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Abstract. We investigate the space of abelian relations of planar webs ad-
mitting infinitesimal automorphisms. As an application we construct 4k − 14

new algebraic families of global exceptional k-webs on the projective plane, for
each k ≥ 5.

1. Introduction and statement of the results

Throughout this paper we will work in the holomorphic category.

1.1. Planar Webs. A germ of regular k-web W = F1 � · · · � Fk on (C2, 0) is a
collection of k germs of smooth foliations Fi subjected to the condition that any
two of these foliations have distinct tangent spaces at the origin.

One of the most intriguing invariants of a web is its space of abelian relations
A(W). If the foliations Fi are induced by 1-forms ωi then by definition

A(W) =
{(
ηi

)k

i=1
∈ (Ω1(C2, 0))k

∣∣∣ ∀i dηi = 0 , ηi ∧ ωi = 0 and
k∑

i=1

ηi = 0
}
.

The dimension of A(W) is commonly called the rank of W and noted by rk(W). It
is a theorem of Bol that A(W) is a finite-dimensional C-vector space and moreover

rk(W) ≤ 1
2

(k − 1)(k − 2) .(1)

An interesting chapter of the theory of webs concerns the characterization of
webs of maximal rank, i.e webs for which (1) is in fact an equality. It follows
from Abel’s Addition Theorem that all the webs WC obtained from reduced plane
curves C by projective duality are of maximal rank (cf. §4.1 for details). The webs
analytically equivalent to some WC are the so called algebrizable webs.

It can be traced back to Lie a remarkable result that says that all 4-webs of
maximal rank are in fact algebrizable. In the early 1930’s Blaschke claimed to have
extended Lie’s result to 5-webs of maximal rank. Not much latter Bol came up
with a counter-example: a 5-web of maximal rank that is not algebrizable.

The non-algebrizable webs of maximal rank are nowadays called exceptional webs.
For a long time Bol’s web remained as the only example of exceptional planar web
in the literature. The following quote illustrates quite well this fact.

(. . . ) we cannot refrain from mentioning what we consider to be
the fundamental problem on the subject, which is to determine the
maximum rank non-linearizable webs. The strong conditions must
imply that there are not many. It may not be unreasonable to com-
pare the situation with the exceptional simple Lie groups.

Chern and Griffiths in [8].
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A comprehensive account of the current state of the art concerning the excep-
tional webs is available at [14, Introduction §3.2.1], [17] and [15, §1.4]. Here we will
just mention that before this work no exceptional k-web with k ≥ 10 appeared in
the literature.

At first glance, the list of known exceptional webs up today does not reveal com-
mon features among them. Although at a second look one sees that many of them
(but not all, not even the majority) have one property in common: infinitesimal
automorphisms.

1.2. Infinitesimal Automorphisms. In [4], É. Cartan proves that a 3-web which
admits an 2-dimensional continuous group of transformations is hexagonal. It is
then an exercise to deduce that a k-web (k > 3) which admits 2 linearly independent
infinitesimal automorphisms is parallelizable and in particular algebrizable.

Cartan’s result naturally leads to the following question:
What can be said about webs which admit one infinitesimal auto-
morphism?

In fact, Cartan answers this question for 3-webs. In loc. cit. he establishes that
such a web is equivalent to those induced by the 1-forms dx, dy, dy − u(x + y)dx,
where u is a germ of holomorphic function.

It is very surprising that this story stops here. . . To our knowledge, there is
no other study concerning planar webs with infinitesimal automorphisms, although
they are particularly interesting1. Indeed, on the one hand their study is consider-
ably simplified by the presence of an infinitesimal automorphism, but on the other
hand, these webs can be very interesting from an analytico-geometrical point of
view: we will show they are connected to the theory of exceptional webs.

1.3. Variation of the Rank. Let W be a regular web in (C2, 0) which admits
an infinitesimal automorphism X, i.e. X is a germ of vector field whose local flow
preserves the foliations of W. As we will see in §2 the Lie derivative LX = iXd+diX
with respect to X induces a linear operator on A(W). Most of our results will follow
from an analysis of such operator.

