations. The proof of Proposition 3.2 tell us
that on a neighborhood of a smooth point of F , the web W is induced by a k-
symmetric 1-form ϕ =

∑
aijdx

i
2dx

j
3 . Thus ∆(W) is defined as the hypersurface

cutted out by the discriminant of $, seen as a the binary form on the variables
dx2, dx3. Notice that ∆(W) is a F-invariant hypersurface.

If p belongs to ∆(W) we are done. OtherwiseW, at a neighborhood of p, can be
written as the superposition of k foliations, that is W = G1 � · · ·� Gk. So consider
one foliation G of codimension one in a neighborhood of p and suppose that F is
tangent to it.

Let ξ be holomorphic vector field inducing F and ω be a holomorphic 1-form
inducing G both defined on a neighborhood of p and without divisorial components
in their zero sets. Since F has an isolated singularity at p so does ξ. Consequently,
ω(ξ) = 0 implies that ω is also singular at p. At this point we can use an argument
laid down by Cerveau in [4, page 46] that we now recall. As ξ has isolated sin-
gularities we can apply De Rham-Saito Lemma to ensure the existence of another
vector field ζ such that ω = iξiζdx ∧ dy ∧ dz. Therefore the zero set of ω is formed
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by the minors of a 3× 2 matrix and must be of codimension at least two. But if G
is one of the foliations Gi then sing(G) is algebraic, and is the sought F-invariant
variety. �

3.3. Conclusion of the proof. To conclude the proof of Theorem 1 in dimension
three we will make use of the following generalization of Jouanolou’s Theorem
proved in [6].

Theorem 3.4. Let X be a smooth projective variety, L be an ample line bundle
over it, and k � 0 be a sufficiently large integer. If F ∈ PH0(X,TX ⊗ L⊗k) is a
very generic foliation then, besides X itself, the only subvarieties left invariant by
F are its singular points.

Let F ∈ PH0(X,TX⊗L⊗k) be a very generic foliation without invariant subva-
rieties. As its singular set has cardinality given by the top Chern class of TX⊗L⊗k,
and this number is positive for k � 0, the singular set of F is non-empty. Moreover
we can assume the existence of an isolated singularity p ∈ sing(F), see for instance
[6, Proposition 2.4].

If the characteristic variety of F is not quasi-minimal then Proposition 3.2 implies
that F is tangent to a codimension one web W. Proposition 3.3 in its turn implies
that F has a invariant subvariety through p. This contradicts Theorem 3.4 and
concludes the proof of Theorem 1 in dimension three. �

3.4. Obstructions to generalize. To generalize the argument above to deal with
the general case one has to circumvent the following obstructions:

(1) Proposition 3.2 does not generalize because irreducible components of
ch(F) which are homogenous and dominate the base X are no longer graphs
of multi-distributions as happens in the three dimensional case; and

(2) Proposition 3.3 does not generalize since (multi)-distributions with infini-
tesimal automorphisms are not necessarily integrable.

To accomplish that we will take advantage of the structure of generic foliation
singularities combined with the following reinterpretation of Theorem 3.4.

Theorem 3.5. Let X be a smooth projective variety, L an ample line bundle over
it, and k � 0 a sufficiently large integer. If F ∈ PH0(X,TX ⊗ L⊗k) is a very
generic foliation then every leaf of F is Zariski dense.

4. Prolongation versus holonomy

In this section F will be a smooth foliation of dimension one on a complex
manifold X.

4.1. Holonomy. To each leaf L of F , once a point p ∈ L and a germ (Σ, p)
of smooth hypersurface transverse to F are fixed, one can associate a (anti)-
representation

hol(L) : π1(L, p) −→ Diff(Σ, p) ,
as follows. Given a closed path γ contained in L and centered at p one defines a
germ diffeomorphism hγ ∈ Diff(Σ, p) such that hγ(x) is the end point of a lift of γ
to the leaf of F through x. The result does not depend on the choices involved in
the process and is completely determined by the class of γ in π1(L, p). Thus one
set hol(L)(γ) = hγ . It is an anti-representation since hγ1·γ2 = hγ2 ◦ hγ1 .
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Of course, one can also consider the linear holonomy of L which is just the
anti-representation

Dhol(L) : π1(L, p) −→ GL(TpΣ)

[γ] 7−→ Dhγ(p) .

Being a anti-representation of π1(L) onto a general linear group it is natural to
wonder if there is a natural connection on a natural vector bundle over L inducing.
It is indeed the case, and even better, there is a partial connection along the tangent
bundle TF of F on the normal bundle NF which has monodromy along the leaves
of F equivalent to the linear holonomy.

