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Introduction

The systematic study of neighborhoods of analytic varieties was started
by H.Grauert in his celebrated article [Gr62]. In that article he considers a
manifold X and a negatively embedded submanifold A ⊂ X. He introduces
the notion of n-neighborhood, n ∈ N, of A, which is roughly the sheaf of
holomorphic functions defined in neighborhoods of the points of A in X
up to those functions which vanish on A of order n , and studies when an
isomorphism of two n-neighborhoods can be extended to an isomorphism
of (n + 1)-neighborhoods. He observes that obstructions to this extension
problem lie in the first cohomology group of certain sheaves involving the
normal bundle of A in X. Using a version of Kodaira vanishing theorem
(introduced by him in [Gr62]) he shows that for a large n these cohomology
groups vanish and so he concludes that the germ of a negatively embedded
manifold A depends only on a finite neighborhood of it. These methods
are generalized to a germ of an arbitrary negatively embedded divisor A in
[HiRo64] and [La71]. In the case where A is a Riemann surface embedded
in a two dimensional manifold, by using Serre duality we can say exactly
which finite neighborhood of A determines the embedding (see [La71]). P.
Griffiths in [Gri66] studies the problem of extension of analytic objects (fiber
bundles, analytic maps, cohomology elements etc.) in A to X. Again he
introduces the finite extension of the object and he observes that obstructions
lie in certain cohomology groups. We must remark that the above discussion
leads to formal extensions and isomorphisms. Grauert solves the convergence
problem by geometrical methods. Later, Artin’s criterion (see [Art68]) on
the existence of convergent solutions is used instead of Grauert’s geometrical
methods.

This is an expository text about negatively embedded varieties. The text
is mainly based on Grauert’s paper [Gr62] 1, but we have used also the con-
tributions of subsequent authors. We have tried to state each theorem with
a precise proof, except for some well-known theorems, for instance Grauert
direct image theorem and Remmert proper mapping theorem, whose proofs
can be found in classical books. Our principal aim is to extend this study to

1For a mathematical autobiography of Grauert and also a brief history of complex
analysis, the reader is referred to the interesting text [Re95].
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the germ of foliated neighborhoods and singularities. Since we did not find
any book covering all the theorems and proofs related to Grauert’s theorem
on negatively embedded varieties, we decided to write this text and prepare
it for a course in complex analysis.

In the first chapter we will review some well-known facts and definitions.
The notion of reduced analytic variety, embedding dimension of singulari-
ties, formal neighborhood and obstruction to the existence of a formal iso-
morphism between two embeddings are discussed in this chapter. Cartan’s
theorem on the quotient of analytic varieties and Remmert reduction The-
orem are presented. One of the main theorems in this chapter is Theorem
1.5. This theorem establishes the obstructions to the extension of a finite
isomorphism of neighborhoods to a higher order isomorphism.

The second chapter is devoted to pseudoconvex domains. For some tech-
nical reasons, we have preferred to work with C2 convex functions instead of
C2 plurisubharmonic functions. A convex function carries just the convex-
ity information of its level varieties and is easy to handle, so we use convex
functions rather than plurisubharmonic functions. Theorem 2.2 reveals an
important cohomological property of pseudoconvex domains. It can be con-
sidered as Cartan’s B theorem for Stein varieties. Using Remmert reduction
theorem on pseudoconvex domains, one can see that pseudoconvex domains
are the point modification of Stein varieties. This leads to the notion of
exceptional or negatively embedded varieties.

One of the natural examples of an embedded manifold is the zero section
of a vector bundle. We deal with these embeddings in chapter three. The zero
section of a line bundle is an exceptional variety if and only the line bundle
is negative in the sense of Kodaira, Theorem 3.1. Vanishing theorems for
the germ of exceptional varieties are stated in this Chapter, Theorems 3.3
3.5.

Chapter four is devoted to the formal principle. Theorem 1.5 and Theo-
rem 3.3 give us a formal isomorphism of two negatively embedded manifolds.
Roughly speaking, the formal principle tells us when a formal isomorphism of
two neighborhoods implies the existence of a biholomorphism. In this chap-
ter we have stated Artin’s Theorem 4.1. This theorem implies the formal
principle for singularities, Theorem 4.2, and then the formal principle for
exceptional varieties can be derived.

Chapter five is devoted to foliated neighborhoods. In the first steps we will
consider the most simple foliations which are transversal foliations. The main
theorem in this direction is Theorem 5.1. Next, foliations with tangencies
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and Poincaré type singularities is considered. We generalize Grauert’s step
by step extension of isomorphisms to the case where the germ of embedding
is foliated. In this section we also introduce the notion of formal equivalence
of two foliated neighborhoods and prove Theorem 5.3. Artin in [Art68]
after stating his extension and lifting theorems poses the following question:
Can one generalize these statements in various ways by requiring the map
preserve extra structure, such as a stratification? We are interested in the
case where this additional structure is a foliation.

Whenever it was possible, we have used figures to help to understand a
definition, a theorem or its proof. Specially we hope that the figures will
help on reconstructing the proofs in the mind. At the end of each chapter
we have added some lines for the reader who wants to know more on the
development of the material presented in the chapter. This will be useful
also for classrooms activities.

We would like to thank our colleagues at IMPA in Rio de Janeiro and
IMCA in Lima where the lectures were delivered. We thank also R. Bazan,
G. Calsamiglia and M. Teymuri Garakani for reading the manuscript. The
second author acknowledges his thanks from DFG Forschergruppe Zetafunk-
tionen und lokalsymmetrische Räume for financial support.

César Camacho
Hossein Movasati
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Chapter 1

Preliminaries

In this chapter we review some of the basic notions of complex analysis. We
assume a basic knowledge of sheaf theory, coherent analytic sheaves and co-
homology of sheaves. Good references for these are the books [GuIII90,
GrRe79, GrRe84]. Throughout the text, for a given sheaf S over a topo-
logical space X, when we write x ∈ S we mean that x is a section of S in
some open neighborhood in X or it is an element in a stalk of S over X,
being clear from the text which we mean.

1.1 Varieties

For a topological space X and a point x ∈ X we denote by (X, x) a neigh-
borhood of x in X. This means that in our statements and arguments we
fix a neighborhood of x in X but we can take it smaller if it is necessary.
A C-algebra is a commutative ring containing the field C as a subring, with
1 ∈ C as the identity element of the ring. A homomorphism between two
C-algebras is a ring homomorphism that induces the identity mapping on the
subfield C. An example of C-algebra we use in this text is:

• OCn,x, the ring of germs of holomorphic functions in a neighborhood of
x in Cn.

Its maximal ideal is

• MCn,x := {f ∈ OCn,x | f(x) = 0}.
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One can consider OCn,x as the ring of convergent power series
∑∞

i ai(y− x)i,
where i = (i1, i2, . . . , in) runs through (N∪{0})n and (y−x)i = (y1−x1)

i1(y2−
x2)

i2 · · · (yn − xn)in .
An analytic subvariety (X, x) of (Cn, x) is given by f1 = 0, f2 = 0, . . . , fr =

0, where f1, f2, . . . , fr ∈MCn,x.

• IX,x := {f ∈ OCn,x | f |X= 0};
• OX,x := OCn,x/IX,x, the germs of holomorphic functions in a neighbor-

hood of x on X;

• MX,x := {f ∈ OX,x | f(x) = 0}, the maximal ideal of OX,x;

• Mk
X,x, the sub C-algebra of MX,x generated by Πk

i=1gi, gi ∈MX,x.

We collect all the necessary statements on C-algebras which we need in the
following proposition:

Proposition 1.1. The following statements are true:

1. Mm
Cn,0 is exactly the set of holomorphic functions with the leading term

(in the Taylor series) of degree greater than or to equal m;

2. OCn,0 is a Noetherian ring, i.e. every ideal in OCn,0 has a finite basis;

3. ∩∞k=1Mk
Cn,0 = {0};

Proof. We first prove the nontrivial part of the statement 1., i.e. if f ∈ OCn,0

with the leading term of degree ≥ m then f ∈ Mm
Cn,0. The proof is by

induction on n. The case n = 1 is trivial. By a linear change of coordinates
we can assume that f is regular in the variable x1, i.e. f(x1, 0, . . . , 0) is not
identically zero. By Weierstrass preparation theorem (see [GuII90] Theorem
A4) we can write f = u.(xl

1 + a1x
l−1
1 + · · ·+ al−1x1 + al), where a1, a2, . . . , al

are holomorphic functions in x2, x3, . . . , xn and u is a holomorphic function
in x1, x2, . . . , xn with u(0) 6= 0. Since f and f

u
have the same leading term

up to multiplication by a constant, it is enough to prove that xl
1 + a1x

l−1
1 +

· · ·+ al−1x1 + al ∈Mm
Cn,0. This statement follows by our hypothesis and the

hypothesis of induction for n− 1.
The statement 2. can be found in [GuII90] Theorem A8. The statement

3. is a direct consequence of the first part (or the second part in the general
context of local rings).

8



C 2

C 2

U

U
U

V={xy=0}

V=D

V={x - y =0}2 3

C

Figure 1.1: Analytic variety

A closed analytic subset X of an open domain in some Cn is locally
given by the zero locus of some holomorphic functions and is called an affine
(analytic) variety. We look at X as a topological space equipped with a sheaf
OX of C-algebras OX,x, x ∈ X, that is called the structural sheaf of X. Let
X and Y be two affine varieties. A continuous map τ : X → Y is called
holomorphic if the pull-back of functions, given by τ ∗(f) = f ◦ τ , defines
a map τ ∗ from OY,τ(x) into OX,x, which is a morphism of C-algebras for all
x ∈ X. The map τ is called a biholomorphism if there is a holomorphic map
τ ′ : Y → X such that τ ′ ◦ τ and τ ◦ τ ′ are identity maps respectively on X
and Y .

Let X be a second-countable Hausdorff topological space and CX be the
sheaf of complex valued continuous functions on X. We say that X with a
sheaf of C-algebras OX ⊂ CX is an analytic variety if every point of X has
an open neighborhood U such that (U,OU) is isomorphic to a (V,OV ), for
some affine variety V , i.e. there is a homeomorphism ψ : U → V such that
ψ∗ : OV → OU , ψ∗(f) = f ◦ ψ, is an isomorphism of sheaves of C-algebras.

Let X be a variety. For every point x ∈ X there exist an open set U
around x, V a closed analytic subset of an open domain D in some Cn and
a homeomorphism ψ : U → V which induces an isomorphism between OV

and OU . A rough picture of this definition is depicted in Figure 1.1 This is
called a chart around x and we denote it simply by

• ψ : U → V ⊂ D ⊂ Cn, a chart around x.

Given two such charts ψα : Uα → Vα ⊂ Dα ⊂ Cnα and ψβ : Uβ → Vβ ⊂
Dβ ⊂ Cnβ around x, the first is called a subchart of the second if there
is an embedding em : (Dα, ψα(x)) ↪→ (Dβ, ψβ(x)) such that ψβ = em ◦
ψα. They are called equivalent if one is a subchart of the other and nα =
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nβ. In this case the map em is a biholomorphism. This is an equivalence
relation. Note that n, the dimension of D, differs chart by chart. For this
reason it is better to define a variety using the language of C-algebras rather
than the formal definition by charts and transition functions, for instance see
[GuII90], Definition B16.

The following proposition is Theorem B14 of [GuII90]. We give its proof
because it is instructive.

Proposition 1.2. Let X ⊂ (Cn, 0) and Y ⊂ (Cm, 0) be the germs of two
affine varieties. Every holomorphic map τ : (X, 0) → (Y, 0) is induced by a
holomorphic map from (Cn, 0) to (Cm, 0).

Proof. We have a morphism τ ∗ : OY,0 → OX,0 of C-algebras. Since it sends
the units to units, it sends the maximal ideal MY,0 into the maximal ideal
MX,0 and so τ ∗(Mk

Y,0) ⊂ Mk
X,0, k = 1, 2, . . .. Let us denote the coordinate

functions of (Cm, 0) by y1, y2, . . . , ym (∈ MY,0) and define fi := τ ∗(yi). The
map f : (Cn, 0) → (Cm, 0) defined by f = (f1, f2, . . . , fm) is the desired map.
We consider the diagram

OCm,0
f∗→ OCn,0

j ↓ i ↓
OY,0

τ∗→ OX,0

(1.1)

where ı, j are the canonical maps. We observe that the maps

ı ◦ f ∗, τ ∗ ◦ j : OCm,0 → OX,0

coincide on polynomials in yi’s. For an arbitrary k ∈ N, every g ∈ OCm,0 can
be written as g1 + g2, where g1 is a polynomial in yi’s and g2 ∈Mk

Cm,0 (here
we have used Proposition 1.1,1). Therefore (ı ◦ f ∗ − τ ∗ ◦ j)(g) ∈ Mk

X,0 for
all k = 1, 2, . . .. Now Proposition 1.1, 3 implies that ı ◦ f ∗ = τ ∗ ◦ j.

IY,0 is a subset of the kernel of τ ∗ ◦ j and so of the kernel of ı ◦ f ∗. This
implies that whenever a g ∈ OCm,0 is zero on (Y, 0) then it is zero on f(X, 0)
and so f(X, 0) ⊂ (Y, 0). Since τ, f : X → Y induce the same map τ ∗ = f ∗,
the proof is finished.

For a germ of an analytic variety (X, x) we set

• T ∗
xX := MX,x/M2

X,x, the cotangent space of X at x;

• TxX := the dual of T ∗
xX. TxX is called the tangent space of X at x.

10
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Figure 1.2: Embedding dimension

A holomorphic map f : (X, x) → (Y, y) induces the map

T ∗
xf : T ∗

f(x)Y → T ∗
xX

It would be instructive to check that the definition of the tangent space in the
case where X is smooth coincides with the usual definition of tangent space
with differential of transition maps of X. In the singular case the bundle of
tangent spaces {TxX, x ∈ X} has a natural structure of an analytic variety
(see [GuII90] J) and so we can define in a natural way the notion of a vector
field in a variety.

Let X be a variety and x ∈ X. Using some chart around x we can identify
the germ of the singularity (X, x) as an analytic subspace of Cn, for some n.
The smallest integer n with this property is called the embedding dimension
of X at x and is denoted by embxX.

The following proposition can also be found in [GrRe84] p. 115.

Proposition 1.3. We have embxX = dimCT
∗
xX. More precisely, for a point

x ∈ X if x1, x2, . . . , xm ∈ MX,x form a basis for T ∗
xX then ψ : (X, x) → Cm

given by ψ = (x1, x2, . . . , xm) is a chart map around x whose associated affine
space is of dimension dimCT

∗
xX. Every two charts with the dimension of the

affine spaces equal to dimCT
∗
xX are equivalent and every chart has a subchart

whose associated affine space is of dimension m = dimCT
∗
xX.

Proof. Since our statement is local, we can assume that X ⊂ (Cn, 0) and
x = 0. Let λ : IX,0 → MCn,0/M2

Cn,0 be the canonical map. Its coim-
age (MCn,0/M2

Cn,0)/Im(λ) is isomorphic to MX,0/M2
X,0. Therefore if r :=
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dimIm(λ), m := dimCMX,0/M2
X,0 then r + m = n. Let f1, f2, . . . , fr ∈ IX,0

such that their image by λ form a C-basis for Im(λ). This means that the
linear part of the map f = (f1, f2, . . . , fr) has the maximum rank r. There-
fore f is a regular map and N = {x ∈ (Cn, 0) | f(x) = 0} is a smooth
complex submanifold of (Cn, 0) and dimCN = m. But we have also X ⊂ N .
We have proved that each chart has a subchart whose associated affine space
is of dimension m = dimT ∗

0 X.
Let us be given two charts for (X, 0) whose associated affine spaces are of

dimension T ∗
0 X. This means that (X, 0) is embedded in two different ways

in (Cm, 0), say X1, X2. By Proposition 1.2 the map induced by the identity
ı : (X1, 0) → (X2, 0) can be extended to a holomorphic map f : (Cm, 0) →
(Cm, 0). Using the argument of the previous paragraph and the dimension
condition we have

T ∗
0C

m = T ∗
0 Xi, i = 1, 2(1.2)

But we know that ı∗ : OX2,0 → OX1,0 is an isomorphism of C-algebras and
so it induces an isomorphism MX2,0/M2

X2,0 →MX1,0/M2
X1,0. The equality

(1.2) and the inverse mapping theorem imply that f is a biholomorphism.
Let x1, x2, . . . , xm ∈ MX,0 form a basis for T ∗

xX. The map ψ : (X, x) →
Cm given by ψ = (x1, x2, . . . , xm) is a holomorphic map. Take an arbitrary
embedding of (X, 0) in (Cm, 0). According to Proposition 1.2 ψ is obtained
by restriction of a holomorphic map f : (Cm, 0) → (Cm, 0). Since T ∗

0 X =
T ∗

0C
m, the map T ∗

0 f : T ∗
0C

m → T ∗
0C

m is an isomorphism and so f is a
biholomorphism. This proves that ψ is an embedding.

Proposition 1.4. For a holomorphic map f : (X, x) → (Y, y) if T ∗
xf is

surjective then f is an embedding.

Proof. Let σ be the canonical map MY,y → T ∗
y Y and n = dimCT

∗
xX. Choose

f1, f2, . . . , fn ∈MY,y such that their image by T ∗
xf ◦ σ form a basis of T ∗

xX.
The map

g = (f1, f2, . . . , fn) : (Y, 0) → (Cn, 0)

has the following property: g ◦ f is an embedding of X in (Cn, 0), for this see
the first part of Proposition 1.3. We identify X with its image by g ◦ f in
(Cn, 0). The set X1 := f(X) is an analytic variety because it is g−1(X). The
inverse of f : X → X1 is given by g.
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1.2 Stein varieties

Stein varieties share many properties with germs of varieties. In this section
we list the definition and some theorems about Stein varieties. For more
detailed study the reader is referred to [GrRe79, GuIII90].

Let K be a subset of a variety X, K̂X := {x ∈ X | |f(x)| ≤ supy∈K |f(y)| ∀f ∈
OX(X)} is called the (holomorphic) convex hull of K in X. Then, X is called
holomorphically convex if for any compact set K ⊂ X the convex hull K̂X is
also compact.

Theorem 1. (Definition) Let X be a holomorphically convex variety. X is
called Stein if one of the following equivalent condition is satisfied:

1. For any point x ∈ X there exist holomorphic functions f1, f2, . . . , fm on
X such that x is an isolated point of the set {x ∈ X | f1(x) = f2(x) =
· · · = fm(x) = 0};

2. Holomorphic functions on X separate the points of X, i.e. for any pair
of points x and y in X there exists a holomorphic function on X such
that f(x) 6= f(y);

3. X does not contain nowhere discrete compact analytic subsets;

The reader is referred to [GuIII90], Theorems 4M,5M,11M for the proof
of the equivalences.

Proposition 1.5. If U1 and U2 are two Stein open subsets of a variety X
then U1 ∩ U2 is Stein.

Proof. Since holomorphic functions separate points in U1, this is the case also
in every open subset of U1. Therefore it is enough to prove that U1 ∩ U2 is
holomorphically convex. For a compact set K ⊂ U1 ∩ U2 we have K̂U1∩U2 ⊂
K̂U1 ∩ K̂U2 . Since K̂U1∩U2 is closed and is a subset of a compact set, it is
compact.

