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Preface

There are so many books on modular forms and elliptic curves that it might seem
useless to add another one. None of these books approach modular forms from the
point of view of differential equations and this differentiates the present book from
others. Moreover, most of these books prepare the reader for a better understand-
ing of Abelian varieties and Siegel modular forms, whereas in this book we pretend
to go in direction of Calabi-Yau varieties, and in particular Calabi-Yau threefolds.
This has resulted in a tremendous generalization of modular forms presented in
the author’s books “Modular and automorphic forms & beyond” published in 2022
and “Gauss-Manin connection in disguise: Calabi-Yau modular forms” published in
2017. Its origin partially comes from many q-expansion computations in theoretical
physics and in particular string theory. In one hand we want to collect many classical
topics related to elliptic curves, seen as one dimensional compact Calabi-Yau vari-
eties, and (elliptic) modular forms. This includes the arithmetic modularity theorem
which relates the L-functions of elliptic curves to those of modular forms. On the
other hand we have an eye on the generalization of all these into the framework of
arbitrary dimensional Calabi-Yau varieties and the corresponding Calabi-Yau mod-
ular forms.

Hossein Movasati
January 2020

Rio de Janeiro, RJ, Brazil
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Chapter 1
Introduction

In 2002 I was a post-doc at Max-Planck Institute for Mathematics (MPIM) in Bonn
and was working on applications of abelian integrals in holomorphic foliations.
Meantime, I was looking for many appearances of periods and multiple integrals
in complex and algebraic geometry, and in particular, Hodge theory. At that time I
was looking for jobs, and for the first time I saw the word “modular form” in a post-
doc announcement at MPIM. I got the post-doc and I never imagined that one day
I am going to write my own book and view on this beautiful and elegant theory of
mathematics. After twenty years, one of my principal projects has been to put mod-
ular forms in a broader context. This has been summarized in the book [Mov22a]. In
order to do this, I had to read the founding articles of the classical theory of modular
forms which is spread in the last two hundred years. The first part of the present
book is mainly the result of such a reading and the second part is dedicated to my
own view toward generalizations of modular forms.

Modular forms are holomorphic functions in the upper half plane

H := {τ ∈ C| Im(τ)> 0}

and elliptic curves are Riemann surfaces of genus one (the surface of a donut). With
this fast description of our main objects, it is clear that the complex analysis in
one variable plays an important role in the present text. Both objects enjoy many
arithmetic properties. Elliptic curves can be considered as Diophantine equations
and our main interest on modular forms comes from the fact that they are generating
functions for many unexpected counting in mathematics. Why generating functions
are useful might be explained with the simple example of Fibonacci numbers.

1.1 Fibonacci sequence

The Fibonacci sequence is defined in the following way

1



2 1 Introduction

Fn+2 = Fn+1 +Fn, n ≥ 0, F0 = 0, F1 = 1 (1.1)

Few elements of this sequence are

1,1,2,3,5,8,13,21, . . . .

Once you have a sequence of natural numbers in mathematics, it is recommended
to put it in a generating function:

F (q) : = q+q2 +2q3 +3q4 + · · ·+Fnqn + · · · .

At the beginning this is just a formal power series, however, soon it will become
clear that it is a convergent series, and its radius of convergence carries many infor-
mation of the sequence Fn itself. For now, let us do the following manipulation:

F (q) =
∞

∑
n=0

Fnqn = q+
∞

∑
n=2

(Fn−1 +Fn−2)qn

= q+q ·F (q)+q2F (q) ,

which implies that
F (q) =

q
1−q−q2 . (1.2)

Therefore, F (q) converges to a rational function. In order to find the radius of con-
vergence of a rational function, we have to find the roots of its denominator:

F (q) =
q

1−q−q2 =
q

(1−α ·q)(1−β ·q)
=

(α −β )−1

1−α ·q
− (α −β )−1

1−β ·q

=
∞

∑
n=0

(
αn −β n

α −β

)
qn,

where α = 1
2

(
1+

√
5
)
, β = 1

2

(
1−

√
5
)

. We conclude that

Fn =

(
1+

√
5

2

)n
−
(

1−
√

5
2

)n

√
5

,

which at first glance looks strange because we have found a formula for the in-
teger Fn in terms of square root of 5. Since the radius of convergence of F (q) is
min

{
1
|α| ,

1
|β |

}
= max{|α| , |β |}= |α|, we conclude that

lim
n→∞

Fn

Fn−1
= lim

n→∞
F

1
n

n =
1
2

(
1+

√
5
)
.

This number is called the golden ratio or the golden number.



1.2 Fermat’s last theorem and arithmetic modularity theorem 3

Exercise 1.1 Show that (
1 1
1 0

)n

=

(
Fn+1 Fn
Fn Fn−1

)
.

1.2 Fermat’s last theorem and arithmetic modularity theorem

Modular forms and elliptic curves are firmly rooted in the fertile grounds of number
theory. As a proof of the mentioned fact and as an introduction to the present text we
mention the following: For p≥ 2 prime, the Fermat last theorem ask for a non-trivial
integer solution, that is a,b,c ∈ Z with abc ̸= 0, for the Diophantine equation

ap +bp + cp = 0.

For a hypothetical solution (A,B,C) = (ap,bp,cp) of the Fermat equation with
abc ̸= 0 [Fre86] considered the elliptic curve

EA,B,C : y2 = x(x−A)(x+B).

From this, one construct a modular form fA,B,C and a Galois representation with
certain properties and then one proves that such objects do not exist. During this
passage one encounters the modularity conjecture which claims that every ellip-
tic curve over Q is modular. Roughly speaking this means that every elliptic curve
over Q appears in the Jacobian of a modular curve of level N. Another formulation
of modularity property is by using L-functions which generalizes the famous Rie-
mann’s zeta function ζ (s) := ∑

∞
n=1

1
ns . Riemann hypothesis claims that all the non-

trivial zeros of ζ lies on Re(s) = 1
2 and it has strong consequences on the growth of

prime numbers. For the L-functions associated to elliptic curves one has the Birch-
Swinnerton Dyer conjecture which predicts the rank of an elliptic curve to be the
order of vanishing of the corresponding L-function at s = 1.

Modular forms as generating functions have many fascinating and mysterious
applications. Arithmetic modularity theorem is one of these. In many books and
articles we find the expression “Let E be an elliptic curve over Z”. This has an
intrinsic definition in terms of Grothendieck’s theory of schemes, that for now, we
don’t want to get into its details. We content ourselves with the example

E : y2 + y = x3 − x2

which the reader might consider it as a Diophantine equation, that is, we are inter-
ested to find x and y in the ring of integers, the field of rational numbers, finite fields,
etc. Let p be a prime number (don’t take the Grothendieck’s prime i) We count the
number of solutions Np of E modulo the prime p.

i A. Grothendieck (1928-2014) is one of the founders of modern Arithmetic Algebraic Geometry.
Once he was asked to give an example of a prime number and he answered: 57.
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p Solutions Np
2 (0,0),(0,1), (1,0), (1,1) 4
3 (0,0),(0,2), (1,0), (1,2) 4
5 (0,0),(0,4), (1,0), (1,4) 4
7 (0,0),(0,6), (1,0), (1,6),. . . 9

11 (0,0),(0,10), (1,0), (1,10),. . . 10

In total we have to substitute p2 pairs (x,y) ,x,y = 0,1, . . . , p−1 inside E and verify
whether modulo prime p, the equality holds or not. The first four solutions in the
above table have to do with the fact that over integers E has already four solutions.
(0,0) ,(0,−1) ,(1,0) ,(1,−1). A priori, if we have computed N2,N3,N5, . . . ,N11, this
doesn’t give any clue how to find the number N13. We have to check 132 cases again.
In a modern language, we say that, we are counting the number of Fp-rational points
of E and we write

Np : = #E (Fp) .

Here Fp := {0,1,2, . . . , p − 1} is the finite field with p elements. The theory of
modular forms, and in particular arithmetic modularity theorem, says that there is a
closed formula for the generating function of Np’s. This is as follows. Let

η (q) = q
1
24

∞

∏
n=1

(1−qn) (1.3)

be the Dedekind eta function.

Exercise 1.2 Show that the radius of convergence of the Dedekind η function is 1.

We consider it as a formal product. Let

F (q) = η (q)2
η
(
q11)2

= q
2
24+

2·11
24

∞

∏
n=1

(1−qn)2
∞

∏
n=1

(
1−q11n)2

= q−2q2 −q3 +2q4 +q5 +2q6 −2q7 −2q9 −2q10 +q11 −2q12 +4q13 + · · ·

=
∞

∑
n=1

fnqn.

