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Abstract

In families of Painlevé VI differential equations having common algebraic solutions
we classify all the members which come from geometry, i.e. the corresponding linear
differential equations which are Picard-Fuchs associated to families of algebraic va-
rieties. In our case, we have one family with zero dimensional fibers and all others
are families of curves. We use the classification of families of elliptic curves with four
singular fibers done by Herfurtner in 1992 and generalize the results of Doran in 2001
and Ben Hamed and Gavrilov in 2005.

1 Introduction

Along the solutions of the sixth Painlevé differential equation written in the vector field
form

(1) PV Iθ :
∂K

∂µ

∂

∂λ
− ∂K

∂λ

∂

∂µ
+

∂

∂t

in C3 with coordinates (λ, µ, t), where

t(t−1)K = λ(λ−1)(λ− t)µ2− (θ2(λ−1)(λ− t)+θ3λ(λ− t)+(θ1−1)λ(λ−1))µ+κ(λ− t),

κ =
1
4
((

3∑
i=1

θi − 1)2 − θ2
4),

and θ = (θ1, θ2, θ3, θ4) is a fixed multi-parameter, the linear differential equation

(2) y′′ + p1(z)y′ + p2(z)y = 0

p1(z) :=
1− θ1

z − t
+

1− θ2

z
+

1− θ3

z − 1
− 1

z − λ
,

p2(z) :=
κ

z(z − 1)
− t(t− 1)K

z(z − 1)(z − t)
+

λ(λ− 1)µ
z(z − 1)(z − λ)

is isomonodromic, i.e. its monodromy group representation is constant. Recently, there
have been works on algebraic solutions of (1) using linear differential equations coming
from geometry, i.e. those who are Picard-Fuchs equations associated to families of vari-
eties. Linear equations (2) with finite monodromy come automatically from geometry and
this is the origin of many algebraic solutions known until now (see [3] and the references
therein). Doran in [6] took 5 deformable families of elliptic curves with non-constant j

1Math. classification: 34M55, 35Q53
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invariant along the deformation parameter and with exactly four singular fibers, which
were already classified by Herfurtner in [10], and obtained algebraic solutions for (1) (see
Table 1, column 1 and 2, row 3-6 for a = c = 1

2). In general one can obtain such alge-
braic solutions by taking pull-backs of the Gauss hypergeometric equation (see [12] and
the references therein). Ben Hamed and Gavrilov in [1] took zero dimensional families of
three points varieties, constructed directly from the Herfurtner list, and they obtained the
same algebraic solutions in the (t, λ)-space but for different parameters θ. They have also
noticed that in the parameter space of Painlevé equations (1), the points obtained by them
and Doran lie in families with algebraic solutions whose projections in the (t, λ) space is
independent of the parameter of the family. Then by a straightforward calculation they
showed that up to the Okamoto transformations corresponding to the Möbius transforma-
tion of P1, such families of Painlevé equations are given by the first and second column of
Table 1. The main result of this article is to classify the members of such families which
come from geometry (third column of Table 1).

Table 1: Algebraic solutions of families of the sixth Painlevé equation
Algebraic solution (θ1, θ2, θ3, θ4) family of algebraic varieties

{λ = t = 0} ∪ {λ = t = 1} (0, 1− c, y = x1−a(1− x)b(z − x)1+a−c, dx
y

c− a− b,
b− a)

λ = ( −a+1
a+2c−3 )b, t = b2 ( 1

2 , a− 1, zero dimensional varieties
µ = −a−2c+3

2b
1
2 ,−(a + 2c− 3))

λ = −b, t = b2 (c− 1
2 , a + c− 1, y = (4x2 − g2x + g3)c(x + g2/4)a, dx

y

µ = −a−2c+2
2b c− 1

2 , a + c− 1) g2 = 4(z̃2 + z̃)
g3 = −12b̃z̃3 − 8z̃4 + 8z̃3 − 8z̃2

b̃ = 3
4 (b + 1

b ) + 1
2 , z̃ = −1

b z

λ = −2b−1
b2 , t = 2b+1

b4+2b3 (a− 1
2 , 3(a− 1

2 ), y = (4x3 − g2x− g3)a, dx
y

a− 1
2 , a− 1

2 ) g2 = 12z̃2(z̃2 + 2b̃z̃ + 1)
µ = (−2a+3)b2(b+2)

2(b+1)2 g3 = 4z̃3(2z̃3 + 3(b̃2 + 1)z̃2 + 6b̃z̃ + 2)

b̃ = 2
3 (b + 1

b )− 1
3 , z̃ = − b2+2b

3 z

λ = b3+b2+3b+3
b3+b2−5b+3 , t = b4−6b2−8b−3

b4−6b2+8b−3 (a− 1
2 , 1

2 , y = (4x3 − g2x− g3)a, dx
y

a− 1
2 , a− 1

2 ) g2 = 3z̃3(z̃ + b̃), g3 = z̃5(z̃ + 1)
µ = (3a−2)(b−1)2(b+3)

