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Abstract

The Ramanujan relations between Eisenstein series can be interpreted as an ordi-
nary differential equation in a parameter space of a family of elliptic curves. Such an
ordinary differential equation is inverse to the Gauss-Manin connection of the corre-
sponding period map constructed by elliptic integrals of first and second kind. In this
article we consider a slight modification of elliptic integrals by allowing non-algebraic
integrands and we get in a natural way generalizations of Ramanujan relations between
Eisenstein series.

1 Introduction

In the inverse of the period map of the classical two parameter Weierstrass family of
elliptic curves, we get the Eisenstein series of weight 4 and 6. In a more general context, the
Schwarz triangle function with triangular parameters 1

p ,
1
q ,

1
r , p, q, r ∈ N, is the inverse of an

automorphic function for the triangle group with signature 〈p, q, r〉. In all these examples
the period maps of differential forms of the first kind are considered. If we consider periods
of differential forms of the second kind we get differential automorphic functions which are
solutions of certain ordinary differential equations (see [13]). In this way, it is not necessary
to define (differential) automorphic functions by functional equations which they satisfy
with respect to a Kleinian group, but as functions which are solutions of certain ordinary
differential equations. To explain better this idea, let us state the main result of this
paper:

Theorem. Consider the multi-valued function

(1) pm : C3\{(t1, t2, t3) ∈ C3 | 27t23 − 4t32 = 0} → SL(2,C)

t 7→

( ∫
δ1

dx
y

∫
δ1

xdx
y

−
∫
δ2

dx
y −

∫
δ2

xdx
y

)
,

where

(2) y = γ
1
2 (27t23 − 4t32)

1
2
( 1
2
−a)((x− t1)3 − t2(x− t1)− t3)a, a 6∈ N ∪ {0}

and δ1 and δ2 are two straight paths in the x-plane connecting a zero of y (as a function
in x) to the remaining zeros or they are Pochhammer cycles as defined in §3. Here γ is a
complex number depending only on a. It is taken in such a way that the image of pm is
in SL(2,C).
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1. For a 6= 2
3 the map pm is a local biholomorphism and its local inverse restricted

to

(
z −1
1 0

)
, namely (g1,a(z), g2,a(z), g3,a(z)), where z is in some small open set

U in the image of the Schwarz map t 7→ −
∫
δ1

dx
y∫

δ2

dx
y

, satisfies the system of ordinary

differential equations:

(3)


ṫ1 = t21 + 3a−1

9a−6 t2
ṫ2 = 4t1t2 + 3

3a−2 t3
ṫ3 = 6t1t3 + 2

9a−6 t
2
2

,

where · is the derivation with respect to z.

2. The integrals
∫
δ
xdx
y , where δ is a path connecting two roots of y, are constant along

the solutions of (3).

3. The functions gk,a, k = 1, 2, 3 with respect to the group

(4) Γ := 〈M1,M2〉 ⊂ SL(2,C),

M1 :=
i

eπia

(
−e2πia 0

1 1

)
,M2 :=

i

eπia

(
1 e2πia

0 −e2πia
)
,

have the following automorphic properties: for every A =

(
∗ ∗
c d

)
∈ Γ and z ∈ U

such that cz + d 6= 0 there exists an analytic continuation g̃k,a of gk,a, k = 1, 2, 3
along a path which connects z to Az such that

(5) (cz + d)−2kg̃k,a(Az) = gk,a(z), k = 2, 3,

(6) (cz + d)−2g̃1,a(Az) = g1,a(z) + c(cz + d)−1.

Note that for the third item in the above theorem we do not need that the action of Γ
to be properly discontinuous. One can show that

(7) gk, 1
2

= ak

(
1 + (−1)k

4k

Bk

∑
n≥1

σ2k−1(n)e2πizn
)
, k = 1, 2, 3, z ∈ H,

is the Eisenstein series of weight 2k, where H is the upper half plane, Bk is the k-th
Bernoulli number (B1 = 1

6 , B2 = 1
30 , B3 = 1

42 , . . .), σi(n) :=
∑

d|n d
i and

(8) (a1, a2, a3) = (
2πi

12
, 3(

2πi

12
)2, 2(

2πi

12
)3)

(see [13]). In the case a = 1
2 the ordinary differential equations (3) are known as the

Ramanujan relations between gk,a, k = 1, 2, 3 because he noticed that in this case the
series (7) satisfy the differential equation (3) (see for instance [11]). I do not know any
explicit expressions like (7) for an arbitrary a ∈ C.

The main result of the present text is in fact formulated for the family (9) which is a gen-
eralization of (2) by setting a = b = c. It has the advantage that it contains three exponent
parameters corresponding to the three parameters of the Gauss hypergeometric function
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and Halphen’s differential equation. The present text arose from the Ramanujan’s case
a = 1

2 . This very particular case leads to the theory of modular and quasi-modular forms
with fruitful applications in number theory and mathematical physics, see for instance
[10, 14] and the references within there. We are looking for the possible generalizations
of such applications. These are the main reasons for announcing the main results of the
present text for the family (2) and also choosing the title of the article. That is also why
we have performed the calculations related to (2) separately, even so that they follow,
without computer-assisted calculations, from the corresponding calculations for (9) .

