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Instituto de Matemática Pura e Aplicada, IMPA,

Estrada Dona Castorina, 110,
22460-320, Rio de Janeiro, RJ, Brazil,

E-mail: hossein@impa.br, reiter@impa.br

Abstract

We give a list of Heun equations which are Picard-Fuchs associated to families
of algebraic varieties. Our list is based on the classification of families of elliptic
curves with four singular fibers done by Herfurtner. We also show that pull-backs of
hypergeometric functions by rational Belyi functions with restricted ramification data
give rise to Heun equations.

1 Introduction

For a linear differential equation which depends on some parameters, it is a natural
question to ask for which values of the parameters the specialized differential equation
comes from geometry. We say that the linear differential equation comes from geometry
if there is a proper family of algebraic varieties X → P1 over C and a differential form
ω ∈ H i

dR(X/P1) such that the periods
∫
δz
ω, where δz ∈ Hi(Xz,Z) is a continuous family of

cycles, span the solutions space of the linear differential equation. Such linear differential
equations are also called Picard-Fuchs equations (for further details see [1], Chapter II,
§1).

If a linear differential equation comes from geometry then it is well-known that the
exponents of its singularities are all rational numbers (see for instance [12] and the ref-
erences therein). This implies that the Gauss hypergeometric equation with parameters
a, b, c comes from geometry if and only if the exponents of its singular set are rational
numbers and hence if and only if a, b, c are rationals. The next non-trivial family of linear
differential equations is the family of Heun equations:

(1) y′′ + (
1− θ1

z − t
+

1− θ2

z
+

1− θ3

z − 1
)y′ + (

θ41θ42z − q
z(z − 1)(z − t)

)y = 0

with

θ41 = −1

2
(θ1 + θ2 + θ3 − 2 + θ4), θ42 = −1

2
(θ1 + θ2 + θ3 − 2− θ4).

As we mentioned, if (1) comes from geometry then the exponents θi, i = 1, 2, . . . , 4, are
rational numbers. Now, our problem reduces to the following one: For which rational
numbers θi, i = 1, . . . , 4, and complex numbers t, q ∈ C does the corresponding equation
(1) come from geometry.

We have observed that in the classification of families of elliptic curves with exactly four
singular fibers (see [10]) only 38 of the 50 examples give us Heun equations (five of them
give us linear differential equations associated to Painlevé VI equations with algebraic
solutions, see [6, 3], seven of them can be reduced to families with three singular fibers by
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means of quadratic twists). Using this we have obtained a table of Heun equations coming
from geometry, see Table 1 for a, b, c ∈ Q. Table 1 contains the previously calculated list
of Heun equations by R. S. Maier in [14].

One application of Table 1 can be found in [17], where the second author shows that
one gets a list of Lamé equations with arithmetic Fuchsian monodromy group applying
the inverse Halphen transform to some of the examples. In this way one obtains all those
Lamé equations where the quaternion algebra associated to the arithmetic Fuchsian group
is defined over Q. Thus one can relate Krammer’s example in [13], that was considered to
be a counter example to a conjecture of Dwork, to a Gauss hypergeometric equation via
geometric operations.

In §2 we explain how to compute Table 1 using the Weierstrass form of families of
elliptic curves with four singular fibers. The corresponding algorithms are implemented in
the library painleve-heun.lib in Singular, see [8]. Table 1 can be also computed using
the j-function of the corresponding family of elliptic curves. We explain this in §3. In §4
we state Theorem 1 which characterizes pull-backs of hypergeometric functions by rational
Belyi functions. In particular we get further Heun equations under restricted ramification
data for the Belyi functions. Since the j-invariants of the mentioned 38 examples in [10]
are Belyi functions, this method explains why we get Table 1. In §5 we have derived Table
2 of Lamé equations, i.e. θ1 = θ2 = θ3 = 1

2 , from Table 1. In §6 we compare Table 1 with
examples we found in the literature.

The authors thank the anonymous referees for their valuable comments.