The arithmetic modularity theorem tells us that

Np = p− fp (1.4)

and f is a modular form.

Exercise 1.3 Find Np for all p ⩽ 23 and verify (1.4). In [MO97] the authors give
a list of modular forms f in terms of η , together with the corresponding elliptic
curves. This includes our main example in this section. Verify Np = p− fp for some
of these examples.
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More precisely, “ f is a weight 2 new form for Γ0 (11)”. One of the aims of the
present text is to understand this statement. This phenomena is a part of a general
theorem:

Theorem 1.1 (Arithmetic modularity theorem) ([Wil95, BCDT01]) For any el-
liptic curve E over Q, there is a modular form f = ∑

∞
n=1 fnqn such that (1.4) holds

for all except a finite number of primes.

A precise statement, together with other equivalent versions will be presented in this
text.

Exercise 1.4 It is a natural question to ask whether fn for non-prime n has an enu-
merative meaning or not. For instance, one can define Nn := E(Z/nZ), that is Nn is
the number of solutions of E modulo n. For some small non-prime numbers n show
that Nn = n− fn does not hold. Moreover fn is multiplicative, that is, fn fm = fnm
for coprime n,m ∈ Z however, n−Nn is not multiplicative. The fact that fn’s are
multiplicative follows from the theory of Hecke operators, see Chapter 7. From this
theory we can also write formulas for fnm in terms of n and m for arbitrary n,m ∈N.

Exercise 1.5 Compute few coefficients of ∆ =η(q)24 = q∏
∞
n=1(1−qn)24 =∑

∞
n=1 τ(n)qn

and verify the following equalities for examples of n,m ∈ N:

τ(n)τ(m) = τ(nm) (n,m) = 1,

τ(p)τ(pn) = τ(pn+1) + p11
τ(pn−1), p prime.

(1.5)

The proof of these equalities will be done in Chapter 7 using Hecke operators. τ is
called the Ramanujan’s tau function.

Exercise 1.6 Let f = ∑
∞
n=1 fnqn be a formal power series with fn ∈ Z and f1 = 1.

Show that f can be written in the format:

f (q) = q
∞

∏
n=1

(1−qn)gn , gn ∈ Z. (1.6)

For many examples of modular forms f which are not necessarily expressed in terms
of η see [LMF13]. For some of these compute gn’s and identify those f such that
gn is an increasing sequence of positive integers and with greatest common divisor
equal to one. For some examples of such f ’s see [MN20]. Can you find more?

1.3 Beyond elliptic curves

There is a tremendous amount of effort to generalize the arithmetic modularity the-
orem beyond elliptic curves, see for instance the expository article [Yui13]. Here we
give an example taken from [Sch13, Section 15]. Let us consider the Fermat quartic
surface

X ⊂ P3 : x4
0 + x4

1 + x4
2 + x4

3 = 0.
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We count the number of solutions of this Diophantine equation over the field Fp, p ̸=
2, that is,

#X(Fp) : = #
{
[x0 : x1 : x2 : x3]|x4

0 + x4
1 + x4

2 + x4
3 = 0

}
.

Here, [x0 : x1 : x2 : x3] is the equivalence class

(x0,x1,x2,x3)∼ (y0,y1,y2,y3)⇔

∃a ∈ Fp −{0}, such that xi = ayi, i = 0,1,2,3,4.

It turns out that for finite fields Fp with p prime we have

#X(Fp) = 1+bp +h · p+ p2

where

η(4τ)6 = q
∞

∏
n=1

(1−q4n)6 =
∞

∑
n=1

bnqn

h = 5+3χ−1(p)+6 · (χ2(p)+χ−2(p))

and χa(p) : = ( a
p ) is the Legendre symbol. Recall that

(
a
p

)
:=

1 x2 ≡p a has integer solution and p ̸ |a
−1 x2 ≡p a has no integer solution and p ̸ |a
0 p|a

Exercise 1.7 Verify the above affirmation for p = 3,5,7,9. What goes wrong for
p = 2?

There is no arithmetic modularity theorem for a member of the family of Diophan-
tine equations:

X : x5
0 + x5

1 + x5
2 + x5

3 + x5
4 −5ψx0x1x2x3x4 = 0, ψ ∈ Z, ψ ̸= 1,

that is, if for a fixed ψ ∈Z, ψ ̸= 1, we count the number #X(Fp) of solutions of this
equation over Fp then we do not know whether these numbers fit into any formal
power series which we understand it well from the complex analysis point of view.
The case ψ = 1 is different, as in this case X becomes singular, and after resolution
of singularities, it is a typical example of a rigid Calabi-Yau threefold. For a list of
such Diophantine equations see [Mey05].

1.4 Prerequisites

The most critical prerequisite for following the first part of the present book is com-
plex analysis in one variable. We do not assume that the reader is familiar with
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algebraic geometry, as we aim to present all the prerequisites of schemes and curves
in this book. A basic knowledge of number theory is necessary for a smooth reading
of the present text. For this the reader might consult [IR90]. Even though, in the
present text we emphasize differential equation aspects of modular forms and ellip-
tic curves, no training in this topic is needed and we cover all the preliminaries. In
summary, a mathematics student in the last year of undergraduate must be able to
follow the text without major problems.

For the second part of the book we assume that the reader has basic training both
in Algebraic Topology and Algebraic Geometry, the first one being more crucial for
a smooth reading. However, it is expected that the reader learns the preliminaries
alongside the present book.

1.5 Organization of the book

Chapter 2 is dedicated to the classical presentation of modular forms as holomorphic
functions in the upper half plane. We mainly follow classical texts in the subject,
however, the proof of some of fundamental theorems, such as finite generatedness
of modular forms and the functional equation of the Eisenstein series E2, are either
left as exercises to the reader who is supposed to recover them from classical books,
or we have postponed them to the next chapters in which we have developed a
geometric theory of modular forms based on enhanced elliptic curves.

In Chapter 3 we study elliptic integrals and related objects. This naturally takes
us to the theory of elliptic curves over complex numbers and the fact that they are
genus one oriented surfaces. After a fast overview of Picard-Lefschetz theory and
monodromy groups, which justifies the appearance of SL(2,Z), we present Weier-
strass uniformization theorem, period map, Gauss-Manin connection, Picard-Fuchs
equation and Gauss hypergeometric function arising from elliptic integrals. At the
end we describe how to construct modular forms with the data of elliptic integrals.

We start Chapter 4 with a basic presentation of algebraic geometry of curves
and attempt to convince the reader why using the language of curves as schemes
is useful. After a brief study of curves of genus zero, we focus on curves of genus
one which together with a marked point are called elliptic curves. There are two
fundamental subject in this chapter. First, the group structure of elliptic curves is
explained in Section 4.10. Second, in Section 4.11 we explain the fact that any
elliptic curve can be written in the Weierstrass format.

Chapter 5 is dedicated to the Mordell-Weil theorem which says that the abelian
group of rational points of an elliptic curve is finitely generated. As this is a classical
theorem, and we do not have any simplification or a new contribution in understand-
ing it better, we have left many parts of the proof of this theorem as exercises to the
reader, who can consult other excellent books on the topic.

Torsion points and isogenies of elliptic curves are explained in Chapter 6. These
are the main ingredients for the introduction of modular curves. Two fundamen-



8 1 Introduction

tal theorems of arithmetic nature, namely Nagel-Lutz and Mazur theorems, are an-
nounced in this chapter.

A fundamental concept responsible for many arithmetic properties of modular
forms is the notion of Hecke operators introduced in Chapter 7. The geometric the-
ory of Hecke operators, specially those acting on quasi-modular forms, is not the
main focus of classical books in this subject, and this partially justifies our pre-
sentation. The first non-trivial application of this theory is the multiplicativity of
Ramanujan’s τ function.

In Chapter 8 we introduce modular forms for subgroups of SL(2,Z), and in par-
ticular, for congruence groups. Main examples of such modular forms appear in
the so-called arithmetic modularity theorem, however, we give many other exam-
ples arising from our geometric interpretation of modular forms. In this chapter we
also prove that the transcendental degree of the field generated by all these modular
forms is two. In this way, the Eisenstein series E4 and E6 are the building blocks of
the whole theory of modular forms.