In §3.1 we use this operator to give a simple description of the abelian relations
of W and from this we will deduce in §3.2 what we consider our main result:

Theorem 1. Let W be a k–web which admits a transverse infinitesimal automor-
phism X. Then

rk(W � FX) = rk(W) + (k − 1) .
In particular, W is of maximal rank if and only if W � FX is of maximal rank.

We will derive from Theorem 1 the existence of new families of exceptional webs.

1.4. New Families of Exceptional Webs. If we start with a reduced plane curve
C invariant under an algebraic C∗-action on P2 then we obtain a dual algebraic
C∗-action on P̌2, letting invariant the algebraic web WC (cf. §4.1 for details).
Combining this construction with Theorem 1 we deduce our second main result:

Theorem 2. For every k ≥ 5 there exist a family of dimension at least bk/2c − 1
of pairwise non-equivalent exceptional global k-webs on P2.

1However several results have been established concerning higher dimensional webs admitting
infinitesimal symmetries (see [1, §7.3]) but never in relation with the notion of abelian relation.
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In fact, for each k ≥ 5, we obtain 4k − 15 other families of smaller dimension.
Theorem 2 is in sharp contrast with the recent algebrization theorem of Trépreau,

generalizing and completing previous works of Bol [3] and Chern-Griffiths [7], which
says that a maximal rank 1-codimensional k-web is algebrizable when the ambient
has dimension at least 3 and k is sufficiently large2.

The classification of the exceptional 5-webs of the type W � FX where X is an
infinitesimal automorphism of W follows easily from Theorem 2 (cf. Corollary 4.1).

2. Generalities on webs with infinitesimal automorphisms

Let F be a regular foliation on (C2, 0) induced by a (germ of) 1-form ω. We
say that a (germ of) vector field X is an infinitesimal automorphism of F if the
foliation F is preserved by the local flow of X. In algebraic terms: LXω ∧ ω = 0 .

When the infinitesimal automorphism X is transverse to F , i.e when ω(X) 6= 0,
then a simple computation (cf. [12, Corollary 2]) shows that the 1-form

η =
ω

iXω

is closed and satisfies LXη = 0. By definition, the integral

u(z) =
∫ z

0

η

is the canonical first integral of F (with respect to X). Clearly, we have u(0) = 0
and LX(u) = 1.

Keeping in mind that the local flow of X sends leaves into leaves we can geo-
metrically interpret the first integral u(z) as the time that such local flow takes to
transport the leaf through 0 to the leaf through z.

Now let W be a germ of regular k-web on (C2, 0) induced by the (germs of) 1-
forms ω1, . . . , ωk and let X be an infinitesimal automorphism of W. Here, of course,
we mean that X is an infinitesimal automorphism for all the foliations in W.

By hypothesis, we have LX ωi ∧ ωi = 0 for i = 1, . . . , k. Then because the Lie
derivative LX is linear and commutes with d, it induces a linear map

LX : A(W) −→ A(W)(2)
(η1, . . . , ηk) 7−→ (LXη1, . . . , LXηk) .

This map is central in this paper: all our results come from an analysis of the
LX -invariant subspaces of A(W).

3. Abelian relations of webs with infinitesimal automorphisms

3.1. Description of A(W) in presence of an infinitesimal automorphism.
In this section, W = F1 � · · · � Fk denotes a k-web in (C2, 0) which admits an
infinitesimal automorphism X, regular and transverse to the foliations Fi in a
neighborhood of the origin.

Let i ∈ {1, . . . , k} be fixed. We note Ai(W) the vector subspace of Ω1(C2, 0)
spanned by the i-th components αi of abelian relations (α1, . . . , αk) ∈ A(W). If
ui =

∫
ηi denotes the canonical first integral of Fi with respect to X, then for

αi ∈ Ai(W), there exists a holomorphic germ fi ∈ C{t} such that αi = fi(ui) dui.