2 Calculating Table 1 using the Weierstrass form

In this section we explain how we have obtained Table 1 using the Weierstrass form of
elliptic curves. Despite the fact that the j-invariants of the Herfurtner’s list are special
Belyi maps, the advantage of this method is that for each item in the table it gives
an explicit family of Riemann surfaces with four singular fibers. This can be useful for
arithmetic applications of Heun equations using the geometry of curves.

We take a family of elliptic curves

y2 = f(x), f(x) := 4x3 − g2x− g3, g2, g3 ∈ C(z)

with four singular fibers. There are 50 examples of such families which are listed by
Herfurtner in [10]. In the next step we check whether the polynomial f(x) factorizes over
C(z). If f(x) is a product of degree 2 and degree 1 polynomials then we redefine g2 and
g3 in the following way

f(x) = (4x2 − g2x+ g3)(x+
g2

4
).

If f(x) is a product of three degree 1 polynomials then we redefine g2 and g3 in the
following way:

f(x) = (4x+ g2 + g3)(x− g2

4
)(x− g3

4
)

Corresponding to the above three cases we consider the following family of transcendent
curves:

y = (4x3 − g2x− g3)a,

y = (x+
g2

4
)a(4x2 − g2x+ g3)b,

3



y = (4x+ g2 + g3)a(x− g2

4
)b(x− g3

4
)c

a, b, c ∈ C.

One can recover the family of elliptic curves by setting a = b = c = 1
2 . The corresponding

systems in the variables g2 and g3 can be calculated from the system in three variables
t1, t2, t3

dY = AY

where

(2) A =

1

(t1 − t2)(t1 − t3)

(
1
2

(b + c− 2)t1 + 1
2

(a + c− 1)t2 + 1
2

(a + b− 1)t3 −a− b− c + 2

at2t3 + (b− 1)t1t3 + (c− 1)t1t2 − 1
2

(b + c− 2)t1 − 1
2

(a + c− 1)t2 − 1
2

(a + b− 1)t3

)
dt1

+(· · · )dt2 + (· · · )dt3
and the matrix coefficient of dt2 (resp dt3) is obtained by permutation of t1 with t2 and a
with b (resp. t1 with t3 and a with c) in the matrix coefficient of dt1 written above. This
system is associated to the family of transcendental curves

y = (t1 − t3)
1
2

(1−a−c)(t1 − t2)
1
2

(1−a−b)(t2 − t3)
1
2

(1−b−c)(x− t1)a(x− t2)b(x− t3)c.

For further details and explicit formulas for the three cases above see [15]. In this way, we
calculate the linear differential equation satisfied by integrals

∫
dx
y , namely

y′′ + p1(z)y′ + p2(z)y = 0

and then we write it in the SL-form. The SL-form of the above second order Fuchsian
differential equation is by definition

y′′ = p(z)y, p(z) = −p2(z) + 1
4p1(z)2 + 1

2p
′
1(z).

In the 50 families of elliptic curves in [10] there are seven families of elliptic curves with
I∗0 singularity. The corresponding singularity, namely ρ4 which is an arbitrary parameter,
does not appear as a singularity of the SL-form. Five other families depend on an extra
parameter α and the corresponding SL-form has an apparent singularity. They give us
algebraic solutions of the Painlevé VI equation and they are discussed in detail in [3, 6, 16].
Therefore, the first twelve families in [10] do not yield Heun differential equations. The
next 38 families give us Heun equations in the SL-form:

y′′ = p(z)y, p(z) = a1
(z−t)2 + a2

z2 + a3
(z−1)2 + a4

z(z−1) + L
z(z−t)(z−1) ,

where

a4 = −1

4
(

3∑
i=1

θ2
i − (θ4 + 1)2) +

1

2
,

L = q − tθ41θ42 +
(1− θ1)

2
((1− θ2)(t− 1) + (1− θ3)t).

Now it is just a matter of calculation to obtain the corresponding parameters from the
SL-form. Our numbering row 1 till 38 in Table 1 corresponds to the 13th till 50th family
in [10].

4



Among the 38 examples there are 13 examples with two Galois conjugate singularities
and with g2, g3 ∈ Q(z). Since in Singular, see [8], we were not able to calculate in a
ring with many transcendental and algebraic parameters, we have used the SL-form with
singularities t1, t2 = 0, t3 and ∞:

p(z) =
3∑
i=1

ai
(z − ti)2

+
ã4

z(z − t3)
+
t1(t1 − t3)/t3 · L̃
(z − t1)z(z − t3)

.

