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Abstract. In this article we introduce algorithms which compute iterations
of Gauss-Manin connections, Picard-Fuchs equations of Abelian integrals and
mixed Hodge structure of affine varieties of dimension n in terms of differ-
ential forms. In the case n = 1 such computations have many applications
in differential equations and counting their limit cycles. For n > 3, these
computations give us an explicit definition of Hodge cycles.
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1. Introduction

The theory of abelian integrals which arises in polynomial differential equations
of the type ẋ = P (x, y), ẏ = Q(x, y) is one of the most fruitful areas which needs
a special attention from algebraic geometry and in particular singularity theory.
The reader is referred to the articles [6], [10] and [3] for a history and applications
of such abelian integrals in differential equations. The book [1] and its references
contains the theory of such integrals in the local case. In this article we deal with
computational aspects of such integrals. All polynomial objects which we use are
defined over C.

Let us be given a polynomial f in n+1 variables x1, x2, . . . , xn+1, a polynomial
differential n-form ω and a continuous family of n-dimensional oriented cycles
δt ⊂ Lt := f−1(t). The protagonist of this article is the integral

∫
δt
ω, called the

abelian integral. Computations related to these integrals become easier when we
put a certain kind of tameness condition on f (see §2). For such a tame polynomial
we can write

∫
δt
ω as: ∑

β∈I

pβ(t)
∫

δt

ηβ , (1.1)
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where ηβ , β ∈ I is a class of differential n-forms constructed from a basis of the
Milnor vector space of f and pβ ’s are polynomials in t (see §5 for the algorithm
which produces pβ ’s). The Gauss-Manin connection ∇ω has the following basic
property

∂

∂t

∫
δt

ω =
∫

δt

.∇ω (1.2)

The above term can be written in the form (1.1) with pβ ’s rational functions in t
with poles in the critical values of f (see §6 for the algorithm which produces pβ ’s).
The n-th cohomology of a smooth fiber Lt is canonically isomorphic to Ωn

Lt
/dΩn−1

Lt
,

where Ωi
Lt

is the restriction of polynomial differential i-forms to Lt, and carries
two natural filtrations called the weight and the Hodge filtrations (a mixed Hodge
structure consists of these filtrations and a real structure satisfying certain axioms).
These filtrations are generalizations of classical notions of differential forms of the
first, second and third type for Riemann surfaces in higher dimensional varieties.
The reader who is not interested in the case n > 1 is invited to follow the article
with n = 1 and with the usual notions of differential forms of the first, second and
third type. How to calculate these filtrations by means of differential forms is the
main theorem of [9] and related algorithms are explained in §7. Last but not least,
our protagonist satisfies a Picard-Fuchs equation

∑k
i=0 pi(t) ∂i

∂ti = 0, where pi’s are
polynomials in t. The algorithm which produces pi’s is explained in §8. The theory
of abelian integrals can be studied even in the case n = 0, i.e. f is a polynomial in
one variable. Since some open problems, for instance infinitesimal Hilbert Problem
(see [6]), can be also stated in this case, we have included §9. All the algorithms
explained in this article are implemented in a library of Singular. This together
with some examples are explained in §10. Applications of our computations in
differential equations and particularly in direction of the article [3] is a matter of
future work.

2. Tame polynomials and Brieskorn modules

We start with a definition.

Definition 2.1. A polynomial f ∈ C[x] is called (weighted) tame if there exist
natural numbers α1, α2, . . . , αn+1 ∈ N such that Sing(g) = {0}, where g = fd is
the last homogeneous piece of f in the graded algebra C[x], deg(xi) = αi.

The multiplicative group C∗ acts on Cn+1 in the following way:

λ∗ : (x1, x2, . . . , xn+1) → (λα1x1, λ
α2x2, . . . , λ

αn+1xn+1), λ ∈ C∗.

The polynomial (resp. the polynomial form) ω in Cn+1 is (weighted) homogeneous
of degree d ∈ N if λ∗(ω) = λdω, λ ∈ C∗. Fix a homogeneous polynomial g of
degree d and with an isolated singularity at 0 ∈ Cn+1. Let Ag be the affine space
of all tame polynomials f = f0 +f1 + · · ·+fd−1 +g. The space Ag is parameterized
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by the coefficients of fi, i = 0, 1, . . . , d− 1. The multiplicative group C∗ acts on Ag

by

λ • f =
f ◦ λ∗

λd
= λ−df0 + λ−d+1f1 + · · ·+ λ−1fd + g.

The action of λ ∈ C∗ takes λ • f = 0 biholomorphically to f = 0.
Let f ∈ Ag. We choose a basis xI := {xβ | β ∈ I} of monomials for the

Milnor C-vector space
V := C[x]/jacob(g).

Define

wi :=
αi

d
, 1 ≤ i ≤ n+ 1, η := (

n+1∑
i=1

(−1)i−1wixid̂xi), Lt := f−1(t), t ∈ C, (2.1)

Aβ :=
n+1∑
i=1

(βi + 1)wi, ηβ := xβη, ωβ = xβdx, (β ∈ I),

where d̂xi = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1. Note that Aβ = deg(xβ+1)
d .

It turns out that xI is also a basis of Vf := C[x]/jacob(f) and so f and g have
the same Milnor numbers (see the conclusion after Lemma 4 of [9]). We denote it
by µ . We denote by P the set of critical points of f and by C := f(P ) the set
of critical values of f . We will also use P for a polynomial in C[x]. This will not
make any confusion.