The text is organized in the following way: In §2 we consider a more general family
of transcendental curves. In §3 and §4 we fix up the paths of integration and calculate
the monodromies. In §5 we calculate the derivation of the period map. The calculation
is similar to the calculation of Gauss-Manin connections in the algebraic context. In §6
we calculate the determinant of the period map and according to this calculation in §7
we redefine the period map. In §8 we take the inverse of the period map and obtain
Halphen’s differential equation and Ramanujan type relations. §9 is devoted to the action
of an algebraic group. In §10 we discuss the automorphic properties of the functions which
appear in the inverse of the period map. Finally, §11 is dedicated to Lie theoretic aspects
of Ramanujan and Halphen differential equations.

2 Families of transcendental curves

For a, b, c ∈ C fixed, we consider the following family of transcendental curves:

(9) Et,a,b,c = Et : y = f(x),

f(x) := t
1
2
0 (x− t1)a(x− t2)b(x− t3)c.

Here t = (t0, t1, t2, t3) ∈ C4 is a parameter. The discriminant of Et is defined to be

∆ = ∆(t) := t0(t1 − t2)2(t2 − t3)2(t3 − t1)2

We work with regular parameters, i.e.

t ∈ T := {t ∈ C4 | ∆(t) 6= 0}.

The parameter t0 is introduced to simplify the calculations related to the Gauss-Manin
connection of the family (see §5). If a, b and c are rational numbers then the curves Et
are algebraic. In this case one can use algebro-geometric methods in order to study the
periods of Et, see for instance [16]. In general, Et is a solution of the following logarithmic
differential equation

dy

y
=

adx

x− t1
+

bdx

x− t2
+

cdx

x− t3
.

In order to prove our main theorem we also consider the family

(10) Ẽt : y = f(x), f(x) = t̃
1
2
0 ((x− t̃1)3 − t̃2(x− t̃1)− t̃3)a.

In the case a = b = c the curves (9) and (10) are the same with different parameter spaces.
The map between the parameter spaces is given by:

t̃0 = t0, t̃1 =
t1 + t2 + t3

3
, t̃2 = (t̃1 − t1)(t̃1 − t2) + (t̃1 − t2)(t̃1 − t3) + (t̃1 − t1)(t̃1 − t3),
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Figure 1: Pochhammer cycle

t̃3 = (t̃1 − t1)(t̃1 − t2)(t̃1 − t3).

It is a degree 6 map. The inverse image of a point t̃ contains all possible permutations of
the triple (t1, t2, t3). For simplicity we will also use t instead of t̃; being clear which family
of curves we are talking about. Throughout the text we will mainly work with the family
(9). The similar discussion for (10) follows immediately. The main reason for considering
the family (10) is that we first obtained the result of the present paper for such a family
generalizing the classical case a = 1

2 . Another reason is that we are looking for possible
number theoretic applications similar to those for Eisenstein series in the case a = 1

2 , see
[19].

3 Paths of integration and Pochhammer cycles

Let us consider the family (9). We distinguish three, not necessarily closed, paths in Et.
In the x-plane let δ̃i, i = 1, 2, 3 be the straight path connecting ti+1 to ti−1, i = 1, 2, 3 (by
definition t4 := t1 and t0 := t3). If t1, t2, t3 are collinear then we may take curved paths
such that we have a triangle with edges δ̃i, i = 1, 2, 3 and with vertices ti, i = 1, 2, 3 (see
Figure 3). There are many paths in Et which are mapped to δ̃i under the projection on the
x-plane. We choose one of them and call it δi. For the case in which Re(a),Re(b),Re(c) < 0
the paths δi’s and δ̃i’s are depicted in Figure 2. We can choose δi’s in such a way that
δ1 + δ2 + δ3 is the limit of a closed and homotopic-to-zero path in Et. Now, we have the
convergent linear integral

(11)

∫
δ

p(x)dx

y
=

∫
δ̃

p(x)dx

f(x)
, p ∈ C[x],

for

(12) Re(a),Re(b),Re(c) < 1,

where δ is one of the paths explained above. Our hypothesis on δi’s implies that

3∑
i=1

∫
δi

p(x)dx

y
= 0.

By a linear change of the variable x such integrals can be written in terms of the Gauss
hypergeometric function (see [9]).

The linear integrals (11) have the disadvantage that they converge under the assump-
tion (12). Using Pochhammer cycles we do not have the convergence problem and we can
discard (12). For simplicity we explain it for the pairs (t1, t2). The Pochhammer cycle
associated to the points t1, t2 ∈ C and the path δ̃3 is the commutator

α̃3 = [γ1, γ2] = γ−11 · γ
−1
2 · γ1 · γ2,
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Figure 2: Paths of integration

where γ1 is a loop along δ̃3 starting and ending at some point in the middle of δ̃3. It
encircles t1 once counterclockwise. The path γ2 is a similar loop with respect to t2 (see
Figure 1). It is easy to see that the cycle α̃3 lifts up to a closed path α3 in Et and if
a, b 6∈ Z, Re(a),Re(b) < 1 then

(13)

∫
α3

p(x)dx

y
= (1− e−2πia)(1− e−2πib)

∫
δ3

p(x)dx

f(x)
dx.