We have to treat the 21th example in a especial way because it is the only example in
which g2 and g3 are not defined over Q(z). The corresponding sequence of commands in
Singular are implemented in the library painleve-heun.lib. This and the 38 families in
[10] can be downloaded from the first author’s webpage.

3 Calculating Table 1 using the j-invariant

In [10] Herfurtner has classified elliptic surfaces with four singular fibres in Weierstrass
form. To each elliptic surface it corresponds a period, a complete elliptic integral of the first
kind, depending on a parameter. Thus it satisfies a Picard-Fuchs equation with regular
singular points. In 38 cases it is a Heun equation. All those equations are pull-backs of
the Gauss hypergeometric equation L, where L is the uniformizing differential equation
for PSL2(Z), by the j-invariant of the elliptic curve, as already noted by Stiller studying
classical uniformization problems in [19]. In 27 of the 38 cases Doran showed that the
Picard-Fuchs equation is an orbifold uniformizing differential equation, see Chapter 4 in
[7].

The idea is to replace the Picard-Fuchs equation L satisfied by elliptic integrals with
suitable geometric Gauss hypergeometric equations satisfied by abelian integrals to obtain
the one parameter families of geometric Heun equations in Table 1. In Herfurtner’s list
we find the following data: The family of elliptic curves

y2 = 4x3 − g2(z)x− g3(z), g2(z), g3(z) ∈ C(z),

the discriminant ∆ = g3
2 − 27g2

3 and the j-invariant j =
g3
2

g3
2−27g2

3
. It is easy to check that

in the cases we consider, namely I1 I1 I1 I9 − I6 II II II in [10] (i.e. in Table 1, row
1-38) the j-invariant ramifies only at 0, 1 and ∞. Such a function is also called a rational
Belyi-function. In our cases the ramification indices at 0 are at most 3 and at 1 are at
most 2. Therefore, we will consider the pull-back of the hypergeometric function

2F1(α, β,
2

3
, z), α = −a

2
+

1

3
, α− β = −a+

1

2

with j(z). Since the Riemann scheme of the corresponding hypergeometric differential
equation is  0 1 ∞

0 0 −a
2 + 1

3
1
3

1
2 −1

6 + a
2


this pull-back will satisfy (after a multiplication with an algebraic function) a Heun equa-
tion depending on the parameter a. We demonstrate this claim via the following example,
Table 1, row 7, ( I1I1I8II in Herfurtner’s list). First we recall two basic transformations
of second order differential equations, which are readily to check:
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Remark 1. Let Y (z) be a solution of

y′′ + p1(z)y′ + p2(z)y = 0.

a) Then Y (j(z)) satisfies

y′′ + (p1(j(z))j′(z)− j′′(z)

j′(z)
)y′ + p2(j(z))j′(z)2y = 0(3)

b) and f(z)Y (z) satisfies

y′′ + (p1(z)− 2
f ′(z)

f(z)
)y′ + (p2(z) +

2f ′(z)2

f(z)2
− p1(z)f ′(z)

f(z)
− f ′′(z)

f(z)
)y = 0.(4)

Example 1. Let y2 = 4x3 − g2(z)x− g3(z), where

g2(z) = 12z(z3 − 6z2 + 15z − 12), g3(z) = 4z(2z5 − 18z4 + 72z3 − 144z2 + 135z − 27)

j(z) =
g3

2

g3
2 − 27g2

3

= −z(z
3 − 6z2 + 15z − 12)3

(3z2 − 14z + 27)

j(z)− 1 = −(2z5 − 18z4 + 72z3 − 144z2 + 135z − 27)2

(3z2 − 14z + 27)
.

Thus the ramification data is therefore given by the cycle decomposition

(3)(3)(3)(1), (2)(2)(2)(2)(2), (8)(1)(1).