4.2. Bott’s partial connection. Let ρ : TX → NF be the natural projection.
Of course kerρ = TF . Bott’s partial connection is defined as follows

∇ : TF −→ Hom(NF , NF) ' N∗F ⊗NF

ξ 7−→ {ϑ 7→ ρ([ϑ̂, ξ])} ,

where ϑ̂ stands for an arbitrary lift of ϑ to TX. The involutiviness of TF implies
that ρ([ϑ̂, ξ]) does not depend on the choice of the lift, and ensures that ∇ is well
defined.

Let us now proceed to write explicitly the restriction of ∇ to a leaf L of F . We
will work in local coordinates (x1, x2, . . . , xn) and will assume that L = {x2 = . . . =
xn = 0}. Since L is invariant by F , we can write a vector field ξ generating TF in
the following form

ξ = a(x)∂x1 +
n∑
i=2

n∑
j=2

aij(x)xi∂xj
.

Notice that vector fields ∂x2 , . . . , ∂xn
can be interpreted as a basis of NF . Thus

∇(ξ)(∂xi) = ρ

∂xia(x)∂x1 +
n∑
i=2

n∑
j=2

(∂xiaij(x))xi∂xj + +
n∑
j=2

aij(x)∂xj

 .

Hence, the induced connection ∇|L : TL→ N∗L⊗NL is

∇|L(ξ) =
n−1∑
i=1

n∑
j=2

aij(x1, 0)dxi ⊗ ∂xj

= (dx2, . . . , dxn) ·A(x1, 0) · (∂x2 , . . . , ∂xn)T .(4.1)

4.3. Comparison with the prolongation. In order to compare with Bott’s con-
nection, let us now write down the restriction to π−1(L) of the lift of ξ to E(N∗F).
We will use the same system of coordinates used in Section 2.1, where yi = ∂xi

.
Since in these coordinates π−1(L) = {y1 = x2 = . . . = xn = 0}, we can write

ξ̂|π−1(L) = a(x1, 0)∂x1 −
n∑

i,j=2

(aji(x1, 0)) yi∂yj

which in matrix form is

ξ̂|π−1(L) = a(x1, 0)∂x1 − (y2, . . . , yn) ·AT (x1, 0) · (∂y2 , . . . , ∂yn)T

with A(x1, 0) being the same matrix as in (4.1). It is then clear, that in these
coordinates, the leaves of F (1) restricted to π−1(L) are flat sections of the connection
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on N∗L having connection matrix −AT , where A is the connection matrix on ∇|L.
We have thus prove the following

Proposition 4.1. The leaves of F (1) are flat sections of the partial connection dual
to Bott’s partial connection.

5. From invariant subvarieties to multi-distributions

5.1. Non-resonant singularities. Let F be a germ of one-dimensional foliation
on (Cn, 0). Suppose that it has an isolated singularity at the origin. Suppose
also that the linear part Dξ(0) of a vector field ξ inducing F is invertible and its
eigenvalues λ1, . . . , λn generate a Z-module of rank n. We will say that a singularity
of this form is a non-resonant singularity.

Lemma 5.1. There exists n germs of F-invariant smooth curves γi : (C, 0) →
(Cn, 0) with tangents at zero determined by the eigenvectors of Dξ(0).

Proof. The Hadamard-Perron theorem for holomorphic flows [11, Chapter 2, Sec-
tion 7] ensures the existence of a pair of invariant manifolds intersecting transversely
at the origin and such that the restriction of the vector field to each of them has
a non-resonant singularity in the Poincaré domain (Section 5 loc. cit.). Poincaré
normalization Theorem (loc. cit.) implies that the corresponding restrictions of
ξ are analytically linearizable. Since separatrices of the restrictions of ξ are also
separatrices of ξ, the lemma follows. �

The linear holonomy along a positive oriented path around the origin contained
in γi(C, 0) is induced by a linearizable matrix Ai ∈ GL(n− 1,C) with eigenvalues
{exp(2πiλj/λi)}j 6=i. Moreover, the Z-independence of the eigenvalues implies that
the Zariski closure of the subgroup of GL(Cn−1) generated by Ai is a maximal
torus ' (C∗)n−1.

5.2. Singularities and the holonomy of separatrices. Together with Proposi-
tion 6.2, the proposition below will replace Proposition 3.2 in the proof of the general
case of Theorem 1. It guarantees that invariant subvarieties of F (1) correspond to
multi-distributions tangent to F as soon as F has non-resonant singularities.

Proposition 5.2. Let F be a foliation on a smooth projective variety X and let Y (
ch(F) be an irreducible subvariety with dominant projection to X distinct from the
zero section. Suppose F has non-resonant singularity p and that at least one of its
separatrices is Zariski dense. If Y is F (1) invariant then the fiber of Y over a generic
point of X is a finite union of linear spaces of the same dimension. Consequently F
is tangent to a multi-distribution of codimension q = dimY − dimX ≤ dimX − 2.