In Chapter 9 we start to elaborate the theory of quasi-modular forms in the al-
gebraic geometric framework which requires the concept of algebraic de Rham co-
homology and cup products. We briefly describe the incarnation of a quasi-modular
form as a holomorphic function on the upper half plane, however this is not the main
focus of our attention. The geometric framework has the advantage of a direct gen-
eralization to the context of Calabi-Yau varieties. In this chapter we introduce the
concept of generalized period map and period domain which is the bridge between
holomorphic and algebraic quasi-modular forms.



Part I
Elliptic curves and modular forms





Chapter 2
Modular forms

Am 23. Dezember 1751 wurden Euler die Arbeiten Fagnano’s zur Begutachtung
vorgelegt und regten ihn zur Entdeckung der Additionstheoreme an, so dass Ja-
cobi den genannten Tag als den Geburtstag der elliptischen Funktionen bezeichnete,
([Fri22, page x]).

2.1 Introduction

In this chapter we present the classical point of view for modular forms, that is,
as holomorphic functions in the upper half plane. They appear in a natural way as
coefficients in Taylor expansions of elliptic functions. According to [Zag08], the
word modular refers to the moduli space of complex curves of genus 1. Historically,
elliptic integrals and the lattices obtained by elliptic integrals have been first of
interest in mathematics, as they have to do with lengths of many well-known curves
such as lemniscate. Therefore, the reader might also start reading this book from
Chapter 3. In the prehistory of elliptic functions we also find trigonometric functions
for which the reader is invited to read [Wei99, Chapter II].

2.2 Elliptic functions

Definition 2.1 A lattice Λ in C is a discrete subgroup of (C,+) which generate it
as an R-vector space

It follows easily that

Λ = Zω1 +Zω2 =
{

nω1 +mω2

∣∣∣ n,m ∈ Z
}
,

11
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where ω1,ω2 ∈ C, ω1,ω2 ̸= 0, Im(ω2
ω1
) ̸= 0. By changing the order of ω1,ω2, if

necessary, we can assume that

Im(τ)> 0, τ :=
ω1

ω2
. (2.1)

A lattice in general is equipped with a Z-bilinear map Λ ×Λ → Z. In our case
it is skew-symmetric, that is, ⟨a,b⟩ = −⟨b,a⟩ ∀a,b ∈ Λ , and so ⟨ω1,ω1⟩ =
0,⟨ω2,ω2⟩ = 0. Therefore, ⟨ω2,ω1⟩ := 1 determines ⟨·, ·⟩ uniquely. The choice of
ω1,ω2 with (2.1) and hence with ⟨ω2,ω1⟩ := 1 is also called an orientation of Λ . If
we choose another basis ω ′

1,ω
′
2 with ⟨ω ′

2,ω
′
1⟩ := 1 then[

ω ′
1

ω ′
2

]
= A

[
ω1
ω2

]
, A ∈ SL(2,Z),

where

SL(2,Z) :=

{[
a b
c d

]∣∣∣∣∣a,b,c,d,∈ Z, ad −bc = 1

}
. (2.2)

is the modular group. The quotient

PSL(2,Z) := SL(2,Z)/± I

is also called the modular group. Let L be the space of lattices in C. The group

C∗ = (C−{0}, ·) (2.3)

acts on L from the right

L×C∗ → L
(Λ ,λ ) 7−→ Λ ·λ := Zω1λ +Zω2λ

which is just the rescaling the lattice Λ . For a lattice Λ the associated complex
tori is simply E := C/Λ . This means that two points z1,z2 ∈ C are equivalent if
z1−z2 ∈Λ . The set C/Λ is an example of a Riemann surface or complex manifold.
It is called a real torus of dimension two or a complex torus of dimension one. It has
the structure of an abelian group which inherits from (C,+). Still we do not call it
an elliptic curve as this name is reserved for a similar object in algebraic geometry.
In mathematics when we have a space, then we start to study the set of its functions.
In our case, we are interested on meromorphic functions on C/Λ as we have:

Exercise 2.1 There is no (non-constant) holomorphic function on E :=C/Λ . Hint:
The torus E is compact and any local holomorphic function in an open subset of C
which reachs its maximum is constant (maximum principle for holomorphic func-
tions in one variable).

The pull-back of a meromorphic function by the projection map C→ E corresponds
to a meromorphic function f with
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Fig. 2.1 Lattice

Fig. 2.2 Torus

f : C→ C,
f (z+ω) = f (z) ∀z ∈ C, ω ∈ Λ .

Since Λ is generated by ω1,ω2, the above functional equation of f is equivalent to
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f (z+ω1) = f (z)
f (z+ω2) = f (z)

∀z ∈ C ,

that is f is double periodic.We may also view f as a function in both z ∈ C and
Λ ∈ L. In this case we write f (z) = f (z,Λ). Since L is equipped with a C∗-action, it
is natural to look for functions f with the functional equation

f (λ z,λΛ) = λ
−a f (z,Λ),∀λ ∈ C∗, (2.4)

for some fixed a ∈ Z.

Remark 2.1 In the following, we will use the notion of a meromorphic function
on spaces like L which are defined only set theoretically. All these spaces have the
structure of an analytic variety and such functions are meromorphic in the classical
sense.

Definition 2.2 A meromorphic function f with the property (2.4) is called an ellip-
tic function (of weight a). In other words, an elliptic function f is a meromorphic
function in C such that it is double periodic, that is, there is two Z linearly indepen-
dent complex numbers ω1,ω2 ∈ C such that

f (z+ω1) = f (z), f (z+ω2) = f (z).

Let us consider an elliptic function f and write its Laurent series at z = 0

f (z,Λ) =
+∞

∑
n=−∞

fn(Λ)zn

The coefficients fn(Λ) are functions of the lattice Λ and it is easy to see that (2.4)
is equivalent to the following functional equations for fn(Λ)’s

fn(λΛ) = λ
−a−n fn(Λ) ∀λ ∈ C∗.

This is as follows

f (λ z,λΛ) =
+∞

∑
n=−∞

fn(λΛ)(λ z)n

= λ
−a

(
+∞

∑
n=−∞

fn(Λ)zn

)
.

Definition 2.3 A meromorphic function f on the space L of lattices is called a mero-
morphic modular form of weight n ∈ Z if

f (λΛ) = λ
−n f (Λ) ∀λ ∈ C∗, Λ ∈ L.

Therefore, from a meromorphic elliptic function of weight a we get meromorphic
modular form fn of weight n+a. If we evaluate a meromorphic modular form f of
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weight n on lattices Λ = Zτ +Z, let us say g(τ) = f (τZ+Z), with τ in the upper
half plane

H := {τ ∈ C| Im(τ)> 0},

and regard them as a function in τ , we get a meromorphic function g in H with the
following functional equation:

(cτ +d)−ng
(

aτ +b
cτ +d

)
= g(τ), ∀τ ∈H,

[
a b
c d

]
∈ SL(2,Z). (2.5)

2.3 The modular group and its action

The following group acts on H by Möbius transformation

SL(2,R) :=

{[
a b
c d

]∣∣∣∣∣ad −bc = 1,a,b,c,d,∈ R

}
,

SL(2,R)×H−→H,

(A,τ) 7−→ Aτ := aτ+b
cτ+d ,

where A =

[
a b
c d

]
∈ SL(2,R). This follows from

Im(Aτ) =
Im(τ)det(A)
|cτ +d|2

. (2.6)

An element A ∈ SL(2,R) acts as identity on H if it is ±I, where I =
[

1 0
0 1

]
is the

identity matrix. Therefore, it is usefull to define

PSL(2,R) = SL(2,R)/± I.

The protagonist of the present text is the group SL(2,Z) defined in (2.2).

Exercise 2.2 Show that the set

D :=

{
τ ∈H

∣∣∣∣∣− 1
2
≤ Re(τ)≤ 1

2
, |τ| ≥ 1

}

is the closure of a fundamental domain for the action of SL(2,Z) on H, see Fig-
ure 2.3. For definitions and details see [Apo90, Section 2.3].