Let Ωi, i = 1, 2, . . . , n + 1 (resp. Ωi
j , j ∈ N ∪ {0}) be the set of polynomial

differential i-forms (resp. homogeneous degree j polynomial differential i-forms)
in Cn+1. The Milnor vector space of f can be rewritten in the form V := Ωn+1

df∧Ωn .
The Brieskorn modules

H ′ = H ′
f :=

Ωn

df ∧ Ωn−1 + dΩn−1
, H ′′ = H ′′

f =
Ωn+1

df ∧ dΩn−1

of f are C[t]-modules in a natural way: t.[ω] = [fω], [ω] ∈ H ′ resp. ∈ H ′′. They
are defined in the case n > 0. The case n = 0 is treated separately in §9.

3. Mixed Hodge structures

In this section we assume that the reader is familiar with the notion of mixed
Hodge structure in the cohomologies of an affine variety (see [7, 2]).

Definition 3.1. Let H be one of H ′ or H ′′. If H = H ′′ then by restriction of ω
on Lc, c ∈ C\C we mean the residue of ω

f−c in Lc and by
∫

δ
ω, δ ∈ Hn(Lc,Z)

we mean
∫

δ
residue( ω

f−c ). It is natural to define the Hodge and weight filtrations
of H as follows: WmH, m ∈ Z (resp. F kH, k ∈ Z) consists of elements ω ∈ H
such that the restriction of ω on all Lc, c ∈ C\C belongs to WmH

n(Lc,C) (resp.
F kHn(Lc,C)).
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Each piece of the mixed Hodge structure of H is a C[t]-module. In the same
way we define the mixed Hodge structure of the localization of H over multiplica-
tive subgroups of C[t]. In the case n = 1 our definition can be simplified as follows:
We have the filtrations {0} = W0 ⊂ W1 ⊂ W2 = H and 0 = F 2 ⊂ F 1 ⊂ F 0 = H,
where

W1 = {ω ∈ H | ω restricted to a regular fiber has not residue at infinity },
F 1 = {ω ∈ H | ω restricted to a regular fiber has poles of order ≥ 1 at infinity}.
In particular, W1 ∩ F 1 is the set of all ω ∈ H such that ω restricted to a regular
compactified fiber is of the first kind. For the notion of compactification of C2 and
infinity see [3] and [8]. The projection of F • in GrW

mH := Wm/Wm−1 gives us the
filtration F̄ • in GrW

mH and we define Grk
F GrW

mH = F̄ k/F̄ k+1.

Definition 3.2. Suppose that H is a free C[t]-module. The set B = ∪m,k∈ZB
k
m ⊂ H

is a basis of H compatible with the mixed Hodge structure if Bk
m form a basis of

Grk
F GrW

mH.

For a C[t]-module M and a set C ⊂ C, we denote by MC the localization
of M on the multiplicative subset of C[t] generated by {t − c | c ∈ C}. The
following theorem gives a basis of a localization of H which is compatible with the
mixed Hodge structure. It is proved in [9]. Our aim in this article is to explain the
algorithms which lead to the calculation of such a basis.

Theorem 3.3. Let b ∈ C\C be a regular value of f ∈ C[x]. If f is a (weighted)
tame polynomial then GrmH

′ = 0 for m 6= n, n+1 and there exist a map β ∈ I →
dβ ∈ N ∪ {0} and C ⊂ C̃ ⊂ C such that b 6∈ C̃ and

∇kηβ , β ∈ I, Aβ = k (3.1)

form a basis of Grn+1−k
F GrW

n+1H
′
C̃

and the forms

∇kηβ , Aβ +
1
d
≤ k ≤ Aβ +

dβ

d
(3.2)

form a basis of Grn+1−k
F GrW

n H ′
C̃
. The same is true for H ′′

C̃
replacing ∇kηβ with

∇k−1ωβ.

In the above theorem ∇ : H → HC is the Gauss-Manin connection associated
to f (see §6).

4. Quasi-homogeneous singularities

Let f = g be a weighted homogeneous polynomial with an isolated singularity at
origin. It is well-known that H ′ (resp. H ′′) is freely generated by ηβ , β ∈ I (resp.
ωβ , β ∈ I). In this section we explain the algorithm which writes every element in
H ′ (resp. H ′′) of g as a C[t]-linear combination of ηβ ’s (resp. ωβ ’s). Recall that

dg ∧ d(P ̂dxi, dxj) = (−1)i+j+εi,j (
∂g

∂xj

∂P

∂xi
− ∂g

∂xi

∂P

∂xj
)dx,
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where εi,j = 0 if i < j and = 1 if i > j and ̂dxi, dxj is dx without dxi and dxj (we
have not changed the order of dx1, dx2, . . . in dx).