2In fact, Trépreau’s result is stronger, see [18] for a precise statement
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Assume now that Ai(W) is not trivial and let
{
αν

i = fν(ui) dui | ν = 1, . . . , ni}
be a basis. Since LX : Ai(W) → Ai(W) is a linear map, there exist complex
constants cνµ such that, for ν = 1, . . . , ni we have

LX(αν
i ) =

ni∑
µ=1

cνµ α
µ
i .(3)

But LX(αν
i ) = LX

(
fν(ui) dui

)
= X

(
fν(ui)

)
dui + fν(ui)LX

(
dui

)
= f ′ν(ui) dui

for any ν, so relations (3) are equivalent to the scalar ones

f ′ν =
ni∑

µ=1

cνµ fµ , ν = 1, . . . , ni .(4)

Now let λ1, . . . , λτ ∈ C be the eigenvalues of the map LX acting on A(W)
corresponding to maximal eigenspaces with corresponding dimensions σ1, . . . , στ .
The differential equations (4) give us the following description of A(W):

Proposition 3.1. The abelian relations of W are of the form

P1(u1) eλi u1 du1 + · · ·+ Pk(uk) eλi uk duk = 0

where P1, . . . , Pk are polynomials of degree less or equal to σi − 1.

We will now explain how we can use Proposition 3.1 to effectively determine
A(W). The key point is to determine the possible non-zero eigenvalues of the map
(2). Once this is done we can easily determine the abelian relations by simple linear
algebra.

We claim that 0 is an eigenvalue of (2) if, and only if, for every germ of vector
field Y the Wronskian

(5) det


u1 · · · uk

Y (u1) · · · Y (uk)
...

. . .
...

Y k−1(u1) · · · Y k−1(uk)


is identically zero. In fact, if this is the case then we have two possibilities: the
functions u1, . . . , uk are C-linearly dependent or all the leaves of Y are cutted out
by some element of the linear system generated by u1, . . . , uk, cf. [11, theorem 4].
In particular if Y is a vector field of the form Y = µx ∂

∂x +y ∂
∂y , with µ ∈ C\Q, then

the leaves of Y accumulate at 0 and are not cutted out by any regular holomorphic
function. Therefore the vanishing of (5) implies the existence of an abelian relation
of the form ∑

ciui = 0,

where the ci’s are complex constants.
To determine the possible complex numbers λ which are eigenvalues of the map

(2) first notice that the corresponding eigenvectors can be readen as a functional
equation of the form c1 e

λ u1 + · · · + ck e
λ uk = 0, where, as before, the ci’s are

complex constants: just take the interior product of the displayed equation in
Proposition 3.1 with X. In the same spirit of what we have just made for the zero
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eigenvalue case consider the holomorphic function given by

(6) det


exp(λu1) · · · exp(λuk)

Y (exp(λu1)) · · · Y (exp(λuk))
...

. . .
...

Y k−1(exp(λu1)) · · · Y k−1(exp(λuk))


for an arbitrary germ of vector field Y .

Notice that (6) is of the form exp(λ(u1 + · · · + uk))λk−1PY (λ), where PY is a
polynomial in λ, of degree at most (k−1)(k−2)

2 , with germs of holomorphic functions
as coefficients. The common constant roots of these polynomials, when Y varies,
are exactly the eigenvalues of the map (2).

Let us now exemplify these ideas. In practice we do not have to consider all the
vector fields Y but just a suitably chosen one.

Example 3.1. The k-web W generated by the functions fi(x, y) = y + xi, i =
1, . . . , k, has no abelian relations.

Proof. Clearly the vector field X = ∂
∂y is an infinitesimal automorphism of W and

X(dfi) = 1, i = 1, . . . , k. It follows that ui = fi are the canonical first integrals
of W. On the other hand, if we consider the vector field Y = ∂

∂x we can easily
see that that PY (λ)|x=y=0 = (−1)k−1

∏k−1
n=1 n!. Consequently, the only candidate

for a eigenvalue of the map (2) is λ = 0. But clearly the functions fi are linearly
independent over C. �

Let us see how to use this approach to recover the abelian relations of one of the
exceptional webs found by the third author in [13]

Example 3.2. The 5-web W induced by the functions x, y, x+ y, x− y, x2 + y2 has
rank 6.

Proof. Clearly the radial vector field R = x ∂
∂x + y ∂

∂y is an infinitesimal automor-
phism of W. The canonical first integrals are u1 = log x, u2 = log y, u3 = log(x+y),
u4 = log(x − y) and u5 = 1

2 log(x2 + y2). If we take Y = x ∂
∂x − y ∂

∂y then one can
easily check that the polynomial PY is a complex multiple of

x7y7λ(λ− 1)2(λ− 2)2(λ− 4)(λ− 6).

