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Abstract. We prove that the self–bimeromorphisms group of a foliation of

general type on a projective surface is finite. Along the proof we study the
structure of arbitrary codimension foliations on projective varieties invariant
by an infinite linear algebraic group.

1. Introduction

A classical Theorem due to Schwarz says that the group of automorphisms of
a compact Riemann surface with genus at least two is finite. Andreotti, in [1],
generalized Schwarz’s Theorem proving that the group of self bimeromorphisms of
an algebraic variety of general type is finite.

In this paper we prove a similar statement for holomorphic foliations on projec-
tive surfaces. More precisely,

Theorem 1. If F is a holomorphic foliation of general type on a projective surface
then Bim(F) is finite.

We proceed in two steps. First we investigate the structure of arbitrary codi-
mension holomorphic foliations admitting many automorphisms. In this direction
we obtain:

Theorem 2. Let F be a codimension q holomorphic foliation on a projective variety
Mm. Suppose that Aut(F) contains an infinite linear algebraic group. Then F
belongs to one of the following classes:

(1) F has codimension one and is birationally equivalent to a Riccati foliation;
(2) there exists a projective variety N and a rational map(possibly with inde-

terminacy points) π : M → N whose fibers are rational curves and such
that F is the pull–back of a holomorphic foliation G on N ;

(3) F has codimension at least 2 and is tangent to a holomorphic foliation G
of codimension q − 1.

Recall that a foliation F on a projective surface M is called Riccati if there
exists a rational fibration on M such that F is transverse to the generic fiber of the
fibration. In item 1 of the theorem above we consider a natural generalization of
this concept for codimension one foliations on projective varieties. A codimension
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one foliation F on a projective variety M is a Riccati foliation if there exists a
rational fibration on M whose generic fiber is transversal to F .

Next we use Brunella’s minimal model and pluricanonical maps to reduce the
study of Bim(F) to the study of closed subgroups of Aut(Pk

C). We remark that at
this point our proof mimics Matsumura’s proof of Andreotti’s Theorem, see [7] and
[10].

The paper is organized as follows. In section 2 we recall the concepts of Kodaira
dimension and minimal models for holomorphic foliations and state some results
that will be necessary through the paper. Section 3 contains some basic facts about
the group of automorphisms of holomorphic foliations and the proof of Theorem 2.
Section 4 is devoted to the pluricanonical maps associated to foliations of general
type. In the final section we prove Theorem 1.

We would like to thanks C. Camacho for his incentive and support. The first
author is supported by FAPERJ.

2. Bimeromorphic Theory of Foliations

2.1. Kodaira Dimension. A holomorphic foliation F on a compact complex sur-
face S is given by an open covering {Ui} and holomorphic vector fields Xi over each
Ui such that whenever the intersection of Ui and Uj is non–empty there exists an
invertible holomorphic function gij satisfying Xi = gijXj . The collection {(gij)−1}
defines the holomorphic line–bundle TF , called the tangent bundle of F . The dual
of TF is the cotangent bundle T ∗F , also called the canonical bundle KF .

Recall that a reduced foliation F is a foliation such that every singularity p is
reduced in Seidenberg’s sense, i.e., for every vector field X generating F and every
singular point p of X, the eigenvalues of the linear part of X are not both zero and
their quotient, when defined, is not a positive rational number.

Definition 1. Let F be a foliation on the complex surface S, and G any reduced
foliation bimeromorphically equivalent to F . The Kodaira dimension of F is given
by

kod(F) = lim sup
n→∞

log h0(S,K⊗n
G )

log n
.

It can proved that the Kodaira dimension is well defined and is a bimeromorphic
invariant of F , see [6].

The concept of Kodaira dimension for holomorphic foliations have been intro-
duced independently by L. G. Mendes and M. McQuillan. For more information
on the subject see [2], [6] and [8].

When the foliation has Kodaira dimension 2 we say that the foliation is of general
type. This terminology is justified by the classification of the foliations with Kodaira
dimension smaller than two. We summarize the classification in table 1, for more
details see [8] and [2].
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kod(F) Description
−∞ Rational fibration

Hilbert modular foliation
0 up to ramified coverings and birational morphisms F

is generated by a global holomorphic vector field.
1 Riccati foliation

Turbulent foliation
Nonisotrivial elliptic fibration
Isotrivial fibration of genus ≥ 2

2 General type

Table 1: Classification of holomorphic foliations on algebraic surfaces

Recall that a foliation F on a surface M is a Riccati (resp. turbulent) foliation,
if there exists a rational (resp. elliptic) fibration on M , whose generic fiber is
transverse to F .

2.2. Minimal Models. Brunella, in [3], introduced the concept of minimal model
for a holomorphic foliation. This can be understood as the foliated analogue of
Zariski’s minimal models for algebraic surfaces.