Proposition 4.1. For a monomial P = xβ we have

∂g

∂xi
Pdx =

d

d ·Aβ − αi

∂P

∂xi
gdx+ dg ∧ d(

∑
j 6=i

(−1)i+j+1+εi,jαj

d ·Aβ − αi
xjP ̂dxi, dxj). (4.1)

Proof. The proof is a straightforward calculation.∑
j 6=i

(−1)i+j+1+εi,jαj

d ·Aβ − αi
dg ∧ d(xjP ̂dxi, dxj) =

−1
d ·Aβ − αi

∑
j 6=i

(αj
∂g

∂xj

∂(xjP )
∂xi

− αj
∂g

∂xi

∂(xjP )
∂xj

)dx =

−1
d ·Aβ − αi

((d · g − αixi
∂g

∂xi
)
∂P

∂xi
− P

∂g

∂xi

∑
j 6=i

αj(βj + 1))dx =

−1
d ·Aβ − αi

(d · g ∂P
∂xi

− αiβiP
∂g

∂xi
− P

∂g

∂xi

∑
j 6=i

αj(βj + 1))dx.

In the above equalities ds means the differential of s and d · s means the
multiplication of d, the degree of g, with s. �

We use the above Proposition to write every Pdx ∈ Ωn+1 in the form

Pdx =
∑
β∈I

pβ(g)ωβ + dg ∧ dξ, (4.2)

pβ ∈ C[t], ξ ∈ Ωn−1,deg(pβ(g)ωβ , dg ∧ dξ) ≤ deg(Pdx).
• Input: The homogeneous polynomial g and P ∈ C[x] representing [Pdx] ∈
H ′′. Output: pβ , β ∈ I and ξ satisfying (4.2).

We write

Pdx =
∑
β∈I

cβx
β .dx+ dg ∧ η, deg(dg ∧ η) ≤ deg(Pdx). (4.3)

Then we apply (4.1) to each monomial component P̃ ∂g
∂xi

of dg ∧ η and then

we write each ∂P̃
∂xi

dx in the form (4.3). The degree of the components which
make Pdx not to be of the form (4.2) always decreases and finally we get the
desired form.

To find a similar algorithm for H ′ we note that if η ∈ Ωn is written in the form

η =
∑
β∈I

pβ(g)ηβ + dg ∧ ξ + dξ1, pβ ∈ C[t], ξ, ξ1 ∈ Ωn−1, (4.4)

where each piece in the right hand side of the above equality has degree less than
deg(η) then

dη =
∑
β∈I

(pβ(g)Aβ + p′β(g)g)ωβ − dg ∧ dξ (4.5)
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and the inverse of the map C[t] → C[t], p 7→ Aβ .p + p′.t is given by
∑k

i=0 ait
i 7→∑k

i=1
ai

Aβ+i t
i.

Since in the case of a quasi-homogeneous singularity f = g we have ∇(ωβ) =
Aβ−1

t ωβ and ∇(ηβ) = Aβ

t ηβ (see §6), Theorem 3.3 in this case reduces to:

Theorem 4.2. (Steenbrink, [11]) For a weighted homogeneous polynomial g, the set

B = ∪n
k=1B

k
n+1 ∪ ∪n

k=0B
k
n

with

Bk
n+1 = {ηβ | Aβ = n− k + 1}, Bk

n = {ηβ | n− k < Aβ < n− k + 1},
is a basis of H ′ compatible with the mixed Hodge structure. The same is true for
H ′′ replacing ηβ with ωβ.

5. A basis of H ′ and H ′′

Proposition 5.1. For every tame polynomial f ∈ Ag the forms ωβ , β ∈ I (resp.
ηβ , β ∈ I) form a basis of the Brieskorn module H ′′ (resp. H ′) of f . More precisely,
every ω ∈ Ωn+1 (resp. ω ∈ Ωn) can be written

ω =
∑
β∈I

pβ(f)ωβ + df ∧ dξ, pβ ∈ C[t], ξ ∈ Ωn−1, deg(pβ) ≤ deg(ω)
d

−Aβ (5.1)

(resp.

ω =
∑
β∈I

pβ(f)ηβ+df∧ξ+dξ1, pβ ∈ C[t], ξ ∈ Ωn−1, deg(pβ) ≤ deg(ω)
d

−Aβ (5.2)

).

This proposition is proved in [9] Proposition 1. The proof also gives us the
following algorithm to find all the unknown data in the above equalities.
• Input: The tame polynomial f and P ∈ C[x] representing [Pdx] ∈ H ′′. Out-

put: pβ , β ∈ I and ξ satisfying (5.1).
We use the algorithm of §4 and write an element ω ∈ Ωn+1,deg(ω) = m

in the form:

ω =
∑
β∈I

pβ(g)ωβ +dg∧dψ, pβ ∈ C[t], ψ ∈ Ωn−1, deg(pβ(g)ωβ),deg(dg∧dψ) ≤ m

This is possible because g is homogeneous. We have

ω =
∑
β∈I

pβ(f)ωβ + df ∧ dψ + ω′, ω′ =
∑
β∈I

(pβ(g)− pβ(f))ωβ + d(g − f) ∧ dψ.

The degree of ω′ is strictly less than m and so we repeat what we have done
at the beginning and finally we write ω as a C[t]-linear combination of ωβ ’s.

The algorithm for H ′ is similar. The statement about degrees is the direct conse-
quence of the proof and (4.2).
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6. Gauss-Manin connection

Let S(t) ∈ C[t] such that

S(f)dx = df ∧ ηf , ηf =
n+1∑
i=1

(−1)i−1pid̂xi ∈ Ωn−1.