24(b+1) b̃ = 2
3

b2−3
b2+3 + 1

3 , z̃ = − b3−3b2+3b−1
b3−3b2+3b−9z

λ = −2b2−4
b4−6b2 , t = −12b2+8

b6−6b4 (a− 1
2 , 1

3 , y = (4x3 − g2x− g3)a, dx
y

a− 1
2 , 2a− 1) g2 = 3z̃3(z̃ + 2b̃)

µ = (−3a+2)b2(b2+2)(b2−6)
12(b2−2)2 g3 = z̃4(z̃2 + 3b̃z̃ + 1)

b̃ = 1
4 (b + 2

b ), z̃ = − 2b3

3b2−2z

Theorem 1. In the columns 1 and 2 of Table 1 the corresponding linear differential
equations (2) come from geometry if and only the exponent parameters a and c in column
2 (and b in the first row) are rational numbers. The corresponding family of algebraic
varieties and differential form are listed in column 3. Moreover, the second family (together
with its algebraic solution) is Okamoto equivalent to the third family and the fourth family
is Okamoto equivalent to the fifth family. Both Okamoto transformations are equivalent
to the middle convolution of the corresponding Fuchsian systems.

In the first row of Table 1, the corresponding linear differential equation (2) is the
Gauss hypergeometric equation and the geometric interpretation is classical and it has
nice applications in the theory of the special values of Gauss hypergeometric functions
(see [14]). Note that in this case the projection of the corresponding algebraic curve in
the (λ, µ, t) space into the (λ, t) space is just the zero dimensional variety {(0, 0), (1, 1)}.
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In all other cases it is a curve in the (λ, t) space. In the literature one finds mainly the
equations of such curves. Note also that the parametrization of the algebraic solutions in
column 1 is different from the parametrization of the solutions of the vector field (1).

Let us put the parameters a and c in column 2 and rows 3, 4, 5, 6 equal to 1
2 . We obtain

families of elliptic curves y2 = 4x3 − g2(z, b)x − g3(z, b) with exactly four singular fibers
and with j-invariant depending on an extra parameter b. These are exactly four families
of the five Herfurtner families. The missing family in the Herfurtner list is the one given
by g2 = 3(z− 1)(z− b2)3, g3 = (z− 1)(z− b2)4(z + b). The corresponding family of curves
y = (4x3 − g2x − g3)ã gives us the Painlevé equation and its algebraic solution in Table
1, row 3 by setting c = 5

6 , a = ã − 1
3 . Note that in this case we find two apparently

different geometric interpretations for the same Painlevé equation. Note also that in the
mentioned five families of elliptic curves just for the family used in row 3 the polynomial
4x3 − g2(z, b)x− g3(z, b) is reducible in x. In row 2 for a and c rational numbers we have
shown that the monodromy group of the linear equation (2) is a dihedral group and so it
is finite. Also the other families are related via the middle convolution to (third order)
differential equations whose monodromy groups are finite imprimitive reflection groups
for rational parameters. In [2] Boalch started with third order differential equations to
obtain (via a construction equivalent to the middle convolution) algebraic solutions and
the parameters of the corresponding Painlevé VI differential equations. Recently Cantat
and Loray showed in [4, Prop. 5.4] that any algebraic solution of a Painlevé VI differential
equation having degree 2, 3, or 4 belongs (up to Okamoto transformation) to one of the
families in Table 1.

Using Singular (see [8]), for each linear equation (2) we have calculated the corre-
sponding Fuchsian system in the Schlesinger form and the Okamoto transformation of the
algebraic solutions in Table 1 corresponding to exchanging the role of the first and second
coordinates of the system. The details of the calculation is explained for the example in
row 3 of Table 1 and for the others the reader is referred to the home-page of the first
author.

Let us explain the content of each section. In §2 we introduce systems of linear differen-
tial equations in two and three variables. Pulling these back we get Fuchsian systems with
four singularities. In §3 we recall some well-known facts about linear differential equations
and in §4 we explain how to calculate Fuchsian systems in Schlesinger form associated to
families of curves in Table 1, column 3. Such calculations are explained for the third row
of Table 1 in §5. In §6 we recall some basic facts about the middle convolution and in §7
we show that the algebraic solution in row 2 of Table 1 can be obtained via the middle
convolution of the Fuchsian system corresponding to the algebraic solution in row 3 of
Table 1. In §8 we show that the Fuchsian system associated to the Painlevé equation in
row 2 of Table 1 has finite monodromy if a, c ∈ Q and so it comes from variation of zero
dimensional varieties. Further we point out how all the other Picard-Fuchs differential
equations are related via the middle convolution to those with finite monodromy. Finally,
in §9 we show that the middle convolution relates the results in Table 1 row 4 and row 5.