Let X be a variety, S an analytic sheaf on X and U a covering of X by
open sets. The covering U is called acyclic with respect to S if U is locally
finite, i.e. each point of X lies in a finite number of open sets in U , and
Hµ(Ui1 ∩ · · · ∩ Uik ,S) = 0 for all Ui1 , . . . , Uik ∈ U and µ ≥ 1. Now let us
state two well-known facts

13



Theorem 2. (Leray lemma) Let U be an acyclic covering of a variety X.
There is a natural isomorphism Hµ(U ,S) ∼= Hµ(X,S).

Theorem 3. (Cartan’s Theorem B) For a Stein variety X and a coherent
analytic sheaf S on X we have Hµ(X,S) = 0 for µ ≥ 1.

A covering U of a variety X is called Stein if it is locally finite and each
open set in U is Stein.

Combining Proposition 1.5, Theorem B of Cartan we conclude that a
Stein covering is acyclic and so by Leray lemma Hµ(U ,S) ∼= Hµ(X,S) for
any coherent analytic sheaf S on X and µ ≥ 1.

1.3 Equivalence relations in varieties and

Remmert reduction theorem

Given a topological space T . We denote by CT the sheaf of continuous com-
plex valued functions on T . Let us be given a variety X and an equivalence
relation R on X. Let φ : X → X/R be the canonical map. We can define
the sheaf OX/R of C-algebras on X/R as follows: The data

U → {f ∈ CX/R(U) | f ◦ φ ∈ OX(φ−1(U))}, U an open subset of X/R

form the sheaf OX/R. In this section we want to answer the following ques-
tion: When (X/R,OX/R) is an analytic variety? By definition of OX/R if
(X/R,OX/R) is an analytic variety then φ : X → X/R is a holomorphic
mapping. Cartan’s article [Ca60] is the main source for this section.

Theorem 4. (Remmert proper mapping theorem [Re57]) If f is a proper
holomorphic mapping of a variety X into a variety Y then the image f(X)
is a subvariety of Y .

The direct image f∗S is defined as follows: f∗S is the sheaf associated to
the presheaf U → OX(f−1(U)), for open sets U in Y . One can define higher
order direct images Rµf∗S, µ ≥ 0 as the sheaf associated to the presheaf

U → Hµ(f−1(U),S)

Theorem 5. (Grauert direct image theorem [Gr60]) Let f be a proper holo-
morphic mapping of a variety X into a variety Y . If S is a coherent sheaf
on X then Rµf∗S, µ ≥ 0 is a coherent analytic sheaf on Y .
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The reader is referred to [GrRe84] for the proof of the above classical
theorems and their applications.

Let X,Y be two varieties and f : X → Y be a holomorphic map. We can
define the equivalence relation Rf in X as follows:

∀x, y ∈ X, xRfy if and only if f(x) = f(y)

Theorem 1.1. If f : X → Y is a proper holomorphic map then (X/Rf ,OX/Rf
)

is an analytic variety.

Proof. By Remmert proper mapping theorem we can assume that f is a
surjective map and then we can identify Y with X/Rf pointwise. By this
identification we denote OX/Rf

by S. The structural sheaf OY of Y is a
subsheaf of S. For a moment suppose that S is a coherent (OY -module)
sheaf. A part of the definition of a coherent sheaf is the following: For
every point y′ ∈ Y there is an open neighborhood U of y′ in Y and sections
s1, s2, . . . , sk of S(U) such that s1y, s2y, . . . , sky generate Sy as a OY,y-module
for all y ∈ U . Now by definition fi := si ◦ f ’s are holomorphic functions on
V := f−1(U). Define the map

g : V → U × Ck, g(x) = (f(x), f1(x), f2(x), . . . , fk(x))

g is a proper holomorphic mapping and so we can apply Remmert proper
mapping theorem and obtain a subvariety Z := g(V ) of U × Ck. Now the
map f : V → U decomposes into

V
g→ Z

h→ U

where h is the projection on the first coordinate and so it is a holomorphic
map. Since the fi’s are constant along the fibers of f , h is a one to one map.
Therefore we can identify Z with U through h. By this identification, one
can easily see that S on Z is nothing but the structural sheaf OZ of Z. We
have proved that (U,OX/Rf

|U) is isomorphic to the variety Z.
Now it remains to prove that S is a coherent sheaf on Y . Let T be

the analytic variety in X ×X given by the inverse image of the diagonal of
Y × Y by the map f × f : X ×X → Y × Y and πi : T → X, i = 1, 2 be the
projections on the first and second coordinates. We have a diagram

T
πi→ X

g ↘ ↓ f
Y

(1.3)
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where g = f ◦ π1 = f ◦ π2. Now the maps πi, i = 1, 2 induce the maps
π∗i : OX → OT and so the maps

αi∗ : f∗OX → g∗OT , i = 1, 2

and we have
S = ker(α1∗ − α2∗)

To prove this equality, take an open set U in Y and r a holomorphic function
on f−1(U). If r is constant on the fibers of f (in the case where f has
disconnected fibers this statement cannot be derived from the fact that r is
holomorphic and f is proper) then α1∗(r) = α2∗(r). If α1∗(r) = α2∗(r) then
the definition of T implies that r is constant on the fibers of f and so it is a
section of S on U .

By Grauert direct image theorem g∗OT and f∗OX are coherent sheaves
and so S is a coherent sheaf.

Now let us consider a family of proper holomorphic mappings fi : X →
Yi, i ∈ I, where I is an index set. One can define the equivalence relation RI

on X as follows:

∀x, y ∈ X, xRIy if and only if fi(x) = fi(y) ∀i ∈ I

In the case where I is finite the pair (X/RI ,OX/RI
) is an analytic variety

because RI = RfI
, where

fI := Πi∈Ifi : X → YI , YI := Πi∈IYi

For an infinite family of holomorphic functions we have the following propo-
sition:

Proposition 1.6. Let X and Yi, i ∈ I be varieties and fi : X → Yi, i ∈ I
holomorphic functions. For any compact subset K of X there is a finite
subset J ⊂ I such that RI and RJ induce the same relation on K.

Proof. For a finite set J ⊂ I let ∆J be the subset of X × X given by the
inverse image of the diagonal of YJ × YJ by fJ × fJ : X × X → YJ × YJ .
Each ∆J is a subvariety of X ×X and if J ⊂ J ′ be finite subsets of I then
∆J ′ ⊂ ∆J . Such a family of varieties becomes constant on a given compact
subset K̃ of X × X. Take a point p ∈ K̃. Since in the family ∆J the
dimension of ∆J around p cannot drop infinitely many times, our claim is
true locally. One can cover K̃ by finitely many small open sets and get the
assertion for K̃.
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The equivalence relation R on a variety is called a proper equivalence
relation if for any compact set K ⊂ X the K-saturated set, i.e. the union
of R-equivalence classes cutting K, is compact. For a proper equivalence
relation the set X/R is locally compact, X/R is Hausdorff and the continuous
map X → X/R is proper.

Theorem 1.2. (H. Cartan [Ca60]) Let R be a proper equivalence relation
on a variety X with the following property: Each point of x ∈ X/R has an
open neighborhood U such that OX/R(U) separates the points of U , i.e. for
any two points x1, x2 ∈ U there is f ∈ OX/R(U) such that f(x1) 6= f(x2).
Then (X/R,OX/R) is an analytic variety.

Proof. Let U ⊂ X/R be the open set introduced in the theorem. Since
OX/R(U) separates the points of U , the equivalence relation RI defined by
the family I = φ∗OX/R(U) in φ−1(U) is R. Therefore if U ′ is a relatively
compact open subset of U containing y, then by Proposition 1.6 and Theorem
1.1 (U ′,OX/R |U ′) is a variety.

Now as an application of Theorem 1.2 we state and prove Stein factor-
ization and Remmert reduction theorems.

Theorem 1.3. (Stein factorization) Let f : X → Y be a proper holomorphic
map of varieties. Then there exist a variety Z and holomorphic maps

X
g→ Z

h→ Y

such that 1. f = h ◦ g, 2. h is a finite map, 3. g∗OX = OZ. The triple
(h, g, Z) with properties 1,2 and 3 satisfies: 4. g has connected fibers 5. It
is unique up to biholomorphism, i.e. for any other triple (h′, g′, Z ′) with the
properties 1,2,3 of the theorem there is a biholomorphic map a : Z → Z ′ such
that g′ = a ◦ g and h′ = h ◦ a−1.

Proof. We define the equivalence relation R in X as follows: For all x, y ∈ X
we have xRy if and only if f(x) = f(y) and x and y are in the same connected
component of f−1(f(x)). A simple topological argument shows that R is a

proper equivalence relation. The map f decomposes into X
g→ X/R

h→ Y ,
where g and h are continuous maps. For a Stein small open set U in Y ,
OY (U) separates the point of U and h∗OY (U) ⊂ OX/R(h−1(U)). Therefore
R satisfies the condition of Theorem 1.2 and so Z := (X/R,OX/R) is a
variety and g is a holomorphic map. The map h is also holomorphic because
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h∗OY ⊂ OZ . Since f is proper, a fiber of f has finitely many connected
components and so h is a finite map. The condition 3 is true by definition of
OX/R.

Assume that g−1(x) is not connected and has two connected components
A and B. In an open neighborhood of g−1(x) we can define a two valued
function which takes 1 in a neighborhood of A and 0 in a neighborhood of B.
This function is not a pullback of any holomorphic function in a neighborhood
of x in Y , which is a contradiction with 3. The property 1,2 and 3 imply that
the points of Z ′ are in one to one correspondence with connected components
of the fibers of f . Therefore we have a one to one map a : Z → Z ′. It can
be easily seen that a is the desired map for 5.

Remark: Let f : X → Y be a surjective proper holomorphic map of
varieties with f∗OX = OY . The argument which we used for 4. of Theorem
1.3 implies that f has connected fibers. For any open set U ⊂ Y and a
holomorphic function r in φ−1(U) there exists a holomorphic function s in U
such that r = s ◦ f .

Theorem 1.4. (Remmert reduction [Re56]) Let X be a holomorphically
convex space. Then there exist a Stein space Y and a proper surjective
holomorphic map φ : X → Y such that 1. φ∗OX = OY . Moreover the
fact that Y is Stein and 1 imply 2. φ has connected fibers 3. The map
φ∗ : OY (Y ) → OX(X) is an isomorphism 4. The pair (φ, Y ) is unique up to
biholomorphism, i.e. for any other pair (φ′, Y ′) with Y ′ Stein and property
1, there is a biholomorphism a : Y → Y ′ such that φ′ = a ◦ φ.

Proof. Let R = RI be the relation in X defined by the family I = OX(X).
For a compact set K in X the set ∪x∈KRx is closed and contained in the
convex hull of K in X. Since X is holomorphically convex, this means that R
is a proper equivalence relation. It satisfies also the condition of Theorem 1.2.
Therefore (X/R,OX/R) is a variety. By definition X/R is holomorphically
convex and holomorphic functions on X/R separate the points of X/R. This
means that Y := X/R is a Stein variety. The canonical map φ : X → Y is the
desired map. It is enough to prove that φ has connected fibers. If a fiber of φ
has two connected components A and B then we can use Stein factorization
and obtain a holomorphic function f on X such that f(A) 6= f(B). But
this means that A and B are two distinct equivalence classes of R which is a
contradiction.
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For any other pair (φ′, Y ′) the existence of a bijective map a : Y → Y ′

follows from the fact that φ and φ′ have the same fibers. The property 1.
and remark after Theorem 1.3 proves that a is a biholomorphism.

1.4 Neighborhood notations

Let A be a subvariety of an analytic variety X. We define:

• M := MA, the subsheaf of OX consisting of elements that vanish at
A;

• A(∗) := OX |A, A(∗) is called the neighborhood sheaf of A;

• A(ν) := OX/Mν |A, A(ν) is called the ν-neighborhood of A. A(1) is the
structural sheaf of A;

• Qν := Mν/Mν+1 |A, Qν is a OA-module sheaf;

• M(ν) := M/Mν |A.

• For any analytic sheaf S on X

res(S) := S/S.M

is called the structural restriction of S on A. Note that the sheaf theory
restriction | has nothing to do with the complex structure of A but this
restriction has. For instance the structural restriction of OX to A isOA.
When there is no danger of confusion we will write the same symbol
S instead of res(S). The sheaf res(S) has a natural structure of OA-
module. Moreover if S is a coherent OX-module sheaf then res(S) is
a coherent OA-module sheaf;

• S(ν) := res(S) ⊗OA
Qν , for an analytic sheaf S on X. There is a

natural homomorphism SMν → S(ν) for which we have the short
exact sequence

0 → SMν+1 → SMν → S(ν) → 0

• For any vector bundle (linear space) F → X, F ∗ denotes its dual and
F the sheaf of holomorphic sections of F ;
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• T := TX, the sheaf of holomorphic vector fields in X (sections of the
tangent bundle TX);

• TA, the subsheaf of T consisting of vector fields tangent to A;

• N := TX|A/TA the normal bundle of A in X.

The reader is referred to [GuII90] I,J for the notion of tangent space of a
variety. Specially it is proved there that the bundle of tangent spaces of a
variety has a canonical structure of an analytic variety.

We have

nil(A(ν)) := {x ∈ A(ν) | ∃n ∈ N, xn = 0} = M/Mν(1.4)

Qν−1 = {x ∈ A(ν) | x.nil(A(ν)) = 0}(1.5)

and a canonical short exact sequence

0 → Qν−1 → A(ν) → A(ν−1) → 0

There are natural isomorphisms

Q1
∼= N∗, T /TA

∼= (Q1)
∗

Qν
∼= Q1 ⊗Q1 ⊗ · · · ⊗ Q1(ν times), Qν

∼= (N∗)ν

Let us be given two embeddings A ↪→ X, A ↪→ X ′. If we denote the im-
age of the first embedding by A and the second by A′ we have a natural
biholomorphism

φ : A′ → A

which gives us an isomorphism

φ(1) : A(1) → A′
(1)(1.6)

This isomorphism is fixed from now on. We always assume that the pairs
(X, A) and (X ′, A′) have the same local structure, i.e. for any a′ ∈ A′ and
its corresponding a = φ(a′) ∈ A there is a local biholomorphism

(X ′, A′, a′) → (X, A, a)

Notations related to A′ will be written by adding ′ to the notations of A.
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1.5 Formal and finite neighborhoods

The natural inclusions

· · · ⊂ Mν+1 ⊂Mν ⊂Mν−1 ⊂ · · · ⊂ M

give us the natural chain of canonical functions:

· · · π→ A(ν+1)
π→ A(ν)

π→ A(ν−1)
π→ · · · π→ A(1)

We define
A(∞) := lim∞←νA(ν)

In other words, every element of A(∞) is given by a sequence

. . . , fν+1, fν , fν−1, . . . , f1 fv ∈ A(ν)

π(fν+1) = fν

The C-algebra structure of A(∞) is defined naturally. A(∞) is called the formal
neighborhood of A or the formal completion of X along A. There exists a
natural canonical homomorphism

A(∗) → A(ν)

which extends to the inclusion

A(∗) ↪→ A(∞)

Define in the set
Ñ = {1, 2, 3, · · · ,∞, ∗}

the order
1 < 2 < 3 < · · · < ∞ < ∗

we conclude that for any pair µ, ν ∈ Ñ, µ ≤ ν there exists a natural homo-
morphism

π : A(ν) → A(µ)

If no confusion is possible, we will not use any symbol for the homomorphisms
considered above. Let us analyze the global sections of the above sheaves.
Every global section of A(∗) is a holomorphic function in a neighborhood of
A. Let g be a global section of A(ν), ν < ∞. We can choose a collection of
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local charts {Uα}α∈I in X covering A and holomorphic functions gα in Uα

such that g = gα in the sheaf A(ν). This means that

gα − gβ ∈Mν |Uα∩Uβ
, α, β ∈ I

Conversely, every collection of {gα}α∈I satisfying the above conditions defines
a global section of A(ν).

Let µ, ν ∈ Ñ, µ ≤ ν. We say that the homomorphism φ(ν) : A(ν) → A′
(ν)

induces the homomorphism φ(µ) : A(µ) → A′
(µ), if the following diagram is

commutative:

A(ν)

φ(ν)→ A′
(ν)

↓ ↓
A(µ)

φ(µ)→ A′
(µ)

(1.7)

We also say that A(ν) → A′
(ν) extends A(µ) → A′

(µ).
Q1 is the set of nilpotent elements of A(2) and so every homomorphism

(isomorphism) φ(2) : A(2) → A′
(2) induces a homomorphism (isomorphism)

φ() : Q1 → Q1. We also say that φ(2) extends φ().

Proposition 1.7. Every homomorphism (isomorphism) φ(ν) : A(ν) → A′
(ν), 2 ≤

ν < ∞ induces natural homomorphisms (isomorphisms)

A(µ) → A′
(µ), µ ≤ ν

Proof. It is enough to prove our claim for µ = ν − 1. For an arbitrary
µ one can repeat the argument for the pair ν − 1, ν − 2 and so on. The
kernel of π : A(ν) → A(ν−1) is Qν−1 and Qν−1 is has the property (1.5).
Therefore φ(ν) sendsQν−1 toQν′−1. This implies that φ(ν) induces the desired
map A(ν)/Qν−1 → A′

(ν)/Qν′−1, because A(ν−1) = A(ν)/Qν−1 and A′
(ν−1) =

A′
(ν)/Qν′−1.

The homomorphism φ(∞) : A(∞) → A′
(∞) is called convergent if it takes

A(∗) into A′
(∗).

The following proposition gives us the local information for analyzing a
homomorphism φ(ν) : A(ν) → A′

(ν), ν ∈ Ñ.

Proposition 1.8. Let a ∈ A and U be a small neighborhood of a in A. Let
also a′ = φ−1(a) and U ′ = φ−1(U). The following statements are true:

1. Every homomorphism (isomorphism) φ(∗) : A(∗) |U→ A′
(∗) |U ′ which

induces an isomorphism A(1) |U→ A′
(1) |U ′ is induced by a unique holo-

morphic (biholomorphic) map (X ′, A′, a′) → (X, A, a);
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2. Every homomorphism φ(∗) : A(∗) |U→ A′
(∗) |U ′ which induces isomor-

phisms A(1) |U→ A′
(1) |U ′ and A(2) |U→ A′

(2) |U ′ is an isomorphism
also;

3. Every homomorphism (isomorphism) φ(ν) : A(ν) |U→ A′
(ν) |U ′ , 2 ≤ ν <

∞ is induced by a homomorphism (isomorphism) A(∗) |U→ A′
(∗) |U ′.

In the case where a is a regular point of both A and X, the proof of
this proposition is easy. The proof in general uses simple properties of local
rings and their homomorphisms. The reader is referred to [Nag62] for more
informations about local ring theory.