The Hurwitz formula implies that the j-invariant is unramified outside 0, 1 and∞. Hence
it is a Belyi-function. Since a hypergeometric function 2F1(α, β, γ, z) satisfies

y′′ + p1(z)y′ + p2(z)y = 0, p1(z) = γ−(α+β+1)z
z(1−z) , p2(z) = αβ

z(z−1)

the pullback 2F1(a2 −
1
6 ,−

a
2 + 1

3 ,
2
3 , j(z)), is a solution of (see Remark 1 a))

y′′ + p1(z)y′ + p2(z)y = 0,

p1(z) =
7z2 − 21z + 18

3z3 − 14z2 + 27z
, p2(z) =

−16(3a− 1)(3a− 2)(z3 − 6z2 + 15z − 12)

(3z2 − 14z + 27)2z
.

A solution multiplied by f(z) = (3z2 − 14z + 27)−1/3+a/2 gives us a Heun equation (see
Remark 1 b)):

y′′ + (
(3

2 − a)(6z − 14)

3z2 − 14z + 27
+

2

3z
)y′ +

3(9a− 2)(−15a+ 10)z + 2(3a− 2)(96a− 25)

9z(3z2 − 14z + 27)
y = 0

Our entries in Table 1, row 7, are obtained via a Möbius transformation to get the singu-
larities at 0, 1, t,∞.

The reason why this procedure always provides Heun equations will be clear in the
next section.
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4 Belyi functions

In order to derive further Heun-Picard-Fuchs equations which can be not necessarily ob-
tained from Herfurtner’s list we consider in this section pull-backs of hypergeometric func-
tions by rational Belyi functions with restricted ramification data. These give rise to
second order differential equations without apparent singularities and in particular Heun
equations.

Proposition 1. Let j1(z), j2(z) ∈ C[z] be polynomials such that j(z) = j1(z)
j2(z) ∈ C(z) is a

rational Belyi function unramified outside {0, 1,∞}.

a) We can assume that the factorization is of the form

j1(z) = A
∏
i∈I

(z−ti)ai , A ∈ C∗, j2(z) =
∏
k∈K

(z−uk)ck , j1(z)−j2(z) = A
∏
j∈J

(z−sj)bj ,

where N := deg(j1) > M := deg(j2) and (j1(z), j2(z)) = 1.

b) Further for

Λ =
∏

{t∈C|(j1j2(j1−j2))(t)=0}

(z − t)

we have deg(Λ) = N + 1.

Proof. a) Via a Möbius-transformation and scaling we can assume that

j(z) =
j1(z)

j2(z)
, deg(j1(z)) > deg(j2(z)).

b) Since j(z) is only ramified at 0, 1, and∞ the Riemann-Hurwitz formula implies that

2N − 2 =
∑
i

(ai − 1) +
∑
j

(bj − 1) +
∑
k

(ck − 1) + (N − deg(j2(z))− 1)

Hence deg(Λ) = N + 1.

Theorem 1. Let j(z) be a rational Belyi function as in Proposition 1. Then

j2(z)−α · 2F1(α, β, γ, j(z))

satisfies y′′ + q1(z)y′ + q2(z)y = 0, where

q1(z) = Λ′

Λ + (γ − 1)
j′1(z)
j1(z) + (−γ + α+ β) (j1(z)−j2(z))′

j1(z)−j2(z) + (α− β)
j′2(z)
j2(z)

q2(z) = αβ
j′1(z)
j1(z)

(j1(z)−j2(z))′

j1(z)−j2(z) −

α
j′2(z)
j2(z) ·

(
j′2(z)
j2(z) −

Λ′

Λ − (γ − β − 1)
j′1(z)
j1(z) + (γ − α) (j1(z)−j2(z))′

j1(z)−j2(z) −
j′′2 (z)
j′2(z)

)
with the following Riemann scheme: ti sj uk ∞

0 0 0 αN
(1− γ)ai (γ − α− β)bj (β − α)ck β(N −M) +Mα

 .
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Proof. By Remark 1(a) the pull-back of the hypergeometric function 2F1(α, β, γ, j(z))
satisfies

(5) y′′ + (p1(j(z))j′(z)− j′′(z)

j′(z)
)y′ + p2(j(z))j′(z)2y = 0,

p1(z) =
γ − (α+ β + 1)z

z(1− z)
=
γ

z
+
−γ + (α+ β + 1)

z − 1
, p2(z) =

αβ

z(z − 1)
.