Note that we have to remove some boundary points of D in order to get the classical
definition of a fundamental domain. For simplicity we will not do it and call D the
classical fundamental domain of the action of SL(2,Z) on H.
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Fig. 2.3 Fundamental domain

Exercise 2.3 Let τ be in the classical fundamental domain and assume that it has
non-trivial stablizer under the action of SL(2,Z), that is, there is A ∈ SL(2,Z), A ̸=
±I such that Aτ = τ . Then τ is ρ− := −1+i

√
3

2 , i,ρ+ := 1+i
√

3
2 and the corresponding

A is in the subgroup of SL(2,Z) given by ⟨S⟩,⟨R⟩,⟨S−1RS⟩, where

S :=
[

0 1
−1 0

]
,R :=

[
1 1
−1 0

]
. (2.7)

Note that the matrix S maps ρ− to ρ+ and S−2 =−I,R−3 =−I. Hint: Since detA =

+1 and Im(τ)> 0 we get |a+d|< 2 and τ =
a−d+

√
(a+d)2−4
2c .

Exercise 2.4 Show that the group SL(2,Z) is generated by the matrices S,R in
(2.7). The classical generators of SL(2,Z) are

T :=
[

1 1
0 1

]
=, S :=

[
0 1
−1 0

]
. (2.8)

Hint: Note that T := SR−1. See [Apo90] Theorem 2.1.

Exercise 2.5 The group PSL(2,Z) is isomorphic to the free product of the cyclic
groups ⟨S⟩ and ⟨R⟩. Conclude that SL(2,Z) is a free product with amalgamation
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SL(2,Z)∼= ⟨S,R | S4 = R6 = I,S2 = R3⟩.

Exercise 2.6 Exercise 2.5 implies that the left action of the group generated by S
and R on the vector [1,0]tr consists of all [c,d] with coprime c,d ∈ Z. Can you
describe the left action of the group generated by

M0 :=


1 1 0 0
0 1 0 0
5 5 1 0
0 −5 −1 1

 , M1 :=


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 (2.9)

on a single vector, let us say [1,0,0,0]? In the case of mirror quintic Calabi-Yau
threefolds which will be discussed in Part II, instead of SL(2,Z) we have this group
which has actually infinite index in Sp(4,Z).

2.4 Weierstrass ℘-function

When a group Γ acts on a space M discretely (for instance take the left action) and
we want to construct functions on the quotient space

Γ \M := M/∼ x ∼ y ⇔ x = Ay for some A ∈ Γ

the first recepie is to start with a function f̃ on M and define the formal sum

f (τ) = ∑
A∈Γ

f̃ (Aτ). (2.10)

If we don’t care about the convergence of f then we can easily check that it is
invariant under the action of Γ : For any B ∈ Γ we have

f (Bτ) = ∑
A∈Γ

f̃ (ABτ)

= ∑
A∈Γ

f̃ (Aτ) = f (τ).

We have used the fact that the multiplication by B from the right induces a bijection
Γ → Γ . We get the function

f̌ : Γ \M → C, f̌ ([τ]) = f (τ)

which we denote it again by f = f̌ . If Γ is finite then (2.10) is a finite sum and so
f̌ is well-defined, however, in general such a sum might not be convergent. In our
case, the lattice Λ as an additive group acts on C

Λ ×C→ C,(λ ,z) 7−→ z+λ .
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For our purpose we start with f̃ (z) = z−a, a ∈ Z and define

fa(z) = fa(z,Λ) : = ∑
ω∈Λ

(z+ω)−a

= ∑
(n,m)∈Z2

(z+nω1 +mω2)
−a.

Proposition 2.1 The infinite series fa(z) converges absolutely for a ∈N with a ⩾ 3.

Proof. The proof is taken from [Apo90, Lemma 2, page 8]. We can assume that the
sum is taken for all ω ∈Λ , |ω|> R and |z|< R. There is a constant M depending on
R such that

1
|z−ω|a ⩽ M

|ω|a
∀ω ∈ Λ , with |ω|> R,
∀z ∈ C, with |z| ≤ R.

In order to see this we observe that | z
ω
− 1|a as a function in {|z| ≤ R}× {ω ∈

Λ | |ω|> R} cannot tend to zero. For any sequence (zn,ωn) in its domain of defini-
tion, we can replace it with its subsequence such that zn converges to a point z0 and
ωn is either constant or it converges to infinity.

It is enough to prove that the sum

∑
ω∈Λ ,ω ̸=0

1
|ω|a

(2.11)

is convergent. Let r and R be the minimum and maximum distances of 0 from the
parallelogram formed by ±ω1 ±ω2. Then the parallelogram Pn formed by four ver-
tices n(±ω1 ±ω2) has the minimum and maximum distances nr and nR, respec-
tively, from 0. Moreover, it has 8n points of the lattice. Therefore, the sum Sn in
(2.11) corresponding to points of the lattice Λ in all parallelograms P1,P2, . . . ,Pn
satisfies

8
Ra (1+2−a+1 + · · ·+n−a+1)≤ Sn ≤

8
ra (1+2−a+1 + · · ·+n−a+1).

It is no so difficult to show that ∑
∞
n=1 n−s for s > 1 is convergent, see for instance

Proposition 10.1.

Exercise 2.7 Show that f2 does not converge for all z ∈ C−Λ .

Despite the fact that f2 does not converge, it is possible to correct the term in the
infinite sum f2 and make it convegent.

Proposition 2.2 The Weierstrass ℘ function (read P) is

℘(z,Λ) =℘(z) :=
1
z2 + ∑

ω ̸=0

(
1

(z−ω)2 − 1
ω2

)
is convergent.
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Proof. The proof is taken from [Apo90, Theorem 1.10]. We have∣∣∣ 1
(z−ω)2 − 1

ω2

∣∣∣= ∣∣∣ z(2ω−z)
(z−ω)2ω2

∣∣∣⩽ M·R·(2|ω|+R)
|ω|2|ω|2

⩽ M·R·(2+R/|ω|)
|ω|3 ⩽ 3MR

|ω|3 ,

where we used the notation in the proof Proposition (2.2).

If we redifine f2 :=℘(z) then we have

∂ fa

∂ z
=−a · fa+1, a ≥ 2.

Moreover, it is easy to see that ℘(−z) =℘(z) that is ℘ is an even function.

Exercise 2.8 Show that the number of zeros of a non-constant elliptic function
counted in C/Λ is equal to the number of poles, counted with multiplicity, and
it is bigger than or equal to 2. Hint: See [Apo90, page 5-6].

Exercise 2.9 Show that there is no function f (ω),ω ∈ Λ such that

∑
ω∈Λ

1
z−ω

+ f (ω)

is convergent.

The function ℘ has poles at the points of Λ . We write the Laurent expansion of ℘

at z = 0.

Theorem 2.1 For
0 < |z|< r := min{|ω| | ω ̸= 0}, (2.12)

we have

℘(z) =
1
z2 +

∞

∑
n=1

(2n+1)G2n+2 · z2n,

where
G2n+2 = ∑

ω ̸=0

1
ω2n+2 · (2.13)

Proof. For z in (2.12) we have
∣∣ z

ω

∣∣< 1 and

1
(z−ω)2 =

1
ω2(1− z

ω
)2 =

1
ω2

(
1+

∞

∑
n=1

(n+1)
( z

ω

)n
)

and so
1

(z−ω)2 − 1
ω2 =

∞

∑
n=1

n+1
ωn+2 · zn.
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Summing over ω ∈ Λ ,ω ̸= 0,we get the result.

Exercise 2.10 The Weierstrass ℘ function can be written in terms of the variables
q := e2πiτ and w := e2πiz:

℘(z,τ) = (2πi)2

(
∑

m∈Z

wqm

(1−wqm)2 +
1

12
− ∑

m∈Z, m ̸=0

qm

(1−qm)2

)
,

℘
′(z,τ) = (2πi)3

(
∑

m∈Z

wqm(1+wqm)

(1−wqm)3

)
.

Hint: See for instance [Hus04, page 192] and [Obe18, Appendix B].

Exercise 2.11 The Weierstrass zeta and sigma functions are

σ(z,Λ) = z ∏
ω∈Λ∗

(
1− z

ω

)
e

z
ω
+ 1

2 (
z
ω
)2

(2.14)

ζ (z,Λ) =
1
z
+ ∑

ω∈Λ
ω ̸=0

1
(z−ω)

+
1
ω

+
z

ω2 (2.15)

Show that
d
dz

lnσ(z) = ζ (z),
d
dz

ζ (z) =−℘(z) (2.16)

ζ (z+ω)−ζ (z) = 2ζ

(
1
2

ω

)
, ω /∈ 2Λ (2.17)

Hint: see [Sil94a, page 40]. Is this sigma function is the same as the function in
[Fri16, page 404]?.