Proof. By Proposition 1.2 the homomorphism φ(∗) : A(∗)a → A′
(∗)a′ is induced

by a unique map (X ′, a′) → (X, a). We must prove that this map takes A′

to A. Since φ(∗) induces an isomorphism A(1) |U→ A′
(1) |U ′ , it takes the ideal

of A in X to the ideal of A′ in X ′. This implies that (X ′, A′, a′) → (X, A, a).
The second and third statements have a completely algebraic nature. To

prove them we use the following notations

R := A(∗)a
∼= A′

(∗)a′ , I := MA,a,∼= MA′,a′ , τ := φ(∗), τν := φ(ν), ν ∈ N
( Note that (X,A) and (X ′, A′) have the same local structure). Let us prove
the second statement. Since τ2 : R/I2 → R/I2 is an isomorphism and the
nilpotent set of R/I2 is the set I/I2, we have I = τ(I) + I2. Let us prove
that τ(I) = I. Put

R′ := I/τ(I)

We have IR′ = R′. Let a1, a2, . . . , ar be a minimal set of generators for R′.
We have ar ∈ R′ = IR′ and so

ar =
r∑

i=1

siai, si ∈ I

or (1− sr)ar lies in the ideal generated by a1, a2, . . . , ar−1. Since 1− sr is a
holomorphic function in (X, a) and its value in a is 1 it is invertible and so
we get a contradiction with this fact that no proper subset of a1, a2, . . . , ar

generates R′ (The used argument is similar to the proof of Nakayama’s lemma
(see [GuII90] A, Lemma 9)).

We have proved that τ(I) = I. Since τ1 : R/I → R/I is an isomorphism
and τ(I) = I, τ is surjective. Now let us prove that τ is injective. Define

Rn := {x ∈ R | τn(x) = 0}
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τ induces a map from Rn to itself and the image of this map contains Rn−1

Since R is a Noetherian ring and we have an increasing sequence of ideals
· · · ⊂ Rn ⊂ Rn+1 ⊂ · · ·, there is a natural number n0 such that Rn0 =
Rn0+1 = · · · = R∗. Now τ∗ = τ |R∗ is a surjective map from R∗ to R∗. But
by definition of R∗, τ∗ must be zero. Therefore R∗ = 0 and so R1 = 0. This
means that τ is injective.

Now let us prove the third statement. Let x1, x2, . . . , xn form a basis for
the vector space MR

M2
R
, where MR denotes the maximal ideal of R. We have

seen in Proposition 1.3 that (x1, x2, . . . , xn) form an embedding of (X, a)
in (Cn, 0). We can choose elements f1, f2, . . . , fn in R such that τν([xi]) =
[fi], i = 1, 2, . . . , n, where [.] denotes the equivalence class. Now it is easy to
verify that the homomorphism

τ : R → R

f(x1, x2, . . . , xn) → f(f1, f2, . . . , fn)

induces the desired map. If τν is an isomorphism then by the second part of
the proposition τ is also an isomorphism.

Now using Proposition 1.8 we can find geometrical interpretations of
homomorphisms A(µ) → A′

(µ), µ ∈ Ñ as follows

1. There exists an isomorphism φ(∗) : A(∗) → A′
(∗) if and only if there exists

a biholomorphism of some neighborhood of A into some neighborhood
of A′ in X ′ extending φ : A → A′;

2. Any isomorphism φ(ν) : A(ν) → A′
(ν), 1 < ν ∈ N is given by a col-

lection of biholomorphisms (Uα, A) → (U ′
α, A′), where {Uα}α∈I ( resp.

{U ′
α}α∈I) is an open covering of A (resp. A′) in X (resp. X ′), and such

that φα ◦ φ−1
β is the identity up to holomorphic functions vanishing on

A of order ν;

The first statement justifies the name neighborhood sheaf adopted for A(∗).
Unfortunately an isomorphism

φ(∞) : A(∞) → A′
(∞)(1.8)

may not be given by a collection of isomorphisms φ(ν) : A(ν) → A′
(ν), ν ∈ N

such that for ν ≥ µ, φ(ν) extends φ(µ). However, the φ(∞) which we will
construct in the next section will have this property. For this reason when
we talk about an isomorphism (1.8) we assume that it induces isomorphisms
in finite neighborhoods.
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1.6 Obstructions to formal isomorphism

In this section we will identify the obstructions for the existence of an isomor-
phism between formal neighborhoods of A and A′. We formulate our main
problem in this section as follows: Let A′ be the image of another embedding
of A in a manifold X ′.

1. Given an isomorphism φ : Q1 → Q′
1. Under which conditions is it

induced by an isomorphism φ(2) : A(2) → A′
(2)?

2. Given an isomorphism φ(ν) : A(ν) → A′
(ν), ν ≥ 2. Under which condi-

tions does it extend to φ(ν+1) : A(ν+1) → A′
(ν+1)?

In other words we want to describe the germ of an embedding A ↪→ X with
minimal data. The first elementary data of an embedding is its normal bundle
(when A is not smooth the sheaf Q1 = M/M2 plays the role of the normal
bundle). The other data of an embedding are its finite neighborhoods.

Note that if all such conditions in the above questions are satisfied for A
and A′, we get only an isomorphism of formal neighborhoods of A and A′.
The applied methods are quite formal and can be found in [Gr62, HiRo64,
La71]. In what follows, every homomorphism A(ν) → A′

(ν), ν ∈ Ñ which we
consider will be an extension of the fixed isomorphism (1.6) (Note that A(1)

is the structural sheaf of A).
Let a ∈ A and a′ = φ−1(a) be its corresponding point in A′. The stalk of

the sheaf A(ν), ν ∈ Ñ at a is denoted by A(ν)a
. Any isomorphism

φ(ν)a
: A(ν)a

→ A′
(ν)a′

(1.9)

determines an isomorphism between A(ν) |Ua and A′
(ν) |Ua′ , where Ua and

Ua′ are two open neighborhood of a and a′ in A and A′, respectively (see
Proposition 1.8).

The following proposition gives us the local solutions of our problem:

Proposition 1.9. Any isomorphism φ(ν)a
: A(ν)a

→ A′
(ν)a′

is induced by an
isomorphism

φ(∗)a : A(∗)a → A(∗)a′(1.10)

and hence extends to

φ(ν+1)a
: A(ν+1)a

→ A(ν+1)a′(1.11)
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Proof. The above proposition is the third part of Proposition 1.8 in another
form. Note that the isomorphism φ(∗) : A∗,a → A′

∗,a′ is not unique.

In the introduction of [GrRe84] we find the following statement of H.
Cartan: la notion de faisceau s’introduit parce qu’il s’agit de passer de données
locales à l’etude de propriétés globales. Like many other examples in complex
analysis, the obstructions to glue the local solutions lie in a first cohomology
group of a sheaf over A. The precise identification of that sheaf and its first
cohomology group is our main objective in this section.

Now, let us be given an isomorphism φ(ν) : A(ν) → A′
(ν). We want to

extend φ(ν) to φ(ν+1) : A(ν+1) → A′
(ν+1), i.e. to find an isomorphism φ(ν+1) :

A(ν+1) → A′
(ν+1) such that the following diagram is commutative:

A(ν+1)

φ(ν+1)→ A′
(ν+1)

↓ ↓
A(ν)

φ(ν)→ A(ν)

(1.12)

Proposition 1.9 gives us the local solutions

A(ν+1)a

φ(ν+1)a→ A′
(ν+1)a′↓ ↓

A(ν)a

φ(ν)a→ A′
(ν)a′

(1.13)

where A(ν)a
is the stalk of the sheaf A(ν) over the point a. Now, cover A

with small open sets for which we have the diagrams of the type (1.13).
Combining two diagrams in the intersection of neighborhoods of the points
a and b we get:

A(ν+1)a,b

φ(ν+1)a,b→ A(ν+1)a,b

↓ ↓
A(ν)a,b

id→ A(ν)a,b

(1.14)

where
φ(ν+1)a,b

= φ(ν+1)
−1
a
◦ φ(ν+1)b

(1.15)

Note that we have used the notation φ(ν+1)a,b
instead of φ(ν+1) |Ua∩Ub

, φ(ν+1)a

instead of φ(ν+1) |Ua and so on. The above transition elements are obstruction
to our extension problem. Now it is natural to define the following sheaf:
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Aut(ν) is the sheaf of isomorphisms φ(ν+1) : A(ν+1) → A(ν+1) inducing the
identity in A(ν), i.e. the following diagram is commutative

A(ν+1)

φ(ν+1)→ A(ν+1)

↓ ↓
A(ν)

id→ A(ν)

(1.16)

Later in Proposition 1.11 we will see that Aut(ν) is a sheaf of Abelian groups.
Now the data in (1.15) form an element of

H1(A,Aut(ν))

The elements of H1(A,Aut(ν)) are obstructions to the extension problem.
It is clear that the case ν = 1 needs an special treatment. A(1) is the

structural sheaf of A and the condition H1(A,Aut(1)) = 0 means that any
two embeddings of A have the same 2-neighborhood and in particular have
isomorphic M/M2’s. This implies that the normal bundles of A and A′ are
isomorphic! Therefore, the definition of Aut(1) is not useful. We modify this
definition as follows:

Aut(1) is the sheaf of isomorphisms φ(2) : A(2) → A(2) inducing the iden-
tity on M/M2 and for which the following diagram is commutative

A(2)

φ(2)→ A(2)

↓ ↓
A(1)

id→ A(1)

(1.17)

Proposition 1.10. If H1(A,Aut(ν)) = 0 then any isomorphism

1. φ(ν) : A(ν) → A′
(ν) if ν > 1

2. φ() : Q1 → Q′
1 if ν = 1

extends to an isomorphism φ(ν+1) : A(ν+1) → A′
(ν+1).

Proof. The obstruction to the above extension is obtained by diagram (1.14)
and so is an element of H1(A,Aut(ν)).

Now we have to identify Aut(ν) and especially we have to verify when
H1(A,Aut(ν)) = 0 is satisfied.
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Proposition 1.11. Suppose that X is a smooth variety. For ν ≥ 2 we have

Aut(ν) ∼= T (ν)(:= T ⊗OA
Qν)

where T is the sheaf of holomorphic vector fields in X (sections of the tangent
bundle of X); for the case ν = 1 we have

Aut(1) ∼= TA(1)(:= TA ⊗OA
Q1)

where TA is the sheaf of holomorphic vector fields in X tangent to A.

Proof. Let us introduce the function which will be our candidate for the
desired isomorphisms. First consider the case ν ≥ 2.

∗ : T (ν) → Aut(ν)

For any ψ ∈ T (ν) define

β, β′ : A(ν+1) → A(ν+1)

β(f) = f + ψ.df

β′(f) = f − ψ.df

we have

β ◦ β′(f) = f − ψ.df + ψd(f − ψ.df) = f − ψ.d(ψ.df) = f mod M2ν−1

We have 2ν − 1 ≥ ν + 1 and so

β ◦ β′(f) = f mod Mν+1(1.18)

In other words β′ is the inverse function of β. We define

∗(ψ) = β

Now it is enough to prove that ∗ is the desired isomorphism. Since X is
nonsingular ∗ is injective. Let β ∈ Aut(ν). We write

β(f)− f = ψ′(f)

ψ′(f) = 0 mod Mν and so ψ′ ∈ Hom(A(ν+1),Mν/Mν+1). Composing with
A(∗) → A(ν+1) and without change in notations we can assume

ψ′ ∈ Hom(A(∗),Mν/Mν+1)
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Let z1, z2, . . . , zn be local coordinates. Define

ψ(dzi) = ψ′(zi)

Then ψ ∈ T (ν) and the mapping β → ψ is the inverse of ∗.
The case ν = 1 is the same as previous one. We need to substitute TA for

T to get the congruency (1.18).

How can we calculate the cohomology groups H1(A, T (ν))? To do this,
we break T (ν) into two other simple sheaves as follows:
There is a natural short exact sequence

0 → TA → T → Q∗
1 → 0

By tensorial multiplication over OA with Qν , we have

0 → TA(ν) → T (ν) → Qν−1 → 0

This gives us the long exact sequence

. . . → H1(A, TA(ν)) → H1(A, T (ν)) → H1(A,Qν−1) → . . .

We summarize the above arguments in the following proposition:

Theorem 1.5. If H1(A, TA(ν)) = 0 and H1(A,Qν−1) = 0 then H1(A, T (ν)) =
0 and so any isomorphism

φ(ν) : A(ν) → A′
(ν) if ν > 1

φ : Q1 → Q′
1 if ν = 1

extends to an isomorphism φ(ν+1) : A(ν+1) → A′
(ν+1).

In the case of A a Riemann surface embedded in a two dimensional mani-
fold we can substitute the conditions H1(A, TA(ν)) = 0 and H1(A,Qν−1) = 0
by some numerical ones. The Serre duality will be used for this purpose.

Theorem 6. (Serre Duality) Let A be a complex manifold of complex di-
mension n and V a holomorphic vector bundle over A. Then there exists a
natural C-isomorphism

Hq(A, Ωp ⊗ V ) ∼= (Hn−q(A, Ωn−p ⊗ V ∗))∗

where Ωp = T ∗A ∧ T ∗A ∧ · · · ∧ T ∗A p times.
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For a proof of this theorem the reader is referred to [Ra65]. From now
on we do not use the line under bundles (it denotes the sheaf of sections),
for instance instead of H1(A, Ω1) we write H1(A, Ω1). Let A be a Riemann
surface. Putting p = 0, q = 1 we have

H1(A, V ) ∼= (H0(A, Ω1 ⊗ V ∗))∗

Now
H1(A,Qν−1) = H1(A, (N∗)ν−1)) = (H0(A, Ω1 ⊗N v−1))∗

Ω1 ⊗N v−1 has no global holomorphic section if

c(Ω1 ⊗N ν−1) = 2g − 2 + (ν − 1)A.A < 0(1.19)

In the same way

H1(A, TA(ν)) = (H0(A, Ω1 ⊗ (TA)∗ ⊗N ν))∗ = (H0(A, Ω1 ⊗ Ω1 ⊗N ν))∗ = 0

if
c(Ω1 ⊗ Ω1 ⊗N ν) = 2(2g − 2) + νA.A < 0(1.20)

Finally we conclude that

Theorem 1.6. Let A be a Riemann surface of genus g embedded in a two
dimensional manifold X. Suppose that

• A.A < 0 if g = 0;

• A.A < 2(2− 2g) if g ≥ 1

Then the embedding A ↪→ X is formally equivalent with A′ ↪→ X ′, where the
normal bundle of A′ in X ′ equals the normal bundle of A in X.

Proof. Since the normal bundle of A′ in X ′ equals the normal bundle of A in
X, there exists an isomorphism φ() : Q1 → Q′

1. To extend this isomorphism
to a formal isomorphism of the neighborhoods of A and A′ in X and X ′,
respectively, we must have the inequalities (1.20) for all ν ≥ 1 and (1.19) for
all ν > 1 satisfied. This implies exactly A.A < 0 if g = 0 and A.A < 2(2−2g)
if g ≥ 1.
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1.7 Construction of embedded Riemann sur-

faces

In this section we discuss various ways for constructing an embedding of a
Riemann surface A in a two dimensional manifold. The positive embeddings
are abundant. They can be obtained by hyperplane sections of two dimen-
sional algebraic manifolds. The first natural way to get a negative embedding
is the following:

Let A be a Riemann surface and A ↪→ X a positive embedding of A in a
two dimensional manifold, i.e. A.A ≥ 0. Performing a blow up in a point x of
A gives us another embedding of A in a two dimensional manifold with self-
intersection A.A−1. In fact, the new normal bundle of A is N.L−x, where N
is the normal bundle of A in X and L−x is the line bundle associated to the
divisor −x. Performing more blow ups in the points of A gives us negative
embeddings of A with arbitrary self-intersection.

We have learned another way of changing the normal bundle of an embed-
ding from P. Sad which goes as follows. The basic idea comes from [CMS02].

Fix a germ of an embedding (X,A) (for instance we can suppose X = A×
C). Let S be the sheaf of local biholomorphisms (X, A, x) → (X, A, x), x ∈ A
sending A to A identically. S is clearly a non-Abelian sheaf. We define an
equivalence relation in H1(A,S) as follows: For F = {Fij}, F ′ = {F ′

ij} ∈
H1(A,S), F ∼ F ′ if and only if there exists a collection of biholomorphisms
{gi} such that

F ′
ij = gi ◦ Fij ◦ g−1

j

We define
I(X) = H1(A,S)/ ∼

To each F ∈ I(X) we can associate the line bundle LF = {det(DFij |A)}.
Let {ψi} be a collection of chart maps for the germ (X, A) and F =

{Fij} ∈ H1(A,S). The new collection of transition functions

ψi ◦ Fij ◦ ψ−1
j

defines an embedding of A with the normal bundle LF N . We can see easily
that two F, F ′ ∈ H1(A,S) give us the same embedding if and only if F ∼ F ′.
Therefore we have

Proposition 1.12. I(X) is the moduli space of germs of all embeddings of
A in two dimensional manifolds. Moreover the line bundle of the embedding
associated to F ∈ I(X) is LF .N .
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Now let X = N be a linear bundle. Consider another line bundle M over
A with a meromorphic section s of M . There is defined the biholomorphism

δ : N → N.M

v → v.s

which is well-defined out of the fibers passing through the zeros and poles of
s. Now we can define

∆ : I(N) → I(NM)

{Fij} → {δ ◦ Fij ◦ δ−1}
The line bundles associated to F and ∆(F ) are equal but the normal bundle
of the embedding associated to F is LF N and to ∆(F ) is LF NM .

Another interesting method which can give us embedded Riemann sur-
faces is the action of groups. Consider a subgroup G of Diff(C2, 0) and
denote by G0 its linear group. After a blow up in 0 ∈ C2 we can consider
G as a group which acts in a neighborhood of P1, the projective line of the
blow up. Now we assume that G0 is a Kleinian group which acts on P1. If U0

is a region in P1 such that A = U0/G0 is a compact Riemann surface then it
would be interesting to find a region U in a neighborhood of U0 in the blow
up space such that (U/G, A) is an embedding of A. For more information
about Kleinian groups the reader is referred to [Ma88] and [Le66].

Complementary notes

1. The complementary material to section 1.1 can be Weierstrass preparation and
division theorems, Theorem 4A,5A of [GuII90]. One can include also sections A,B
of [GuIII90] for the notion of sheaf and cohomology of a sheaf.

2. Section I,J of [GuII90] are devoted to the tangent space of an analytic variety and
can be included in section 1.1. Particularly Theorem 16I claims that the both
notions of tangent space there and here are the same. This will be useful for section
1.6 if one wants to follow the arguments in a general case of an embedded A in a
variety X. One can also include the notion of linear spaces over varieties from the
survey in [GPR94] chapter 2 section 3.

3. One can use [Gri66] in section 1.6 for more extension problems such as the exten-
sion of fiber bundles, holomorphic maps and cohomology elements.

4. Section M of [GuIII90] covers various equivalent definitions of Stein spaces and
fill the proof of the equivalent definitions of a Stein variety stated in the beginning
of section 1.2. Cartan’s B theorem and preliminary materials on Cech cohomology
can be found there.
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5. There are many contributions to complex analysis which are concerned with the
following problem: When the quotient space of an equivalence relation in a complex
space is again a complex space. Grauert’s direct image theorem plays an important
role in these works. For a more detailed study in this direction we recommend the
article [Gr83] and its references.