(see [9], Proposition 3.3.7).
For a, b, c ∈ Z, integrals over Pochhammer cycles are identically zero. In summary, we

only need to assume the hypothesis a, b, c 6∈ N in order to work with integrals; we may
always use integrals over Pochhammer cycles except for a, b, c ∈ {0,−1,−2, . . .} which in
this case we use linear integrals. Notice also that in order to have∫

δ̃i

d

(
p(x)

f(x)

)
= 0, ∀p ∈ C[x], i = 1, 2, 3

we have to assume that Re(a),Re(b),Re(c) < 0. But this is not necessary if we work with
Pochhammer cycles.

4 The period map and the monodromy group

Let us consider the family (9). For a fixed a ∈ T , let (T, a) be a small neighborhood of a
in T . The local period map is defined by:

(14) pm : (T, a)→ Mat(2,C), t 7→

(∫
δ1

dx
y

∫
δ1

xdx
y∫

δ2
dx
y

∫
δ2

xdx
y

)
,

where Mat(2,C) is the set of 2 by 2 matrices and δ1, δ2 are as in the previous section.
Later in §6 we will see that its image is an open subset of GL(2,C). It is only defined in
a neighborhood of a. However, it can be extended along any path in T with the starting
point a. In this way we can regard pm as a multi-valued function defined in T . Let P be
the union of images of extensions of pm:

P := {x ∈ Mat(2,C) | ∃ a path γ : [0, 1]→ T with γ(0) = a, pm(γ(1)) = x},
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where pm(γ(1)) is obtained by the analytic continuation of pm along γ. It is called the
period domain.

Remark 1. Using an algebraic group action on the space T (see §9), the study of P is
reduced to the study of the image of the classical Schwarz map of the Gauss hypergeometric
function (set t0 = 1, t1 = 0, t2 = 1, t3 = z). For the latter the reader is referred to [9].
For arbitrary a, b, c, it is hard to describe P or the image of Schwarz map precisely. Using
computer graphics it is possible to observe how strange its boundary can be (see for
instance [17]). For the elliptic curve case a = b = c = 1

2 , P is the set of of matrices

x =

(
x1 x2
x3 x4

)
∈ GL(2,C) such that x1 6= 0, x3 6= 0 and Im(x1x3 ) > 0 (see for instance

[13]).

In order to study the analytic extensions of pm, we have to calculate the monodromy
group Γ. By definition Γ is the set of all matrices A ∈ GL(2,C) such that Apm is an
analytic continuation of pm along some closed path starting and ending at the point
a ∈ T .

Theorem 1. The monodromy group Γ for the family (9) is generated by the matrices

(15) M1 =

(
BC 0

1−B 1

)
,M2 =

(
1 C − CA
0 CA

)
, M3 =

(
A A− 1

A(B − 1) A(B − 1) + 1

)
,

where
A = e2πia, B = e2πib, C = e2πic.

Proof. In what follows we use the following convention: Two paths in Et are equal if the
integration of any differential form p(x)dx

y , p ∈ C[x] over them is equal. For instance, using
this convention we have

(16) δ1 + δ2 + δ3 = 0.

We also work with the C-vector spaces generated by the paths in Et. We fix t2 and t3
and let t1 turn around t2 counterclockwise. We obtain three new paths h3(δ1), h3(δ2) and
h3(δ3) in Et such that h3(δ1) +h3(δ2) +h3(δ3) = 0 (this follows from (16)). Notice that in
the x-plane (resp. in Et) the triangle formed by h3(δ̃i)’s (resp. h3(δi)’s) does not intersect
itself. We have

h3(δ2) = δ2 + (A−AB)δ3, h3(δ1) = −δ2 −Aδ3 = δ1 + (1−A)δ3, h3(δ3) = ABδ3

(see Figure 3, A). We call h3 the monodromy around the hyperplane t1 = t2. These
formulas are compatible with the Picard-Lefschetz formula in the case a = b = c = 1

2 . In
a similar way

h1(δ3) = δ3 +Bδ1 −BCδ1, h1(δ2) = −δ3 −Bδ1, h1(δ1) = BCδ1

and
h2(δ1) = δ1 + Cδ2 − CAδ2, h2(δ3) = −δ1 − Cδ2, h2(δ2) = CAδ2.

Therefore, the monodromies with respect to the basis (δ1, δ2) have the form (15).
When using Pochhammer cycles, these are deformed under the monodromy hi in a

similar way. However, note that due to the equalities of type (13), the monodromy group
written in the Pochhammer cycles (α1, α2) is conjugated to Γ by a diagonal matrix.
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Figure 3: Monodromy

Remark 2. Notice that

M1M2M3 =

(
ABC 0

0 ABC

)
,

and that for n ∈ N

hn3 (δ2) = δ2+(A−AB)
(AB)n − 1

AB − 1
δ3, h

n
3 (δ1) = δ1+(1−A)

(AB)n − 1

AB − 1
δ3, h

n
3 (δ3) = (AB)nδ3.

Since the choice of δ1, δ2 is not canonical, the symmetry between A, B and C cannot be
seen in the 2 × 2 matrices (15). It can be seen if we write them as 3 × 3 matrices using
the three elements δ1, δ2, δ3.

For a = b = c = 1
2 we have

M3 =

(
−1 −2
2 3

)
, M1 =

(
1 0
2 1

)
,M2 =

(
1 −2
0 1

)
and it is easy to see that Γ = Γ(2) := {A ∈ SL(2,Z) | A ≡2 Id}.