Exercise 2.12 Prove the following identity between Weierstrass ℘ and ζ :

1
2

℘
′
(u)−℘

′
(v)

℘(u)−℘(v)
= ζ (u+ v)−ζ (u)−ζ (v), u,v ∈ C.

see [Cha85, page 55].

2.5 Differential equation of ℘

In this section we remind the well-known fact that the transcendence degree of ellip-
tic functions is the dimension of the complex torus C/Λ which is one. In particular,
we must have a polynomial relation between ℘ and any of its derivatives. The first
historical example is the following.

Theorem 2.2 The function ℘ satisfies the differential equation
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℘
′(z)2 = 4℘(z)3 −g2℘(z)−g3 (2.18)

where
g2 = 60G4, g3 = 140G6, (2.19)

and Gi’s are defined in (2.13).

Proof. Let f (z) be the difference of both sides of (2.18). This is clearly an elliptic
function with possible poles at z ∈ Λ . We show that f is holomorphic at z = 0 and
so f = 0. We have

℘′(z) = −2
z3 +6G3 · z+20G6 · z3 + · · · ,

℘′(z)2 = 4
z6 − 24G4

z2 −80G6 + · · · ,
4℘(z)3 = 4

z6 +
36G4

z2 +60G6 + · · · ,

and hence
℘′(z)2 −4℘(z)3 =− 60G4

z2 −140G6 + · · · ,
℘′(z)2 −4℘(z)3 +60G4℘(z) =−140G6 + · · · .

Exercise 2.13 If f is a non-constant elliptic function then Im(ω1
ω2
) ̸= 0, where ω1

and ω2 are periods of f .

Exercise 2.14 Prove that every elliptic function f can be written as

R1[℘(z)]+℘
′(z)R2[℘(z)],

where R1,R2 are rational functions and℘has the same set of periods as f . Hint: See
[Apo90, page 23, Exercise 5].

Exercise 2.15 Prove that

℘(2z) =
(℘(z)2 + 1

4 g2)
2 +2g3 ·℘(z)

4℘3(z)−g2℘(z)−g3
,

= −2℘(z)+
1
4

(
℘′′(z)
℘′(z)

)2

,

Hint: See [Apo90, page 24, Exercise 9].

Exercise 2.16 Show that

℘
′′(z) = 6℘(z)2 − 1

2
g2.

The following exercise has been inspired by Picard’s curious example in [Mov22b,
Section 10], see also Section 13.7.

Exercise 2.17 Show that for all N ∈ N, N ≥ 2 there is an elliptic function f such
that it has a pole of order N at [0]∈C/Λ , a zero of order N at 1

N and no other pole or
zero. For instance, for N = 2 we have f =℘(z,τ)−℘( 1

2 ,τ). Compute f for N = 3.
Hint: See the hint of Exercise 4.24.
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In a more algebraic gemetric framework the above exercise turns out to be Exer-
cise 4.24.

2.6 Eisenstein series

The series
Gn := ∑

ω∈Λ , ω ̸=0

1
ωn , n even, n ⩾ 4 (2.20)

that we have seen Theorem 2.1 are called Eisenstein series. In this theorem we have
also proved the convergence of Gn. They satisfy

Gn(λΛ) = λ
−nG(Λ), ∀λ ∈ C∗. (2.21)

We usually define

Gn(τ) = Gn(Zτ +Z) = ∑
(a,b)∈Z2, (a,b)̸=(0,0)

1
(a+bτ)n , τ ∈H,

and by abuse of notation use the same letter Gn.

Exercise 2.18 Show also that Gn ≡ 0, for n an odd number.

From the functional equation (2.21) we deduce the following: For all A ∈ SL(2,Z)

Gn(Aτ) = Gn

(
aτ +b
cτ +d

)
= Gn

(
aτ +b
cτ +d

Z+Z
)

= (cτ +d)+nGn((aτ +b)Z+(cτ +d)Z)
= (cτ +d)nGn(τZ+Z)
= (cτ +d)nGn(τ)

In Section 2.7 we will see that the limit limIm(τ)→∞ Gn(τ) exists. This motivates us
to define (holomorphic) modular forms.

Definition 2.4 Let k ∈ Z be an integer and f be a holomorphic function on the
upper half plane. Then f is called a modular form for the SL(2,Z) if

(cτ +d)−k f
(

aτ +b
cτ +d

)
= f (τ) ∀

(
a b
c d

)
∈ SL(2,Z), (2.22)

and f is holomorphic at infinity, that is, limIm(τ)→∞ f (τ) exists.
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Fig. 2.4 q map

We know that T :=
(

1 1
0 1

)
∈ SL(2,Z), and so, a modular form f satisfies f (τ+1)=

f (τ). This implies that f defines a meromorphic function f̃ in the punctured disc:

D∗ = {z ∈ C| |z|< 1}\{0}

which is defined by
f (τ) = f̃ (q), where q := e2πiτ .

The map H→D∗ is depicted in Figure 2.4. We write the Laurent series of f̃ at q= 0.

f̃ (q) =
n=+∞

∑
n=−∞

fn ·qn , fn ∈ C (2.23)

This is also called the Fourier expansion of f̃ . Since for a holomorhic modular form
we have assumed that limIm(τ)→∞ f (τ) exists, we conclude that fn = 0 for all integers
n < 0.

Definition 2.5 A meromorphic modular form for Γ = SL(2,Z) is a meromorphic
function in H such that apart from the functional equation (2.22) is also meromor-
phic at i∞, that is, in (2.23) we have some M ∈ Z such that fn = 0 for all n ⩽ M. It
is called weakly holomorphic modular form if it is holomorphic in H and possibly
meromorphic at i∞. It is called (holomorphic) modular form if it is holomorphic in
H∪{i∞}. A meromorphic modular form of weight zero is called a modular function.

We use the letter f for f̃ too, and write the q-expansion of a holomorhic modular
form as

f =
∞

∑
n=0

fn ·qn =
∞

∑
n=0

fn · e2πiτ

It will be clear from the text whether we consider f as a function of τ or q.
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Definition 2.6 We say that a holomorphic modular form f is defined over Q if the
all the coefficients fn in its Fourier expansion are rational numbers.

2.7 Fourier expansion of Eisenstein series

We know that the Eisenstein series are weakly holomorphic modular forms. In this
section we show that they are holomorphic at i∞ and so they are holomorphic mod-
ular forms. The computation in this section can be found in [Kob93a, page 110],
[Apo90, page 18] and [Ser78, page 91].

Definition 2.7 Bernoulli numbers Bk are defined through the equality

x
ex −1

=
∞

∑
k=0

Bk ·
xk

k!
.

For instance, B0 = 1, B1 =
−1
2 , B2 =

1
6 , B4 =

−1
30 , B6 =

1
42 . It is easy to see that for

any odd k ⩾ 3 we have Bk = 0.

Theorem 2.3 The Eisenstein series Gk(τ), k ≥ 4 has the following q-expansion

Gk(τ) = 2ζ (k)

(
1− 2k

Bk

∞

∑
n=1

σk−1(n)qn

)
,

where ζ (k) := ∑
∞
n=1

1
nk is the Riemann’s zeta function evaluated at k, and

σa(n) := ∑
d|n

da.

Let us first state the main ingredient of the proof of Theorem 2.3

Proposition 2.3 We have

ζ (k) =− (2πi)
2

k Bk

k!
k ≥ 2 and even (2.24)

∑
n∈Z

1
(a+n)k =

(−2πi)k

(k−1)!

∞

∑
n=0

nk−1e2πina, k ∈ N, k ≥ 2 a ∈ C−Z.

Proof. We have the following product formula for sine function

sin(πa) = πa
∞

∏
n=1

(
1− a2

n2

)
, a ∈ C. (2.25)

We take the logarithmic derivative of (2.25) and get
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π · cot(πa) =
1
a
+

∞

∑
n=1

(
1

a+n
+

1
a−n

)
. (2.26)

The left hand side of this equality is

π · cot(πa) = πi
eπia + e−πia

eπia − e−πia = πi+
2πi

e2πia −1

= πi−2πi

(
∞

∑
n=0

e2πina

)
(2.27)

We get

∑
n∈Z

1
a+n

= πi−2πi
∞

∑
n=0

e2πina. (2.28)

We differentiate the above equality with respect to a, k−1 times, and we get (2.25).
In (2.26) multiply both sides with a and set x := 2πia.

x
2
+

x
ex −1

= 1+
∞

∑
n=1

x
(x+2πin)

+
x

(x−2πin)

= 1+
∞

∑
n=1

x
2πin

(
∞

∑
k=0

(
−x

2πin

)k

−
( x

2πin

)k
)

= 1−2
∞

∑
n=1

∞

∑
k=1

k odd

xk+1

(2πin)k+1

= 1−2
∞

∑
k=1

k odd

xk+1

(2πi)k+1 ζ (k+1).