6. It would be nice if the proofs of Remmert proper mapping theorem and Grauert
direct image theorem would be discussed along the study of this text. These proofs
and more applications of these classical theorems can be found in [GrRe84]

33



Chapter 2

Pseudoconvex Domains

The notions of plurisubharmonic functions and pseudoconvex domains ap-
peared in complex analysis after E.E. Levi discovered around 1910 that the
boundary of a domain of holomorphy in Cn satisfies certain conditions of
pseudoconvexity. The question of whether conditions on the boundary might
determine a domain of holomorphy became known as the Levi problem. The
first definitions were made by K. Oka [Ok42] and P. Lelong [Le45]. The
reader is referred to T. Peternell survey in [GPR94] Chapter V and [GuI90]
K-R for more history and developments not treated here. In this text we
will consider only the C2 category of plurisubharmonic functions. We start
this chapter by introducing the notion of strongly convex functions. They
just carry the convexity information of their fibers and contain the class of
strongly plurisubharmonic functions. Strongly convex functions are easy to
handle and this is the main reason we have chosen them instead of strongly
plurisubharmonic functions. We also define the notion of convex function
parallel to plurisubharmonic functions. But this seems to be useless, since
they do not satisfy the maximum principle!

In this chapter for topological spaces A and B we write A ⊂⊂ B to denote
that A is relatively compact in B, i.e. the closure of A in B is compact in B.

2.1 Strongly convex functions

Let ψ : (Cn, p) → R be a C2-function. Recall that

∂ψ

∂zj

=
1

2
(
∂ψ

∂xj

− i
∂ψ

∂yj

),
∂ψ

∂z̄j

=
1

2
(
∂ψ

∂xj

+ i
∂ψ

∂yj

)
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The Levi form of ψ at p ∈ Cn is defined by

Lp(ψ)(v) :=
n∑

i,j=1

∂2ψ

∂zi∂z̄j

(p)viv̄j, v = (v1, v2, . . . , vn) ∈ Cn

The following simple equalities will be useful in forthcoming arguments.

Lp(hψ)(v) = h(p)Lp(ψ)(v) + ψ(p)Lp(h)(v) + 2Re(Dpψ(v).D̄ph(v))(2.1)

Lp(φ ◦ ψ) = φ′′(ψ(p))|Dψ|2 + φ′(ψ(p))Lp(ψ)

Lp(− log ψ)(v) =
1

ψ(p)
(
|Dpψ(v)|2

ψ(p)
− Lp(ψ)(v))

where ψ, h : (Cn, p) → R are two C2 functions and φ is a R-valued C2 function
defined in a neighborhood of the image of ψ.

A C2 function ψ : (Cn, p) → R is called convex (resp. strongly convex)
at the point p in the sense of Levi if

Dpψ(v) = 0 ⇒ Lp(ψ)(v) ≥ 0 ( resp. > 0), ∀v ∈ Cn, v 6= 0(2.2)

Practically in the above definition we will assume the additional condition
v ∈ S := {v ∈ Cn | |v| = 1} to obtain a compact space for the parameter
v. This does not change the definition. Let G ⊂ Cn be an open domain and
ψ : G → R a C2 function. We say that ψ is convex (resp. strongly convex)
in G if it is convex (resp. strongly convex) at each point p ∈ G.

Note that in the one dimensional case a C2 function G → R, G ⊂ C is
(strongly) convex if

∂ψ

∂z
(p) = 0 ⇒ ∂2ψ

∂z∂z̄
(p) ≥ 0 ( resp. > 0), ∀p ∈ G

ψ is strongly convex if and only if it has no local maximum in G. Un-
fortunately we cannot say a similar statement for ψ convex. For example
ψ(x + iy) = −(x4 + y4) has a local maximum at 0 and is a convex function.
From now on we work only with strongly convex functions.

Let ψ : (Cn, p) → R, ψ(p) = 0 be strongly convex at p and h : (Cn, p) →
R+ be a C2 function. Using (2.1) one can easily check that hψ is also strongly
convex at p. The following propositions reveal some important properties of
strongly convex functions.

35



Proposition 2.1. If ψ : (Cn, p) → R is strongly convex at p then it is strongly
convex in a neighborhood of p in Cn.

Proof. The projection on the second coordinate π : Y → (Cn, p), where Y :=
{(v, x) ∈ S × (Cn, p) | Dxψ(v) = 0} is a continuous proper map. Now L.(.) :
Y → R is continuous and strictly positive on the fiber π−1(p). Therefore it
must be strictly positive on the fibers π−1(x) for x in a neighborhood of p in
Cn.

Proposition 2.2. Let ψ be a strongly convex function in a neighborhood of
a compact set K in Cn. There exists an ε > 0 such that if h is a real-valued
C2 function on a neighborhood of K in Cn and the absolute values of its first
and second derivatives on this neighborhood are less than ε, then ψ + h is
strongly convex in a neighborhood of K in Cn.

Proof. L.(.) is strictly positive on Y = {(v, x) ∈ S × K | Dxψ(v) = 0}.
Therefore it is positive in a compact neighborhood U of Y in S × Cn. Since
the projection on the second coordinate is a continuous proper map, we can
choose a neighborhood U ′ of K in Cn such that for all (v, x) ∈ S × U ′ if
Dψx(v) = 0 then (v, x) ∈ U . We take ε1 such that if for (v, x) ∈ S × U ′

we have |Dxψ(v)| < ε1 then (v, x) ∈ U for all x ∈ U ′. We take also ε2 =

min(v,x)∈U
Lx(ψ)(v)

(
∑
|vi|)2 . Now U ′ and ε := min{ε1, ε2} are the desired objects. If

Dx(ψ + h)(v) = 0 then |Dxψ(v)| = |Dxh(v)| < ε|v| = ε and so (v, x) ∈ U .
Now

Lx(ψ + h)(v) ≥ Lx(ψ)− |Lx(h)| ≥ Lx(ψ)− ε
∑ |vi||v̄j| =

Lx(ψ)− ε(
∑ |vi|)2 > 0, (v, x) ∈ U

Now it is an easy exercise to verify that: 1. The pull-back of a strongly
convex function by a biholomorphic map is a strongly convex function. This
statement is not true when we replace biholomorphic with holomorphic, for
instance take a constant function which is of course a holomorphic function
2. The restriction of a strongly convex function ψ : (Cn, 0) → R to Cm =
{(z1, z2, . . . , zm, 0, . . . , 0) ∈ (Cn, 0)} is a strongly convex function.

We are in a position to extend the notion of strongly convex functions to
varieties. Let X be an analytic variety and ψ : X → R a continuous function.
Then ψ is called strongly convex if for every local chart φ : U → V ⊂ D ⊂ Cn,
U an open subset of X and V a closed analytic subset of the open subset
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Figure 2.1: Strongly pseudoconvex domain

D of some Cn, there exists a strongly convex function ψ̌ on D such that
ψ = ψ̌ ◦ φ. Now the mentioned facts and Proposition 1.3 imply that the
above definition is independent of the choice of a local chart.

Proposition 2.3. (maximum principle) Let (X, p) be a germ of a variety
and X 6= p. There does not exist a strongly convex function ψ : (X, p) → R
such that ψ(y) ≤ ψ(p), ∀y ∈ (X, p)

Proof. We take a holomorphic function γ : (C, 0) → (X, p).The pullback ψ◦γ
is a strongly convex function and hence does not take maximum at 0.

The above statement can be reformulated as follows: If ψ : (X, p) →
R, ψ(p) = 0, is a strongly convex function then there do not exist non discrete
analytic varieties Y such that Y ⊂ {ψ(x) ≤ 0}.

2.2 Strongly pseudoconvex domains

Let X be an analytic variety and G a relatively compact open subset of X.
We say that G is strongly pseudoconvex if for every point p in the boundary
of G there exist a neighborhood Up of p and a real valued strongly convex
C2-function ψ defined in Up such that

G ∩ Up = {x ∈ Up | ψ(x) < 0}

(see Figure 2.1). The next proposition shows that instead of local C2-
functions ψ, we can choose a global one.
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Proposition 2.4. Let G ⊂ X be a relatively compact strongly pseudoconvex
domain. There exists a neighborhood U of ∂G and a strongly convex C2-
function ψ in U such that

U ∩G = {x ∈ U | ψ(x) < 0}
Proof. Let p ∈ ∂G. We have a strongly convex function ψ : Up → R defined
in a neighborhood Up of p such that Up ∩ G = {x ∈ U | ψ(x) < 0}. Let
h : Up → R+ be a C2-function on Up and V an open subset of Up such that
p ∈ V ⊂⊂ supp(h) ⊂⊂ Up. Since ∂G is compact, we can cover it by a finite
number of such V ‘s, say ∂G ⊂ ∪r

i=1Vi. Let hi be the associated function to
Vi as above. We claim that the function

ψ =
r∑

i=1

hiψi

is the desired function. In fact ψ restricted to ∂G is zero and is strictly
negative in U ∩G (because ψi are negative and at least one of them is strictly
positive at each point). At each point p ∈ ∂G one of the hiψi is strongly
convex and all the others are convex functions. This implies that the above
sum is strongly convex at p ∈ ∂G. By Proposition 2.1 ψ is strongly convex
in a neighborhood of p in X. Since ∂G is compact, a finite union of these
open sets gives us the desired neighborhood.

Proposition 2.5. Let G ⊂ X be a relatively compact strongly pseudocon-
vex domain and ψ be the function defined in a neighborhood U of ∂G as
in Proposition 2.4. There exists an ε such that if the values of a C2-
function h defined in U and its first and second derivatives are less than
ε then {x ∈ U | ψ(x) < h(x)} is strongly pseudoconvex.

Proof. This is a direct consequence of Proposition 2.2 and 2.4.

Theorem 2.1. Let G ⊂ X be a relatively compact strongly pseudoconvex
domain. Then there exists a compact set K ⊂ G containing all nowhere
discrete analytic compact subsets of G.

Proof. Let ψ be as in Proposition 2.4 and

U1 = {x ∈ U | −ε < ψ(x) < 0}
for a small ε. We claim that K = G−U1 is the desired compact set. Let A be
an analytic nowhere discrete compact subset of G and A 6⊂ K or equivalently
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A ∩ U1 is not empty. Then ψ has a maximum greater than −ε in A ∩ U1.
By Proposition 2.3 this is a contradiction with the fact that ψ is strongly
convex.

If K is analytic, compact and nowhere discrete we say that K is maximal.

2.3 Plurisubharmonic functions

A C2-function ψ : (Cn, p) → R is called plurisubharmonic (resp. strongly
plurisubharmonic) at p if its Levi form at p is positive semidefinite (resp.
positive definite), i.e.

Lp(ψ)(v) :=
n∑

i,j=1

∂2ψ

∂zi∂z̄j

(p)viv̄j ≥ 0 (resp. > 0) ∀v = (v1, v2, · · · , vn) 6= 0 ∈ Cn,

Let G ⊂ Cn be an open domain and ψ : G → R a C2 function. We say
that ψ is plurisubharmonic (resp. strongly plurisubharmonic) in G if it is
plurisubharmonic (resp. strongly plurisubharmonic) at each point p ∈ G. A
strongly plurisubharmonic function at p satisfies (2.2) and so it is a strongly
convex function.

The most simple strongly plurisubharmonic function is ψ(z) = |z|2 =∑n
i=1 ziz̄j, ψ : Cn → R+. For a holomorphic function f on an open domain

D ⊂ Cn the function log|f | is plurisubharmonic. In fact

2
∂2log|f |
∂z̄i∂zj

=
∂

∂f
∂zj

f

∂z̄i

= 0

Propositions 2.1, 2.2 are valid when we replace strongly convex with
strongly plurisubharmonic. The proofs go as follows: Since S := {v ∈ Cn |
|v| = 1} is compact, the map Lp(ψ) : S → R has a minimum > 0. The func-

tions ∂2ψ
∂zi∂z̄j

(x) are continuous in x and so in a small neighborhood of p Lx(ψ)

reaches its minimum at a positive real number. This proves Proposition 2.1.
We take ε = minp∈U,v∈S

Lp(ψ)(v)

(
∑
|vi|)2 , where U is a compact neighborhood of

K in which ψ is strongly plurisubharmonic. In U we have

Lp(ψ + h)(v) ≥ Lp(ψ)− | Lp(h) |≥ Lp(ψ)− ε
∑ | vi || v̄j |=

Lp(ψ)− ε(
∑ | vi |)2 > 0, p ∈ U, v ∈ S
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Proposition 2.6. Let ψ : (Cn, p) → R with ψ(p) = 0 be a strongly convex
function. There exists a C2 function h : (Cn, p) → R+ such that hψ is strongly
plurisubharmonic.

Proof. Let h be a C∞ function in (Cn, p) such that Dph = Dpψ, h(p) = ε > 0.
We claim that for an ε enough small hψ is strongly plurisubharmonic at p.
Using the formula (2.1) we have: Lp(hψ)(v) = εLp(ψ)(v) + 2 | Dpψ(v) |2.
Let S := {v || v |= 1} and H = S ∩ {v ∈ Cn | Dpψ(v) = 0}. By hypothesis
Lp(hψ)(.) is strictly positive in H and hence in a compact neighborhood K1

of H in S. Let K2 be a compact subset of S such that S = K1∪K2 and K2∩H
is empty. On K2, A = Lp(ψ)(.)

2|Dpψ(.)|2 is a well-defined function with a minimum c.

If c is positive then Lp(hψ) is already positive definite. If c is negative we can
take 0 < ε < −1

c
and conclude that hψ is strongly plurisubharmonic at p and

so by the discussion before Proposition 2.6 it is strongly plurisubharmonic
in a neighborhood of p in Cn.

Note that the above argument in dimension n = 1 implies that an smooth
point of the boundary of an open domain in C is given by the zero locus of
a plurisubharmonic function.

Proposition 2.7. Let ψ : (Cn, p) → R with ψ(p) = 0 be a strongly plurisub-
harmonic function and h : (Cn, p) → R+ be a C2 function such that Dp(h) =
Dp(ψ). Then hψ is a strongly plurisubharmonic function in a neighborhood
of p in Cn.

Proof. Using the hypothesis and 2.1 we get Lp(hψ)(v) = h(p)Lp(ψ)(v) +
2 | Dpψ(v) |2. Therefore hψ is strongly plurisubharmonic at p and so by
the discussion before Proposition 2.6 it is strongly plurisubharmonic in a
neighborhood of p in Cn.

Proposition 2.4 is also true when we replace strongly convex with strongly
plurisubharmonic. This proposition is stated in [Gr62] p. 338 Satz 2 and
[GPR94] p. 228. In the proof by Grauert one reads: Wie man leicht
nachrechnet, ist the Levi form L(φ∗) in z positiv definit. This easy calculation
in Narasimahn’s paper [Na62] p. 204 and Laufer’s book [La71] Lemma 4.12
takes form as a complicated argument. This was one of the main reasons for
us to prefer strongly convex functions instead of plurisubharmonic functions.

Let X be an analytic variety and ψ : X → R a continuous function.
We say that ψ is plurisubharmonic (resp. strongly plurisubharmonic) if for
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every local chart φ : U → V ⊂ D ⊂ Cn, U an open subset of X and V
a closed analytic subset of the open subset D of some Cn, there exists a
plurisubharmonic (resp. strongly plurisubharmonic) function ψ̌ on D such
that ψ = ψ̌ ◦ φ.

The fact that the pull-back by a holomorphic (biholomorphic) function
sends (strongly) plurisubharmonic functions to (strongly) plurisubharmonic
functions and Proposition 1.3 imply that the above definition is independent
of the choice of a local chart. When X is a an open domain in the complex
plane C then plurisubharmonic functions on X are precisely C2 subharmonic
functions on X(see [GuI90], J Theorem 8). For the following proposition
see Figure 2.3.

Proposition 2.8. Let ψ : (X, p) → R, ψ(p) = 0 be a strongly convex function.
Then there exists a holomorphic function f defined in a neighborhood of p in
X such that

{f = 0} ∩ {x ∈ X | ψ(x) < 0} = {p}
Proof. The theorem for (Cn, p) implies easily the general case (X, p). So we
assume that X = Cn. By Proposition 2.6 we can assume that ψ is strongly
plurisubharmonic. The Taylor series of ψ at p reads

ψ(z) = 2Re(
∑

i

∂ψ

∂zi

(p)zi +
∑

ij

∂2ψ

∂zi∂zj

(p)zizj) + Lp(ψ)(z) + o(|z − ψ(p)|2)

Now f(z) :=
∑

i
∂ψ
∂zi

(p)zi +
∑

ij
∂2ψ

∂zi∂zj
(p)zizj is the desired function.

The proof of the above proposition tells us something more: we can choose
a neighborhood U of p in X such that the function f associated to the point
x ∈ ψ−1(0) ∩ U is defined in U . We are going to use this fact in the proof of
the following proposition.

Proposition 2.9. Let ψ : (X, p) → R with ψ(p) = 0 be strongly convex at p.
There is a Stein neighborhood X ′ of p in X such that U := {x ∈ X ′ | ψ(x) <
0} is Stein.

Proof. Let X ′ be a Stein neighborhood of p such that for all p ∈ ψ−1(0)∩X ′

there is a holomorphic function f defined on X ′ with the property mentioned
in Proposition 2.8. Then X ′ is the desired Stein open set. Since X ′ can be
embedded in some affine space Cn, it is enough to prove that U is holomor-
phically convex. Let K be a compact subset of U . We have K̂U ⊂ K̂X′ and
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K̂X′ is compact in X ′. Therefore if K̂U is not compact in U , its closure in
X ′ must have a point p ∈ ψ−1(0). Let f be the holomorphic function in X ′

associated to the point p as in Proposition 2.8. The function 1
f

is a holomor-

phic function on U such that limx→p| 1f | = +∞. But | 1
f
(y)| ≤ maxx∈K | 1f (x)|

for all y ∈ K̂U . This leads to a contradiction.

Since the intersection of two Stein open sets is Stein again (see Proposition
1.5) the assertion of the above proposition is true for Stein open sets smaller
than X ′.

Proposition 2.10. Let (z, zn+1) be the coordinate system of (Cn×C, (p, pn+1)),
ψ : (Cn, p) → (0, 1) be a C2 function and 0 < ε ≤ 1. The function
|zn+1|2 − εψ(z) is strongly convex at (p, pn+1), |pn+1|2 = εψ(p) 6= 0 if and
only if − log ψ is strongly plurisubharmonic at p.

We have stated this proposition with ε in order to have also the following

statement: If − log ψ is strongly plurisubharmonic then |zn+1|2
ψ

is a strongly

convex function at any point with zn+1 6= 0. We can replace |zn+1|2 − εψ(z)
by |zn+1| − εψ(z) in the above proposition.

Proof. First let us suppose that − log ψ is strongly plurisubharmonic. Let
(v, vn+1) ∈ Cn+1 such that

D(p,pn+1)(|zn+1|2 − εψ)(v, vn+1) = p̄n+1vn+1 − εDpψ(v) = 0

Then

Lp(|zn+1|2 − εψ)(v, vn+1) = |vn+1|2 − εLp(ψ)(v) =
ε2|Dpψ(v)|2
|pn+1|2 − εLp(ψ)(v)

= ε(
|Dpψ(v)|2

ψ(p)
− Lp(ψ)(v)) = εψ(p)Lp(− log ψ)(v) > 0

Now let us prove the inverse. Let |zn+1|2 − εψ(z) be strongly convex at

(p, pn+1) with εψ(p) = |pn+1|2 6= 0. Fix v ∈ Cn and take vn+1 = εDp(ψ)(v)
p̄n+1

. We
have

Lp(− log ψ)(v) =
1

εψ(p)
Lp(|zn+1|2 − ψ(z))(v, vn+1) > 0
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2.4 Cohomological properties of pseudocon-

vex domains

Let us state an important theorem concerning the cohomology of strongly
pseudoconvex domains with values in a coherent sheaf.