The second author gratefully acknowledges financial support by the CNPq and thanks
IMPA for its hospitality. The authors thank L. Gavrilov for useful discussions in the initial
steps of the present article.
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2 Linear systems in two variables

For a, b, c ∈ C fixed, we consider the following family of transcendent curves:

(3) E : y = f(x),

f(x) := (t1 − t3)
1
2
(1−a−c)(t1 − t2)

1
2
(1−a−b)(t2 − t3)

1
2
(1−b−c)(x− t1)a(x− t2)b(x− t3)c

Here t = (t1, t2, t3) is a parameter in

T := {t ∈ C3 | (t1 − t2)(t2 − t3)(t3 − t1) 6= 0}.

We distinguish three, not necessarily closed, paths in E. In the x-plane let δ̃i, i = 1, 2, 3,
be the straight path connecting ti+1 to ti−1, i = 1, 2, 3 (by definition t4 := t1 and t0 = t3).
There are many paths in E which are mapped to δ̃i under the projection on x. We choose
one of them and call it δi. We can make our choices so that δ1 + δ2 + δ3 is a limit of a
closed and homotopic-to-zero path in E. For instance, we can take the path δ̃i’s in such a
way that the triangle formed by them has almost zero area. Now, we have the integral

(4)
∫

δ

p(x)dx

y
=
∫

δ̃

p(x)dx

f(x)
, p ∈ C[x],

where δ is one of the paths explained above. By a linear change in the variable x such
integrals can be written in terms of the Gauss hypergeometric function (see [11]). Another
way to study the integrals (4) is by using Pochhammer cycles. For simplicity we explain
it for the pairs (t1, t2). The Pochhammer cycle associated to the points t1, t2 ∈ C and the
path δ̃3 is the commutator

α̃3 = [γ1, γ2] = γ−1
1 · γ−1

2 · γ1 · γ2,

where γ1 is a loop along δ̃3 starting and ending at some point in the middle of δ̃1 which
encircles t1 once anti-clockwise, and γ2 is a similar loop with respect to t2. It is easy to
see that the cycle α̃3 lifts up to a closed path α3 in Et and if a, b 6∈ Z then∫

α3

p(x)dx

y
= (1− e−2πia)(1− e−2πib)

∫
α̃3

p(x)
f(x)

dx.

(see [11], Proposition 3.3.7).
For a fixed a ∈ T , the period map is given by:

(5) pm : (T, a) → GL(2, C), t 7→

( ∫
δ1

dx
y

∫
δ2

dx
y∫

δ1
xdx
y

∫
δ2

xdx
y

)
,

where (T, a) means a small neighborhood of a in T . The map pm can be extended along
any path in T with the starting point a. The period map pm is a fundamental system for
the linear differential equation dY = AY in C3, where

(6) A =

1

(t1 − t2)(t1 − t3)

 
1
2 (b + c− 2)t1 + 1

2 (a + c− 1)t2 + 1
2 (a + b− 1)t3 −a− b− c + 2

at2t3 + (b− 1)t1t3 + (c− 1)t1t2 − 1
2 (b + c− 2)t1 − 1

2 (a + c− 1)t2 − 1
2 (a + b− 1)t3

!
dt1

+(· · · )dt2 + (· · · )dt3
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The matrix coefficient of dt2 (resp dt3) is obtained by permutation of t1 with t2 and a
with b (resp. t1 with t3 and a with c) in the matrix coefficient of dt1 written above. Now,
for the multi-valued function

y = (27t23 − t32)
1
2
( 1
2
−a)(4x3 − t2x− t3)a

we have the system

(7) A =
1

27t23 − t32

((
1
4 t22 −27at3 + 18t3

−9
4at2t3 + 3

4 t2t3 −1
4 t22

)
dt2+(

−9
2 t3 18at2 − 12t2

3
2at22 − 1

2 t22
9
2 t3

)
dt3

)
and for

y = (t22 + 2t3)
1
2
(1−a−c)(t22 − 16t3)

1
2
( 1
2
−c)(4x2 − t2x + t3)c(x +

1
4
t2)a

we have

(8) A =
1

(t22 − 16t3)(t22 + 2t3)((
(6at2t3 − 6ct2t3 − 1

2 t32 + 5t2t3) (−48at3 − 96ct3 + 96t3)
(12at23 − 3ct22t3 + t22t3 − 4t23) (−6at2t3 + 6ct2t3 + 1

2 t32 − 5t2t3)

)
dt2+(

(−3at22 + 3ct22 + t22 + 8t3) (24at2 + 48ct2 − 48t2)
(−6at2t3 + 3

2ct32 − 1
2 t32 + 2t2t3) (3at22 − 3ct22 − t22 − 8t3)

)
dt3

)
The calculation of the matrix A for the elliptic case a = b = c = 1

2 is classical and goes
back to Griffiths [9]. In fact the matrix A in (6) can be also calculated from the well-known
Fuchsian system for hypergeometric functions, i.e. for the case t1 = 0, t2 = 1, t3 = t. The
algorithms for calculating such a matrix are explained in [13] and the implementation of
such algorithms in a computer can be found in the first author’s home-page.