By considering the exponents at the singularities locally one gets the following Riemann
scheme:  ti sj uk ∞

0 0 αck α(N −M)
(1− γ)ai (γ − α− β)bj βck β(N −M)

 .

Let a1(z) be the coefficient of y′. Then sum of the exponents at a finite singularity t is
given by 1 − Rest(a1(z)), cf. [11, Sec. 1.4]. Thus together with Remark 1 the pull-back
(5) satisfies

y′′ + (
Λ′

Λ
+ (γ − 1)

j′1(z)

j1(z)
+ (−γ + α+ β)

(j1(z)− j2(z))′

j1(z)− j2(z)
+ (−α− β)

j′2(z)

j2(z)
)y′ +

αβ(
j′1(z)

j1(z)
− j′2(z)

j2(z)
) · ((j1(z)− j2(z))′

j1(z)− j2(z)
− j′2(z)

j2(z)
)y = 0

The solution multiplied by f(z) =
∏

(z − uk)−αck satisfies y′′ + q1(z)y′ + q2(z)y = 0 with
Riemann scheme ti sj uk ∞

0 0 0 αN
(1− γ)ai (γ − α− β)bj (β − α)ck β(N −M) +Mα

 .

Again as above we can determine q1(z) and q2(z) is obtained by using Remark 1

q1(z) = Λ′

Λ + (γ − 1)
j′1(z)
j1(z) + (−γ + α+ β) (j1(z)−j2(z))′

j1(z)−j2(z) + (α− β)
j′2(z)
j2(z)

q2(z) = αβ(
j′1(z)
j1(z) −

j′2(z)
j2(z)) · ( (j1(z)−j2(z))′

j1(z)−j2(z) −
j′2(z)
j2(z))− α j

′
2(z)
j2(z) · (2(−α)

j′2(z)
j2(z) − (−(α+ 1)

j′2(z)
j2(z) +

j′′2 (z)
j′2(z)

)

−(Λ′

Λ + (γ − 1)
j′1(z)
j1(z) + (−γ + α+ β) (j1(z)−j2(z))′

j1(z)−j2(z) + (−α− β)
j′2(z)
j2(z))).

Simplifying the expression for q2(z) we get

q2(z) = αβ
j′1(z)

j1(z)

(j1(z)− j2(z))′

j1(z)− j2(z)
−

α
j′2(z)

j2(z)
·
(
j′2(z)

j2(z)
− (

Λ′

Λ
+ (γ − β − 1)

j′1(z)

j1(z)
+ (−γ + α)

(j1(z)− j2(z))′

j1(z)− j2(z)
)− j′′2 (z)

j′2(z)

)
.

Corollary 1. Let

1− γ =
1

A
, −γ + α+ β =

1

B
, α− β =

1

C
, A,B,C ∈ N∞.
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If for the ramification indices of a rational Belyi function j(z) the following conditions
hold

(∗) A | ai ⇒ ai = A, B | bj ⇒ bj = B, C | ck ⇒ ck = C

then
j2(z)−α · 2F1(α, β, γ, j(z))

satisfies a second order differential equation y′′ + q1(z)y′ + q2(z)y = 0 without apparent
singularities.

Corollary 2. Let A,B,C ∈ N∞ and j(z) be a rational Belyi function satisfying the
conditions (∗). Let also 4 = #{ai | ai 6= A}+ #{bj | bj 6= B}+ #{ck | ck 6= C}. Then we
have

a) The following function

j−α2 (z) · 2F1(α, β, γ, j(z)), 1− γ =
1

A
, −γ + α+ β =

1

B
, α− β =

1

C

satisfies a Heun equation.

b) If {ck | ck = C} = ∅ we get a one parameter family of Heun equations corresponding
to:

j−α2 (z) · 2F1(α, β, γ, j(z)), 1− γ =
1

A
, −γ + α+ β =

1

B

c) If {ck | ck = C} = ∅ and {bk | bk = B} = ∅ we get a two parameter family of Heun
equations corresponding to:

j−α2 (z) · 2F1(α, β, γ, j(z)), 1− γ =
1

A

d) If {ck | ck = C} = ∅, {bk | bk = B} = ∅ and {ai | ai = A} = ∅ we get a three
parameter family of Heun equations corresponding to:

j−α2 (z) · 2F1(α, β, γ, j(z)).