According to Proposition 3.1, we have only to look for abelian relations of the
form

∑5
i=1 Piλ(log gi)gλ

i
dgi

gi
= 0, for λ = 0, 1, 2, 4, 6, where Piλ are polynomials

and gi = exp(ui). We have thus reduced our search to a simple problem of linear
algebra, i.e. to find linear dependences on finite dimensional vector spaces indexed
by λ ∈ {0, 1, 2, 4, 6}. It turns out that for λ = 1 we obtain two linearly independent
abelian relations

g1 + g2 − g3 = 0, g1 − g2 − g4 = 0.
For λ = 2 one finds two more independent abelian relations

g2
1 + g2

2 − g2
5 = 0, 2 g2

1 + 2 g2
2 − g2

3 − g2
4 = 0.

Finally, for λ = 4 and λ = 6, respectively, there are two more independent abelian
relations:

5 g4
1 + 5 g4

2 + g4
3 + g4

4 − 6 g4
5 = 0, 8 g6

1 + 8 g6
2 + g6

3 + g6
4 − 10 g6

5 = 0.

Thus, we have found 6 independent abelian relations. �
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3.2. Proof of Theorem 1. With Proposition 3.1 at hand we are able to prove our
main result.

Let W = F1 � · · · � Fk and for i = 1 . . . k, set ηi = dui as the differential of
the canonical first integral of Fi relatively to X. We note x a first integral of the
foliation FX , normalized such that x(0) = 0.

When j varies from 2 to k, we have

iX(η1 − ηj) = 0 and LX(η1 − ηj) = 0 .

Consequently there exists gj ∈ C{x} such that

(7) du1 − duj − gj(x) dx = 0 .

Clearly these are abelian relations for the web W � FX . They span a (k − 1)-
dimensional vector subspace V of the maximal eigenspace of LX associated to the
eigenvalue zero, noted A0(W � FX).

Observe that V fits in the following exact sequence (i is the natural inclusion):

0 → V i−→ A0(W � FX) LX−→ A0(W) .(8)

Indeed, the kernel K := ker{LX : A0(W �FX) → A0(W)} is generated by abelian
relations of the form

∑k
i=1 cidui + g(x) dx = 0, where ci ∈ C and g ∈ C{x}. Since

iXdui = 1 for each i, it follows that the constants ci satisfy
∑k

i=1 ci = 0. It implies
that the abelian relations in the kernel of LX can be written as linear combinations
of abelian relations of the form (7). Therefore

(9) K = V
and consequently kerLX ⊂ Im i. The exactness of (8) follows easily.

From general principles we deduce that the sequence

0 → V
A0(W) ∩ V

i−→ A0(W � FX)
A0(W)

LX−→ A0(W)
LXA0(W)

,

is also exact. Thus to prove the Theorem it suffices to verify the following assertions:
(a) V is isomorphic to

V
A0(W) ∩ V

⊕ A0(W)
LXA0(W)

;

(b) the morphism LX : A0(W � FX) → A0(W) is surjective;
(c) the vector spaces

A0(W � FX)
A0(W)

and
A(W � FX)

A(W)
are isomorphic.

To verify assertion (a), notice that the nilpotence of LX on A0(W) implies that
A0(W)

LXA0(W) is isomorphic to A0(W)∩K. Combined with (9), it implies assertion (a).

To prove assertion (b), it suffices to construct a map Φ : A0(W) → A0(W�FX)
such that LX ◦ Φ = Id. Proposition 3.1 implies that A0(W) is spanned by abelian
relations of the form

∑k
i=1 ciu

r
i dui = 0, where ci are complex numbers and r is a

non-negative integer. For such an abelian relation, since
k∑

i=1

ciu
r
i dui =

1
r + 1

LX

( k∑
i=1

ciu
r+1
i dui

)
= 0 ,
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there exists an unique g ∈ C{x} satisfying
∑k

i=1 ciu
r+1
i dui + g(x) dx = 0 . If we set

Φ
( k∑

i=1

ciu
r
i dui

)
=

1
r + 1

( k∑
i=1

ciu
r+1
i dui + g(x) dx

)
then LX ◦ Φ = Id on A0(W) and assertion (b) follows.