3 Review of Fuchsian differential equations

Here we collect some basic facts about Fuchsian differential equations which can all be
found in [11]. Let D = d

dz and

D2y + p1(z)Dy + p2(z)y = 0(9)

be a Fuchsian differential equation with regular singularities at t1, . . . , tm ∈ C and tm+1 =
∞. Then by [11, Prop. 4.2]

p1(z) =
m∑

i=1

ai

z − ti
, p2(z) =

m∑
i=1

bi

(z − ti)2
+

m∑
i=1

ci

(z − ti)
, ai, bi, ci ∈ C

where p2(z)
∏m

i=1(z− ti)2 is a polynomial in C[z] of degree at most 2(m−1), i.e.
∑

ci = 0.
The following table of the regular singular points t1, . . . , tm+1 and the exponents s1

i , s
2
i at

ti is called the Riemann scheme of the differential equation t1 . . . tm+1

s1
1 . . . s1

m+1

s2
1 . . . s2

m+1

 ,
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where the sum of all exponents satisfies the Fuchs relation
∑m+1

i=1

∑2
j=1 si

j = m − 1. The
exponents at the singularity ti, i = 1, . . . ,m, are the roots of s(s− 1) + ais + bi = 0 (see
[11, p. 170]) and at tm+1 the exponents satisfy

s(s + 1)− (
m∑

i=1

ai)s + (
m∑

i=1

bi + (
m∑

i=1

citi)) = 0.

The second order Fuchsian differential equation (9) can be transformed into SL-form by
substituting y by fy, where 0 6= f satisfies Df = −1

2p1(z)f. Then by [11, p. 166]

D2y = p(z)y, p(z) = −p2(z) + 1
4p1(z)2 + 1

2Dp1(z).(10)

From a two dimensional system DY = QY, Q = (qij) (not necessarily a Fuchsian sys-
tem), we obtain the second order differential equation (9) for the first coordinate y1 of
Y = (y1, y2)tr (see [11, Lemma 6.1.1]) with

(11) p1(z) = −D log(q12(z))− Tr(Q), p2(z) = det(Q(z))−Dq11 + q11D log q12.

If λ is a zero of q12 of order r and λ 6∈ {t1, . . . , tm} then z = λ is an apparent singular
point with the exponents 0 and r + 1 (see [11, Lemma 6.1.2]).

4 The algorithm

In this section we explain how to obtain the algebraic solutions of the Painlevé VI differ-
ential equation starting from the families of curves in Table 1 column 3, row 3, 4, 5, 6,
which are constructed directly from the Herfurtner list of families of elliptic curves (see
[10]). For the convenience of the reader we have listed the five families which we need:

Table 2: List of deformable families of elliptic curves y2 = 4x3 − g2x− g3 with four
singular fibers and with non constant j invariant along the deformation

name deformation
1 g2 = 3(z − 1)(z − b2)3, g3 = (z − 1)(z − b2)4(z + b)
2 g2 = 12z2(z2 + bz + 1), g3 = 4z3(2z3 + 3bz2 + 3bz + 2)
3 g2 = 12z2(z2 + 2bz + 1), g3 = 4z3(2z3 + 3(b2 + 1)z2 + 6bz + 2)
4 g2 = 3z3(z + b), g3 = z5(z + 1)
5 g2 = 3z3(z + 2b), g3 = z4(z2 + 3bz + 1)

Let us consider f(x) = 4x3−g2x−g3, where g2, g3 correspond to one of the five families of
elliptic curves with parameter b in the Herfurtner list. Since the roots of the discriminant
∆ = 27g3

2 − g2
3 of f , which will be the singular points of the corresponding differential

equation for
∫
δ

dx
y , are not all rational functions in b we substitute b by a suitable rational

function in b such that the transformed roots are rational in b. Such substitutions are
done by the equalities b̃ = · · · in Table 1 column 3. In the next step we check whether
the polynomial f(x) factorizes over Q(b, z). It turns out that this only happens for second
family. In that case we have

(12) f(x) = (4x2 − g2x + g3)(x +
g2

4
).

Substituting g2 and g3 in the list 2 (resp. 1, 3, 4, 5) of Table 2 for t2 and t3 in (8) (resp.
(7)) we obtain a system DY = AY . We can now compute the second order differential
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equation satisfied by
∫
δ

dx
y , where δ is a Pochhammer cycle, using the formula (11) and

(10). It always turns out that (9) has four singularities at t1, t2 = 0, t3 and t4 = ∞ and 1
apparent singularity at λ with exponents 0 and 2. Hence, the SL-form can be written as
follows ([11, p. 173])

p(z) =
3∑

i=1

ai

(z − ti)2
+

a4

z(z − t3)
+

t1(t1 − t3)/t3 · L
z(z − t1)(z − t3)

+
3
4

1
(z − λ)2

− λ(λ− t3)/t3 · ν
z(z − t3)(z − λ)

,

where

ai =
1
4
(θ2

i − 1), i = 1, 2, 3, a4 = −1
4(
∑3

i=1 θ2
i − θ2

4 − 1)− 1
2 ,

L = t3((p(z)− a1

(z − t1)2
)(z − t1))z=t1 , ν = −t3((p(z)− 3

4(z−λ)2
)(z − λ))z=λ.