For instance one can take S(t) := det(Af − t.I), where Af is the multiplication
by f linear map from Vf := C[x]/jacob(f) to itself. The Gauss-Manin connection
∇ = ∇ ∂

∂t
associated to the fibration f = t, t ∈ C on H ′′ turns out to be the map

∇ : H ′′ → H ′′
C ,∇([Pdx]) =

[(QP − P.S′(f))dx]
S

, P ∈ C[x],

where

QP =
n+1∑
i=1

(
∂P

∂xi
pi + P

∂pi

∂xi
) (6.1)

satisfying the Leibniz rule, where for a set C̃ ⊂ C by H ′′
C̃

we mean the localization
of H ′′ on the multiplicative subgroup of H ′′ generated by t− c, c ∈ C̃. Using the
Leibniz rule one can extend ∇ to a function from H ′′

C to itself and so the iteration
∇k = ∇ ◦∇ · · ·∇ k times, makes sense. It is given by

∇k =
∇k−1 ◦ ∇k−2 ◦ · · · ◦ ∇0

S(t)k
, (6.2)

where
∇k : H ′′ → H ′′, ∇k([Pdx]) = [(QP − (k + 1)S′(t)P )dx].

To calculate ∇ : H ′ → H ′
C we use the fact that

∇kω =
∇k−1dω

df
, ω ∈ H ′,

where d : H ′ → H ′′ is taking differential and is well-defined. The main property of
∇ is (1.2). Usually the iteration of the Gauss-Manin connection produces polyno-
mial forms with huge number of monomials. But fortunately our Brieskorn module
H ′′ (resp. H ′) has already the canonical basis ωβ , β ∈ I (resp. ηβ , β ∈ I) and
after writing ∇ the obtained coefficients are much more easier to read. In H ′′ one
can write

S(t)∇(ωβ) =
∑
β′∈I

pβ,β′ωβ′ , pβ,β′ ∈ C[t], deg(pβ,β′) ≤ deg(S)−1+Aβ−Aβ′ . (6.3)

The bound on degrees can be obtained as follows:

S(f)ωβ = df ∧ η, ⇒ d · deg(S) + d ·Aβ = d+ deg(η).

deg(pβ,β′) ≤
deg(dη)

d
−Aβ′ = deg(S)− 1 +Aβ −Aβ′ .

The Gauss-Manin connection ∇ has two nice properties:
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1. Griffiths transversality theorem: For all i = 1, 2, . . . , n+ 1 we have

S(t)∇(F i) ⊂ F i−1.

2. Residue killer: For all ω ∈ H there exists a k ∈ N such that ∇kω ∈Wn

For the first one see [5]. The second one for n = 1 is proved in Lemma 2.3 of [8].
The proof for n > 1 is similar and uses the fact that the residue as a function in t
for a cycle around infinity is a polynomial in t.

7. The numbers dβ, β ∈ I

Let f be a tame polynomial with the last homogeneous part g, F be its homoge-
nization and

V = C[x, x0]/ <
∂F

∂xi
| i = 1, 2, . . . , n+ 1 > .

We consider V as a C[x0]-module and it is easy to show that V is freely generated
by xI := {xβ , β ∈ I}. Let

AF : V → V, AF (G) =
∂F

∂x0
G, G ∈ V.

Proposition 7.1. The matrix of AF in the basis xI is of the form d · [xKβ,β′

0 cβ,β′ ],
where Kβ,β′ := d− 1 + deg(xβ)− deg(xβ′) and Af := [cβ,β′ ] is the multiplication
by f in the Milnor vector space of f . In particular, if Aβ′ −Aβ ≥ 1 then cβ,β′ = 0
and

det(AF − t.xd−1
0 I) = det(Af − t.I)x(d−1)µ

0 .

Proof. Since the polynomial F is weighted homogeneous, we have
∑n+1

i=0 αixi
∂F
∂xi

=
d · F and so x0

∂F
∂x0

= d.F in V (Note that α0 = 1 by definition). Let

F.xβ =
∑
β′∈I

xβ′cβ,β′(x0) +
n+1∑
i=1

∂F

∂xi
qi, cβ,β′(x0) ∈ C[x0], qi ∈ C[x0, x]. (7.1)

Since the left hand side is homogeneous of degree d+ deg(xβ) we can assume that
the pieces of the write hand side are also homogeneous of the same degree. This
can be done by taking an arbitrary equation (7.1) and subtracting the unnecessary
parts. �

Let C̃ be a finite subset of C and C[t]C̃ be the localization of C[t] on its
multiplicative subgroup generated by t − c, c ∈ C̃ and Ft = F − t.xd

0. From now
on we work with C[t]C̃ [x0, x] instead of C[x0, x] and redefine V using C[t]C̃ [x0, x].
Let

VC̃ = C[t]C̃ [x0, x]/ <
∂Ft

∂x0
,
∂F

∂xi
, | i = 1, 2, . . . , n+ 1 > .
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It is useful to reformulate VC̃ in the following way: Let R := C[t]C̃ [x0] be the set
of polynomials in x0 with coefficients in C[t]C̃ and At = AF − t.d.xd−1

0 I. We have

VC̃ = V/ <
∂Ft

∂x0
q | q ∈ V >= Rµ/At.R

µ.