To prove assertion (c) we first notice that

A(W � FX) = A0(W � FX)⊕A∗(W � FX)

where A∗(W � FX) denotes the sum of eigenspaces corresponding to non-zero
eigenvalues. Of course A∗(W�FX) is invariant and moreover we have the equality

LX

(
A∗(W � FX)

)
= A∗(W � FX) .

But LX kills the FX -components of abelian relations. In particular, it implies

LX

(
A∗(W � FX)

)
⊂ A∗(W).

This is sufficient to show that A∗(W�FX) = A∗(W) and deduce assertion (c) and,
consequently that

rk(W � FX) = rk(W) + (k − 1) .

Because k(k − 1)/2 = (k − 1)(k − 2)/2 + (k − 1), the above inequality implies
immediately the last assertion of Theorem 1. �

4. New Families of exceptional webs

4.1. Algebrizable Webs with Infinitesimal Automorphisms. Let C ⊂ P2 be
a degree k reduced curve. If U ⊂ P̌2 is a simply-connected open set not intersecting
Č and if γ1, . . . , γk : U → C are the holomorphic maps defined by the intersections
of lines in U with C then Abel’s Theorem implies that

Tr(ω) =
k∑

i=1

γ∗i ω = 0

for every ω ∈ H0(C,ωC), where ωC denotes the dualizing sheaf of C.
The maps γi define the k-webWC on U and the trace formula above associates an

abelian relation of WC to each ω ∈ H0(C,ωC). Since h0(C,ωC) = (k−1)(k−2)/2,
the web WC is of maximal rank.

Suppose now that C is invariant by a C∗-action ϕ : C∗×P2 → P2. Notice that ϕ
induces a dual action ϕ̌ : C∗ × P̌2 → P̌2 satisfying ϕt ◦ γi = γi ◦ ϕ̌t for i = 1, . . . , k.
Consequently the web WC admits an infinitesimal automorphism.

In a suitable projective coordinate system [x : y : z], a plane curve C invariant
by a C∗-action is cut out by an equation of the form

(10) xε1 · yε2 · zε3 ·
k∏

i=1

(xa + λiy
bza−b)

where ε1, ε2, ε3 ∈ {0, 1}, k, a, b ∈ N are such that k ≥ 1, a ≥ 2, 1 ≤ b ≤ a/2,
gcd(a, b) = 1 and the λi are distinct non zero complex numbers (cf. [2, §1] for
instance). Notice that here the C∗-action in question is

(11)
ϕ : C∗ × P2 → P2

(t, [x : y : z]) 7→ [tb(a−b)x : ta(a−b)y : tabz] .



8 D. MARÍN, J. V. PEREIRA, AND L. PIRIO

Moreover once we fix ε1, ε2, ε3, k, a, b we can always choose λ1 = 1 and in this
case the set of k − 1 complex numbers {λ2, . . . , λk} projectively characterizes the
curve C. In particular one promptly sees that there exists a (d − 1)-dimensional
family of degree 2d (or 2d + 1) reduced plane curves all projectively distinct and
invariant by the same C∗-action: for a given 2d+ δ with δ ∈ {0, 1} set a = 2, b = 1,
ε1 = δ and ε2 = ε3 = 0.

A moment of reflection shows that the number of discrete parameters giving
distinct families of degree d curves of the form (10) is⌊d

2

⌋
︸︷︷︸

ε1=ε2=ε3=0

+ 3
⌊d− 1

2

⌋
︸ ︷︷ ︸

εi=εj=0, εk=1

+ 3
⌊d− 2

2

⌋
︸ ︷︷ ︸

εi=εj=1, εk=0

+
⌊d− 3

2

⌋
︸ ︷︷ ︸

ε1=ε2=ε3=1

− 2 = 4d− 10 .

Notice that the −2 appears on left hand side because the curves {y = 0} and
{z = 0} are indistinguishable when a = 2.