As noted by one of the anonymous referees there is an elegant way to derive Corollaries
1 and 2 by using simple local analysis and avoiding Theorem 1. However for future
reference and in order to have an explicit formula for the differential equations we keep it
despite the cumbersome calcuations appearing in its proof. Furthermore the computation
of the Heun equation L follows from a two term local expansion of L(f(z), where f(z) is
a known solution, e.g. at z = 0.

Remark 2. In order to prove Corollary 1 we at first determine the local exponents of the
second order differential equation L satisfied by

j2(z)−α · 2F1(α, β, γ, j(z)).

We assume that j(∞) =∞ and concede that ∞ is going to be a singular point of L. For
any finite point z0 we can make the following observation. Suppose that j(z0) 6∈ {0, 1,∞}.
Then j′(z0) 6= 0 and L will have the same local exponents as the hypergeometric equation
at the point j(z0), hence 0, 1. So L does not have a singularity at z0. Suppose j(z0) = 0.
Let a be the zero multiplicity of z0. Then we have locally j(z) ∼ (z − z0)a and the local
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exponents of the hypergeometric equation are multiplied by a. Namely, if f(x) = 1+O(x)
and x1−γg(x) with g(x) = 1 + O(x) are local solutions of the hypergeometric equation,
clearly f(j(z)) = 1 +O(z− z0)a and j(z)1−γg(j(z)) = (z− z0)a(1−γ)(1 +O(z− z0) are the
local solution of L around z0. So the local exponents of L at z0 read 0, (1 − γ)a. When
(1− γ)a = 1 it is obvious that L does not have a singular point there. If at a point z0 we
have local exponents 0, 1 and a basis of holomorphic solution the point z0 is not singular.
Of course, when (1 − γ)a is an integer 6= 1 we have an apparent singularity we may not
get rid of. But this is excluded by condition (∗) in Corollary 1. Similarly we proceed with
the cases j(z0) = 1,∞. Corollary 1 is now also immediate.

The computation of the Heun equation is then straightforward. We know all local
exponents, all that is needed is the value of the accessory parameter q. But this can be
computed by applying the Heun operator L with the unknown parameter q to a known
local solution f(z) at z = 0, say. Then q can be solved by consideration of the first two
terms of the local expansion of Lf = 0 in z (or some other point).

Remark 3. Herfurtner has classified all rational j(z)-functions such that 4 = #{ai 6=
2} + #{bj 6= 3} + #{ck}. Thus we always obtain at least a 1 parameter family of Heun
equations. Note that our a, b, c notation in Table 1 refers to the notations introduced
in §2. If we are in the one parameter case in Table 1 (a = b = c) then the relation is
α = a

2 + 1
3 , γ = 2

3 , β = −1
6 + a

2 .
Next we list also the 2 and 3-parameter families of Heun equation and the corresponding

j(z)-functions satisfying the hypothesis of Corollary 2, part c,d. It just an easy consequence
of the Hurwitz formula that we have computed all 2-and 3-parameter families of Heun
equations in Table 1b:

Let G be a Gauss hypergeometric differential equation and j(z) be a rational function
such that the pullback of G with j(z) of degree N gives rise to a Heun equation. Let a,
b and c denote the orders of the local (projective) monodromy of G at the singularities
0, 1 and ∞. We get the following conditions for the ramification: Over 0 we have r + r1

points, where at the first r points have trivial monodromy and the last r1 points have local
monodromy of order dividing a. This can be written as

(ax1, . . . , axr, α1, . . . , αr1),(6)

where r, r1 ∈ N0, xi ∈ N, a - αi. Note that the sum over all ramification orders is N.
Similarly we get the corresponding ramification over 1 and ∞ :

(by1, . . . , bys, β1, . . . , βs1), (cz1, . . . , czt, γ1, . . . , γt1),(7)

where s, t, s1, t1 ∈ N0, yj , zk ∈ N, b - βj , c - γk. Since a Heun equation has only 4 singulari-
ties we get that r1 + s1 + t1 = 4. The Riemann-Hurwitz formula implies that

−1 ≥ (−N) +
1

2
((N − (r+ r1)) + (N − (s+ s1)) + (N − (t+ t1)) =

1

2
(N − (r+ s+ t+ 4)).