We get the well-know formula (2.24).

Proof (Proof of Theorem 2.3). Take a = mτ,m ∈ Z,m ̸= 0, and we have

∑
n∈Z

1
(mτ +n)k =

(−2πi)k

(k−1)!

∞

∑
n=1

nk−1qnm.

The result follows immediately:

Gk(τ) = 2ζ (k)+2
∞

∑
m=1

+∞

∑
n=−∞

1
(mτ +n)k (2.29)

= 2ζ (k)

(
1+

(−2πi)k

ζ (k)(k−1)!

∞

∑
m,n=1

nk−1qnm

)
. (2.30)

Exercise 2.19 We know that the Eisenstein series Gk(τ) for k ≥ 1 odd number is
identically zero. However, we can take the equality (2.29) as a new definition of
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Eisenstein series of odd weight k. In this case we have still the equality (2.30), and so
we know the formula for their Fourier expansions. Note that for k odd, the number

πk

ζ (k) is conjecturally a transcendetal number. Describe the functional equation of
Gk(τ),k ≥ 3 under the action of SL(2,Z). For some hint see [Bac12].

Exercise 2.20 Give a direct proof of

lim
Im(τ)→+∞

Gk(τ) = 2ζ (k), k ≥ 4 even,

whitout the computation of the q-expansion of Gk in in this section. This might
simplify the proof of Proposition 8.1 without refering to Exercise 2.10.

Exercise 2.21 Prove the product formula for sine in (2.25). Hint: Both sides have
the same zero set.

We will use the following new notation

Ek = Gk/2ζ (k) = 1− 2k
Bk

∞

∑
n=1

σk−1(n)qn, (2.31)

E4 = 1+240

(
∞

∑
n=1

σ3(n)qn

)
, (2.32)

E6 = 1−504

(
∞

∑
n=1

σ5(n)qn

)
, (2.33)

E8 = 1+480

(
∞

∑
n=1

σ7(n)qn

)
. (2.34)

It follows that the Eisenstein series Ek are defined over Q.

2.8 The Eisenstein series E2

For the discussion in this section we follow [Kob93a, page 112]. The proof of the
convergence of the Eisenstein series Gk(τ) in Proposition 2.1 is not valid for k = 2
and actually in Exercise 2.7 we have seen that

∑
(n,m)∈Z2\(0,0)

1
(mτ +n)2

doesn’t converge. Despite this we can define

G2(τ) :=
∞

∑
m=−∞

∞

∑
n=−∞

′ 1
(mτ +n)2 ,



2.9 The algebra of modular forms 27

where ′ means that if m = 0 then n ̸= 0. The argument in Section 2.7 shows that the
inner sum converge for any m and τ ∈ H and then the other sum converges. Here,
the order of summation is important. In a similar way as in Section 2.7 we get

G2(τ) = 2ζ (2)E2(τ), E2(τ) = 1−24
∞

∑
n=1

σ1(n)qn.

Theorem 2.4 We have

(cτ +d)−2E2

(
aτ +b
cτ +d

)
−E2(τ) =

12
2πi

c
cτ +d

(2.35)

for all
[

a b
c d

]
∈ SL(2,Z).

For the proof of this theorem, first we note that if we define

f ∥2 A := (cτ +d)−2 f (Aτ)− c(cτ +d)−1

for a holomorphic function f on H then

( f ∥2 A) ∥2 B = f ∥2 AB.

Since PSL(2,Z) is generated by T and S and (2.35) is trivial for T , it is enough to
verify (2.35) for S, that is

τ
−2E2

(
−1
τ

)
= E2(τ)+

12
2πi

1
τ
. (2.36)

We will give a more geometric proof of the above equality in Section 9.12.

Exercise 2.22 For an elementary proof of (2.36) using only complex analysis see
[Kob93a, page 113]. Reproduce this proof.

2.9 The algebra of modular forms

One of the fundamental theorems in modular forms is the following.

Theorem 2.5 The Eisenstein series E4 and E6 are algebraically independent over
C, that is, there is no polynomial P(X ,Y ) with coefficients in C such that P(E4,E6)=
0. Moreover any holomorphic modular form f of weight k can be written uniquely
as f = P(E4,E6), where P is a homogeneous polynomial of degree k in the ring

C[X ,Y ], weight (X) = 4, weight (Y ) = 6. (2.37)

If f is defined over Q then P is also defined over Q, that is, P ∈Q[X ,Y ].
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There is a classical proof of Theorem 2.5 which can be found in almost all books
on modular forms, see [Kob93a, Proposition 10, page 118], [Apo90, Chapter 6] and
[Ser78, Section 3].

Exercise 2.23 Prove Theorem 2.5 using the references above.

In Section 3.5 we will give a new proof which is inspired by the author’s study
of the generalized period domain in [Mov08]. The proof is based on the study of
elliptic integrals and Gauss-Manin connection. Theorem 2.5 for the Eisenstein series
f = Ek, k ≥ 4 was known to [Ram16, page 180]. As it was typical to Ramanujan he
state this without proof.

Definition 2.8 We denote by Mk(SL(2,Z)) (resp. Mk(SL(2,Z))Q) the space of
modular forms of weight k for SL(2,Z) (resp. further defined over Q). We also
denote by M = M(SL(2,Z)) := ⊕k∈ZMk(SL(2,Z)) and M(SL(2,Z))Q the algebra
of modular forms.

By Theorem 2.5, for k∈Z, k⩽ 2 or k odd we have Mk = 0 and MQ=Q[E4,E6], Mk =
Q[E4,E6]k, where E4 and E6 have the weights 4 and 6, respectively.

Exercise 2.24 Using Theorem 2.5 prove that

E2
4 = E8, E4E6 = E10, E6 ·E8 = E14

and derive the corresponding equalities for σk(n). For instance

σ7(n) = σ3(n)+120
n−1

∑
m=1

σ3(m)σ3(n−m).

The dimension of the space of modulex forms Mk is listed below:

k 0 2 4 6 8 10 12 14 16 18 k k+12
dim(Mk) 1 0 1 1 1 1 2 1 2 2 d d +1

Note that
dim(Mk) = ♯{(x,y) ∈ N2

0|4x+6y = k}

and
∞

∑
k=0

dim(Mk)qk =
1

(1−q4)(1−q6)
. (2.38)

The last column in the above table contains the following information.

Exercise 2.25 Show that for all k ∈ N we have dim(Mk+12) = dim(Mk)+1 and

dim(Mk) =


0 k is odd
⌊ k

12⌋+1 k even k ̸≡12 2
⌊ k

12⌋ k even k ≡12 2

Definition 2.9 A holomorphic modular form f is called a cusp form if in its Fourier
expansion f = ∑

∞
i=0 fnqn we have f0 = 0, that is, it has no constant term. We also

use the notation f (i∞) := f0.
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2.10 Ramanujan relations between Eisenstein series

The derivation f ′ of a modular form f of weight k with respect to τ ∈H is no more
a modular form. Its functional equation has three terms

(cτ +d)−k−2 f (Aτ) = kc(cτ +d)−1 f (τ)+ f ′(τ).

It is possible to correct f with a multiple of E2 and get a modular form again.

Proposition 2.4 We have the following map

Mk → Mk+2, f 7→ ∂ f
∂τ

−2πi
k

12
E2 · f , (2.39)

which is called the Serre derivative of f .

Proof. Let g be the Serre derivative of f . We have to show that g ∈ Mk+2. Only the
functional equation of g is non-trivial:

g(Aτ) = f ′(Aτ)− k
2πi
12

E2(Aτ) f (Aτ)

= kc(cτ +d)k+1 f (τ)+(cτ +d)k+2 · f (τ)− k((cτ +d)2 2πi
12

E2(τ)

+c(cτ +d))(cτ +d)k f (τ)

= (cτ +d)k+2 ·g(τ),

for A =

[
a b
c d

]
∈ SL(2,Z).

We have
∂

∂τ
:= 2πiq

∂

∂q
.

and sometime it is useful to divide the Serre derivative over 2πi and redefine it

f 7→ q
∂ f
∂q

− k
12

E2 f .