4.2. Proof of Theorem 2. If C is a reduced curve of the form (10) then WC

is invariant by an algebraic C∗-action ϕ̌. We will note by X the infinitesimal
generator of ϕ̌ and by FX the corresponding foliation. From the discussion on the
last paragraph, Theorem 2 follows at once from the stronger:

Theorem 4.1. If degC ≥ 4 then WC � FX is exceptional. Moreover if C ′ is
another curve invariant by ϕ then WC �FX is analytically equivalent to WC′ �FX

if and only if the curve C is projectively equivalent to C ′.

Proof. Since WC has maximal rank it follows from Theorem 1 that WC � FX is
also of maximal rank. Suppose that its localization at a point p ∈ P2 is algebrizable
and let ψ : (P2, p) → (C2, 0) be a holomorphic algebrization. Since both WC and
ψ∗(WC) are linear webs of maximal rank it follows from a result of Nakai [10] that
ψ is the localization of an automorphism of P2. But the generic leaf of FX is
not contained in any line of P2 and consequently ψ∗(W � FX) is not linear. This
concludes the proof of the theorem. �

Remark 4.1. We do not know if the families above are irreducible in the sense
that the generic element does not admit a deformation as an exceptional web that
is not contained in the family. Due to the presence of automorphism one could
imagine that they are indeed degenerations of some other exceptional webs.

4.3. A characterization result. Combining Theorem 1 with Lie’s Theorem we
can easily prove the

Corollary 4.1. Let W be a 4-web that admits a transverse infinitesimal automor-
phism Y . If W�FY is exceptional then it is analytically equivalent to an exceptional
5-web WC � FX described in Theorem 4.1.

Proof. It follows from Theorem 1 that W is of maximal rank. Lie’s Theorem implies
that W is analytically equivalent to WC for some reduced plane quartic C. Since
the local flow of Y preserves W there exists a (germ) of vector field X whose
local flow preserves WC . Using again Nakai’s result we deduce that the germs of
automorphisms on the local flow of X are indeed projective automorphisms. This
is sufficient to conclude that X is a global vector field preserving WC . �
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Remark 4.2. Theorem 4.1 does not give all the exceptional webs admitting an
infinitesimal automorphism. As we have seen in the Example 3.2, the web W in-
duced by the functions x, y, x + y, x − y, x2 + y2 is exceptional and it admits the
radial vector field R = x ∂/∂x + y ∂/∂y as a transverse infinitesimal automorphism.
Theorem 1 implies that the 6-web W �FR is also exceptional. This result was pre-
viously obtained by determining an explicit basis of the space of abelian relations,
see [14, p. 253].

5. Problems

5.1. A conjecture about the nature of the abelian relations. It is clear
from Proposition 3.1 that for webs W admitting infinitesimal automorphisms there
exists a Liouvillian extension of the field of definition of W containing all its abelian
relations. We believe that a similar statement should hold for arbitrary webs W.

Conjecture 5.1. The abelian relations of a web W are defined on a Liouvillian
extension of the definition field of W.

Our belief is supported by the recent works of Hénaut [9] and Ripoll [16] on
abelian relations and of Casale [5] on non-linear differential Galois Theory.

When W is of maximal rank the main result of [9] shows that there exists a
Picard-Vessiot extension of the field of definition of W containing all the abelian
relations. In the general case, one should be able to deduce a similar result from
the above mentioned work of Ripoll.

On the other hand, and at least over polydiscs, [5, Theorem 6.4] implies that the
foliations with first integrals on Picard-Vessiot extension are transversely projective.
Since the first integrals in question are components of abelian relations they are of
finite determinacy and hopefully this should imply that they are indeed Liouvillian.

5.2. Restricted Chern’s Problem. With the techniques now available, the clas-
sification of all exceptional 5-webs (“Chern’s problem” see [6, page 27]) seems com-
pletely out of reach. So we propose the

Problem 5.1. Classify exceptional 5-webs admitting infinitesimal automorphisms.

Notice that this restricted version is not completely hopeless. The linear map
LX can be “integrated” giving birth to a holomorphic action on P(A(W)). The
Poincaré-Blaschke curves will be orbits of this action and the dual action will induce
an automorphism of the associated Blaschke surface. This seems valuable extra data
that may lead to a solution of the restricted Chern’s problem.

For a definition of the above mentioned concepts see [14, Chapter 8].
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[16] O. Ripoll, Détermination du rang des tissus du plan et autres invariants géométriques, C.R.
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