Theorem 2. The monodromy group Γ for the family (10) is generated by the matrices

(17) M1 =

(
−A 0
1 1

)
, M2 =

(
1 A
0 −A

)
, M3 =

(
0 −1
−A 1−A

)
,

where A = e2πia.

Proof. For the family (10) the monodromy group Γ is obtained by the permutation of the
roots of f . The element h3 of Γ obtained by the permutation (t1, t2, t3) 7→ (t2, t1, t3) is
given by:

h3(δ1) = −δ2 = δ1 + δ2, h3(δ2) = δ2 +Aδ3, h3(δ3) = −Aδ3
(see Figure 3 B). For the other monodromies in a similar way we have:

h1(δ2) = −δ3, h1(δ3) = δ3 +Aδ1, h(δ1) = −Aδ1,

h2(δ3) = −δ1, h2(δ1) = δ1 +Aδ2, h2(δ2) = −Aδ2.

Therefore, in the basis (δ1, δ2), the monodromies have the form (17).
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Notice that
M−13 M1M3 = M2.

For a = 1
2 we have

M3 =

(
0 −1
1 2

)
, M1 =

(
1 0
1 1

)
, M2 =

(
1 −1
0 1

)

and so Γ = SL(2,Z). Note that T := M−12 =

(
1 1
0 1

)
and S := M2M1M2 =

(
0 −1
1 0

)
are

the classical generators of SL(2,Z) with S2 = (ST )3 = −I and no other relations between
S and TS in SL(2,Z)/(±I).

Remark 3. The group Γ acts on P from the left by usual multiplication of matrices
and it is a hard problem to classify parameters a, b, c for which this action is properly
discontinuous in some open subset of P. Using the algebraic group action in §9, this
problem is equivalent to the following: Let Γ act on C ∪ {∞} by the classical Möbius
transformation (

a b
c d

)
, z 7→ az + b

cz + d
.

For which parameters a, b, c, the group Γ is Kleinian, i.e it acts properly discontinuously
in some open subset of C ∪ {∞}? There is a necessary condition for such groups called
Jorgensen’s inequality (see [2]) but it is not sufficient1. For ν0 := 1 − a − c = 1

p , ν1 :=

1 − b − c = 1
q , ν∞ := 1 − a − b = 1

r , where p, q, r are positive integers, the group Γ is
the triangular group of type 〈p, q, r〉 and it is Kleinian (see [2, 12, 16]). If (ν0, ν1, ν∞) is
sufficiently near to a point with pure imaginary coordinates, then Γ is a genus two Schottky
group and hence it is Kleinian (see [15] and [18]). In the elliptic curve case a = b = c = 1

2
the group Γ is SL(2,Z) for the family (2) and it is Γ(2) for the family (9). Both these
groups are Kleinian.

5 A kind of Gauss-Manin connection

The Gauss-Manin connection is the art of derivation of differential forms on families of
algebraic varieties and then simplifying the result. Despite the fact that the varieties
considered in this article are not algebraic, the process of derivation and simplification is
similar to the algebraic case (see for instance [13]). In what follows, derivation with respect
to x is denoted by ′. We have used the word connection because the linear differential
system (18) that we calculate can be considered as a connection on the trivial bundle on
the t space. In the Ramanujan’s case a = b = c = 1

2 this bundle is the first cohomology
bundle of the corresponding family of elliptic curves and its sections with images in the
cohomology with integer coefficients generate the set of flat sections.

Let us consider the family (9). First of all we have to simplify the integral (11). More
precisely we want to reduce it to the integrals with p = 1, x. Let R = C(t) and

g = (x− t1)(x− t2)(x− t3).
1I would like to thank Katsuhiko Matsuzaki who informed me about the mentioned fact.
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Proposition 1. For all p ∈ R[x], there is p̃ ∈ R[x], deg(p̃) ≤ 1 such that∫
δ

pdx

y
=

∫
δ

p̃dx

y
,

where δ is any closed path in Et or a path which connects two points of {t1, t2, t3} and
does not cross it elsewhere.

Proof. For n > 1 modulo exact forms we have

0 = d

(
xn−2g

f

)
=

(
−xn−2g f

′

f
+ (xn−2g)′

)
dx

f
.

Notice that g f
′

f is a polynomial in x. We set pn = bnx
n + rn(x), bn ∈ C, deg(rn) ≤ n− 1

the polynomial in the parenthesis. We have bn 6= 0 and so

xn
dx

f
=
−1

bn
rn−1

dx

f

modulo exact forms. By various applications of the above equality in
∫
δ
pdx
y we finally get

the desired equality.

Let us now take the derivatives of integrals:

Proposition 2. Let t be one of the parameters ti, i = 0, 1, 2, 3. We have

∂

∂t

∫
δ̃

pdx

f
=

∫
δ̃
∇ ∂

∂t

pdx

f
, p ∈ C[x],

where

∇ ∂
∂t

pdx

f
:=

1

∆

((
a1
−∂f
∂t g

f
p

)′
+ a2

−∂f
∂t g

f
p+ ∆

∂p

∂t

)
dx

f
.

and δ is any closed path in Et. Here a1 and a2 are two polynomials in R[x] such that

g
f ′

f
a1 + ga2 = ∆.