The corresponding Riemann-scheme is t1 t2 t3 ∞ λ
1−θ1

2
1−θ2

2
1−θ3

2
−1−θ4

2 −1
2

1+θ1
2

1+θ2
2

1+θ3
2

−1+θ4
2

3
2

 .

The system

DY = QY, Q =
∑3

k=1
Qk

z−tk
, Qk = Qk(t) = (qk

ij) ∈ Matn(C), k = 1, 2, 3(13)

of Schlesinger type with the 4 regular singularities at t1, t2 = 0, t3, t4 = ∞ can now be
determined: We can assume that θi and 0 are the eigenvalues of Qi and that (if θ4 6= 1)

−
3∑

i=1

Qi(t) =
(

α 0
0 α + θ4 − 1

)
, 2α +

∑4
i=1 θi = 1.

Further we normalize the singularities via the Möbius transformation z 7→ z · t3 to t =
t1
t3

, 0, 1 and ∞. (Note that also the apparent singularity is transformed to λ
t3

which we
will also denote again by λ.) Then by [11, Prop. 6.3.1] the matrices Qi, i = 1, 2, 3, can be
expressed as follows:

Qi =
(

Mi(Wi −W ) −Mi

−(Wi −W )(Mi(W −Wi) + θi) θi −Mi(Wi −W )

)
, i = 1, . . . , 3,(14)

Mi Wi

i = 1 λ−t
t(t−1) λ(λ− 1)(µ + α

λ )

i = 2 λ
t (λ− t)(λ− 1)(µ + α

λ )− tα
λ

i = 3 λ−1
1−t λ(λ− t)(µ + α

λ )

(θ4 − 1)W =
∑3

i=1 Wi(MiWi − θi),

µ = ν − 1
2

∑3
i=1

1−θi
λ−ti

,

α = −1
2(
∑4

i=1 θi − 1).
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Note that a zero of Q1,2 has order r = 1, which is the apparent singularity λ for the first
coordinate. If we compute the differential equation for the second coordinate or equiva-
lently if we compute the differential equation for the first coordinate of the transformed
system

DY = TQT−1Y, T =
(

0 1
1 0

)
,

then (θ1, . . . , θ4) is transformed to (θ1, . . . , θ3, 2− θ4).

5 An example

We demonstrate how the algorithm in §4 yields the results for the third row of of Table
1. We start with the second family in Table 2. The roots of the discriminant of f are

0, ω1, ω2, ω1,2 = −1
3(2b− 1± 2

√
b2 − b− 2)

Solving the diophantic equation α2 − α − 2 = β2, we substitute b by 3
4(b + 1

b ) + 1
2 in g2

and g3. Thus the new roots are

t1 = −b, t2 = 0, t3 = −1
b
.

Since f(x) = 4x3 − g2x− g3 factorizes we get (12) with the new coefficients

g2 := 4(z2 + z), g3 := −9b2z3−8bz4+2bz3−8bz2−9z3

b ,

Substituting g2 and g3 for t2 and t3 in (8) we obtain a system which does not fit in our
paper and we do not write it here. Computing the SL-form (10) of the differential equation
for the first coordinate of the system we obtain the following parameters: (note that we
have normalized the singularities via the Möbius transformation z 7→ z · t3)

(t1, t2, t3) = (t, 0, 1), (θ1, θ2, θ3, θ4) = (c− 1
2 , a + c− 1, c− 1

2 , a + c− 1),

λ = −b, t = b2, µ = −a−2c+2
2b , ν = − 3

4b
.

The system (13) using (14) reads:

q1
11 =

(ba + a + 2bc− 3b− 1)(a + 2c− 2)
4b(a + c− 2)

,

q1
12 =

1
b(b− 1)

,

q1
21 =

(b− 1)(ba + a− 2b + 2c− 2)(−ba− a− 2bc + 3b + 1)(a + 2c− 2)(a− 1)
16b(a + c− 2)2

,

q1
22 = −q1

11 + (c− 1
2
)

q2
11 =

(−b2 + 2b− 1)(a + 2c− 2)(a− 1)
4b(a + c− 2)

,

q2
12 =

1
b
,
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q2
21 =

(b− 1)2((2− a− 2c)(a− 1)(b2 + 1) + (−2a2 − 4ac + 6a− 4c2 + 8c− 4)b)(a + 2c− 2)(a− 1)
16b(a + c− 2)2

,

q2
22 = −q2

11 + (a− c− 1),

q3
11 =

(ba + a− b + 2c− 3)(a + 2c− 2)
4(a + c− 2)

,

q3
12 = − 1

b− 1
,

q3
21 =

(b− 1)(ba + a− b + 2c− 3)(ba + a + 2bc− 2b− 2)(a + 2c− 2)(a− 1)
16(a + c− 2)2

,

q3
22 = −q3

11 + (c− 1
2
)

and

−(Q1 + Q2 + Q3) =
(
−(a + 2c− 2) 0

0 −c

)
.