Theorem 2.2. ([Gr58]) Let G be a relatively compact strongly pseudoconvex
domain in a complex variety X and S a coherent analytic sheaf on G. Then
the cohomology groups Hµ(G,S) are finite dimensional vector spaces for µ >
0.

This section is devoted to the proof of the above theorem. We will use
the C2-function ψ defined in a neighborhood U of ∂G such that G ∩ U =
{x ∈ U | ψ(x) < 0} and we assume that X = U ∪ G. If U ′ is a small Stein
open set in U then according to Proposition 2.9, the intersection U ′ ∩ G
is again Stein. Let us state two lemmas whose proofs are just topological
manipulations.

Lemma 2.1. Consider the situation of Theorem 2.2. If U ′ is a small Stein
open set in X then the restriction map r : Hµ(G ∪ U ′,S) → Hµ(G,S) is
surjective for µ > 0.

Proof. Consider an arbitrary Stein covering U of G containing the Stein open
set G ∩ U ′. We have Zµ(G,U) = Zµ(G ∪ U ′,U ∪ {U ′}). This is due to the
fact that the intersection of at least two open sets in U ∪ {U ′} is a subset
of G. Since U ′ ∩ G is Stein, U ∪ {U} is a Stein covering of G ∪ U ′. Leray
Lemma finishes the proof.

Lemma 2.2. Consider the situation of Theorem 2.2. To each Stein covering
U = {Ui | i = 1, 2, . . . , r} of Ḡ in X one can find a strongly pseudoconvex
domain G′ such that 1. G ⊂⊂ G′ ⊂⊂ ∪r

i=1Ui 2. The restriction map r :
Hµ(G′,S) → Hµ(G,S) is surjective for µ > 0.

Proof. Take Ki ⊂⊂ ∂G ∩ Ui such that ∂G = ∪r
i=1Ki. According to Propo-

sition 2.2 in each Ui there is εi > 0 such that if hi is a C2 function on Ui

and the absolute value of hi and its first and second derivatives are less than
εi then {x ∈ Ui | ψ(x) < hi(x)} is strongly pseudoconvex at each point of
(ψ − hi)

−1(0) in a neighborhood of Ki in Ui. We take ε = minεi

r
and in each

chart Ui we take a C2 function hi such that
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Figure 2.2: The idea of the Proof of Lemma 2.2

1. hi has a compact support in Ui;

2. hi restricted to Ki is strictly positive;

3. the absolute value of hi and its first and second derivatives are less than
ε.

Define

Dj := {x ∈ U | ψ(x) <
j∑

i=1

hi(x)} ∪G, j = 1, 2, . . . , r, D0 := G

We have D0 ⊂ D1 ⊂ · · · ⊂ Dr. By the choice of ε and by Proposition 2.2
we can conclude that Di is a strongly pseudoconvex domain. Since hi is
strictly positive on Ki and Ki’s cover ∂G, we have G ⊂⊂ Dr. We claim
that G′ := Dr satisfies our lemma. We must check that the restriction
map r : Hµ(Dr,S) → Hµ(G,S) is surjective. It is enough to check that
r : Hµ(Di,S) → Hµ(Di−1,S) is surjective for all i = 1, 2, . . . , r. Since the
support of hi is in Ui, we have Di = Di−1 ∪ (Di ∩ Ui). By Proposition 2.9
Di ∩ Ui is Stein. Lemma 2.1 finishes the proof.

Let F1 and F2 be two Fréchet spaces (see [GuI90] F). Recall that a
linear mapping between two topological vector spaces is called compact (or
completely continuous) if some open neighborhood of the origin in the domain
is mapped to a relatively compact set in the range. A theorem of L. Schwarz
says

Theorem 7. (L. Schwarz) Let u, v : F1 → F2 be two continuous linear maps.
If u is compact and v is surjective then the C-vector space F2/Im(u + v) is
finite dimensional.
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A proof of this statement can be found in [GuRo] App. B 12.
Proof of Theorem 2.2. Let U = {Ui, i = 1, 2, . . . , r} and U ′ = {U ′

i , i =
1, 2, . . . , r} be two Stein coverings of Ḡ such that Ui ⊂⊂ U ′

i and U ∩ G is
a Stein covering of G. By Lemma 2.2, we have a strongly pseudoconvex
domain G′ such that G ⊂⊂ G′ ⊂⊂ ∪r

i=1Ui and U ′ ∩ G′,U ∩ G′ are Stein
coverings of G′. We consider the maps

u, v : Zµ(U ′,S)⊕ Cµ−1(U ,S) → Zµ(U ,S)

u(a, b) = r(a) + δ(b), v(a, b) = −r(a)

where r is the restriction and δ is the coboundary map. Since Hµ(G′,S) =
Hµ(U ′ ∩G′,S) and Hµ(G,S) = Hµ(U ∩G,S), the map v is surjective. The
following theorem finishes the proof.

Theorem 8. Let U ⊂⊂ U ′ be two open domains in a variety X and S be
a coherent analytic sheaf on X. Then one can endow S(U ′) and S(U) with
Fréchet space structures such that the restriction r : S(U ′) → S(U) is a
compact mapping.

In the case S = OX this is Montel’s Theorem (see [GuI90]). For an
arbitrary coherent sheaf we refer to [KK83] Lemma 62.6.

The tools used in the proof of Theorem 2.2 provide us with a proof of the
following theorem due to Serre and Cartan (see [Ma68]).

Theorem 2.3. Let A be a compact variety and S be a coherent sheaf on A.
Then Hµ(A,S), µ > 0, are finite dimensional C-vector spaces.

Now we are in a position to prove that a strongly convex domain is holo-
morphically convex.

Theorem 2.4. (R. Narasimhan [Na60] ). Let G ⊂ X be a relatively compact
strongly pseudoconvex domain. Then G is holomorphically convex.

Proof. We prove that for every boundary point p ∈ ∂G one can find a holo-
morphic function g on G such that limx→p|g| = +∞. This implies that G
is holomorphically convex. Let K be a compact subset of G and p ∈ ∂G be
a boundary point . For all y ∈ K̂ we have |g(y)| ≤ maxx∈K |g(x)| < +∞.
This means that K̂ cannot have p in its closure. Since G itself is relatively
compact in X, we conclude that K̂ is compact.
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According to Proposition 2.8 for every boundary point p ∈ ∂G one can
find a holomorphic function f defined in a neighborhood of p in X such that
{f = 0} ∩ Ḡ = {p}. Let U be a Stein open set around p. One can choose a
strongly pseudoconvex domain G′ enough near G such that D := {f = 0}∩G′

is closed in G′ and is relatively compact in U . Now U ∩G′ is a Stein open set
in G′ and one can choose a Stein covering U = {Ui, i = 1, 2, . . . , r} of G′ such
that U1 := U ∩ G′ and Ui, i = 2, 3, . . . , r do not intersect D. Put fi = 0 if
i = 2, . . . , r and f1 = 1

fm . We have the cocycle δm := {fi− fj} ∈ H1(U ,S) =

H1(G′,S). But by Theorem 2.2 this vector space is finite dimensional.
Therefore there exist mi ∈ N, ci ∈ C, i = 1, 2, . . . , s such that

∑
ciδmi

= 0.
This means that there is a meromorphic function g on G′ with poles along D
and such that in a neighborhood of p g−∑s

i=1
ci

fmi
is holomorphic. Therefore

g is not holomorphic at p. Thus g |G is the desired holomorphic function in
G.

2.5 Exceptional varieties

Let G ⊂ X be a relatively compact strongly pseudoconvex domain. By
Theorem 2.4 G is holomorphically convex, and so, we can apply Remmert
reduction theorem to G and obtain a Stein space Y and a holomorphic map
φ : G → Y .

Theorem 2.5. Let G ⊂ X be a relatively compact strongly pseudoconvex
domain and φ : G → Y its Remmert reduction. Then the degeneracy set

A = {x ∈ G | x is not an isolated point of φ−1(φ(x))}
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is the maximal compact analytic nowhere discrete subset of G.

Proof. The subsets φ−1◦φ(x), x ∈ G, are connected, and so by the definition,
A is nowhere discrete. We prove that A is a closed analytic set. The set
R = {(x1, x2) ∈ X×X | φ(x1) = φ(x2)} is an analytic set and the projection
on the first coordinate π : R → X is analytic. By [Gr83] Proposition 1 p.138
we know that

Ã = {x ∈ R | dim(π−1π(x)) > 0}
is a closed analytic set. Since A = π(Ã) and π is proper, A is also an analytic
closed set. By Theorem 2.4, there exists a compact set K which contains all
compact analytic nowhere discrete subsets of G. For any x ∈ A, φ−1φ(x)
is connected, and so by definition, is compact nowhere discrete subset of A.
This implies that φ−1φ(x) ⊂ A and hence A ⊂ K. Since A is a closed set in
the compact set K, A is compact.

The Remmert reduction φ : G → Y is proper and A is compact so φ(A)
is a compact analytic subset of Y . But Y is Stein, and so, φ(A) is discrete
set and A is a union of compact connected analytic subsets A1, A2, . . . , Ar

of G. In this case Remmert reduction substitute each Ai with a point. This
leads us to the definition of exceptional sets.

Let X be an analytic variety and A be a compact connected subvariety of
X. A is exceptional in X if there exists an analytic variety X ′ and a proper
surjective holomorphic map f : X → X ′ such that

• φ(A) = {p} is a single point;

• φ : X − A → X ′ − {p} is an analytic isomorphism;

• For small neighborhoods U ′ and U of p and A, respectively, OX′(U ′) →
OX(U) is an isomorphism.

We also say that A can be blown down to a point or is contractible or
negatively embedded.

Theorem 2.6. (Grauert,[Gr62] Satz 5 p. 340) Let A be a compact connected
analytic subset of X. Then A is an exceptional variety if and only if it has
a strongly pseudoconvex neighborhood G in X such that A is the maximal
compact analytic subset of G.
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Proof. Let us first suppose that A is exceptional. The analytic variety X ′

obtained by definition can be embedded in a (Cn, 0) (definition of analytic
sets). The neighborhood of p in X ′ given by

U = {x ∈ X ′ | z1(x)z1(x)+ · · ·+zn(x)zn(x) < ε}, ε a small positive number

is a pseudoconvex domain. Now it is easy to see that G = φ−1(U) is the
desired open neighborhood of A.

Now let us suppose that A has a strongly pseudoconvex neighborhood
G in X such that A is the maximal compact analytic subset of G. Let
φ : G → X ′ be the Remmert reduction of G. We can see easily that A is the
degeneracy set of φ and φ(A) is a single point p. Since the fibers φ−1φ(x) are
connected, φ is one to one map between G−A and X ′−{p}. Combining this
and the property of φ in Remmert reduction theorem we can conclude that
φ induces an isomorphism of stalks and so it is a biholomorphism between
G − A and X ′ − {p}. The third condition of an exceptional variety can be
read directly from Remmert reduction theorem.

Complementary notes

1. Theorem 2.9 can be generalized as follows: Let X be a Stein variety and ψ a real
valued C2 function such that U := {x ∈ X | ψ(x) < 0} is convex at each point x
with ψ(x) = 0 then U is a Stein variety. The proof can be found in [Na60] section
4 corollary 1.

2. Let ψ : (Cn, 0) → R be a strongly plurisubharmonic function. One may try to show
that being strongly convex is an intrinsic property of the boundary point p ∈ ∂U ,
where U = {x ∈ (Cn, p) | ψ(x) < ψ(p)} and then say that U is strongly convex
at p ∈ ∂U without mentioning ψ. The argument is the following: Let ψ′ be a C2-
function in (Cn, p) such that ψ′−1(ψ′(p)) = ψ−1(ψ(p)) and Dψ′ is not identically
zero on ψ−1(ψ(p)) and is positive on U . If for a C2 function h

ψ − ψ(p) = h.(ψ′ − ψ′(p))(2.3)

then ψ′ is also strongly convex at p. We have Dψp(v) = h(p)Dψ′p(v) and so if
Dψ′p(v) = 0 then Dψp(v) = 0. By (2.1) and the fact that ψ is strongly convex
we have Lp(ψ)(v) = h(p)Lp(ψ′)(v) > 0 if Dψ′p(v) = 0. This implies that h(p) > 0
(because ψ′ is positive in U) and ψ′ is strongly convex at p. If ψ−1(p) is a smooth
real submanifold of (Cn, p) and of codimension one then ψ′ is regular at p and one
can obtain the condition (2.3) using the Taylor series of ψ in the variable ψ′−ψ′(p)
(see [GuI90] p. 189). But it is not clear whether (2.3) is true always or not.

3. The reader who is interested to know the proof of Proposition 2.4 with a global
plurisubharmonic ψ can look at the articles [Ri68, Wa72]. Note that we have
an alternative proof for exceptional varieties using the notion of strongly convex
functions and Remmert reduction, see Theorem 2.6.
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4. The Riemann extension theorems are valid for upper semi-continuous strongly
plurisubharmonic functions (see [GuII90], K for definition). The precise state-
ment and proof can be recovered from [Gr56].

5. In the proof of Theorem 2.2 we have used: For an small open relatively compact set
U of a variety and a coherent sheaf S on X, H0(U,S) has a canonical structure of
a Fréchet space. The construction of such a canonical structure is done [GrRe79]
Chapter VI, Section 3, [Ma68] Chapter 4 and [KK83] chapter 6.

6. When A is a union of curves in a two dimensional manifold we have a numerical
criterion for contractablity of A.
Theorem: Let A be a compact connected one dimensional subvariety of a manifold
X. Suppose that A contains only normal crossing singularities. Then A is excep-
tional in X if and only if the intersection matrix S = [Ai.Aj ] of A in X is negative
definite, where A = ∪Ai is the decomposition of A into irreducible components.
This is Theorem 4.9 of [La71].
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Chapter 3

Vanishing theorems

The aim of this section is to introduce vanishing theorems in complex analysis
and algebraic geometry. Theorem 3.5 is the main theorem in this chapter. We
will follow Grauert’s article [Gr62], but our proof for Theorem 3.5 works for a
general exceptional variety while Grauert’s argument works for codimension
one exceptional varieties in manifolds. We use the same letter i for the
complex number

√−1 and for indexing; being clear in the text the distinction
between them.

3.1 Positive and negative bundles

Let us start the section with the definition of a negative vector bundle. The
vector bundle V → A over a complex manifold A is called negative (in the
sense of Grauert) if its zero section is an exceptional variety in V . Naturally
V → A is called positive if its dual is negative.

There is another definition in algebraic geometry for a positive line bundle
as follows: The line bundle L → A over a complex manifold is called positive
(in the sense of Kodaira) if its Chern class c(L) in the de Rham cohomology
H2(A,C) is represented by a positive real (1, 1)-form ω, i.e. ωp(v, v) > 0 for
any point p ∈ A and non-zero vector v in the real tangent space at p. We
can write the form ω in a local chart as follows:

ω = i(
n∑

i,j=1

gijdzi ∧ dzj)

where gij’s are real functions and gij = gji. For more information about this
definition of positive line bundles the reader is referred to [GrHa78].

50



Theorem 3.1. A line bundle L over A is positive in the sense of Kodaira if
and only if there exist a covering {Ui, i ∈ I} of A by open sets and a collection
of C2 functions pi : Ui → R+, i ∈ I such that

1. − log pi is strongly plurisubharmonic for any i ∈ I;

2. pi = |hij|pj, where L is given by {hij} ∈ H1(A,O∗) in the covering.

Proof. In Cech cohomology the Chern class of L is obtained by δ{fij} ∈
H2(A,Z), where fij := 1

2πi
log hij (write the long exact sequence associated to

0 → Z→ O e2πi.→ O∗ → 0 and recall the construction of the coboundary map
δ : H1(A,O∗) → H2(A,Z)). Now let us look at the diagram which produces
an isomorphism between Cech cohomology and de Rham cohomology (see
[BT82] Chapter 2).

0 → Ω2(A) → ΠiΩ
2(Ui) → ΠijΩ

2(Uij) → ΠijkΩ
2(Uijk)

↑ ↑ ↑ ↑
0 → Ω1(A) → ΠiΩ

1(Ui) → ΠijΩ
1(Uij) → ΠijkΩ

1(Uijk)
↑ ↑ ↑ ↑

0 → Ω0(A) → ΠiΩ
0(Ui) → ΠijΩ

0(Uij) → ΠijkΩ
0(Uijk)

↑ ↑ ↑
C0(U ,C) → C1(U ,C) → C2(U ,C)

↑ ↑ ↑
0 0 0

where the right arrow maps are δ’s and the up arrow maps are d’s. We
start with {fij} ∈ ΠijΩ

0(Uij). We have δ{fij} ∈ C2(U ,C). The equality
dδ{fij} = 0 implies δ(d{fij}) = 0 and so there is a collection {ωi} of 1-forms
such that

δ{ωi} = ∂{fij}(3.1)

The collection {dωi} defines a global closed form ω which represents the
Chern class c(L) in the de Rham cohomology. Now if ωi = ω10

i + ω01
i is the

decomposition of ωi into (1, 0) and (0, 1) forms then δω01
i = 0 and so {ω01

i }
form a global form and so it does not contribute to the cohomology class
of ω and we can assume that ωi’s are (1, 0)-forms. Now ω = ∂ωi + ∂̄ωi is
the decomposition of ω into (2, 0) and (1, 1) forms. The form ω represents a
real class in H2(M,C) and it has not (0, 2) part, therefore the (2, 0)-part of ω
must be dα, where α is a global 1-form on A, and there exists a global 1-form
β such that ω− (dβ + dα) is a real form. We replace {ωi} with {ωi−α− β}
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and so we can assume that ω is a (1, 1) real form. Since ∂ωi is a (2, 0) form,
this means that ∂ω = 0 and so ωi = ∂qi. Therefore we have ω = ∂̄∂qi. Now
ω = ω̄ = −∂̄∂q̄i. This implies ∂̄∂Reqi = 0 and so we replace qi with iIm(qi)
and we assume that qi is pure imaginary. Now by (3.1) and ωi = ∂qi we
have:

∂({δqi − fij}) = 0 ⇒ δqi − fij = ḡij

where gij are holomorphic functions. Since δqi is pure imaginary and fij, gij

are holomorphic, we have gij = −fij and δqi = 2iIm(fij) and so

e−πiqi

e−πiqj
= e−2πIm(fij) = |hij|

Now define pi = e−πiqi . Of course when ω is positive definite then the pi’s
are the desired functions. If we have pi’s with the properties 1 and 2 then
we define qi = log pi

−πi
and {∂̄∂qi} form a global form which is the Chern class

of L in the de Rham cohomology and is positive definite.

Theorem 3.2. The line bundle L → A is positive in the sense of Kodaira if
and only if it is positive in the sense of Grauert.

Proof. Let L be positive in the sense of Kodaira. We have the pi’s given by
the Theorem 3.1. Let zi : L−1 |Ui

→ C be a coordinate system along the

fibers of L−1 in Ui. We have zi = hijzj and so |zi|
pi

form a global function in a

neighborhood of the zero section of L−1. By Proposition 2.10 this function
is strongly convex and so we have a strongly pseudoconvex neighborhood of
the zero section.