Proof. First consider a point p0 ∈ X in the Zariski dense separatrix through p,
and let L be the leaf of F through it. The fiber V of E(N∗F) ' ch(F) → X
over p is a vector space of dimension n − 1. The intersection of Y with V is a
subvariety of V invariant by the subgroup G ⊂ GL(V ) image of the representation
π1(L)→ GL(V ) dual to the linear holonomy of L. Since V ∩Y is algebraic, not only
G but also its Zariski closure leaves V ∩ Y invariant. By hypothesis, G ' (C∗)n−1

is a maximal torus in GL(V ). Consequently V ∩Y is a finite union of linear spaces
for an arbitrary p ∈ L. To be a finite union of linear subspaces is clearly a Zariski
closed condition. Thus the same will hold true for the fibers of Y over points in the
Zariski closure of L which is, by assumption, equal to X. �
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6. From multi-distributions to invariant subvarieties

We now proceed to establish the result which will replace Proposition 3.3. We
start with a simple lemma.

Lemma 6.1. Let ω ∈ Ωq = Ωq(Cn) ⊗ C[[x1, . . . , xn]] be a formal q-form. If ω is
invariant by the natural (C∗)n-action on Cn then

(6.1) ω = f ·

 ∑
I∈{1,...,n}q

λI
dxI
xI


where f ∈ C[[x1, . . . , xn]], λI ∈ C and dxI

xI
= dxi1

xi1
∧ · · · ∧ dxiq

xiq
.

Proof. Write ω =
∑∞
i=i0

ωi, where the coefficients of ωi are polynomials of degree i
and ωi0 6= 0. If ϕt(x) = t · x then

(ϕt)∗ω
ti0+q

= ωi0 +
∞∑

i=i0+1

ti−t0+qωi .

Since for arbitrary t, ϕ∗tω must be a multiple of ω then after dividing by a suitable
formal function we can assume that ω is homogeneous.

Let xJdxI be a monomial appearing in ω. Suppose xj11 divides xJ but xj1+1
1

does not. Consider the automorphism ϕt(x1, x2, . . . , xn) = (tx1, x2, . . . , xn). Then
ϕ∗t (x

JdxI) = tj1+εxJdxI , where ε = 0 if dx1 does not appear in dxI and ε = 1
otherwise. If j1 + ε ≥ 2 then x1 divides all the other monomials appearing in ω.
Does after division we can assume j1 + ε = 1 and the same will hold true for any
other monomial appearing in ω. Repeating the argument for the other coordinate
functions makes clear the assertion of the lemma. �

Proposition 6.2. Let ξ be a germ of holomorphic vector field on (Cn, 0) with a
non-resonant singularity at the origin. Suppose ξ is an infinitesimal automorphism
of a distribution D of codimension q ≤ n−2. Then D is integrable and the singular
set of D has positive dimension.

Proof. Let ω be a germ of holomorphic q-form, q = n − p, defining D, that is
D = {v ∈ T (Cn, 0) |ω(v) = 0}. For further use let us recall that a q-form ω defines
a codimension q distribution if and only if

(ivω) ∧ ω = 0 for every v ∈
q−1∧

Cn ,

and this distribution is integrable if and only if

(ivω) ∧ ω = (ivω) ∧ dω = 0 for every v ∈
q−1∧

Cn ,

see [9]. It follows that integrability is a formal condition, and as such can be verified
in an arbitrary formal coordinate system.

Since the origin is a non-resonant singularity for ξ, we can choose formal coor-
dinates such that

ξ =
n∑
i=1

λixi∂xi

where λi ∈ C are complex numbers. In exchange we can no longer assume that ω
is a holomorphic q-form, but it is certainly a formal q-form.
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Since ξ is an infinitesimal automorphism of D, its flow ϕt : (Cn, 0) → (Cn, 0)
preserves ω. More precisely,

ϕ∗tω = f(t, x)ω
for a suitable formal function f ∈ C[[t, x1, . . . , xn]].

Consider now the subgroup G ⊂ (C∗)n ⊂ GL(Cn) defined as

G = {A ∈ (C∗)n |A∗ω ∧ ω = 0} ,

where (C∗)n acts on (Cn, 0) through a diagonal linear map. The flow of ξ determines
a non-closed one parameter subgroup of H ⊂ G. Since G is clearly an algebraic
subgroup, it follows that the Zariski closure of H is also contained in G. But the
dimension of the Zariski closure of H is nothing more than the rank of the Z-module
generate by λ1, . . . , λn. It follows that H = G = (C∗)n.

On the one hand, since ω induces a distribution ıvω ∧ ω = 0. On the other
hand, Lemma 6.1 implies that ω is a multiple of a closed q-form, and consequently
ıvω ∧ dω = 0. This shows that D is integrable.