The apparent singularity of the second coordinate y2 is the zero of Q21:

λ̃ = −b +
(−2a− 2c + 4)(b + 1)2b

(a− 2)(a + 2c− 3)(b + 1)2 + 2(a2 + 2ca− 5a + 2c2 − 6c + 6)b
.

6 Middle convolution

For the convenience of the reader we give here a short review of the middle convolution
for Fuchsian systems (see [5]).

Let f(z) = (f1(z), . . . , fn(z))tr be a solution of the Fuchsian system

DY = AY =
r∑

i=1

Ai

z − ti
Y, Ai ∈ Matn(C),

and [ti, y] = γ−1
ti

γ−1
y γtiγy be a Pochhammer cycle around ti and y. Then the Euler trans-

form of f(z) with respect to µ ∈ C and [ti, y]
∫
[ti,y] f(z)(y − z)µ dz

z−t1
...∫

[ti,y] f(z)(y − z)µ dz
z−tr

 , i = 1, . . . , r,

is a solution of the (Okubo-) system

(yInr − T )DY = BY := (

 A1 . . . Ar
...

A1 . . . Ar

+ µ Inr)Y, T = diag(t1In, . . . , trIn)

⇔ DY =
r∑

i=1

Bi

y − ti
Y, Bi ∈ Matnr(C),

9



where In is the identity n × n matrix. In general this system is not irreducible and has
the following two 〈B1, . . . , Br〉-invariant subspaces:

k = ⊕r
i=1 ker(Ai), l = ker(B) = 〈(v, . . . , v)tr | v ∈ ker(

∑r
i=1 Ai + µIn)〉.

Factoring out this subspace we obtain a Fuchsian system in dimension m

m = nr −
r∑

i=1

dim(kerAi)− dim(ker(
r∑

i=1

Ai + µIn)).

Let Mi be the monodromy of the system DY = AY at ti. Then, if the system is irreducible
and

rk(Ai) = rk(Mi − In), i = 1, . . . , r

rk(
r∑

i=1

Ai + µIn) = rk(M1 · · ·Mrλ− In), λ = e2πiµ

then the factor system is again irreducible and it is called the middle convolution of
DY = AY with µ. Thus if we start with a two dimensional system in Schlesinger form
(13), where the parameters are (θ1, . . . , θ4) then there are in general two possibilities to
get again a new two dimensional system (13) via the middle convolution. We can apply
the middle convolution either with µ = α or with µ = α + θ4 − 1 and diagonalize the
residue matrix at ∞ to (

α̃ 0
0 α̃ + θ̃4 − 1

)
.

This changes the parameters as follows:

(θ̃1, . . . , θ̃4) = (θ1 + µ, . . . , θ3 + µ, θ4 − µ + 2α), α̃ = −µ.

Note that it is possible to write down also the transformation for the apparent singularity
(see [7, Section 5]) which is also known as an Okamoto transformation.

7 Application of the middle convolution I

In this section we show that the algebraic solution in row 2 of Table 1 can be obtained via
the middle convolution of the Schlesinger system corresponding to the algebraic solution
in row 3 of Table 1.

We continue with our example by determining the middle convolution of DY = QY
with µ = −c. Hence, for the (Okubo-) system (zI6 − T )DY = BY ⇐⇒ DY =∑3

i=1
Bi

y−ti
Y, Bi ∈ Mat6(C), we get

B =

 Q1 − c · I2 Q2 Q3

Q1 Q2 − c · I2 Q3

Q1 Q2 Q3 − c · I2


and T = diag(t, t, 0, 0, 1, 1). The 〈B1, B2, B3〉 invariant subspace has dimension 4, since

ker Qi = 〈
(

qi
1,2

−qi
1,1

)
〉 l = 〈(0, 1, 0, 1, 0, 1)tr〉.

10



In order to get a 2 dimensional factor system we set

S =



q1
1,2 0 0 0 0 0

−q1
1,1 0 0 1 0 0

0 q2
1,2 0 0 1 0

0 −q2
1,1 0 1 0 0

0 0 q3
1,2 0 0 1

0 0 −q3
1,1 1 0 0


.