Now suppose that the zero section has a strongly pseudoconvex neigh-
borhood. By Theorem 2.6 one can find a C∞ function ψ defined in a
neighborhood U of the zero section in L such that

1. ψ is strongly plurisubharmonic in U − A;

2. ψ ≥ 0 and ψ−1(0) = A.

Take V = ∩0≤θ<2πeiθU . V is an open neighborhood of the zero section and
is invariant under multiplication by eiθ, 0 ≤ θ < 2π. Define

ψ′(z) =
∫ 2π

0
ψ(eiθz)dθ, z ∈ V
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Since Lz(ψ
′)(v) =

∫ 2π
0 e2iθLzeiθ(ψ)(v)dθ, ψ′ is also a strongly plurisubhar-

monic function. The intersection of Vε := {z ∈ V | ψ′(z) < ε} with each fiber
is a disk with the center in the zero section. Therefore if zi is a non zero local
section of L defined in an open neighborhood Ui in the zero section then Vε

in Ui is given by {z ∈ L | |z|
|zi| < pi(π(z))}, where pi is the radius of Vε ∩ Lp

and π : L → A is the bundle map. Now the functions pi are the desired
functions. (By Theorem 2.6 pi is strongly plurisubharmonic).

Let A be an exceptional variety in the variety X with normal bundle
N . Recall that N has a natural structure of a linear space. Furthermore we
assume that N is negative, i.e. the zero section of N is an exceptional variety
in N .

A holomorphic function defined in an open set in N is called homogeneous
of degree ν along the fibers of N if in a trivialization chart (x, z) ∈ U×Cn it is
a homogeneous polynomial of degree ν in the variable z. Since the transition
functions are linear in z, this definition does not depend on the chart we
choose. Let Hν be the sheaf of homogeneous functions of degree ν along the
fibers of N . The sheaf Hν has a natural structure of a π∗OA-module, where
π : N → A is the bundle map. The sheaf π∗OA is the sheaf of holomorphic
functions in N which are constant along the fibers of N . We have a natural
isomorphism

Hν |A →̃Mν/Mν+1

obtained by the inclusion. Let S be a coherent sheaf defined in a strongly
pseudoconvex neighborhood of A in N . (If we have a coherent sheaf Š on A
then the pre image of Š by the bundle map π : N → A is a coherent sheaf S
on N).

One can define the homogeneous subsheaf of degree ν of S as

Sν := S ⊗π∗OA
Hν

The structural restriction of Sν to A is isomorphic to S(ν) := res(S) ⊗OA

Mν/Mν+1, where res(S) = S/MS.

Theorem 3.3. (Grauert, [Gr62], Hilfssatz 1, p. 344) Let S be a coherent
analytic sheaf on a neighborhood of the zero section of the normal bundle N .
There exists a positive integer ν0 such that

Hµ(A,S(ν)) = 0, µ ≥ 1, ν ≥ ν0
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Proof. Theorem 2.2 is the key of the proof of this theorem. We have the
maps

a : S → S1 ⊕ S2 ⊕ · · · ⊕ Sν

b : S1 ⊕ S2 ⊕ · · · ⊕ Sν → S
where a is the canonical map and b is the inclusion, with a ◦ b equal to the
identity. Taking the µ-th cohomology from the above data we conclude that
b∗ : Hµ(A,S1) ⊕ Hµ(A,S2) ⊕ · · · ⊕ Hµ(A,Sν) → Hµ(U,S) is an injection,
because a∗ ◦ b∗ is the identity. Since by Theorem 2.2 Hµ(U,S) is finite
dimensional, we get the desired number in the theorem.

When N is a negative line bundle over a manifold A, this theorem is
exactly Kodaira’s vanishing theorem. We have Mν/Mν+1 ' Lν and S(ν) '
S ⊗OA

Lν , where L = N∗, and L is a positive line bundle.
In the case where A is a Riemann surface and N is a line bundle this

theorem was already proved in Chapter 1 Section 1.6 using the Serre Duality.
In this case we can explicitly state the minimum number ν0 with the property
of Theorem 3.3.

3.2 A vanishing theorem

Let A be an exceptional subvariety of a variety X. By Theorem 2.6 one
can find a C∞ function ψ defined in a neighborhood of A in X such that ψ
is strongly plurisubharmonic outside A, ψ ≥ 0 and ψ−1(0) = A. Therefore
we have a fundamental system Uε := {ψ(x) < ε}, 0 < ε << 1 of relatively
compact strongly pseudoconvex neighborhoods around A. Fix a Uε. Let S
be an analytic sheaf on Uε and f be a holomorphic function on Uε. Since A
is compact connected, f restricted to A is constant. We denote this constant
by f(A). Take a Stein covering U of Uε. We have Hµ(U ,S) = Hµ(Uε,S),
where µ > 0. The usual multiplication of f by cocycles in Zµ(Uε,S) yields a
well-defined map from Hµ(Uε,S) to itself.

Lemma 3.1. Let f be a holomorphic function and S be a coherent sheaf
defined on a neighborhood of A in X. There exist a natural number n1 and
a positive number ε1 such that

(f − f(A))nHµ(Uε,S) = 0, ∀n ≥ n1, n ∈ N, 0 < ε ≤ ε1, µ ≥ 1
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Proof. Without loosing the generality suppose that f(A) = 0, i.e. f vanishes
on A. Let φ : (X,A) → (Y, p) be the Remmert reduction mapping (blow
down). By Grauert direct image theorem Rµφ∗S is a coherent sheaf. Since
φ |X−A is a biholomorphism, Cartan’s theorem B implies that the support of
Rµφ∗S lies in p ∈ Y and so the stalk (Rµφ∗S)p is a finite dimensional C-vector
space. Now by the property 1 listed in Remmert reduction theorem there is
a holomorphic function g in (Y, p) such that f = g ◦ φ. Multiplication by g
with the stalk (Rµφ∗S)p has not eigenvalue different from zero. Therefore it
is unipotent and so there is n such that gnRµφ∗S is the zero sheaf.

Theorem 3.4. There exist a natural number ν0 and a positive number ε′

such that for all ν ≥ ν0, ν ∈ N and 0 < ε < ε′ the map induced by inclusion

Hµ(Uε,SMν) → Hµ(Uε,S)

is the zero map.

Our proof for this theorem is similar to Grauert’s proof. Grauert after
proving this theorem for pure codimension one A in a manifold X ([Gr62]
Satz 1 p. 355) tells us that for an arbitrary exceptional variety A in X this
theorem follows from Hauptsatz II of [Gr60]. This theorem is also proved
for pure codimension one A in a manifold X in [La71] Theorem 5.4.

Proof. One can blow down A to a point and obtain a singularity (Y, p). Let
z1, z2, . . . , zn be the coordinate functions of (Y, p) and f1, f2, . . . , fn be the
pullback of zi’s by the blow down map. According to Lemma 3.1 there is a
natural number ni and a positive number εi such that fn

i Hµ(Uε,S) = 0, n ≥
ni, 0 < ε < εi. Let n be the maximum of ni’s, ε′ be the minimum of εi’s.
From now on we write U = Uε for a fixed 0 < ε < ε′.

Let M̃ be the subideal of OU generated by fn
i ’s. The zero locus of fn

i ’s
is A and so by Hilbert Nullstellensatz theorem (see [GuII90]) there exists a
natural number ν1 such that

Mν1 ⊂ M̃

The proof of the theorem is by inverse induction on µ. If U is a finite Stein
covering of U with r open sets, then by Cech cohomology Hr(U,SMν) = 0
for all natural numbers ν and for all sheaves S. Therefore our theorem is
trivial for µ = r. Now suppose that it is true for µ + 1. We want to prove
that it is true for µ also.
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Let
π : On

U → M̃

π(a1, a2, . . . , an) =
n∑

i=1

aifi

and R := Kerπ. We write the short exact sequence

0 →R→ On
U → M̃ → 0

and we make a tensor product of this short exact sequence with S (resp.
SMν2 , where ν2 is an unknown natural number) over OU and then we write
the associated long exact sequence. Since Sn = S ⊗ On

U and Hµ(U,Sn) →
Hµ(U,SM̃) is the zero map, we get the commutative diagram

0 → Hµ(U,SM̃) → Hµ+1(U,S ⊗R) →
↑ ↑

· · · → Hµ(U,SM̃Mν2) → Hµ+1(U,S ⊗R⊗Mν2) →
(3.2)

By induction for a big ν2 the second up arrow map is zero and so by the above
diagram the first is zero also. The map Hµ(U,SMν) → Hµ(U,S), ν ≥ ν1+ν2

splits into

Hµ(U,SMν) → Hµ(U,SM̃Mν2) → Hµ(U,SM̃) → Hµ(U,S)

and so it is the zero map.

Let us be given a subvariety of a variety X. We say that A is strongly
exceptional in X if A is exceptional and the normal bundle of A in X is
negative.

Theorem 3.5. (Grauert [Gr62],Satz 2, p. 357) Let us be given a strongly
exceptional subvariety A of a variety X. There exists a positive integer ν0

such that
Hµ(U,SMν) = 0, µ ≥ 1, ν ≥ ν0

where U is a small strongly pseudoconvex neighborhood of A in X.

Proof. Let ν0 be the number such that Hµ(A,S(ν)) = 0, ν ≥ ν0, µ ≥ 1.
Consider the short exact sequence

0 → SMν+1 → SMν → S(ν) → 0
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For ν ≥ ν0 the map Hµ(U,SMν+1) → Hµ(U,SMν) is surjective and so for
any k ≥ ν the map Hµ(U,SMk) → Hµ(U,SMν) is surjective. According to
Theorem 3.4 for a large k this map is zero and so Hµ(U,SMν) = 0, ν ≥
ν0.

Note that ν0 in the above theorem is the same number ν0 in Hµ(A,S(ν)) =
0, ν ≥ ν0, µ ≥ 1.

The concept of being exceptional is contained in which neighborhood of
A? Let A′ be the image of another embedding A ↪→ X ′ of A. The following
theorem gives us an answer.

Theorem 3.6. If A is exceptional and there exists an isomorphism φ(2) :
A(2) → A′

(2) of 2-neighborhoods then A′ is also exceptional.

This is Theorem 4.9 (see also Theorem 6.12) of [La71], Satz 8 p.353
of [Gr62] and Lemma 11 of [HiRo64]. The maim core of the proof is a
geometric construction due to Grauert (see [La71] p. 70-71). In the case
where A is an exceptional curve in a smooth surface, M/M2 is the nilpotent
subsheaf of A(2) and so every isomorphism of 2-neighborhoods induce an
isomorphism of M/M2’s. Therefore A and A′ have the same intersection
matrix.

3.3 Blow down and blow up

The classical definition of blow up at 0 ∈ Cn goes as follows: The projective
space Pn is the set of one dimensional sub vector spaces of Cn+1 and its
canonical line bundle

L := {(x, y) ∈ Pn × Cn+1 | y ∈ x}

is a negative line bundle, because the projection on the second coordinate
π : L → Cn+1 exhibits the zero section of L as an exceptional variety. It is
usual to write L = ˜Cn+1 and say that π : ˜Cn+1 → Cn+1 is the blow up map
of Cn+1 at 0. If no confusion is possible we identify π−1(0) with Pn. The
manifold ˜Cn+1 is covered by affine charts

([x0 : x1 : · · · : xn], (x0, x1, . . . , xn)) → (
x0

xi

, . . .
xi−1

xi

, xi,
xi−1

xi

, . . . ,
xn

xi

)

The coordinate system in this affine chart is denoted by (t0, . . . , ti−1, xi, ti+1, . . . , tn)
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Let (X, 0) ⊂ (Cn+1, 0) be a germ of a variety and I ⊂ OCn+1,0 be the ideal
of holomorphic functions vanishing on X. For an element f ∈ I, let f ∗ be
the leading term of f and I∗ be the ideal generated by {f ∗, f ∈ I}. The
variety Zero(I∗) is called the tangent cone of X at 0. It is a homogeneous
variety, i.e. for all x ∈ Zero(I∗) we have C.x ⊂ Zero(I∗). Therefore we
can projectivize the tangent cone and obtain the projectivized tangent cone
TC0X ⊂ Pn. Note that if X is given by f1 = 0, f2 = 0, . . . , fk = 0 then not
necessarily f ∗1 = 0, f ∗2 = 0, . . . , f ∗k = 0 defines the tangent cone of X at 0.
We may need more leading terms of elements in I. Let π : ˜Cn+1 → Cn+1 be
the blow-up map.

Proposition 3.1. The closure X̃ of π−1(X − {0}) in ˜Cn+1 is an analytic
variety and X̃ ∩ Pn ∼= TC0X. In particular TC0X is of pure codimension one
in X̃, i.e. each irreducible component of TC0X is of codimension one in X̃

Proof. In an affine chart (x0, t1, t2, . . . , tn) X̃ is given by

fm(1, t1, . . . , tn) + x0fm+1(1, t1, . . . , tm) + · · · , f = fm + fm+1 + · · · ∈ I
and so it is a variety. Intersection of X̃ with Pn in this coordinate system
is fm(1, t1, t2, . . . , tm) = 0, f ∈ I which is TC0X in the coordinate system
(t1, t2, . . . , tn) of Pn.

The dimension m of each irreducible component of X̃∩Pn satisfies dimX̃ ≥
m ≥ dim(X̃)+dimPn− (n+1) = dimX̃−1 (see [Ke] Theorem 3.6.1). Since
X̃ has no irreducible component in Pn, we conclude that m = dimX̃− 1.

By definition the blow up variety X̃ is embedded in Pn × Cn+1 and so we
have the projection on the second coordinate π : X̃ → Cn+1 , called blow up
map at 0 ∈ X, and the projection on the first coordinate π1 : X̃ → Pn. Put
A = TC0X and U a small neighborhood of A in X̃. We have

1. π induces a biholomorphism between U − A and π(U)− {0};
2. π1 |A is an embedding of A in Pn.

Theorem 3.7. Suppose the that all irreducible components of an exceptional
variety A in a manifold X are of codimension one and the normal bundle of
A in X is negative. There is a positive integer ν1 such that for all k ≥ ν1 if
s0, s1, . . . , sn form a basis for the vector space H0(U,Mk)/H0(U,Mk+2) then

Fk : U → Pn × Cn+1
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Fk(x) = ([s0(x) : s1(x) : · · · : sn(x)], (s0(x), s1(x), . . . , sn(x)))

is a well-defined map and is an embedding of a small neighborhood of A in
U with the properties 1,2 listed above.

Of course the number n depends on k. Without loosing the generality we can
assume that s0, s1, . . . , sm, 0 ≤ m ≤ n form a basis for H0(U,Mk)/H0(U,Mk+1).

Proof. We prove that there exists ν1 ∈ N such that for k ≥ ν1 the statements
1,2 and 3 listed below are true:

1. Fk is well-defined. Let Zero(si), 0 ≤ i ≤ m be the zero divisor of si.
One can write Zero(si) = Di + k.A, where Di is a divisor in U and it does
not contain A. If ∩n

i=0|Di| is empty then for a point x ∈ U there is some Di

such that x 6∈ Di and so sj

si
, j = 1, 2, . . . , n, j 6= i is a holomorphic function

near x. This means that [s0(x) : s1(x) : . . . : sn(x)] = [ s0(x)
si(x)

: s1(x)
si(x)

: . . . : sn(x)
si(x)

]
is well-defined in a neighborhood of x. Recall that for a coherent sheaf S on
X and a subvarietyY ⊂ X we set ResY (S) = S/SMY , where MY is the
zero ideal of Y . For k big enough we have H1(U,Mx1Mk) = 0 and so

H0(U,Mk) → Resx(Mk) → 0(3.3)

Now (3.3) is true for all points in a neighborhood of x. Since Ū is compact,
we can cover U by a finite number of such open sets. Therefore there exists
a positive integer k1 such that (3.3) is true for all x ∈ U . If x ∈ ∩n

i=0|Di|
then H0(U,Mk) ⊂ H0(U,MxMk). By the above sequence we conclude that
Resx(Mk) is empty which is a contradiction.

2. Fk is one to one. Let x, y ∈ U . We take k big enough such that
H1(U,Mx,yMk) = 0, where by x, y we mean the set {x, y}. We have

H0(U,Mk) → Resx,y(Mk) → 0(3.4)

The above sequence is true in a neighborhood of (x, y) in Ū × Ū . Since
Ū is compact, we can cover Ū × Ū by a finite number of such open sets.
Therefore there exists a positive integer k2 such that (3.4) is true for all
x, y ∈ U, k ≥ k2.

3. Fk is a locally embedding map. In the above argument we can take
Mx,x = M2

x and so for k ≥ k2 we have

H0(U,Mk)
α→ H0(U,Mk/MkM2

x) → 0, ∀x ∈ U
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Since H0(U,Mk+2) ⊂ kerα we have

H0(U,Mk)/H0(U,Mk+2)
β→ H0(U,Mk/MkM2

x) → 0, ∀x ∈ U(3.5)

Fix a point x ∈ A. We can suppose that s0(x) 6= 0. The support of

Mk/MkM2
x is the point x and at this point (Mk/MkM2

x)x
∼= s0

OX,x

M2
x

.

The image of si by β is s0.
si

s0
and so by (3.5) the pullback of the coordi-

nates functions xi

x0
of Pn by Fk span OX,x/M2

x. This implies that the map

T ∗
Fk(x)P

n × Cn+1 → T ∗
xU is surjective and so by Proposition (1.4) Fk is an

embedding in a neighborhood of x.
We set ν1 = max{k1, k2} and get the global embeddings Fk, k ≥ ν1.

Complementary notes

1. The various definitions of positive line bundles coincide. However, for vector bundles
whose fibers have dimension greater than one these definitions are not equivalent (
see [Gri69], [Gri65] and [Um73]).

2. A linear space L over a variety A is a natural generalization of a vector bundle
over a manifold, for this see the survey [GPR94] chapter 1 section 3 and also
[Gr62] Definition 5 p. 351. L has a zero section biholomorphic to A and we say
that a linear space is negative if its zero section is exceptional. In Theorem 3.3 we
have strongly used the fact that the normal bundle of a an embedded variety has a
structure of a linear space.
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Chapter 4

Formal principle and Artin’s
theorem

The formal principle says: Every isomorphism from the formal neighborhood
A(∞) of A in X to the formal neighborhood A′

(∞) of a subvariety A′ of a variety
X ′ implies the existence of a biholomorphism from an open neighborhood of
A in X onto an open neighborhood of A′ in X ′ (Note that we do not say that
the formal isomorphism of neighborhoods is convergent). It is known that
the formal principle does not hold in every case. V.I. Arnold in [Ar76] has
introduced a torus embedded in a complex manifold of dimension two with
trivial normal bundle. The formal neighborhood of this torus is isomorphic
with the formal neighborhood of the zero section of the normal fiber bundle,
but, there does not exist a biholomorphism between a neighborhood of the
torus and of the zero section of the normal fiber bundle. However, the formal
principle holds when the embedding of A in X has suitable properties of
negativity [Gr62], or positivity [Hi81]. In [Art68] M. Artin proves the
formal principle for singularities, i.e. A = {a} is a single point of a variety
X. The next section is devoted to Artin’s theorem. We use the notations

• For any local ring R, we denote by MR its maximal ideal;

• C[[x]], the ring of formal series in x;

• C{x}, the ring of convergent series in x.
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4.1 Artin’s theorem

Consider an arbitrary system of analytic equations

f1(x, y) = 0, f2(x, y) = 0, . . . , fk(x, y) = 0(4.1)

where f1, f2, . . . , fk are germs of holomorphic functions in (Cn × Cm, 0).