Here Rµ is the set of µ× 1 matrices with entries in R. We consider the statement:
∗(C̃): There is a function β ∈ I → dβ ∈ N ∪ {0} such that the C[t]C̃-module

VC̃ is freely generated by

{xβ0
0 xβ , 0 ≤ β0 ≤ dβ − 1, β ∈ I}. (7.2)

To prove the statement ∗(C̃) we may introduce a kind of Gaussian elimination in
At and simplify it. For this reason we introduce the operation GE(β1, β2, β3). For
β ∈ I let (At)β be the β-th row of At.
• Input: At, β1, β2, β3 ∈ I with Aβ1 ≤ Aβ2 . Output: a matrix A′

t and a finite
subset B of C.

We replace (At)β2 with

− (At)β2,β3

(At)β1,β2

∗ (At)β1 + (At)β2

and we set B = zero(c(t)), where (At)β1,β2 = c(t).xKβ1,β2
0 . Since for all β4 ∈ I

we have
Kβ2,β3 +Kβ1,β4 = Kβ1,β3 +Kβ2,β4 .

The obtained matrix A′
t is of the form [x

Kβ,β′

0 c′β,β′ ] and c′β2,β3
= 0. If the

matrix Bt is obtained from At by applying the above operation and B ⊂ C̃
then At.R

µ = BtR
µ.

We give an example of algorithm which calculates dβ ’s for for some finite set
C̃ ⊂ C:
• Input: At. Output: dβ , β ∈ I and a finite set C̃ ⊂ C.

We identify I with {1, 2, . . . , µ} and assume that

β1 ≤ β2 ⇒ Aβ1 ≥ Aβ2 .

The algorithm has µ steps indexed by β = µ, µ− 1, . . . , 1. We define the set
C̃ to be empty. In β = µ we have A(β) = At. In the step β we find the first
β1 such that A(β)β,β1 6= 0 and put dβ1 = d − 1 + deg(xβ) − deg(xβ1). For
β2 = β−1, . . . , 1 we make GE(β, β2, β1) and define C̃ = C̃∪∪β−1

β2=1Bβ2 , where
Bβ2 is obtained during GE(β, β2, β1). The numbers dβ ’s obtained in this way
proves the statement ∗(C̃).

The advantage of this algorithm is that in many cases it gives C̃ = C. We do not
have a proof for ∗(C). One can also fix a value c ∈ C\C and apply the above
algorithm for Ac. In this case we do not care about C̃ during the algorithm. The
obtained dβ ’s make the statement ∗(C̃) true for some C̃ ⊂ C with c 6∈ C̃. We prove
the following weak statements:
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Proposition 7.2. There is a function β ∈ I → dβ ∈ N ∪ {0} such that the C[t]C-
module V ′ is generated by {xβ0

0 xβ , 0 ≤ β0 ≤ dβ − 1, β ∈ I}.

Proof. We have

V ′ = Rµ/AtR
µ

b∼= A−1
t Rµ/Rµ =

Aadj
t Rµ

x
µ(d−1)
0

/Rµ.

The isomorphism b in the middle is obtained by acting A−1
t from left on Rµ and

adj makes the adjoint of a matrix. Now for β ∈ I let dβ be the pole order of β-th

arrow of Aadj
t

x
µ(d−1)
0

. The numbers dβ are the desired numbers. It is easy to see that

{xβ0
0 xβ , 0 ≤ β0 ≤ dβ , β ∈ I} generates V ′. �

Proposition 7.3. There is a subset C̃ ⊂ C such that the statement ∗(C̃) is true
with dβ = d− 1, β ∈ I.

Proof. We identify I with {1, 2, . . . , µ} and assume that

β1 ≤ β2 ⇒ Aβ1 ≥ Aβ2 .

By various use of operation GE on At we make all the entries of (At)β,µ = 0, β ∈
I\{µ}. We repeat this for (At)β,µ−1 = 0, β ∈ I\{µ, µ − 1} and after µ-times we
get a lower triangular matrix. We always divide on a polynomial on t with leading
coefficient one and so division by zero does not occur. �

Proposition 7.4. Let ∗(C̃) be valid with dβ , β ∈ I. Then

Aβ < n+ 1, dβ < d(n+ 2−Aβ),
∑
β∈I

dβ = µ(d− 1).

Proof. The first one is already in Steenbrink’s Theorem 4.2. The second inequality
is obtained by applying the first inequality associated to F−cxd

0 for some c ∈ C\C̃:

A(dβ−1,β) = Aβ +
dβ − 1 + 1

d
< n+ 2.

The Milnor number of F − cxd
0 is

∑
β∈I dβ and equals to the Milnor number of

g − cxd
0 which is µ(d− 1). �

Suppose that ∗(C̃) is valid with dβ , β ∈ I. Define

Ik
n+1 = {β ∈ I | Aβ = n+ 1− k}, Ik

n = {β ∈ I | Aβ +
1
d
≤ n+ 1− k ≤ Aβ +

dβ

d
}.

We can restate Theorem 3.3 in the following way: For a tame polynomial f , the
set

B = ∪n
k=1B

k
n+1 ∪ ∪n

k=0B
k
n

with
Bk

n+1 = {∇n−kωβ | β ∈ Ik
n+1}, Bk

n = {∇n−kωβ | β ∈ Ik
n},

is a basis of H ′′
C̃

compatible with the mixed Hodge structure. The same is true
for H ′

C̃
replacing ∇n−kωβ with ∇n+1−kηβ . Unfortunately, this theorem gives us a
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basis of a localization H compatible with the mixed Hodge structure. In §10 we
have computed such bases for the Brieskorn module itself.