Thus

D(SY ) =
3∑

i=1

SBiS
−1

z − ti
(SY ) =


∗ 0 0 0 ∗
0 ∗ 0 0 ∗
0 0 ∗ 0 ∗
0 0 0 0 ∗
0 0 0 0 Ã

 (SY )

and we get the 2 dimensional factor system DY = ÃY =
∑3

i=1
Ãi

z−ti
Y . Transforming this

system into Schlesinger form via

Y 7→ S̃Y, S̃ =
(
−(
∑3

i=1 Ãi + c · I2)1,2 −(
∑3

i=1 Ãi − c · I2 − a · I2 + 2 · I2)1,2

(
∑3

i=1 Ãi + c · I2)1,1 (
∑3

i=1 Ãi − c · I2 − a · I2 + 2 · I2)1,1

)
,

where the columns of S̃ consist of eigenvectors of
∑3

i=1 Ãi with respect to the eigenvalues
−c and c + a− 2, we obtain finally

DY = AY, A =
A1

z − b2
+

A2

z
+

A3

z − 1
(15)

A1 =
1
4b

(
−ab− a− 2bc + b + 1 ab + a + 2bc− 3b− 1
−ab− a− 2bc + b + 1 ab + a + 2bc− 3b− 1

)
,

A2 =
1
4b

(
ab2 + 2ab + a− b2 − 2b− 1 ab2 − a− b2 + 1

−ab2 + a + b2 − 1 −ab2 + 2ab− a + b2 − 2b + 1

)
,

A3 =
1
4

(
−ab− a + b− 2c + 1 −ab− a + b− 2c + 3
ab + a− b + 2c− 1 ab + a− b + 2c− 3

)
and

−(A1 + A2 + A3) =
(

c 0
0 −(a + c− 2)

)
.

Computing the entries of A we get

A11 =
−4cz2 + ((1− a + 2c)(b2 + 1) + 2(1− a)b)z + (a− 1)(b + 1)2b

4z(z − 1)(z − b2)
,

A12 =
(b2 − 1)((a + 2c− 3)z + b(a− 1))

4z(z − 1)(z − b2)
,

A21 =
(b2 − 1)((1− a− 2c)z + (b− ab))

4z(z − 1)(z − b2)
,

A22 =
4(a + c− 2)z2 + ((5− 3a− 2c)(b2 + 1) + 2(a− 1)b)z + (1− a)(b− 1)2b

4z(z − 1)(z − b2)
.
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Thus the parameters are

(θ1, . . . , θ4) = (−1/2, a− 1,−1/2,−(a + 2c− 3)).

The apparent singularity λ1 for the first, resp. λ2 for the second coordinate is

λ1 = (
−a + 1

a + 2c− 3
)b, λ2 = (

−a + 1
a + 2c− 1

)b.

Since t = b2 we obtain the relation

θ2
4 λ2

1 = t θ2
2, (2− θ4)2 λ2

2 = t θ2
2.

Computing the SL-form for the first coordinate (after transforming Y 7→ (z − 1)1/2(z −
t)1/2Y which changes the parameters (θ1, . . . , θ4) (but not the apparent singularities) to
(1/2, a− 1, 1/2,−(a + 2c− 3)) we get a simple formula for µ1

µ1 =
−a− 2c + 3

2b
.

8 Monodromy

In this section we show that (15) arises also as a pullback of hypergeometric differential
equations. By determining the monodromy group it turns out that this monodromy group
is finite and therefore by a well known result of Klein the claim follows. Further we
indicate that all the other families of Picard-Fuchs equations are related to those with
finite monodromy.

Proposition 1. The projective monodromy group of (15) is (up to conjugation) contained
in the orthogonal group GO2(C). Moreover, if the parameters a and c are rational numbers,
i.e. if (15) is a Picard-Fuchs equation, then the monodromy group is even finite, i.e. a
dihedral group.

Proof. To prove this statement let Mt,M0,M1 denote the monodromy at t, 0 and 1. If the
parameter b tends to 1 we see that the system becomes reducible and monodromy group
is abelian:

A →
( −a−cz+1

z2−z
0

0 a+c−2
z−1

)
.

Hence MtM1 and M0 commute and are diagonal matrices. Since Mt and M1 are reflections,
the group generated by them is an orthogonal group. Hence Mt and M1 normalize also
M0 and the claim follows.

Applying the Möbius transformation z 7→ 1
z that permutes the residue matrices Qi of

the Schlesinger system corresponding to row 5 (resp. row 6), column 2 in Table 1 and
scaling the new Q2 we get the following pairs of eigenvalues for Q1, Q2, Q3,−(Q1+Q2+Q3)

(a− 1
2
, 0), (a− 3

2
, 0), (a− 1

2
, 0), (−3a− 3

2
,−3a− 2

2
)

resp.

(a− 1
2
, 0), (−2a + 2, 0), (a− 1

2
, 0), (−1

3
,−2

3
).
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The middle convolution with µ = −(a − 1) yields a three dimensional Fuchsian system
with the following triples of eigenvalues of the residue matrices

(
1
2
, 0, 0), (−1

2
, 0, 0), (

1
2
, 0, 0), (−a− 1

2
,−a

2
, a− 1)

resp.

(
1
2
, 0, 0), (−3a + 3, 0, 0), (

1
2
, 0, 0), (−1

3
+ a− 1,−2

3
+ a− 1, a− 1).