Theorem 4.1. (M. Artin [Art68]) Suppose that

ŷ(x) = (ŷ1(x), ŷ2(x), . . . , ŷm(x))

are formal power series without constant term which solve (4.1), i.e.

f(x, ŷ(x)) = 0, f = (f1, f2, . . . , fk)

Let c be a positive integer. There exists a convergent series solution

y(x) = (y1(x), y2(x), . . . , ym(x))

of (4.1) such that
y(x) ≡ ŷ(x) modulo Mc

C[[x]]

Another way of stating the result is to say that the analytic solutions
are dense in the space of formal solutions with its MC[[x]]-adic metric (see
[Nag62] for definitions).

Proposition 4.1. Theorem 4.1 with c = 1 implies Theorem 4.1 with an
arbitrary positive integer c.

Proof. In order to prove this we need:

1. For a given positive integer c, Mc
C[[x]] is the set of formal power series

with the leading term of degree ≥ c.

The above statement is the formal version of Proposition 1.1 part 1. The
proof is essentially the same. We must use the formal Weierstrass preparation
theorem (see [Nag62] p. 191). Now let us suppose that Theorem 4.1 is true
for c = 1 and we have a formal solution ŷ(x) for (4.1). Let yc(x) be a vector
of polynomials of degree ≤ c such that the components of ŷ(x)− yc(x) have
leading term of degree greater than c. By 1. we can write each component
of ŷ(x) − yc(x) as a finite sum of terms of the form s1.s2 . . . sc+1, where
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si ∈ MC[[x]], i = 1, 2, . . . , c + 1. Now let {a1, a2, . . . , ap ∈ MC[[x]]} be the
set of all such si’s. We have ŷ(x) − yc(x) = F (a1, a2, . . . , ap), where the
components of F are polynomials in a1, a2, . . . , ap. We introduce the new
variables A1, A2, . . . , Ap and the equations

f(x, yc(x) + F (A1, A2, . . . , Ap)) = 0

with variables x1, x2, . . . , xn, A1, A2, . . . , Ap. These equations have a formal
solution Ai = ai ∈MC[[x]], i = 1, 2 . . . , p and so by Theorem 4.1 for c = 1 we
have a convergent solution. This gives us the Theorem 4.1 for c.

Fix the formal solution ŷ(x) of (4.1) and put

I = {f ∈ OCn×Cm,0 | f(x, ŷ(x)) = 0}

f1, f2, . . . , fk ∈ I and I is a prime ideal. Therefore the zero locus of the
ideal I, namely V , is irreducible. Knowing Proposition 4.1, Theorem 4.1 is
equivalent to: There is a submanifold (N, 0) of (Cn+m, 0) of dimension n such
that 1. N ⊂ V , 2. the projection on the first n coordinates N → (Cn, 0) is a
biholomorphism.

4.2 Formal principle for singularities

This section is devoted to the proof of the formal principle for singularities
following Artin’s article [Art68]. When A = {a} is a single point, following
the literature we adopt the notations:

• OX,a = A(∗), the local ring of X at a;

• ÔX,a = A(∞), the completion of the local ring OX,a;

• Oν
X,a = A(ν);

Theorem 4.2. The formal principle holds for singularities, i.e. let X and X ′

be germs of holomorphic varieties at a and a′ respectively. The isomorphism

τ̂ : ÔX,a
∼= ÔX′,a′

of the formal completions implies the isomorphism X ∼= X ′ of the germs of
the varieties.
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The preceding theorem is the corollary 1.6 of [Art68]. It will be instructive
to see how the corollary can be obtained from Theorem 4.1.

Proof. Without losing generality, we can assume that X and X ′ are germs
of holomorphic varieties in (Cn, 0) and (Cm, 0), respectively. We use the
following notations:

OX,0 = C{x}/(f1, . . . , fr)

OX′,0 = C{y}/(g1, . . . , gs)

where C{x} is the ring of convergent series in (Cn, 0). Let p̂i(y) ∈ C[[y]]
represents the image τ̂(xi) of xi in C[[y]]. The fact that τ̂ is a homomorphism
implies that

fi(p̂1(y), p̂2(y), . . . , p̂n(y)) ≡ 0 modulo (g1, . . . , gs), i = 1, 2, . . . , r

i.e. there are formal series β̂ij(y) ∈ C[[y]] with

fi(p̂1(y), p̂2(y), . . . , p̂n(y)) =
s∑

j=1

β̂ij(y)gj(y)

Now consider the system of holomorphic equations

fi(p1, p2, . . . , pn)−
s∑

j=1

βijgj(y) = 0, i = 1, 2, . . . , r

with unknown variables y, pi, βij. This system has the formal solution p̂i(y), β̂ij(y).
Applying Theorem 4.1 with c = 2, we obtain a homomorphism

τ1 : OX,0 → OX′,0

which is congruent to τ̂ modulo MOX′,0 . Let us prove that τ1 is an iso-

morphism. With the same argument for τ̂−1 we obtain τ2 congruent τ̂−1

modulo MOX,0
. Now τ1 ◦ τ2 : OX,0 → OX,0 is congruent to the identity

modulo MOX′,0 . The second part of Proposition 1.8 finishes the proof of our
corollary.
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4.3 Formal principle for exceptional varieties

The formal principle was proved for the first time by Grauert in [Gr62]
for codimension one compact strongly exceptional manifolds. Extending his
method, Hironaka and Rossi in [HiRo64] proved the formal principle for pure
codimension one strongly exceptional varieties in manifolds. Their proof is
a direct generalization of Grauert’s proof. In this section we present a more
algebraic proof of the formal principle for strongly exceptional varieties of
pure codimension one in manifolds. The basic tools for this proof are the
vanishing Theorem 3.5 and the Embedding theorem 3.7.

Theorem 4.3. ([Gr62],[HiRo64]) The formal principle holds for strongly
exceptional varieties of pure codimension one in manifolds.

In what follows we will write Hµ(A,SMk) instead of Hµ(U,SMk). Here
we consider sheaf theory restriction of SMk to A.

Proof. Let us be given an isomorphism φ(∞) : A(∞) → A′
(∞). Recall that by

definition this is a collection of isomorphisms φ(ν) : A(ν) → A′
(ν), ν ∈ N, such

that the diagram

A(ν)

φ(ν)→ A′
(ν)

↓ ↓
A(µ)

φ(µ)→ A′
(µ)

(4.2)

is commutative for all µ < ν, µ, ν ∈ N. In particular By (1.4) φ(µ) induces
an isomorphism Qµ → Q′

µ. Now consider the following (not complete) sub-
diagram of (4.2)

Mµ−1/Mν → ?
↓ ↓
Qµ → Q′

µ

(4.3)

A simple argument shows that instead ? we have M′µ−1/M′ν and the map
Mµ−1/Mν → M′µ−1/M′ν is an isomorphism. Replacing µ − 1 with ν and
ν with ν + 2 we get an isomorphism

Mν/Mν+2 →M′ν/M′ν+2
(4.4)

Now suppose that A is an exceptional variety with a negative normal bundle.
The isomorphismQ1 → Q′

1 implies that A and A′ have biholomorphic normal
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bundles and so A′ is also exceptional. According to Theorem 3.5 if we take
ν big enough then H1(A,Mν) = 0. We write the long exact sequence of

0 →Mν+2 →Mν →Mν/Mν+2 → 0

and we conclude that H0(A,Mν/Mν+2) = H0(A,Mν)/H0(A,Mν+2). In
the same way H0(A′,M′ν/M′ν+2) = H0(A′,M′ν)/H0(A′,M′ν+2). We apply
the functor H0 on the map (4.4) and get an isomorphism

α : H0(A,Mν)/H0(A,Mν+2) → H0(A,M′ν)/H0(A,M′ν+2
)(4.5)

We take s1, s2, . . . , sn ∈ H0(A,Mν) such that they form a basis of the C-
vector space H0(A,Mν)/H0(A,Mν+2). According to theorem 3.7 if ν is big
enough then

(X,A) → Pn × Cn+1(4.6)

x → [s0(x) : s1(x) : · · · : sn(x)]× (s0(x), s1(x), · · · , sn(x))

is an embedding. Let s′i ∈ H0(A,M′ν) be the image of si by the map α.
Since the map α is an isomorphism s′i’s give also an embedding of (X ′, A′)
in a similar way (We may take ν bigger). We will need the following lemma:

Lemma 4.1. Let f be a holomorphic function in a neighborhood of A in X
with Zero(f) = νA + D, where D is a divisor without A in a neighborhood
of A in X. If Zero(α(f)) = ν ′A′ + D′, D′ a divisor without A′, then ν = ν ′

and D ∩ A is mapped to D′ ∩ A′ by φ : A → A′.

Fix a point a ∈ A and a′ = φ(a) ∈ A′ and assume that s1

s0
, s2

s0
, . . . , sn

s0
, s0, s1, . . . , sn

form a coordinate system in a neighborhood of a in X. Applying the above

lemma on s0 implies that
s′1
s′0

,
s′2
s′0

, . . . , s′n
s′0

, s′0, s
′
1, . . . , s

′
n form also a coordinate

system in a neighborhood of a′ in A′.

Lemma 4.2. We have bi := si

s0
(a) =

s′1
s′0

(a′) for all i = 1, 2, . . . , n.

For holomorphic functions h0, h1, . . . , hn with values in (C, 0) and h′i, 1 ≤
i ≤ n with values in (C, bi) define

A(h0, h1, . . . , hn) = {f(h0, h1, . . . , hn) | f ∈ OCn+1,0}
A(h0, h1, . . . , hn, h

′
1, h

′
2, . . . , h

′
n) = {f(h0, h1, . . . , hn, h

′
1, h

′
2, . . . , h

′
n) | f ∈ OCn+1×Cn,(0,b)}

where b = (b1, b2, . . . , bn). Consider the map

β : A(s0, s1, . . . , sn) → A(s′0, s
′
1, . . . , s

′
n),
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f(s0, s1, . . . , sn) → f(s′0, s
′
1, . . . , s

′
n)

We have A(s0, s1, . . . , sn) ⊂ A(∗)a and A(s′0, s
′
1, . . . , s

′
n) ⊂ A′

(∗)a′ and we claim

that β extends to a unique isomorphism φ(∗)a : A(∗)a → A′
(∗)a′ . Since β does

not depend on the point a we get an isomorphism φ(∗) : A(∗) → A′
(∗) and so

by the first part of Proposition 1.7 a biholomorphism (X, A) → (X ′, A′).
We extend β to a map

β′ : A(s0, s1, . . . , sn,
s1

s0

,
s2

s0

, . . . ,
sn

s0

) → A(s′0, s
′
1, . . . , s

′
n,

s′1
s′0

,
s′2
s′0

, . . . ,
s′n
s′0

)

f(s0, s1, . . . , sn,
s1

s0

,
s2

s0

, . . . ,
sn

s0

) → f(s′0, s
′
1, . . . , s

′
n,

s′1
s′0

,
s′2
s′0

, . . . ,
s′n
s′0

),

for f ∈ OCn+1×Cn,(0,b). Now by the fact that (4.1) is an embedding we have

A(∗)a = A(s0, s1, . . . , sn,
s1

s0

,
s2

s0

, . . . ,
sn

s0

)

and the same statement for A′. Theorem 4.3 is proved.

Proof of Lemma 4.1 and 4.2: The statement ν = ν ′ of Lemma 4.1 is a
consequence of the isomorphism Qν → Q′

ν for all v ∈ N. The second part
of Lemma 4.1 and also Lemma 4.2 is a consequence of the fact that all the
isomorphisms φ(ν) induces a fixed isomorphism φ(1). This implies that if
f1 ∈ A(ν)a

then f1(a) = φ(ν)(f1)(a
′). In particular f1(a) = 0 if and only if

φ(ν)(f1)(a
′) = 0.

4.4 Grauert’s theorem

Now we are in a position to state Grauert theorem about rigidity of strongly
exceptional varieties. Let A ↪→ X be a strongly exceptional variety, A′ be the
zero section of the normal bundle N of A in X and TA the tangent bundle
of A.

Theorem 4.4. (Grauert [Gr62] Satz 7 p. 363) Let φ(l) : A(l) → A′
(l) be

an isomorphism and H1(A, TA ⊗ N ν) = 0, H1(A, N ν−1) = 0 ν ≥ l. Then
φ extends to a biholomorphism of neighborhoods A(∗) → A′

(∗). In particular

if H1(A, TA ⊗ N ν) = 0, H1(A,N ν) = 0, ν ≥ 1 then there exists a biholo-
morphism between a neighborhood of A in X and a neighborhood of A′ in
N .
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Proof. By the hypotheses and Theorem 1.5 we can get a formal isomorphism
of (X, A) and (N, A′). Now by formal principle for strongly exceptional
varieties Theorem 4.3 we can find the desired biholomorphism.

Notice that by Kodaira vanishing theorem (Theorem 3.3) there exists
a ν0 such that H1(A, TA ⊗ N ν) = 0, H1(A,N ν−1) = 0 ν ≥ ν0. Roughly
speaking, the germ of a strongly exceptional variety of pure codimension one
is determined by a ν-neighborhood for ν big enough.

Now consider the case in which A is a Riemann surface embedded in a
two dimensional manifold. A line bundle on A is negative if and only if it
has a negative Chern class. Therefore A is strongly exceptional if and only if
the self intersection of A is negative. Now in Theorem 1.6 instead of a formal
equivalence we have a biholomorphism.

Complementary notes

1. It would be nice if the proof of Theorem 4.1 to be discussed from [Art62]. We have
not given the proof, because we were not able to simplify Artin’s argument. To
the authors knowledge, generalizations of this theorem do not give a simpler proof,
because these generalizations use Theorem 4.1 (see [BDLD79],[Wa75]).

2. To state a generalization of Theorem 4.3 we introduce the concept of modification.
A proper surjective holomorphic map φ : X → Y of analytic varieties X and Y
is called a modification if there are closed analytic sets A ⊂ X and Y ⊂ Y with
codimension at least one such that 1. φ(A) = B 2. φ : X − A → Y − B is
biholomorphic 3. A and B are minimal with the properties 1 and 2. Note that for
us an analytic variety is always assumed to be reduced. A more general theorem
about formal principle is the following:
Theorem: ([Kos81],[An80]) If φ : (X,A) → (Y, B) is a modification with A and
B compact then the formal principle holds for (X,A) if and only if it holds for
(Y, B).
Formal principle is true for singularities and so Theorem 4.3 is a consequence of
Theorem 2.

68



Chapter 5

Foliated neighborhoods

Let A be a Riemann surface embedded in a two dimensional manifold X. In
what follows we use both X and (X, A) to denote the germ of X in A. A
(holomorphic) foliation in X with isolated singularities is given by a collection
of holomorphic 1-forms ωα defined on Uα, α ∈ I, where {Uα}α∈I is an open
covering of X, and such that

ωα = gαβωβ, α, β ∈ I, gαβ ∈ O∗
X(Uα ∩ Uβ)(5.1)

where O∗
X is the sheaf of holomorphic without zero functions in X. Further-

more we assume that the set of points in which ωα is zero has codimension
greater than one (discrete set). In other words ωα has not a zero divisor.
Therefore for any foliation F there is associated a line bundle L given by the
transition functions

L = {gαβ}α,β∈I ∈ Pic(X) := H1(X,O∗
X)

The data (5.1) can be considered as a holomorphic section ω ∈ H0(X, Ω1⊗L)
without zero divisor, where Ω1 is the cotangent bundle of X.

Fix a line bundle L in X. Any section ω ∈ H0(X, Ω1 ⊗ L) gives us a
foliation, say F(ω). If ω has a zero divisor we use the following trick: Let
ω ∈ Ω1⊗L be a holomorphic section with the zero divisor Z. Let LZ be the
line bundle associated to Z and s ∈ H0(M, LZ) be the holomorphic section
with the zero divisor Z. Now ω

s
is a holomorphic without zero divisor section

of H0(X, Ω⊗ L⊗ L−1
Z ), and so, we can substitute L by L⊗ L−1

Z .
Let L be a line bundle over X. We denote by F(X, A,L) the space

of holomorphic foliations in X given by the forms ω ∈ Ω1 ⊗ L. If two
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Figure 5.1: A projective line with self intersection −n

holomorphic without zero divisor sections ω, ω′ ∈ Ω1 ⊗ L induce the same
foliation then ω = f.ω′, where f is a holomorphic function on X and f(A)
(which is a constant) is not zero. Therefore we have the map

F(X, A, L) → P(H0(A, (Ω1 ⊗ L) |A))

Two foliations F ,F ′ ∈ F(X,A, L) in (X,A) are called equivalent, say FRF ′,
if there exists a biholomorphism

ψ : (X,A) → (X, A)

such that 1. ψ |A is identity, 2. ψ−1(F ′) = F . We are interested in the
space F(X, A,L)/R of equivalence classes. Natural questions in this direction
arise: Is F(X,A, L)/R finite dimensional? Does F(X, A,L)/R has a natural
structure of complex space? When F(X, A,L)/R is a discrete set? To answer
these questions we start with the most simple foliations, namely, foliations
without singularity and transverse to A. The reader is referred to [La71] for
more information about a one dimensional exceptional variety embedded in
a manifold.

5.1 Transversal foliations

Let A be a exceptional Riemann surface in a two dimensional manifold X.
According to [La71] Theorem 4.9 A has a negative self-intersection. In this
section we are concerned with germs of transverse holomorphic foliations in
(X, A), i.e. the foliations with no singularity and with leaves transverse to
A. Let us introduce some examples in the case A = P1.

By successive blow-ups at the origin of C2, we can get a A ∼= P1 embedded
in a two dimensional manifold and with A.A = −n. A neighborhood of A is
covered by coordinate systems (u, y) = (X

Y
, Y ) and (x, t) = ( Xn

Y n−1 ,
Y
X

), where

70



X and Y are the pullback of a coordinates system at the origin of C2. The
change of coordinates is given by

(x, t) → (
1

t
, xtn) = (u, y)

In this example we have a germ of transverse holomorphic foliation F given
by the 1-form

ω = XdY − Y dX = (xtn−1)2dt = −y2du

It is easy to check that

zer(ω) = 2.A + 2(n− 1)L

zer(Y ) = 1.A + n.L, zer(X) = 1.A + (n− 1)L + L′

where zer() means the zero divisor and L (resp. L′) is the leaf of F given by
t = 0 (resp. u = 0 ) in the coordinates (x, t) (resp. (u, y)); it is the pullback
of X-axis (resp. Y -axis). The mentioned example contains the basic idea of
the proof of the following theorem.

Theorem 5.1. ([CMS02]) Let A be a Riemann surface of genus g embedded
in a manifold X of dimension two with A.A < min{2 − 2g, 0}. The germs
of any two holomorphic transverse foliations are equivalent.

Let us first state the main lemma we need in the proof of the above
theorem:

Lemma 5.1. Let A be a complex manifold of dimension n negatively embed-
ded in a manifold X of dimension n+1. Moreover suppose that H1(A,N∗) =
0, where N is the normal bundle of the embedding and N∗ is the dual bun-
dle. The restriction map r : Pic(X) → Pic(A) is injective. The neg-
ativity condition and H1(U,N∗) = 0 in the case n = 1 translates into
A.A < min{2− 2g, 0} using the Serre duality.