Proof. We have
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∂

∂t

∫
δ̃

pdx

f
=

∫
δ̃

(
−∂f
∂t p

f
+
∂p

∂t

)
dx

f

=

∫
δ̃

 − ∂f∂t gpf

g
+
∂p

∂t

 dx

f

=

∫
δ̃

(
p̃

g
+
∂p

∂t

)
dx

f
, p̃ =

−∂f
∂t g

f
p

=
1

∆

∫
δ̃


(
g f
′

f a1 + ga2

)
p̃

g
+ ∆

∂p

∂t

 dx

f

=
1

∆

∫
δ̃

(
df

f2
a1p̃+ a2p̃

dx

f
+ ∆

∂p

∂t

dx

f

)
=

1

∆

∫
δ̃

(
1

f
d(a1p̃) + a2p̃

dx

f
+ ∆

∂p

∂t

dx

f

)
=

1

∆

∫
δ̃

(
(a1p̃)

′ + a2p̃+ ∆
∂p

∂t

)
dx

f
.

For the implementation of the algorithms of this section in Singular [4] see the
author’s web page. For the family (9) we have used these algorithms and we have obtained:

(18) ∇ ∂
∂t1

ω = A ∂
∂t1

ω

A ∂
∂t1

=
1

(t1 − t2)(t1 − t3)

(
−at1 + (a+ c− 1)t2 + (a+ b− 1)t3 −a− b− c+ 2
at2t3 + (b− 1)t1t3 + (c− 1)t1t2 (−a− b− c+ 2)t1

)
,

where

ω =

(
dx
y
xdx
y

)
.

The derivation with respect to t2 (resp t3) is obtained by permutation of t1 with t2 and a
with b (resp. t1 with t3 and a with c). It is also easy to check by hand that

∇ ∂
∂t0

ω = A ∂
∂t0

ω, A ∂
∂t0

=
1

t0

(
−1

2 0
0 −1

2

)
Let R = C(t0, t1, t2, t3) and V be the R-vector space generated by the differential forms
xidx
y , i = 0, 1. Let also Ω1

R be the set of rational differential 1-forms in the variables
t0, t1, t2 and t3. We have the connection

∇ : V → ΩR ⊗R V

on V which is defined uniquely by its image on the basis xidx
y , i = 0, 1:

∇ω =
3∑
i=0

dti ⊗∇ ∂
∂ti

ω.
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For a vector field X =
∑3

i=0Xi
∂
∂ti

we have the composition ∇X : V → Ω1
R ⊗R V → V ,

where the second map is given by ω⊗ v 7→ ω(X)v. For X = ∂
∂ti

we obtain the same maps
as before.

For the family (10) we use g = (x− t1)3 − t2(x− t1)− t3 and ∆ = t0(4t
3
2 − 27t23) and

we have the matrix of all ∇ ∂
∂ti

written in in the basis xidx
y , i = 0, 1:

A ∂
∂t0

=
1

t0

(
−1

2 0
0 −1

2

)
, A ∂

∂t1

=

(
0 0
1 0

)
,

A ∂
∂t2

=
1

(4t32 − 27t23)

(
−27at1t3 − 6at22 + 18t1t3 + 2t22 27at3 − 18t3

−27at21t3 + 9at2t3 + 18t21t3 − 2t1t
2
2 − 3t2t3) 27at1t3 − 6at22 − 18t1t3 + 4t22

)
,

A ∂
∂t3

=
1

(4t32 − 27t23)

(
18at1t2 + 27at3 − 12t1t2 − 9t3 −18at2 + 12t2

18at21t2 − 6at22 − 12t21t2 + 9t1t3 + 2t22 −18at1t2 + 27at3 + 12t1t2 − 18t3

)
.

6 Determinant of the period matrix

Let us consider the family (9). It follows from Proposition 2 that the period map satisfies
the differential equation

d(pm) = pmAtr, where A =
3∑
i=0

A ∂
∂ti

dti.

This and (18) imply that det := det(pm) satisfies

∂ det

∂t1
=

1

(t1 − t2)(t1 − t3)
((a+ c− 1)t2 + (a+ b− 1)t3 + (−2a− b− c+ 2)t1) det .

We solve this differential equation and conclude that det is of the form C(t1−t3)1−a−c(t1−
t2)

1−a−b, where C does not depend on t1. Repeating the same argument for t0, t2, t3 we
conclude that

(19) det(pm) = γ · t−10 (t1 − t3)1−a−c(t1 − t2)1−a−b(t2 − t3)1−b−c,

where γ is a constant depending only on a, b and c. For the family (10) in a similar way
we get

det(pm) = γ · t−10 (27t23 − 4t32)
1
2
−a.

7 Redefining the period map and the monodromy group

Let us consider the family (9). We have calculated the determinant of the period map in
(19). It depends on t1, t2, t3 except for the case a = b = c = 1

2 . We multiply (14) by

κ := γ−
1
2 (t1 − t3)−

1
2
(1−a−c)(t1 − t2)−

1
2
(1−a−b)(t2 − t3)−

1
2
(1−b−c).