Proposition 2.5 We have the following equalities between the Eisenstein series and
their derivatives 

q ∂E2
∂q = 1

12 (E
2
2 −E4)

q ∂E4
∂q = 1

3 (E2E4 −E6)

q ∂E6
∂q = 1

2 (E2E6 −E2
4 )

, (2.40)

The differential equation (2.40) is usually called the Ramanujan relations between
Eisenstein series, see [Ram16, page 181].
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Proof. The proof of the second and third equalities follows from the Serre deriva-
tive and dim(M6) = dim(M8) = 1. Further, we must check the equalities for the
coefficient of q0. The proof of the first equality follows in a similar way. We need
to prove that f (τ) :=− 12

2πi
∂E2
∂τ

+E2
2 is a modular form of weight 4 and its constant

term is 1. For this we use the functional equation of E2 in Theorem 2.4. Therefore,
by Theorem 2.5 it must be E4.

For a while the reader is invited to forget what he has learned in this section and
solve the following problem by elementary methods.

Exercise 2.26 Let Q[[q]] := {a0 +a1q+a2q2 + · · ·+anqn + · · · |ai ∈Q} be the ring
of formal power series in q and with rational coefficients. Addition and multiplica-
tion in Q[[q]] are defined in a natural way. We have also the derivation:

∂q : Q[[q]]→Q[[q]],

∂q(a0 +a1q+a2q2 + · · ·+anqn + · · ·) := a1 +2a2q+ · · ·+nanqn−1 + · · · .

Show that there are unique series t1, t2, t3 ∈Q[[q]] with t1 = 1−24q+ · · · such that
q∂qt1 = 1

12 (t
2
1 − t2)

q∂qt2 = 1
3 (t1t2 − t3)

q∂qt3 = 1
2 (t1t3 − t2

2 )

. (2.41)

Morover, the coefficients of ti’s are integers. Use the encyclopedia of integer se-
quences oeis.org and find a closed formula for the coefficients of ti’s.

2.11 The product formula for discriminant

We make a linear combination of weight 12 modular forms E3
4 and E2

6 such that
the resulting modular form is a cusp form. This can be simplified into the following
definition:

∆ := g3
2 −27g2

3 = (2ζ (4)60E4)
3 −27(2ζ (6)140)2E2

6 =
(2π)12

1728
(E3

4 −E2
6 ).

Recall that ζ (4) = π4

90 , ζ (6) = π6

945 , and hence, we have

(2π)−12
∆ =

1
1728

(E3
4 −E2

6 )=
∞

∑
n=1

τ(n)qn = q−24q2+252q3−1472q4+4830q5+· · · .

The function τ(n) is called the Ramanujan τ function.

Proposition 2.6 We have

1
1728

(E3
4 −E2

6 ) = q
∞

∏
n=1

(1−qn)24. (2.42)
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Proof. This follows from Ramanujan relations between Eisenstein series. The log-
arithmic derivative of both sides in (2.42) is E2. We also need to check that the
coefficient of q1 in both side of (2.42) is one.

Exercise 2.27 Show that

E12 −E2
6 =

(2πi)−12 ·26 ·35 ·72

691
·∆ .

From this derive an expression for τ(n) in terms of σ11 and σ5. Show that

τ(n)≡ σ11(n)( mod 691)

Hint: See [Kob93a, III, Section 2, 4].

For various recursion formulas for τ , see Ramanjan’s original article [Ram16, page
195]. The following was conjectured by [Ram16, page 197] and proved by [Del71]
as a consequence of his proof for Weil conjectures in [Del73, Del80].

Theorem 2.6 We have
|τ(n)|< n

11
12 σ0(n),

where σ0(n) is the number of divisors of n.

See also [Ser69] for an overview of properties of τ . The following conjecture depite
being simple is still open.

Conjecture 2.1 (Lehmer’s conjecture) For all n ∈ N we have

τ(n) ̸= 0.

For information see the Wikipedia webpage on “Ramanujan tau function”.
Another interesting function is

F(q) :=
1728 ·q
E3

4 −E2
6
=

∞

∏
n=1

1
(1−qn)

=
∞

∑
n=0

Pnqn.

It can be easily checked that Pn is the unrestricted partition function, that is, Pn is the
number of ways a positive integer n can be expressed as a sum of positive integers:

n = a1 +a2 + · · ·+ak , ak ∈ N.

There is no restriction on k, order of ai’s, and repetion of ai’s is allowed. For more
information see [Apo90, Chapter 5]. According to [Apo90] the Dedekind eta func-
tion

η(τ) := e
2πiτ
24

∞

∏
n=1

(
1− e2πinτ

)
was introduced by Dedekind in 1877. We know that

∆(τ) = (2πi)12
η

24

https://en.wikipedia.org/wiki/Ramanujan_tau_function
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and the functional equation of ∆ with respect to the action of SL(2,Z). Taking 24-th
root of this we get

η

(
aτ +b
cτ +d

)
= ε(cτ +d)

1
2 η(τ)

for some ε which is a 24-th root of unity and depends only on A and τ . In fact

Exercise 2.28 (Dedekind functional equation) For all A =

[
a b
c d

]
∈ SL(2,Z) with

c > 0 we have

η

(
aτ +b
cτ +d

)
= ε(A)

(
− i(cτ +d)

) 1
2
η(τ)

where

ε(A) : = exp

(
πi
(

a+d
2c

+S(−d,c)
))

,

S(h,k) : =
k−1

∑
γ=1

γ

k

({
γ · h

r

}
− 1

2

)
,

{a} : = a− [a].

Hint: See [Apo90, Theorem 3.4].

For A =

[
0 1
−1 0

]
we get

η

(
−1
τ

)
= (−iτ)

1
2 η(τ).

2.12 The j function

The following

j(τ) = 1728
g3

2

g3
2 −27g2

3
=

∞

∑
n=−1

cnqn

= 1728
E3

4

E3
4 −E2

6
=

1
q
+744+196884q+21493760q2 +864299970q3 + · · ·

is called the j-function, or Klein’s modular function. It is holomorphic in H and has
a pole of order one at i∞. From the functional equation of Eisenstein series it follows
that j is invariant under the action of SL(2,Z):

j
(

aτ +b
cτ +d

)
= j(τ), ∀

[
a b
c d

]
∈ SL(2,Z). (2.43)
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Exercise 2.29 Show that the j-function satisfies the differential equation

S( j)+Q( j)( j′)2 = 0,

where Q( j) = 36 j2−41 j+32
72( j−1)2 j2 and S( j) is the Schwarzian derivative of j with respect to

τ . Hint: From the Ramanujan relations between Eisenstein series we can calculate
j, j′, j′′, j′′′ as rational functions in E2,E4,E6. Thus, there is a polynomial in four
variables which annihilate ( j, j′, j′′, j′′′).

Theorem 2.7 The map j : SL(2,Z)\H→ C is one to one and surjective.

We will give a proof of this theorem in Section 3.5 in which we explicitely construct
the inverse of j using elliptic integrals.

Exercise 2.30 Theorem 2.7 can be proved by compactification SL(2,Z)\H as a
Riemann surface, for which we need only to add one more point to SL(2,Z)\H, and
extending j to a holomorphic map of Riemann surfaces SL(2,Z)\H→P1 which has
no crtical points, and hence it is a biholomorphism. Write a proof of this theorem
using some ingredients from [Apo90, Section 2.7].

Proposition 2.7 Any meromorphic modular function f can be written as a rational
function in j with coefficients in C. If further f is holomorphic in H then f can be
written as a polynomial in j with coefficients in C.

Proof. By Theorem 2.7, there is a meromorphic function g in C with finite number
of poles such that f = g( j). Since both j and f are meromorphic at infinity, it follows
that g is a rational function in P1. If f is holomorphic in H then g has no poles in C
and so it is polynomial.