Note that the negativity condition does not imply H1(U,N∗) = 0. If X
has a transversal foliation to A by curves then we have a holomorphic map
σ : X → A which is constant along the leaves of the foliation. The pull-back
of line bundles on A by the map σ shows that r is surjective.
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Proof. In the case n = 1 we use the Serre duality and we have: If A.A < 2−2g
then H1(A,N∗) = H0(A, Ω1 ⊗ N)∗ = 0. Therefore we have proved the last
statement of our theorem.

Now let us prove the first part of the lemma. The sheaf of holomorphic
sections of N∗ is isomorphic to M/M2 and so we have

H1(A,M/M2) = 0,

By Theorem 3.5 and the remark after we have

H1(U,M) = 0

where U is a strongly pseudoconvex neighborhood of A in X. The diagram

0
↓
M
↓

0 → Z → OX → O∗
X → 0

↓ ↓ ↓
0 → Z → OA → O∗

A → 0
↓
0

(5.2)

gives us

H1(U,M) = 0
↓

H1(U,Z) → H1(U,OX) → H1(U,O∗
X) → H2(U,Z)

↓ ↓ ↓ ↓
H1(A, Z) → H1(A,OA) → H1(A,O∗

A) → H2(A, Z)

(5.3)

By considering a small neighborhood U , if necessary, we can assume that A
and U have the same topology and so the first and forth column functions
are isomorphisms. In the argument which we are going to consider now we
do not mention the name of mappings, being clear from the above diagram
which mapping we mean.

Let x1 ∈ H1(U,O∗
X) maps to zero (the trivial bundle) in H1(A,O∗

A).
Since the fourth column is an isomorphism, x1 maps to zero in H2(U,Z).
This means that there is a x2 ∈ H1(U,OX) which maps to x1. Let x3 be the
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image of x2 in H1(A,OA). Since the above diagram is commutative, x3 maps
to the trivial bundle in H1(A,O∗

A). Therefore there exists a x4 in H1(A, Z)
which maps to x3. Since the first column is an isomorphism and the second
is injective, we conclude that x4 ∈ H1(U,Z) ∼= H1(A, Z) maps to x2 and so
x2 maps to x1 = 0 in H1(U,O∗

X).

Proof of Theorem 5.1: Let F be the germ of a transverse foliation in
(X, A) and N the normal bundle of A in X. The normal bundle N of A in
X has a meromorphic global section namely s. Let

div(s) =
∑

nipi, pi ∈ A, ni ∈ Z

We define the divisor D in X as follows:

D = A−∑
niLpi

where Lpi
is the leaf of F through pi. The line bundle LD associated to

D restricted to A is the trivial line bundle, and so by Lemma 5.1, LD is
trivial or equivalently there exists a meromorphic function g on (X, A) with
div(g) = D.

Let f̃ be an arbitrary meromorphic function on A and f its extension
along the foliation . Define the 1-form

ω = gdf

The 1-form ω has the following properties

1. ω induces the foliation F ;

2. The divisor of ω is A + K, where K is F -invariant and its restriction
to A depends only on f̃ and the meromorphic section s.

Let F ′ be another transverse foliation in (X, A). In the same way we can
construct the 1-form ω′ for F ′. We claim that at each point a ∈ A there
exists a unique biholomorphism

ψa : (X,A, a) → (X, A, a)

inducing identity on A and with the property ψ−1(ω′) = ω. The unique-
ness property implies that these local biholomorphisms are parts of a global
biholomorphism ψ : (X, A) → (X ′, A′) which send ω to ω′.
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Now we prove our claim. Fix a coordinate system x in a neighborhood of
a in A. Let k1 = (x1, y1) be a coordinates system in a neighborhood of a in X
such that A and F in this coordinates system are give respectively by y1 = 0
and dx1 = 0 and x1 |A= x. We can write ω = px1y

m
1 dx, where m ∈ Z depends

only on f̃ , s and p ∈ O∗
X,a. By changing the coordinates (x1, y1) → (x1, p

1
m y1),

we can assume that p = 1. It is easy to check that the coordinate system
(x1, y1) with the mentioned properties is unique. In the same way we can
find a coordinates system k2 = (x2, y2) in a neighborhood of a in X such
that in this coordinates system ω′ = x2y

m
2 dx2 and x2 |A= x. We identify the

images of k1 and k2. The map k−1
2 ◦ k1 is the desired biholomorphism.

Now we give another application of Lemma 5.1.

Proposition 5.1. Consider the situation of Lemma 5.1. Let F be a foliation
by curves transversal to A in X. Then there exists a holomorphic vector field
V defined a neighborhood of A in X with the following properties: 1. V is
tangent to F 2. The zero divisor of V is 1.A.

Proof. Let Uα, α ∈ I be an open covering of A in U such that in each Uα

there is defined a vector field Vα without zero locus and tangent to F . Then
gαβ :=

Xβ

Xα
∈ O∗(Uα ∩ Uβ) is a cocycle and hence

L := {gαβ} ∈ H1(U,O∗)

Since the Xα’s are tangent to F , we can think of L as the tangent line bundle
to F and consequently as the normal bundle of A in X when we restrict it to
A. Now let us consider A as a divisor with coefficient +1 in X and let fα be
a holomorphic function on Uα vanishing on V of order one (If it is necessary
we can take a finer covering of A). The line bundle associated to A is given
by

L′ := {g′αβ}, g′αβ =
fα

fβ

L′ restricted to A is again the normal bundle N . Therefore LL′−1 restricted
to A is the trivial bundle and so by lemma 5.1 LL′−1 is the trivial bundle or
equivalently there are holomorphic functions sα ∈ O∗(Uα) such that

gαβ =
sα

sβ

gαβ ⇒ Xβ

Xα

=
sα

sβ

fα

fβ

Now the desired global vector field Uα is defined by V |Uα := sαfαXα.:
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Figure 5.2: Blowing up a tangency

5.2 Foliations with tangencies and singulari-

ties

Let A be a Riemann surface of genus g embedded in a manifold X of di-
mension two with A.A < min{2 − 2g, 0}. In Theorem 5.1 we proved that
the germs of any two holomorphic transverse foliations are equivalent. Now
consider a foliation F in (X,A) which is transverse to A except in a finite
number of points S ⊂ A. A point in S can be a tangency point of F with A
or a singularity of F (see Figure 5.3).

Proposition 5.2. If A.A < min{2− 2g, 0} then there exists a meromorphic
1-form ω in X with the following properties: 1. ω induces the foliation F 2.
div(ω) = A−∑k

i=1 Lpi
, where {p1, p2, . . . , pk} ⊂ A− S and Lpi

is the leaf of
F through pi.

Proof. Let s be a meromorphic section of the normal bundle of A in X such
that if div(s) =

∑k1
i=1 nipi, ni ∈ Z then {p1, p2, . . . pk1} ⊂ A−S. In the proof

of Theorem 5.1 we have constructed a meromorphic function in X such that
div(g) = A−∑k1

i=1 niLpi
.

Let the foliation F be given by ω ∈ Ω1 ⊗ L, where L is a line bundle
on X (see the beginning of this chapter). Moreover, suppose that ω has not
zero divisor. We take a meromorphic section r of L |A such that div(r) =∑k

i=k1+1 nipi, ni ∈ Z and {pk1+1, . . . , pk} ⊂ A − S. Now by Lemma 5.1
the line bundle associated to

∑k
i=k1+1 niLpi

in X is L and so r extends to
a meromorphic section of L, say again r, and div(r) =

∑k
i=k1+1 niLpi

. The
form ω

r
is meromorphic in X and g.ω

r
is the desired meromorphic form.

Let F and F ′ be the germs of two foliations in (X, A) which are locally
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Figure 5.3: Foliations with tangencies and singularities

biholomorphic, i.e. for every point a ∈ A there exists a biholomorphism

φa : (X, A, a) → (X, A, a)

sending the foliation F to F ′. Roughly speaking, F and F ′ have the same
local analytic structure around A.

Assume that A.A < min{2 − 2g, 0}. By proposition 5.2 we can find a
meromorphic 1-form ω (resp. ω′) such that F (resp. F ′) is given by ω = 0
(resp. ω′ = 0). If F and F ′ have the same line bundle L then we can assume
that div(ω) |A= div(ω′) |A. By the argument we used in the proof of Theorem
5.1 we can find a biholomorphism from a neighborhood of A − S to itself,
sending F to F ′. But there is no reason to claim that this biholomorphism
extends to a full neighborhood of A, as we will see in the next example.

The example which we are going to explain it is due to M. Suzuki(see
[Su74] and [Su78]). Consider the germ of holomorphic foliations given by

F(ω) : ω = (y3 + y2 − xy)dx− (2xy2 + xy − x2)dy = 0

F ′(ω′) : ω′ = (2y2 + x3)dx− 2xydy

The foliation F (resp. F ′) has a meromorphic (resp. Liouvillian) first integral

f = y2−x3

x2 (resp. x
y
e

y(y+1)
x ). In both cases after blowing up at 0 we get two

non singular foliations around A := P1, the divisor of blow up, and with the
following property: Both F ′ and F ′ are transverse to A in all points except
one point and in this point they have a tangency of order two with A. The
foliation F (resp. F ′) has a the tangency point in the affine chart (x, t)
with the coordinates p := (0, 0) (resp. p′ := (0, 1)). Now by the change of
coordinates (x, y) → (x, y− x) ((x, t) → (x, t− 1) in the affine chart) for the
foliation F ′ we can assume that p′ coincides with p.
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It is shown in [CeMa82] that these two foliations are topologically equiv-
alent, i.e. there is a homeomorphism from a neighborhood of A in X to itself
which sends F to F ′. In the next section we will define the formal equivalence
of two foliations and we will prove that F and F ′ are formally equivalent.

The intersection of a leaf of F (resp. F ′) with A around p (resp. p′)
is given by t2 = c (resp. et−1

t−1
= c′). It is easy to see that there is no bi-

holomorphism of A which sends the intersection structure of F with A to
the intersection structure of F ′ with A. Therefore there is no biholomorphic
map between F and F ′. Note that F and F ′ are not even locally biholomor-
phic if we fix a biholomorphism φ : A → A, φ(p) = p and require that local
biholomorphisms induce φ on A.

5.3 Formal isomorphism of foliations

The aim of this section is to extend the methods used in the section 1.6
to the case where we have foliated neighborhoods. We define the formal
isomorphism between two foliated neighborhoods and then we identify the
obstructions for the existence of such formal isomorphism. We prove that
if the foliation F has not singularities on A and A.A < min{0, 2 − 2g −
tang(F , A)} then any other holomorphic foliation in a neighborhood of A
having the same local analytic structure of F , is formally isomorphic with
F . Here tang(F , A) is the number of tangency points between A and F
counting with multiplicity. In another words the formal moduli space of
foliations with the local structure of F contains only one point.

Let F and F ′ be the germs of two foliations in (X, A) which are locally
biholomorphic, i.e. for any point a ∈ A there exists a biholomorphism

φa : (X, A, a) → (X, A, a)

sending the foliation F to F ′. Roughly speaking, F and F ′ has the same
local analytic structure around A.

Let ν be a natural number. We say that the isomorphism

φ(ν) : A(ν) → A(ν)

is ν-isomorphism between F and F ′ if for every point a ∈ A there exists a
local biholomorphism

φa : (X, A, a) → (X, A, a)
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which induces φ(ν) and sends F to F ′. We also say that φ(ν) sends F to F ′.
The isomorphism of formal neighborhoods

φ(∞) : A(∞) → A(∞)

is a formal biholomorphism between F and F ′ if for every natural number ν
the ν-isomorphism A(ν) induced by φ(∞) sends F to F ′.

Now we are going to identify the obstructions for the existence of formal
biholomorphism between two foliations.

Let us be given an ν-isomorphism φ(ν) : A(ν) → A(ν) between the foliations
F and F ′. We want to extend φ(ν) to φ(ν+1) : A(ν+1) → A(ν+1), i.e. to find
a (ν + 1)-isomorphism φ(ν+1) : A(ν+1) → A(ν+1) between F and F ′ such that
the following diagram is commutative:

A(ν+1)

φ(ν+1)→ A(ν+1)

↓ ↓
A(ν)

φ(ν)→ A(ν)

(5.4)

F and F ′ have the same local analytic structure. Therefore we have the local
solutions of our problem.

A(ν+1)a

φ(ν+1)a→ A(ν+1)a↓ ↓
A(ν)a

φ(ν)a→ A(ν)a

(5.5)

where A(ν)a
is the stalk of the sheaf A(ν) over the point a. If ν = 1 we can

furthermore assume that φ(ν+1)a
is the identity on M/M2. We cover A with

small open sets for which we have the diagrams of the type (5.5). Combining
two diagrams in the intersection of neighborhoods of the points a and b we
get:

A(ν+1)a,b

φ(ν+1)a,b→ A(ν+1)a,b

↓ ↓
A(ν)a,b

id→ A(ν)a,b

(5.6)

where
φ(ν+1)a,b

= φ(ν+1)a
◦ φ(ν+1)

−1
b

(5.7)

sends the foliation F to itself.
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Remark: Notice that we have used the notation φ(ν+1)a,b
instead of

φ(ν+1) |Ua∩Ub
, φ(ν+1)a

instead of φ(ν+1) |Ua and so on.
The above transition elements are obstructions to our extension problem.

Now it is natural to define the following sheaf: Aut(ν,F) is the sheaf of
(ν + 1)-isomorphisms φ(ν+1) : A(ν+1) → A(ν+1) which sends F to itself and
induces the identity in A(ν), i.e. the following diagram is commutative

A(ν+1)

φ(ν+1)→ A(ν+1)

↓ ↓
A(ν)

id→ A(ν)

(5.8)

in the case ν = 1 we assume furthermore that φ(ν+1) is the identity on
M/M2.

Now it is easy to see that the data in (5.7) form an element of

H1(A, Aut(ν,F))

The elements of H1(A,Aut(ν,F)) are obstructions to the extension problem.
More precisely we have proved the following proposition:

Proposition 5.3. If H1(A, Aut(ν,F)) = 0 then any ν-isomorphism between
the foliation F and F ′ extends to a (ν + 1)-isomorphism between them.

Now we have to identify Aut(ν,F) and especially we have to verify when
H1(A,Aut(ν,F)) = 0 is satisfied.

Proposition 5.4. If A is not F-invariant then Aut(1,F)a = 0 for all points
a in which F is transverse to A and so H1(A,Aut(1,F)) = 0.

Proof. Let F be transverse to A at a. Choose a coordinate system (x, y)
around a such that F in this coordinate system is given by x =constant.
Now it is easy to see that every biholomorphism (C2, 0) → (C2, 0) which
sends F to F and induces the identity on M/M2 has the form

(x, y) → (x, y + y2s2(x) + h.o.t.)

and hence induces the identity in A(2).

The above proposition says that when A is not F -invariant we can always
find a 2-isomorphism between the foliations F and F ′.
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Theorem 5.2. Assume that A is not F-invariant and F does not have sin-
gularities on A. For ν ≥ 2 we have

Aut(ν,F) ∼= TF(ν)

where TF is the sheaf of holomorphic vector fields in X inducing the foliation
F .

Proof. Recall that TF(ν) = TF⊗OA
Qν = TF .Mν/TF .Mν+1. Let us introduce

our candidate for the isomorphism:

∗ : TF(ν) → Aut(ν,F)

The operator ∗ associate to every holomorphic vector field X ∈ TF(ν) the
(ν + 1)-isomorphism

∗(X) : A(ν+1) → A(ν+1)

f → f + df.X

Since X has zero of order ν in A, ∗(X) induces identity in A(ν). We must
prove that ∗(X) sends F to F .

Let Xt(x) be the solution of the vector field X passing through x in the
time t. Since X is zero in A, X1 = Xt |t=1 is well-defined in a smaller
neighborhood around A. X is tangent to the foliation and so X1 sends F to
F . It is enough to prove that X1 induces the map ∗(X) in A(ν+1). We have

X∗
t f = f ◦Xt = f + tdf(X) +

∑

i≥2

∂i(f ◦Xt)

∂ti
|t=0 ti

Since

∂2(f ◦Xt)

∂t2
= ((d2f ◦Xt).(X ◦Xt)).(X ◦Xt) + (df ◦Xt).((dX ◦Xt).(X ◦Xt))

X has zero of order ν along A and v ≥ 2, we conclude that

∂i(f ◦Xt)

∂ti
|t=0= 0 mod Mν+1

or equivalently
X∗

1f = f + df(X) mod Mν+1
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∗ is trivially injective. Let us now prove that ∗ is surjective.
Let β ∈ Aut(F , ν) and

h : (x, y) → (x, y) + (f, g)

be an isomorphism in a coordinate system (x, y) around a point a ∈ A which
extends β and sends F to F .We have f, g ∈ Mν . Suppose that in this
coordinate system F is given by the 1-form ω = Pdy − Qdx = 0, where P
and Q are relatively prime. Since h∗(ω) ∧ ω = 0 we have

PQ̃fx + QQ̃fy − PP̃gx − P̃Qgy = 0(5.9)

where
P̃ = P (x + f, y + g), Q̃ = Q(x + f, y + g)

Since A is not F -invariant, y does not divide Q. Therefore considering the
equality (5.9) modulo Mν we see that

Qfy − Pgy mod Mν

This implies that
Qf − Pg = 0 mod Mν+1

The foliation F has not singularity at a and so PQ(a) 6= 0. Using this fact
we can fined new holomorphic functions f̃ and g̃ such that

f̃ = f, g̃ = g mod Mν

ω(X) = Qf̃ − P g̃ = 0

where X = (f̃ , g̃). The vector field X is the desired.

Now suppose that A is not F -invariant. F is transverse to A except in a
finite number of points. These points may be tangency points of F with A
or singularities of F . Suppose that there does not exists a singularity of F
on A.

Using Serre duality, we have

H1(A, TF(ν)) = (Γ(A, Ω⊗ T ∗
F ⊗N ν))∗ = 0

if
c(Ω⊗ T ∗

F ⊗N ν) = (2g − 2)− c(TF) + νA.A < 0(5.10)
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We have
c(TF) = A.A− tang(F , A)(5.11)

where tang(F , A) is the number of tangency points of F and A, counting with
multiplicity ( see [Br02]). Now substituting (5.11) in (5.10), we conclude
that:

Theorem 5.3. Let A be a Riemann surface of genus g embedded in a two
dimensional manifold X and F and F ′ be two locally biholomorphic and
without singularity foliations around A. If A.A < min{0, 2−2g−tang(F , A)}
then there exists a formal isomorphism between F and F ′.

Complementary notes

1. Let F and F be two locally biholomorphic foliations around a Riemann surface
A ⊂ X. Suppose that F and F ′ are transverse to A except at a finite set S ⊂ A. One
can use the methods of [CeMa82] for Suzuki’s example and find a homeomorphism
between F and F ′.

2. It would be interesting if Theorem 5.1 is true in the following case: Let A be a
manifold of dimension n negatively embedded in a manifold X of dimension n+m.
Let F and F ′ two non singular transversal foliations to A with leaves of dimension
m. If the normal bundle of A in X is negative ”enough” then F and F ′ are
equivalent.
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