The determinant of the new period map is equal to t−10 and the monodromy group is a
subgroup of SL(2,C). In other words, we redefine

f(x) := γ
1
2 t

1
2
0 (t1 − t3)

1
2
(1−a−c)(t1 − t2)

1
2
(1−a−b)(t2 − t3)

1
2
(1−b−c)(x− t1)a(x− t2)b(x− t3)c

11



for the family (9). We have to calculate the corresponding connection.

∇(κω) = (dκ)⊗ ω + κ ·A⊗ ω = (
dκ

κ
I2×2 +A)⊗ (κω)

and

dκ

κ
=

1

2
(a+ b− 1)

dt1 − dt2
t1 − t2

+ · · · = (
1

2
(a+ b− 1)

1

t1 − t2
+

1

2
(a+ c− 1)

1

t1 − t3
)dt1 + · · ·

After redefining the period map the monodromy matrices are changed as follows:

M3 =
−1√
AB

(
A A− 1

A(B − 1) A(B − 1) + 1

)
, M1 =

−1√
BC

(
BC 0

1−B 1

)
,M2 =

−1√
CA

(
1 C − CA
0 CA

)
Notice that

√
A = eπia, B = · · · are well-defined and Γ := 〈M1,M2,M3〉 = 〈M1,M2〉 ⊂

SL(2,C).
For the family (10) we redefine

f(x) = γ
1
2 t

1
2
0 (27t23 − 4t32)

1
2
( 1
2
−a)((x− t1)3 − t2(x− t1)− t3)a, t = (t0, t1, t2, t3) ∈ C4

which is the one in (1) with t0 = 1. For κ = (27t23 − 4t32)
− 1

2
( 1
2
−a) we have

dκ

κ
=

1

2
(a− 1

2
)
54t3dt3 − 12t22dt2

27t23 − 4t32

The new monodromy group is (4). For both families we conclude that det(pm) = t−10 .

8 The inverse of the period map

Let us consider the family (9). First we notice that the local period map pm : (T, a) →
GL(2,C) is a biholomorphism. We consider pm as a map sending the point (t0, t1, t2, t3) to

(x1, x2, x3, x4) with x =

(
x1 x2
x3 x4

)
∈ P. Its derivative at t is a 4× 4 matrix for which the

i-th column constitutes of the first and second row of x(∇ ∂
∂ti

)tr. For s := a+ b+ c− 2 6= 0

this is an invertible matrix. More precisely, we have

(dF )x = (dpm)
−1
t =

1

det(x)
·


−t0x4 t0x3

(at1t2x3 + at1t3x3 − at1x4 − at2t3x3 + bt21x3 − bt1x4 + ct21x3 − ct1x4 − t
2
1x3 − t1t2x3 − t1t3x3 + 2t1x4 + t2t3x3)/s (−t1x3 + x4)

(at22x3 − at2x4 + bt1t2x3 − bt1t3x3 + bt2t3x3 − bt2x4 + ct22x3 − ct2x4 − t1t2x3 + t1t3x3 − t22x3 − t2t3x3 + 2t2x4)/s (−t2x3 + x4)

(at23x3 − at3x4 + bt23x3 − bt3x4 − ct1t2x3 + ct1t3x3 + ct2t3x3 − ct3x4 + t1t2x3 − t1t3x3 − t2t3x3 − t23x3 + 2t3x4)/s (−t3x3 + x4)

t0x2 −t0x1
(−at1t2x1 − at1t3x1 + at1x2 + at2t3x1 − bt21x1 + bt1x2 − ct21x1 + ct1x2 + t21x1 + t1t2x1 + t1t3x1 − 2t1x2 − t2t3x1)/s (t1x1 − x2)
(−at22x1 + at2x2 − bt1t2x1 + bt1t3x1 − bt2t3x1 + bt2x2 − ct22x1 + ct2x2 + t1t2x1 − t1t3x1 + t22x1 + t2t3x1 − 2t2x2)/s (t2x1 − x2)
(−at23x1 + at3x2 − bt23x1 + bt3x2 + ct1t2x1 − ct1t3x1 − ct2t3x1 + ct3x2 − t1t2x1 + t1t3x1 + t2t3x1 + t23x1 − 2t3x2)/s (t3x1 − x2)


and

F = (F0, F1, F2, F3) : (P, x0)→ (T, a)

is the local inverse of pm, where x0 = pm(a). From det(pm) = t−10 it follows that F0(x) =

det(x)−1. Let us take a in such a way that x0 is of the form

(
z0 −1
1 0

)
. In the next

section we will see that such x0’s exist. Let gi(z) be the restriction of Fi to

(
z −1
1 0

)
,
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where z is in a neighborhood of z0 in C. Considering the equations related to the entries
(i, 1), i = 2, 3, 4, we conclude that (g1(z), g2(z), g3(z)) satisfies the ordinary differential
equation:

(20)


ṫ1 = a−1

a+b+c−2(t1t2 + t1t3 − t2t3) + b+c−1
a+b+c−2 t

2
1

ṫ2 = b−1
a+b+c−2(t2t1 + t2t3 − t1t3) + a+c−1

a+b+c−2 t
2
2

ṫ3 = c−1
a+b+c−2(t3t1 + t3t2 − t1t2) + a+b−1

a+b+c−2 t
2
3

.