Hence

N ≤ r + s+ t+ 2.(8)

To obtain a 2- or 3- parameter family we can assume s = t = 0. Thus N ≤ r + 2 ≤ N
2 + 2

which implies N ≤ 4. The following table follows from a classification of all triples
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(g1, g2, g3), g1g2g3 = id, gi ∈ SN , where the elements gi have the prescribed cycle de-
composition and the construction of the corresponding Belyi-function.

Table 1b: 2-and 3-parameter families of geometric Heun equations, α, β, γ ∈ Q

∗ q t θ1 θ2 θ3 θ42 θ41

I3 I1 II I
∗
0 8α(−3γ + 2) −8 1− γ 3(1− γ) γ − 2α− 1

2
−2α + 3γ − 3

2
4α

31 0 −1 2(1− γ) −4α + 2γ − 1 2(1− γ) 2γ − 1 4α
32 0 −1 −α− β + γ 2(1− γ) −α− β + γ 2β 2α

33 −3αβt1
t21
3
, t21 + 3t1 + 3 = 0 2

3
− (α + β) 2

3
− (α + β) 2

3
− (α + β) 3β 3α

34 0 − 1
3

1
2

2(1− γ) 1− γ −3α + 3γ 3α− 3
2

I2 I1 III I
∗
0 6α(2β − 2α− 1) −8 −2α− 2β + 4

3
−2α + 2β −α− β + 2

3
2α + β 3α

35 0 −1 1− γ 2(1− γ) 1− γ 4(γ − α) 4α− 2

j(z) ramification data (α, β, γ)

I3 I1 II I
∗
0

(z4+8z3)
(64z−64) (3)(1), (2)(2), (3)(1) β = γ − α− 1

2

31 (−z4+2z2−1)
(4z2)

(2)(2), (2)(2), (2)(2) β = γ − α− 1
2

32 z2 (2), (1)(1), (2)
33 (z + 1)3 (3), (1)(1)(1), (3) γ = 2

3
34 1

4z
2(z + 3) (2)(1), (2)(1), (3) β = γ − α− 1

2

I2 I1 III I
∗
0 − 1

27
(z−4)3

z2 (3), (2)(1), (2)(1) γ = 2
3

35 −4z2(z − 1)(z + 1) (2)(1)(1), (2)(2), (4) β = γ − α− 1
2

Note that all the 2- and 3-parameter Heun equations in Table 1 appear in Table 1b while
the 2-parameter Heun equations in Table 1b, I3 I1 II I

∗
0 and 33 extend Table 1. (We use

the notation I3 I1 II I
∗
0 and I2 I1 III I

∗
0 to indicate that the j-function we use here is

the same as in Herfurtner’s list up to a Möbius-transformation. In Herfurtner’s list the
corresponding differential equations are Gauss hypergeometric ones.)

5 Lamé equations

The most studied Heun equations are the so called Lamé equations:

p(z)
d2y

dz2
+

1

2
p′(z)

dy

dz
− (n(n+ 1)z +B)y = 0,

where p(z) = 4z3 − g2z − g3. Hence we also list the cases, where the Heun equations
in Table 1 specialize (after Möbius transformations) to Lamé equations. The relation
between the above standard notation for a Lamé equation and our notation is given by
the transformation z 7→ z+ t+1

3 , that maps our singularities at t, 0, 1 to t− t+1
3 ,− t+1

3 , 1− t+1
3

and we have

n = θ4 −
1

2
, B = 4q
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Table 2: Lamé equations coming from geometry