In order to define a minimal model for a holomorphic foliation F , Brunella first
introduces the concept of relatively minimal foliation and then when the relatively
minimal model is unique(modulo biholomorphisms) he says that it is a minimal
model.

It is proved in [3] that the following definition is equivalent to the one sketched
above.

Definition 2. Let F be a reduced holomorphic foliation on a projective surface S.
We say that F is minimal if, and only if, for any reduced foliation G on a projective
surface M and a bimeromorphic map φ : M → S which sends G to F is in fact a
morphism.

The foliations that do not admit a minimal model are described, in a very precise
way, by the following Theorem due to Brunella.

Theorem 3. Let F be a holomorphic foliation on a projective surface S with-
out minimal model. Then F is bimeromorphically equivalent to a foliation in the
following list:

(1) rational fibrations ;
(2) nontrivial Riccati foliations ;
(3) the very special foliation H described in page 291 of [3].

Since all the foliations on the Theorem above have Kodaira dimension at most
one, we obtain the following.

Corollary 1. Let F be a holomorphic foliation of general type on the projective
surface S. Then there exists a unique minimal model G of F and Bim(F) ∼= Aut(G).

3. Automorphisms of Holomorphic Foliations

Definition 3. Let F be a holomorphic foliation on a complex manifold M . The
automorphism group of F , Aut(F), is the maximal subgroup of Aut(M) that pre-
serves F . The self bimeromorphism group of F , Bim(F), is the maximal subgroup
of Bim(M) that preserves F .
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In the definition above Aut(M) denotes the group of biholomorphisms and
Bim(M) denotes the group of self bimeromorphisms of the complex manifold M .
A well–known result, due to Bochner–Montgomery (see [5] page 76), says that if M
is compact complex manifold then Aut(M) is a complex Lie transformation group
and its Lie algebra consists of global holomorphic vector fields on M .

Proposition 1. Let F be a codimension p holomorphic foliation on a compact
complex manifold M . Then Aut(F) is a closed Lie subgroup of Aut(M).

proof: Take pmeromorphic 1–forms ω1, . . . , ωp defining F . More precisely, ω1, . . . , ωp

defines a field of p-planes outside the zero set of Ω = ω1 ∧ . . . ∧ ωp. Since

Aut(F) = {g ∈ Aut(M)|g∗ωi ∧ Ω = 0, i = 1, 2, . . . , p}

the proposition follows.

Remark 1. Observe that in general Proposition 1 does not imply that Aut(F) has
a finite number of connect components, even if the manifold is projective. This is
due to the fact that the automorphism group of a projective manifold can have an
infinite number of connected components.

Let F be a codimension one foliation and X a holomorphic vector field. We will
say that X is transverse to F when the generic orbit of X is not contained in any
leaf of the foliation. When X is transverse to F the tangency locus of F and X is
the subvariety locally defined by ω(X), where ω is any holomorphic 1–form locally
defining F .

Proposition 2. Let F be codimension one holomorphic foliation on a compact
complex manifold M . Let X be a holomorphic vector field that belongs to the Lie
algebra of Aut(F) and is transverse to F . Then the tangency locus of F and X
is invariant by F , i.e., there exists a finite number of leaves of F whose closure
coincides with the tangency locus of F and X.

proof. Let {Ui} be an open covering of M and suppose that F|Ui
is defined by

ωi = 0. Here the 1-forms ωi are integrable and satisfy the relation ωi = fijωj ,
where fij ∈ O∗(Ui ∩ Uj). Since X is in the Lie algebra of Aut(F) we have that

LX(ωi) ∧ ωi = 0 ,

where LX := diX + iXd is the Lie derivative . Therefore

dωi(X) ∧ ωi + ιX(dωi) ∧ ωi = 0 .

By the integrability of ωi we obtain

ωi(X)dωi + (ιXdωi) ∧ ωi = 0 .

From this last equality we derive that

(1) ωi ∧ dωi(X) = ωi(X)dωi ,

thus ωi(X) is invariant by ωi. This is sufficient to assure that the tangency locus
of F and X is invariant by F .

Remark 2. Observe that when X admits a codimension one zero set than the
proposition above show that this set is contained on the closure of a finite numbers
of leaves of F .
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Corollary 2. Let F be codimension one holomorphic foliation on a compact com-
plex manifold M . Let X be a holomorphic vector field that belongs to the Lie algebra
of Aut(F) and is transverse to F . Then there exists a closed meromorphic 1-form
defining F .

proof: From formula (1) one can deduce, as in [4] page 35–36, that F is defined by
a closed meromorphic 1–form defined over all M . In fact

ωi

ωi(X)
=

ωj

ωj(X)

whenever Ui ∩ Uj 6= Ø and

d

(
ωi

ωi(X)

)
=
ωi ∧ dωi(X)− ωi(X)dωi

ωi(X)2
= 0 .