This ordinary differential equation is discovered by G. Halphen [8, 7, 6] in his study of
hyper-geometric functions. In a similar way for the family (10), we get (3) and so the
first part of our theorem is proved. Let Ra be the vector field in C4 corresponding to (20)
together with ṫ0 = 0. It is a mere calculation to see that

∇Ra =

(
0 −1
0 0

)
.

This means that d(pm)(Ra) =

(
∗ 0
∗ 0

)
and so

∫
δ
xdx
y is constant along the solutions of Ra.

A similar argument works for the family (10) and so the second part of our theorem is
proved.

Remark 4. In this section we have considered the local period map and hence its inverse
F : (P, x0)→ (T, a) is a one valued holomorphic function defined in a neighborhood of x0
in P. Since the period map can be extended analytically to any region in T , its inverse
can be also extended analytically to any region in P. Since we do not know whether
P is simply connected or not and whether the extended pm is injective or not, analytic
extensions of F lead to a priori a multivalued function. The functions gi(z), i = 1, 2, 3 that
we get in the inverse of the period map are well-defined one valued holomorphic functions
in a small neighborhood of z0 and they can be also extended to regions far from z0. The
domain of definition of gi’s is exactly the image of the Schwarz map and as it is explained
at the beginning of §4, it is in general hard to describe the image of the Schwarz map. For
arbitrary a, b, c the Schwarz map may not be injective and so analytic extensions of gi’s
may lead to multi-valued functions. For the elliptic curve case a = b = c = 1

2 , the analytic
extensions of gi’s result in one valued Eisenstein series defined in the upper half plane (see
for instance [13]).

9 Action of an algebraic group

Let us consider the family (9). The algebraic group

(21) G0 :=

{(
k1 k3
0 k2

)
| k3 ∈ C, k1, k2 ∈ C∗

}
acts on GL(2,C) from the right by the usual multiplication of matrices. In Proposition
3 we will see that P is invariant under this action and so G0 acts on P (this is not clear
from the definition of P in §4). The algebraic group G0 also acts on C4 as follows:

t • g := (t0(k1k2)
−1, t1k

−1
1 k2 + k3k

−1
1 , t2k

−1
1 k2 + k3k

−1
1 , t3k

−1
1 k2 + k3k

−1
1 )

(22) t = (t0, t1, t2, t3) ∈ C4, g =

(
k1 k3
0 k2

)
∈ G0.

13



For a topological space X and x ∈ X, let (X,x) be a small neighborhood of x in X. The
relation between the two actions of G0 is given by:

Proposition 3. We have

(23) pm(t • g) = pm(t) · g, t ∈ T, g ∈ (G0, I),

where I is the identity 2× 2 matrix.

Note that the equality (23) implies that pm(t) · g is in the image of the period map
and so it is in P. If ts, s ∈ [0, 1], is a path in T and gs, s ∈ [0, 1], is a path in G0 which
connects I to g ∈ G0, then by analytic continuation of both sides of the equality (23) it
makes sense to say that (23) is true for an arbitrary g ∈ G0.

Proof. Let
α : C2 → C2, (x, y) 7→ (k−12 k1x− k3k−12 , k−12 k21y).

Then

k2k
−2
1 α−1(y − f(x)) = y − (γt0)

1
2 k2k

−2
1 (t2 − t3)

1
2 (1−b−c)(k−1

2 k1x− k3k−1
2 − t1)a · · · = y−

(γt0)
1
2 k1−a−b−c

2 ka+b+c−2
1 (k−1

2 k1)
1
2 (3−2(a+b+c))(k2k

−1
1 t2−k2k−1

1 t3)
1
2 (1−b−c)(x−(k2k

−1
1 t1 +k3k

−1
1 ))a

· · · = y−(γt0)
1
2 (k2k1)−

1
2 (k2k

−1
1 t2+k3k

−1
1 −(k2k

−1
1 t3+k3k

−1
1 ))

1
2 (1−b−c)(x−(k2k

−1
1 t1+k3k

−1
1 ))a · · ·

This implies that α induces an isomorphism

α : Et•g → Et.

Now

α−1ω =

(
k−11 0

−k3k−12 k−11 k−12

)
ω =

(
k1 0
k3 k2

)−1
ω,

where ω = (dxy ,
xdx
y )tr, and so

pm(t) = pm(t • g).g−1

which proves (23).

In a similar way for the family (10) we have the action

t • g := (t0k
−1
1 k−12 , t1k

−1
1 k2 + k3k

−1
1 , t2k

−3
1 k2, t3k

−4
1 k22)

(24) t = (t0, t1, t2, t3) ∈ C4, g =

(
k1 k3
0 k2

)
∈ G0

with the property (23).
Using the equality

x :=

(
x1 x2
x3 x4

)
=

(x1
x3
−1

1 0

)(
x3 x4
0 −x2x3+x1x4

x3

)
,

Proposition (3) and the analytic continuation argument along a path which connects the

identity matrix to

(
x3 x4
0 −x2x3+x1x4

x3

)−1
in G0, we conclude that for any element x in the

image of the period map, the matrix

(x1
x3
−1

1 0

)
is also in the image of the period map.
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10 Automorphic properties of gi’s

Let us consider the family (9). We keep the notation introduced in §8. Let

F = (F0, F1, F2, F3) : (P, x0)→ (T, a)

be the local inverse of the period map. Taking F of (23) we conclude that

(25) F (xg) = F (x) • g, g ∈ (G0, I).