It remains to prove that the singular set of D has positive dimension. Looking at
the expression (6.1) we realize that it must have at least two non-trivial summands.
Indeed, if not, D would be a smooth foliation tangent to ξ, what is clearly impos-
sible. Therefore, if k is the cardinality of the set I = ∪λI 6=0I, where the complex
numbers λI are defined by (6.1), then k > q. Clearly, the coordinate hyperplanes
with index in I is invariant by D. Consequently the intersection of any q + 1 of
these coordinates hyperplanes is also invariant by D. Since D has codimension q,
this intersection must be contained in the singular locus of D. �

Remark 6.3. Proposition 6.2 will be in the proof of the general case of Theorem 1
what Proposition 3.2 is in the proof of the three-dimensional case. The analogy is
not perfect as we do not proved here the integrability of multi-distributions as we
did there. Anyway, with some extra effort one can also prove the integrability of
the multi-distribution. We will not pursue this here as the result above is sufficient
for our purposes.

7. Proof of Theorem 1

Let F ∈ PH0(X,TX ⊗L⊗k) be a very generic foliation. We can assume, thanks
to Theorem 3.5, that F has isolated singularities, at least one non-resonant singu-
larity, and every leaf of F is Zariski dense.

Proposition 5.2 implies that F is tangent to a multi-distribution D. We can
assume D is irreducible without loss of generality.

If D is locally decomposable around p then Proposition 6.2 implies the existence
of a positive dimensional irreducible component Z of the singular set of D through p.
This set is clearly algebraic and invariant by F since sections of TF are infinitesimal
automorphisms of D. If D is not locally decomposable at p then there exists a
subvariety Z ( X where D is not locally decomposable. As above, we conclude
that Z is invariant by F .

In both cases, we arrive at a contradiction with Theorem 3.5. �

8. Bernstein-Lunts Conjecture

Theorem 1 implies the existence of foliations, on arbitrary projective varieties,
with quasi-minimal characteristic variety. Moreover, as the conclusion of Theorem
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3.5 holds true for any foliation with ample cotangent bundle on Pn, the existential
part of Bernstein-Lunts Conjecture is settled. Nevertheless, there is still a detail
to be dealt with in order to prove that a very generic polynomial vector field of
degree d ≥ 2 has quasi-minimal characteristic variety.

8.1. Projective versus affine degree. The (projective) degree of a holomorphic
foliation F on Pn is defined as the degree of the tangency divisor of F with a generic
hyperplane H. If F ∈ PH0(Pn,OPn(k)) then the degree of F is equal to k + 1.

If one starts with a polynomial vector field ξ of degree d on Cn then it is natural
to extend it to holomorphic foliation Fξ on Pn such that H is not contained in the
singular set of Fξ. We set the degree of ξ =

∑
ai∂i as the maximal degree of its

coefficients ai. In general the (projective) degree of Fξ is at most the (affine) degree
of ξ. Moreover precisely,

deg(Fξ) =
{

deg(ξ) if H is invariant by Fξ,
deg(ξ)− 1 if H is not invariant by Fξ.

If D(n, d) is the set of polynomial vector fields of degree at most d then the generic
element in it extends to a foliation of Pn with singularities of codimension at least
two which leaves the hyperplane at infinity invariant, see [12] for a through dis-
cussion. In more intrinsic terms, if TPn(− logH) denotes the subsheaf of TPn
constituted by germs of vector fields tangent to H then D(n, d) can be identified
with H0(Pn, TPn(− logH) ⊗ OPn(d − 1)). Under this identification the extension
which do not leave the hyperplane at infinity invariant will appear with a divisorial
component in their singular set supported there.

8.2. Relative version of Theorem 3.5. The proof of Theorem 3.5 can be
adapted to prove the following

Theorem 8.1. Let X be a smooth projective variety and H ⊂ X a smooth hyper-
surface. Let also L be an ample line bundle over X, and k � 0 a sufficiently large
integer. If F ∈ PH0(X,TX(− logH)⊗L⊗k) is a very generic foliation then every
leaf of F not contained in H is Zariski dense.

We will not detail its proof as the case of projective spaces (the one used in the
proof of Theorem 2 below) is Theorem 4.2 of [5]. Moreover, there it is proved that
it suffices to take k ≥ 1 when X = Pn and L = OPn(1).

8.3. Proof of Theorem 2. According to Theorem 8.1 the leaves of a very generic
vector field of degree d ≥ 2 are Zariski dense. Also a very generic vector field has
at least one non-resonant singularity. Thus we can apply Propositions 5.2 and 6.2
to conclude that the characteristic variety of Fξ is quasi-minimal. �
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