Using the explicit construction for the middle convolution and similar arguments as
in the above Proposition, one easily sees that the monodromy groups of these third order
differential equations are finite imprimitive reflection groups contained in T oS3, where T
denotes the group of diagonal matrices. In the next section we show that in Table 1 row
4 and row 5 are also related via the middle convolution. Hence all the families of Picard-
Fuchs equations corresponding to Table 1 are related to those with finite monodromy.
Since the corresponding Picard-Fuchs differential equation of row 1 in Table 1 is the
hypergeometric one it is well known that it is obtained via the convolution of a one
dimensional differential equation with finite monodromy.

9 Application of the middle convolution II

As in the previous example we show that the middle convolution relates the results in
Table 1 row 4 and row 5.

The system (13) in Schlesinger form corresponding to the differential equation satisfied
by
∫
δ

dx
y , where y is from row 4 in Table 1, reads:

q1
1,1 =

(18a2b2 + 18a2b + 18a2 − 3ab3 − 30ab2 − 48ab− 36a + 2b3 + 12b2 + 24b + 16)
18ab + 18a− 27b− 27

q1
1,2 =

−b4 − 2b3

b2 − 1

q1
2,1 =

q1
11q

1
22

q1
12

q1
2,2 = (a− 1

2
)− q1

1,1

q2
1,1 =

(3a− 2)(b2 + (−6a + 7)b + 1)(b− 1)2

18ab2 − 27b2

q2
1,2 = b2 + 2b

q2
2,1 =

q2
11q

2
22

q2
12

q2
2,2 = (3a− 3

2
)− q2

1,1

q3
1,1 =

(18a2b3 + 18a2b2 + 18a2b− 36ab3 − 48ab2 − 30ab− 3a + 16b3 + 24b2 + 12b + 2)
18ab3 + 18ab2 − 27b3 − 27b2

q3
1,2 =

b2 + 2b

b2 − 1

q3
2,1 =

q3
11q

3
22

q3
12

q3
2,2 = (a− 1

2
)− q3

1,1

13



−(Q1 + Q2 + Q3) =
(
−3a + 2 0

0 −2a + 1
2

)
.

Applying the middle convolution to DY = QY with µ = −(3a− 2) and transforming
the 2 dimensional factor system into Schlesinger form with singularities at t, 0, 1 and ∞
we get the system (13) with

q1
1,1 =

(3a− 2)(b + (−6a + 2))(b + 2)2

9(4a− 1)(b + 1)

q1
1,2 =

b + 2
(72a− 18)(b + 1)

q1
2,1 =

(3a− 2)((6a− 4)b3 + (−36a2 + 60a− 24)b2 + (24a− 21)b− 5)(−b + (6a− 2))(b + 2)
9(4a− 1)(b + 1)

q1
2,2 = (−2a +

3
2
)− q1

1,1

q2
1,1 =

(−3a + 2)(b2 + (−6a + 4)b + 1)(b2 + b + 1)
9(4a− 1)b2

q2
1,2 =

−(b2 + b + 1)
18(4a− 1)b2

q2
2,1 =

((4− 6a)b4 + (36a2 − 54a + 20)b3 + (36a2 − 96a + 33)b2 + (36a2 − 54a + 20)b + 4− 6a)
9(4a− 1)b2

·

(3a− 2)(−b2 + (6a− 4)b− 1)

q2
2,2 =

1
2
− q2

1,1

q3
1,1 =

(3a− 2)((−6a + 2)b + 1)(2b + 1)2

9(4a− 1)b2(b + 1)

q3
1,2 =

2b + 1
18(4a− 1)b2(b + 1)

q3
2,1 =

(3a− 2)(−5b3 + (24a− 21)b2 + (−36a2 + 60a− 24)b + (6a− 4))((6a− 2)b− 1)(2b + 1)
9(4a− 1)b2(b + 1)

q3
2,2 = (−2a +

3
2
)− q3

1,1

−(Q1 + Q2 + Q3) =
(

3a− 2 0
0 a− 3

2

)
=
(

3a− 2 0
0 3a− 2 + (−2a + 3

2)− 1

)
.

We obtain the parameters (θ1, . . . , θ4) = (−2a+ 3
2 , 1

2 ,−2a+ 3
2 ,−2a+ 3

2). The apparent
singularity for the first coordinate is

λ =
b2 + b + 1
b3 + 2b2

.

Using that t = 2b+1
b4+2b3

we see that λ and t satisfy

λ4 − 2tλ3 − 2λ3 + 6tλ2 − 2t2λ− 2tλ + t3 − t2 + t = 0.

14



Since this is also the relation for

t =
b4 − 6b2 − 8b− 3
b4 − 6b2 + 8b− 3

, λ =
b3 + b2 + 3b + 3
b3 + b2 − 5b + 3

from Table 1 row 5 the claim follows.
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solutions of the sixth Painlevé and Gauss hypergeometric equations. Algebra i Analiz,
17(1):224–275, 2005.

[13] H. Movasati. On Ramanujan relations between Eisenstein series. Submitted, 2008.

[14] H. Shiga, T. Tsutsui, and J. Wolfart. Triangle Fuchsian differential equations with
apparent singularities. Osaka J. Math., 41(3):625–658, 2004. With an appendix by
Paula B. Cohen.

15