* conditions q t θi, θ4 θ42 θ41
i = 1, 2, 3

1 a = 1 5
3
t1

t21
3
, t21 + 3t1 + 3 = 0 1

2
9
2

5
2

−2

5 a + c = 3
2
, a + b = 5

4
0 −1 1

2
7
2
− 4a 2− 2a 2a− 3

2

6 a = 2
3

0
t21
3
, t21 + 3t1 + 3 = 0 1

2
1
2

1
2

0

11 a = 1 37
128

t1
t21
8
, 4t21 + 13t1 + 32 = 0 1

2
7
2

2 − 3
2

12 b = 3
4
, a = 5

12
1
32

3
4

1
2

1
4

3
8

1
8

14 b = 2
3
, a = 5

6
1
8

−3 1
2

1 3
4

− 1
4

b = 2
3
, a = 7

12
3
64

3
4

1
2

1
4

3
8

1
8

26 a = 1 − 29
125

t1
4t21
125

, t21 − 11t1 + 125
4

= 0 1
2

5
2

3
2

−1

a = 3
5

1
4t1

125
4t21

, t21 − 11t1 + 125
4

= 0 1
2

1
10

3
10

2
10

27 b = 3
4

0 −1 1
2

2a− 1
2

a −a + 1
2

28 a = 2
3

0 −
t21
3
, t21 − 6t1 − 3 = 0 1

2
1
2

1
2

0

32 a = 3
4

0 −1 1
2

2
3

7
12

− 1
12

33 1
12

(3a− 1)(3a− 2)t1
t21
3
, t21 + 3t1 + 3 = 0 1

2
3a− 3

2
3
2
a− 1

2
1− 3

2
a

36 a = 5
8

1
216

t1
t21
27
, t21 − 10t1 + 27 = 0 1

2
1
3

5
12

1
12

6 Comparison with known results

The Heun equations computed by Maier, s. [14, Thm. 3.8], via polynomial pull-backs of
hypergeometric differential equations appear with the exception of the equations (3.6.a)
in our list:

Nr. in Maier’s list Nr. in List 1

(3.5a) 5
(3.5b) 12
(3.5c) 2
(3.6b) 36
(3.6c) 37
(3.6d) 38

The Heun equations (3.6.a),

y′′ +
2− (α+ β)

3
(

1

z + ζ3
+

1

z
+

1

z − 1
)y′ +

αβz − αβ
3 (1− ζ3)

z(z − 1)(z + ζ3)
y = 0, ζ3

3 = 1

which depend on two free parameters α and β, appears in Table 1b), row 33. If the
monodromy group is contained in SL2(Z) (for instance for the parameters a, b, c in the
Table 1 equal to 1

2) then some of these differential equations appear also in literature, e.g.
in the study of the Grothendieck p-curvature conjecture [4] and [5].

We list these examples, where we have used Möbius transformations to obtain coeffi-
cients in Q[z].

Table 1 Notation p(z)
in [10]

1 I1I1I1I9 p(z)y′′ + p′(z)y′ + (z + 1
3)y = 0 z(z2 + z + 1

3)
2 I1I1I2I8 p(z)y′′ + p′(z)y′ + zy = 0 z(z − 1)(z + 1)
3 I1I2I3I6 p(z)y′′ + p′(z)y′ + (z − 1

4)y = 0 z(z − 1)(z + 1
8)

4 I1I1I5I5 p(z)y′′ + p′(z)y′ + (z + 3)y = 0 z(z2 + 11z − 1)

Note that these examples also arise from Beauville’s list, see [2].

Remark 4. At the time this paper was accepted further research was meanwhile carried
out by other authors. All hypergeometric to Heun transformations with two or three

12



continuous parameters, cf. Remark 3, up to Möbius transformations were independently
studied by Filipuk and Vidunas in [9]. Also there is a Table of all hyperbolic 4-to-3 rational
Belyi maps and their dessins available by van Hoeij and Vidunas [20], were all Belyi maps
satisfying the conditions formulated in Corollaries 1 and 2 are listed together with further
interesting properties. We also would like to point out that Sijsling has classified as a part
of his PhD thesis all Lamé equations with arithmetic monodromy group of type (1, e) that
are pullbacks of hypergeometric differential equations, see [18].
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