To handle easier the pieces of the mixed Hodge structure of HC̃ we make the
following table.

0 1 2 · · · n n+ 1
In
n In

n+1 In−1
n In−1

n+1 In−2
n · · · I1

n I1
n+1 I0

n

In the case n = 1 we have the table

0 1 2
I1
1 I1

2 I0
1

I1
1 = {β ∈ I | Aβ +

1
d
≤ 1 ≤ Aβ +

dβ

d
}, I0

1 = {β ∈ I | Aβ +
1
d
≤ 2 ≤ Aβ +

dβ

d
},

I1
2 = {β ∈ I | Aβ = 1}.

The forms ωβ , β ∈ I1
1 form a basis of F 1∩W1 and the forms ωβ , β ∈ I2

1 form a basis
of H ′′/W1. Now to obtain a basis of W1/(F 1 ∩W1) we must modify ∇ωβ , β ∈ I0

1 .

8. Picard-Fuchs equations

It is a well-known fact that for a polynomial f ∈ C[x] and ω ∈ H the integral
I(t) :=

∫
δt
ω satisfies

(
k∑

i=0

pi(t)
∂i

∂ti
)It = 0, pi(t) ∈ C[t] (8.1)

called Picard-Fuchs equation, where δt ∈ Hn(Lt,Z) is a continuous family of topo-
logical cycles. When f is tame, it is possible to calculate pi’ as follows:

We write

∇i(ω) =
∑
β∈I

pi,βωβ

and define the k×µ matrix A = [pi,β ], where i runs through 1, 2, . . . , k and β ∈ I.
Let k be the smallest number such that the the rows of Ak−1 are C(t)-linear
independent. Now, the rows of Ak are C(t)-linear dependent and this gives us
(after multiplication by a suitable element of C[t])

k∑
i=0

pi(t)∇i(ω) = 0, pi(t) ∈ C[t].

Using the formula (1.2) and integrating the above equality, we get the equation
(8.1).
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9. Polynomials in one variable, n = 0

The theory developed in §2 does not work for the case n = 0. For a polynomial of
degree d in one variable dim(H0(Lt,C)) = d but µ = d− 1. However, if we use the
following definition of homology and cohomology for a discrete topological space
M ,

H0(M,Z) = {m =
∑

i

aimi | ai ∈ Z, mi ∈M | deg(m) =
∑

i

ai = 0},

H0(M,C) = {f : H0(M,Z) → C linear}/{f | f is constant on M},
then

H ′ = C[x]/C[f ], H ′′ = C[x]dx/f ′C[f ]dx, I = {1, x, x2, . . . , xd−2}, µ = d− 1.

In this case∫
δ

ω =
∑

i

aiω(pi), where δ =
∑

i

aipi, ai ∈ Z, pi ∈ f−1(t), ω ∈ H ′.

If, for instance, f ′ = 0 has d distinct roots then every vanishing cycle in Lt is a
difference of two points of Lt. The set B = {x, x2, . . . , xd−1} form a basis of H ′

and its ∇ which is {dx, xdx, . . . xd−2dx} (up to multiplication by some constants)
form a basis of H ′′. The first fact is easy to see. We write f = adx

d + f0 and for a
polynomial p(x) ∈ C[x] whenever we find some xd we replace it with f−f0

ad
and at

the end we get p(x) = p0(f) +
∑d−1

i=1 pi(f)xi or equivalently p =
∑d−1

i=1 pi(t)xi in
H ′. There is no C[t]-linear relation between the elements of B because B restricted
to each regular fiber is of dimension d. We write

p(x)dx =
d−2∑
i=0

qi(f)xidx+ qd−1(f)xd−1dx

= (
d−2∑
i=0

qi(f)xidx− qd−1(f)f ′0
d.ad

dx) +
qd−1(f)f ′

d.ad
dx

and this proves the statement for H ′′.
Proposition 4.1 can be stated in the case n = 0 as follows: The only case in

which dAβ − αi = 0 is when n = 0 and P = 1. In the case n = 0 for P 6= 1 we
have

∂g

∂xi
.Pdx =

d

d.Aβ − αi

∂P

∂xi
gdx

and if P = 1 then ∂g
∂xi

.Pdx is zero in H ′′. The argument in (4.4) and (4.5) can be
done also in the case n = 0. In this case if

η =
∑
β∈I

pβ(g)ηβ + p(g), p, pβ ∈ C[t], (9.1)
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where each piece in the right hand side of the above equality has degree less than
deg(η) then

dη =
∑
β∈I

(pβ(g)Aβ + p′β(g)g)ωβ + p′(g)dg. (9.2)

In the case n = 0, we have only the set I0
0 = {Aβ + 1

d ≤ 1 ≤ Aβ + dβ

d } and
this is equal to I. We have dβ < d.(n + 2 − Aβ) = 2d − β − 1 = and Aβ = β+1

d .
We conclude that

d ≤ dβ + β + 1 < 2d.
Now the infinitesimal Hilbert problem (see [6] Problem 7) can be stated in the
case n = 0. Can one give an effective solution to this problem in this case? The
positive answer to this question may give light into the the problem in the case
n = 1. It is worked out in [4].