Proof of Theorem 2. Let G ⊂ Aut(F) be an infinite linear algebraic group. Since
it is infinite it has a non–trivial Lie algebra. Take a global holomorphic vector field
X on the Lie algebra of G. If we denote by GX the 1–parameter subgroup of Aut(F)
induced by X, then its Zariski closure GX will be a closed commutative subgroup of
G ⊂ Aut(F). Being GX commutative we can find a closed one–parameter subgroup
H, i.e., a one–dimensional linear algebraic subgroup of G. Denote by Y an element
on the Lie algebra of Aut(F) which generates H.

Theorem 10 of [9] says that M/H is a quasiprojective variety of dimension m−1
and that M is birationally equivalent to M/H × CP (1). Hence the morphism

π : M → M

H
,

induces a 1–dimensional foliation on M , tangent to Y , such that the closure of
every leaf is a rational curve. Since the indeterminacies of π are contained in the
singularities of Y , after resolving them we obtain a projective variety together with
a global holomorphic vector field, which is tangent to the 1–dimensional rational
fibration induced by the resolution of π. Hence we can suppose without loss of
generality that π is a fibration.

Suppose that the generic fiber of π is contained in a leaf of F . Let σ : M
H → M

be a section of π. Define G as the pull–back of F under σ, i.e., G ∼= σ∗(F). Hence
F ∼= π∗(G) ∼= π∗(σ∗(F)) and F is in case 2 of the statement.

If the generic fiber of π is not contained in a leaf of F and the codimension of F
is at least 2, we proceed as follows. For every p ∈M regular point of F we have a
neighborhood where F is generated by a system of (m− q) involutive vector fields,
namely, X1, X2, . . . , Xm−q. Consider now the system of (m− (q− 1)) vector fields,
X1, . . . , Xm−q, Y . Since Y preserves the leaves of F , see figure 1, we have that

[Xi, Y ] =
m−q∑
i=1

λi ·Xi ,

for some holomorphic functions λi. Hence this system is involutive and defines a
holomorphic foliation G of codimension q − 1 which contains F . Hence F is in the
case 3 of the statement.
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Figure 1. Case 3: the Lie bracket of Xi and Y .

When the generic fiber of π is not contained in a leaf of F and F has codimension
one follows from Proposition 2 that the tangency locus between F and π is composed
by fibers of π and is invariant by F . In other words F is a Riccati foliation with
respect to π and it is in the case 1 of the statement.

4. Pluricanonical maps

When F is a reduced foliation of general type on a surface M we have for a
sufficiently large m that the map

φm : M → CP (k)
p 7→ (s0(p) : · · · : sk(p))

is a bimeromorphism between M and the closure of the image of φm, see [10] page
57. Here si are sections of KF⊗m and k = h0(M,KG

⊗m)− 1. The map φm will be
called the m–th pluricanonical map of F .

Proposition 3. Let F be a holomorphic foliation of general type on the projective
surface M . Then Bim(F) is isomorphic to a linear algebraic group.

proof: By Corollary 1 we can suppose that F is a minimal foliation and in this case
Bim(F) ∼= Aut(F). Thus, for a sufficiently large integer m, the m-th pluricanonical
map φm is a bimeromorphism between M and the closure of its image, which we
will denote by N .

Observe that Aut(F) acts naturally on the projectivization of H0(M,K⊗m
F ). If

σ is a section of K⊗m
F and α is an automorphism of F then the action is given by

α(σ) = α∗σ.
Being φm a bimeromorphism between M and N , the action above induces a

monomorphism of groups

ψ : Aut(F) → PSL(k,C) ,

where k = dimCH
0(M,K⊗m

F ).
Since the image of ψ is precisely the automorphisms of CP (k) leaving N and

G invariant, we can conclude that Bim(F) ∼= Aut(F) is a closed linear algebraic
subgroup of PSL(k,C).
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5. Proof of Theorem 1

We can suppose that F is a minimal foliation and proposition 3 implies that
Bim(F) ∼= Aut(F) is a linear algebraic group.

Assume, by contradiction, that Bim(F) is infinite. By Theorem 2 we have that
F is a Riccati foliation or a fibration by rational curves. In the case F is a Ricatti
foliation then kod(F) ≤ 1 and when F is a rational fibration then kod(F) = −∞,
see for instance Theorem 3.3.1 in [6]. Since F is of general type, i.e., kod(F) = 2,
we obtain a contradiction and conclude that Bim(F) is finite.
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