We get
F0(xg) = F0(x)k−11 k−12 ,

(26) Fi(xg) = F1(x)k−11 k2 + k3k
−1
1 , i = 1, 2, 3.

The first equality also follows from F0(x) = det(x)−1.

For any A =

(
∗ ∗
c d

)
∈ Γ there is a path γ ∈ π1(T, a) such that if p̃m : (T, a) → P is

the analytic continuation of pm along γ then

p̃m(t) = Apm(t), ∀t ∈ (T, a).

This implies that the analytic continuation F̃ of F along the path δ = pm(γ), which
connects pm(a) to Apm(a), satisfies

(27) F (x) = F̃ (Ax), x ∈ (P, x0).

Using the Schwarz function

D(t) =

∫
δ1

dx
f∫

δ2
dx
f

we define the path σ = D(γ). If cz0 + d 6= 0 then Az0 is well-defined and the path σ
connects z0 to Az0 in C. We claim that there are analytic continuations g̃i of gi’s along σ
such that

(cz + d)−2g̃i(Az) = gi(z) + c(cz + d)−1, i = 1, 2, 3, A =

(
∗ ∗
c d

)
∈ Γ, z ∈ (C, z0).

We have

(1, g1(z), g2(z), g3(z)) = F

(
z −1
1 0

)
(27)
= F̃

((
a b
c d

)(
z −1
1 0

))
= F̃

((
Az −1
1 0

)(
cz + d −c

0 (cz + d)−1 det(A)

))
(25)
= F̃

((
Az −1
1 0

))
•
(
cz + d −c

0 (cz + d)−1

)
=

(
1, (cz + d)−2g̃1(Az)− c(cz + d)−1, · · ·

)
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The fourth equality makes sense in the following way: let

xs :=

(
D(γs) −1

1 0

)
∈ P, τs := x−1s pm(γs) ∈ G0, s ∈ [0, 1].

The path τs in G0 connects I to

(
cz + d −c

0 (cz + d)−1

)
. For s near enough to 0 we have

F (xsτs) = F (xs) • τs and so by analytic continuation we have it for s = 1.
In a similar way we prove the third part of our main theorem. Notice that for the

family (10), F2 and F3 satisfy:

F2(xg) = F2(x)k−31 k2, F3(xg) = F3(x)k−41 k22, ∀x ∈ P, g ∈ G0.

It is well-known, see for instance [5], that if (t1(z), t2(z), t2(z)) is a solution of Halphen’s
differential equation then

(
(cz + d)−2ti(Az)− c(cz + d)−1, i = 1, 2, 3

)
, A =

(
∗ ∗
c d

)
∈ SL(2,C)

is also a solution. Therefore, SL(2,C) acts on the solution space and the monodromy
group Γ is contained in the stablizer of the solution (g1, g2, g3). I do not know whether
the equality holds.

11 Final comments

From Lie theoretic point of view Halphen’s differential equation should not be considered
on its own but together with the attached sl(2,C) structure. For more details on this topic
the reader is referred to Guillot’s article [5]. Here we explain this briefly.

We work with the family (9) with t0 = 1. Let H be the vector field in C3 corresponding
to the Halphen’s differential equation (20) and

E =
3∑
i=1

ti
∂

∂ti
, Z =

3∑
i=1

∂

∂ti
.

The vector fields H,E and Z are linearly independent and satisfy the Lie bracket relations

[E,H] = H, [E,Z] = −Z, [Z,H] = 2E

and so the Lie algebra they generate is isomorphic to sl(2,C). The isomorphism is in fact
given by X 7→ AX , where the matrix AX is defined by ∇Xω = AXω and ω and ∇ are
defined in §5. This follows from the equalities:

AH =

(
0 −1
0 0

)
, AE =

(
−1

2 0
0 1

2

)
, AZ =

(
0 0
1 0

)
.

Let δ be a path as in §3 and X :=
∫
δ
dx
y and Y :=

∫
δ
xdx
y . Using [dX, dY ]tr = A[X,Y ]tr

and the above equalities we conclude that under the local map (t1, t2, t3) 7→ (X,Y ) the
vector fields H,E and Z are mapped respectively to

−Y ∂

∂X
, −1

2
X

∂

∂X
+

1

2
Y

∂

∂Y
, X

∂

∂Y
.
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Notice that these vector fields satisfy the same Lie bracket relations and that they generate
the standard (and unique) action of SL(2,C) on C2. From the Lie theoretic point of view,
the Halphen’s differential equation can be characterized as the vector field H that satisfies
the above Lie bracket relations with respect to the vector fields E and Z (see [5]). In
a similar way the vector field (3) is uniquely determined through the same Lie bracket
relations with respect to E :=

∑3
i=1 itidti and Z := ∂

∂t1
. In other words (3) is a natural

deformation of Ramanujan’s differential equation between Eisenstein series and not an
arbitrary one.

Finally, the differential equation (3) is as natural and as historical as Halphen’s differ-
ential equation. If we eliminate the variables t2 and t3 in (3) and set a = 1

2 −
1
n then we

get the Chazy differential equation

t′′′1 = 12t′′1t1 − 18(t′1)
2 +

1728

2(36− n2)
(t′1 − t21)2,

see [3].
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