10. Examples

All the algorithms explained in this article are implemented in a library of Sin-
gular. It can be downloaded from the authors homepage. The procedure okbase
makes a permutation on the output of kbase and gives us the set xI with deg(xβ)
decreasing. The algorithms in §4 after (4.2) are implemented in the procedures
linear1, linear2. The procedures linear and linearp are for the algorithms in
§5. Based on the observations in §9, these proceedures work also for the case n = 0.
The procedure nabla uses the formulas (6.1) and (6.2) and computes∇ and its iter-
ations. The procedure nablamat calculates the matrix 1

S(t) [pβ,β′ ] in (6.3). The cal-
culation of the polynomial S in §6 is implemented in the procedure S. Using Propo-
sition 7.1, the procedure muldF calculates AF . The algorithm for dβ ’s is imple-
mented in the procedure dbeta. The procedure changebase calculates the matrix
of the basis of the Brieskorn module H ′′

C̃
obtained in Theorem 3.3 in the canonical

basis ωβ , β ∈ I. The procedure Imk gives us xβ , β ∈ Ik
m, m = n, n+1, k = 0, 1, . . . n

with the order In
n , I

n−1
n , . . . , I0

n, I
n
n+1, I

n−1
n+1 , . . . , I

1
n+1. The procedure PFeq calcu-

lates pi’s in (8.1).
Theorem 3.3 does not give a basis of the Brieskorn module compatible with

the mixed Hodge structure. In the following examples we obtain such bases for
some examples of f by modifying the one given in §3.3 (we do not have a general
method for every f).

For all the examples below we download the
author’s library and matrix.lib.

10.1. Examples, n = 0

Example. f = x5 − 5x, P = {εi | i = 0, 1, 2, 3},

C = {−4εi | i = 0, 1, 2, 3}, where ε = e
2πi
d−1 is the

d-th root of unity.

> ring r0=(0,t),x, dp;

> int d=5; poly f=x^d-d*x;

> poly Sf=S(f); Sf;

(t4-256)

> list l=nablamat(f,Sf);

> l[1]; print(l[2]);

1/(5t4-1280)

(-t3), 128, (-48t),(16t2),

(4t2), (-2t3),192, (-64t),

(-16t),(8t2), (-3t3),256,

64, (-32t),(12t2),(-4t3)

//This is the matrix of nabla in the canonical

//basis x^3,x^2,x^1,1.

>PFeq(f,1);

_[1,1]=6144

_[1,2]=(35625t)

_[1,3]=(33375t2)
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_[1,4]=(8750t3)

_[1,5]=(625t4-160000)

The residues of dx
f−t

at its poles satisfy the Picard-

Fuchs equation

6144 + 35625t
∂

∂t
+ 33375t

2 ∂2

∂t2
+ 8750t

3 ∂3

∂t3
+

(625t
4 − 160000)

∂4

∂t4
= 0.

10.2. Examples, n = 1

For the examples below we define

ring r1=(0,t), (x,y), dp;

Example. f = xy(x + y − 1).

> poly f= x2y+xy2-xy ;

> poly g=lasthomo(f); g;

x2y+xy2

> okbase(std(jacob(g)));

_[1]=y2

_[2]=y

_[3]=x

_[4]=1

> print(muldF(f-par(1)));

(-3t+1/18)*x2,-1/18*x3, 0, 0,

1/6*x, (-3t-1/6)*x2,0, 0,

1/6*x, -1/6*x2, (-3t)*x2,0,

1/2, -1/2*x, 0, (-3t)*x2

> poly Sf=S(f); Sf;

(t4+1/27t3)

//We can take Sf=t*(t+1/27);

> list l1=nablamat(f,Sf);

> l1[1]; " "; print(l1[2]);

1/(54t2+2t)

(18t+1),(-18t-1),0,(-2t),

1, -1, 0,(-6t),

1, -1, 0,(-6t),

3, -3, 0,(-18t)

//--------------

> dbeta(f,par(1));

0,2,2,4

> Imk(f,par(1));

[1]:

[1]:

[1]:

1

[2]:

[1]:

1

[2]:

[1]:

[1]:

x

[2]:

y

> list l3=changebase(f,Sf,par(1));

> print(l3[1]); " "; print(l3[2]); det(l3[2]);

1,3/(54t2+2t),1,1

0,0, 0,1,

1,-1,0,(-6t),

0,0, 1,0,

0,1, 0,0

1

//--------------

> dbeta(f);

2,2,2,2

> Imk(f);

[1]:

[1]:

[1]:

1

[2]:

[1]:

y2

[2]:

[1]:

[1]:

x

[2]:

y

> list l2=changebase(f,Sf);

> print(l2[1]); " "; print(l2[2]); det(l2[2]);

1,1/(54t2+2t),1,1

0, 0, 0,1,

(18t+1),(-18t-1),0,(-2t),

0, 0, 1,0,

0, 1, 0,0

(18t+1)

//The obtained basis does not work for the

//fiber c=-1/18.

//--------------

> PFeq(f,1, Sf);

_[1,1]=6

_[1,2]=(54t+1)

_[1,3]=(27t2+t)

_[1,4]=0

_[1,5]=0

We get the following basis of H′′ compatible with
mixed Hodge structure.

f = xy(x + y − 1)

Gr1F GrW
1 H′′ [1]

Gr0F GrW
1 H′′ [y2] − [y] − 6t[1]

Gr1F GrW
2 H′′ [x], [y]

The integrals I =
R
δt

dx∧dy
f−t

satisfy the Picard-Fuchs

equation

6 + (54t + 1)
∂I

∂t
+ (27t

2
+ t)

∂2I

∂t2
= 0

Example. f = 2(x3 + y3) − 3(x2 + y2), P =
{(0, 0), (0, 1), (1, 0), (1, 1)}, C = {0,−1,−1,−2},

> poly f= 2*x3+2*y3-3*x2-3*y2 ;

> poly g=lasthomo(f); g;

2*x3+2*y3

> okbase(std(jacob(g)));

_[1]=xy

_[2]=y

_[3]=x

_[4]=1

>S(f);

(t4+4t3+5t2+2t)

//We can put

>poly Sf=t*(t+1)*(t+2);

> list l2=changebase(f,Sf);

> print(l2[1]); " "; print(l2[2]); det(l2[2]);

1,-1/(6t+12),1,1

0, 0,0,1,

-2,1,1,0,

0, 0,1,0,

0, 1,0,0

-2

f = 2(x3 + y3) − 3(x2 + y2)

Gr1F GrW
1 H′′ [1]

Gr0F GrW
1 H′′ [2xy − x − y]

Gr1F GrW
2 H′′ [x], [y]

Example. f = x4 + y4 − x.
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> poly f= x4+y4-x ;

> poly g=lasthomo(f);

> okbase(std(jacob(g)));

_[1]=x2y2

_[2]=xy2

_[3]=x2y

_[4]=y2

_[5]=xy

_[6]=x2

_[7]=y

_[8]=x

_[9]=1

> poly Sf=S(f); Sf;

(t9+81/256t6+2187/65536t3+19683/16777216)

//We can take

>Sf=t^3+27/256;

> dbeta(f,par(1));

2,2,2,5,2,2,5,2,5

> Imk(f,par(1));

[1]:

[1]:

[1]:

1

[2]:

x

[3]:

y

[2]:

[1]:

y

[2]:

y2

[3]:

x2y2

[2]:

[1]:

[1]:

x2

[2]:

xy

[3]:

y2

> list l3=changebase(f,Sf,par(1));

> print(l3[1]); " "; print(l3[2]); det(l3[2]);

1,1,1,4/(256t3+27),24/(256t3+27),1/(256t3+27),1,1,1

0, 0, 0,0,0,0,0, 0,1,

0, 0, 0,0,0,0,0, 1,0,

0, 0, 0,0,0,0,1, 0,0,

0, 0, 9,0,0,0,(-16t2),0,0,

3, (-2t),0,0,0,0,0, 0,0,

(128t2),9, 0,0,0,0,0, 0,0,

0, 0, 0,0,0,1,0, 0,0,

0, 0, 0,0,1,0,0, 0,0,

0, 0, 0,1,0,0,0, 0,0

(2304t3+243) // 9*256*Sf;

> matrix A=l3[2];

> A[6,1..ncols(A)]=

((-128*t2)/3)*submat(A,5,1..ncols(A))+

submat(A,6,1..ncols(A));

> A[5,1..ncols(A)]=

2*t*submat(A,6,1..ncols(A))+submat(A,5,1..ncols(A));

print(A);

0,0,0,0,0,0,0, 0,1,

0,0,0,0,0,0,0, 1,0,

0,0,0,0,0,0,1, 0,0,

0,0,9,0,0,0,(-16t2),0,0,

1,0,0,0,0,0,0, 0,0,

0,1,0,0,0,0,0, 0,0,

0,0,0,0,0,1,0, 0,0,

0,0,0,0,1,0,0, 0,0,

0,0,0,1,0,0,0, 0,0

We obtain the following table

f = x4 + y4 − x

Gr1F GrW
1 H′′ [1], [x], [y]

Gr0F GrW
1 H′′ 9[x2y] − 16t2[y], [x2y2], [xy2]

Gr1F GrW
2 H′′ [x2], [xy], [y2]

We make the following remark

> reduce(9*x2*y-16*(f^2)*y, std(jacob(f)));

0
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[2] P. Deligne, Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. 40 (1971),
5–57.

[3] L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case. Invent. Math.
143(3) (2001), 449–497.

[4] L. Gavrilov, H. Movasati. The infinitesimal 16th Hilbert problem in dimension zero.
Preprint 2005 (math.CA/0507061).

[5] P. A. Griffiths. Infinitesimal variations of Hodge structure. III. Determinantal vari-
eties and the infinitesimal invariant of normal functions. Compositio Math. 50(2-3)
(1983), 267–324.

[6] Yu. Ilyashenko. Centennial history of Hilbert’s 16th problem. Bull. Amer. Math. Soc.
(N.S.), 39(3) (2002), 301–354.



16 H. Movasati

[7] V.S. Kulikov, P. F. Kurchanov. Complex algebraic varieties: periods of integrals and
Hodge structures. Algebraic geometry, III, 1–217, 263–270, Encyclopaedia Math. Sci.,
36, Springer, Berlin, 1998.

[8] H. Movasati. Center conditions: rigidity of logarithmic differential equations. J. Dif-
ferential Equations, 197(1) (2004), 197–217.

[9] H. Movasati. Mixed Hodge structure of affine hypersurfaces. Preprint, (2005).

[10] H. Movasati. Abelian integrals in holomorphic foliations. Revista Matemática
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