There is a beautiful history behind the j-function. According to [Apo90, page
22, end of Chapter 1], Berwick in 1916 calculated the first seven coefficients of j,
Zuckerman the first 24 in 1939, and Van Wijngaarden the first 100 in 1953, see also
[Fri22, page 246] for coefficients of j for qn, n ≤ 4. The only reason for computing
such numbers, seems to be only the joy of playing with them and their mysteri-
ousness. In [Apo90] we also find some divisibility properties of cn’s due to D.H.
Lehmer in 1942 and J. Lehner in 1949. An asymptotic formula due to Petersson in
1932 and Rademacher in 1932 is also reported in this reference. In 1978 MacKay
noticed that 196884= 196883+1 and 196883 is the number of dimensions in which
the Monster group can be most simply represented. Based on this observation J.H.
Conway and S.P. Norton in 1979 formulated the Monstrous moonshine conjecture
which relates all the coefficients in the j-function to the representation dimensions
of the monster group. In 1992 R. Borcherds solved this conjecture and got Fields
medal, see [Gan06] for more information on this conjecture. The proof does not give
any clue why elliptic curves must have something to do with the monster group, and
so the mystery involved around it still exists. For instance, in a private conversation
J.H. Conway expressed the fact that the proof for him is not satisfactory.
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2.13 Growth of coefficients

The growth of coefficients of arithmetic functions, and in particular, the Fourier
coefficients of modular forms has been of interest in the early stages of the the-
ory of modular forms. For instance, in [Ram16] we can find many asymptotic
behaviour of arithmetic functions. For the content of the present section we basi-
cally follow Hecke’s original article [Hec37] and [Ser78, Section 4]. For two se-
quences fn,gn ∈ C by fn = O(gn) we mean that fn

gn
is bounded. In a similar way,

for two complex valued function f and g defined in a neighborhood of a ∈ C we
write f = O(g) or f ∼x→a g to say that f (x)

g(x) is bounded near a.

Theorem 2.8 ([Hec37], Satz 5, Satz 6) If f is a holomorphic cusp form of weight
k for the group SL(2,Z) then

fn = O(n
k
2 ),

where f =
∞

∑
n=1

fnqn is the q-expansion of f . Let f be a holomorphic modular form

of weight k for SL(2,Z). Then

fn = O(nk−1).

Proof. The Cauchy’s residue formula implies that

fn =
1

2πi

∫
δ

f (q)q−n dq
q
,

where δ is a small circle turning around q= 0∈C anticlockwise. We write q= e2πiτ

and τ = x+ iy. The integration in τ is over the path with y constant and x running
from 0 to 1. We have

fn =
∫

f (τ)e−2πinτ dτ = e2πyn
∫ 1

0
f (x+ iy)e−2πinxdx. (2.44)

The function | f (τ)Im(τ)
k
2 | is invariant under the action of SL(2,Z), and so, it gives

us a function in SL(2,Z)\H. Since

| f (τ)| ∼q→0 q ∼y→+∞ e−2πy,

this function is bounded when y → ∞, and so, there exists a constant M such that

| f (τ)|⩽ My−
k
2 ∀τ ∈ in a neighborhood of i∞ ∈H. (2.45)

From another side the complement of a neighborhood of i∞ in SL(2,Z)\H is a com-
pact subset of SL(2,Z)\H and so the equality (2.45) ia true for all τ ∈ H but with
possibly larger constant M. We are using the fact that after adding i∞ to SL(2,Z)\H
it is a compact space. Putting (2.45) in (2.44) we have
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| fn|⩽ e2πyn ·M · y−
k
2

Here, y can be any positive number, we put y = 1
n and get the desired result.

Let us now prove the second part. Let Ek be the Eisenstein series of weight k, and
λ ∈ C, be constant such that λEk + f is a cusp form. The second part follow from
the first part and the asymptotic behaviour of Fourier coefficient σk−1(n) of Ek:

σk−1(n) = ∑
d|n

dk−1 = O(nk−1).

Because

σk−1(n)
nk−1 = ∑

d|n

(
d
n

)k−1

= ∑
d|n

(
1
d

)k−1

⩽
∞

∑
d=1

1
dk−1 = ζ (k−1)< ∞.

Since n
k
2 compared to nk−1 is negligible, we get the result.

There is a better result which says that for a cusp form f , we have

fn = O
(

n
k
2−

1
2 σ0(n)

)
, (2.46)

where σ0(n) is the number of positive divisors of n. This implies that

fn = O
(

n
k
2−

1
2+ε

)
, ∀ε > 0

This is obtained by P. Deligne as a consequence (see [Del71]) of his proof for Weil
conjectures (see [Del73, Del80]). See also [Mil20].

The following simple proposition will be needed in the proof Theorem 2.5.

Proposition 2.8 A non-zero modular form of weight k for SL(2,Z) has a zero of
order ≤ k

12 at infinity. The equality happens if and only if 12|k and f is a multiple of

∆
k

12 .

Proof. Let f be a modular form of weight k with a zero of order N ∈ N at infinity.
We consider f 12

∆ k which is a modular function. By Proposition 2.6 it has no poles
in H and by Proposition 2.7 it is a polynomial in j. Its order at infinity is 12N − k
which is a non-positive integer. If k = 12N it is a polynomial of degree 0 and hence
f 12

∆ k is a constant.
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2.14 The numbers e1,e2,e3

Theorem 2.9 in this section is taken from [Apo90, Theorem 1.14] and it would be
interesting to trace back the origin of this theorem. Our main reason for presenting
this in this section is Exercise 2.38. The equalities (2.63) in this theorem seems to be
novel, as I was not able to find them in the literature. For a lattice Λ = Zω1 +Zω2,
let

e1 := ℘
(
Zω1 +Zω2,

ω1
2

)
,

e2 := ℘
(
Zω1 +Zω2,

ω2
2

)
,

e3 := ℘
(
Zω1 +Zω2,

ω1+ω2
2

)
.

Theorem 2.9 The numbers e1,e2,e3 are distinct and we have

4℘
3(z)−g2 ·℘(z)−g3 = 4

(
℘(z)− e1

)(
℘(z)− e2

)(
℘(z)− e3

)
(2.47)

Proof. Since ℘(z) is even, ℘′(z) is odd. Therefore,

−℘
′
(

1
2

ω

)
=℘

′
(
−1

2
ω

)
=℘

′
(

ω − 1
2

ω

)
=℘

′
(

1
2

ω

)
∀ω ∈ Λ .

This implies that ω1
2 , ω2

2 , ω1+ω2
2 are roots of ℘′(z). The function ℘′(z) has a pole

of order 3 at z = 0 ∈ C/Λ , and so the mentioned three points, are the only roots of
℘′(z) and they are simple. The differential equation of ℘(z), implies that e1, e2, e3
are roots of the left hand side of 4x3 −g2x−g3. We show next that e1,e2 and e3 are
distinct, for instance, e1 ̸= e2. The elliptic function℘(z)−ei for i= 1,2 has a double
root at ωi

2 , because ℘′
(

1
2 ωi

)
= 0. If e1 = e2 then this function must have pole order

⩾ 4 at z = 0, which is a contradiction.

2.15 Jacobi’s theta functions

Jacobi’s theta function (or series) is the following infinite sum

θ(z,τ) =
+∞

∑
n=−∞

e2πinz+πin2τ , z ∈ C, τ ∈H

According to [EZ85, page 1] it was introduced in [Jac29, Section 52] and that is
the reason why the name Jacobi theta series. In the whole book Jacobi analyses the
elliptic integrals

∫ dx√
(1−x2)(1−k2x2)

, and it might be worthy to find out the motivation

for Jacobi for defining such a series. Our treatment of theta series in this section is
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taken from [SS03, Chapter 10]. For theta functions attached to lattices see [CS99,
Chapter 15 ], [Ebe94, Chapter 2].

Proposition 2.9 The Jacobi’s theta series is convergent in C×H and satisfies the
following functional equations:

1. θ(z+1,τ) = θ(z,τ),
2. θ(z+ τ,τ) = θ(z,τ)e−πiτ e−2πiz,
3. θ(z,τ) = 0 for z = 1

2 +
τ

2 +n+mτ, n,m ∈ Z.

Note that unlike Weierstrass ℘ function, Jacobi’s theta function is holomorphic ev-
erywhere.

Proof. We first prove the convergence. For a fixed M, t0 ∈ R+, and for |z|< M and
Im(τ)> t0 we have

∞

∑
n=−∞

∣∣∣e2πinz+πin2τ

∣∣∣⩽C
∞

∑
n=0

e2πnMe−πn2t0

for some positive number C ∈ R. The convergence follows from the fact that for
a,b ∈ R with |a|< 1, the series ∑

∞
n=0 an2

bn is always convergent. This shows that θ

converges is C×H. The proof of item 1 is immediate from the definition of θ . The
second item follows from

θ(z+ τ,τ) =
+∞

∑
n=−∞

e2πinz eπi(n2+2n)τ

=
+∞

∑
n=−∞

e2πi(n+1)z eπi(n+1)2τ e−πiτ e−2πiz

= θ(z,τ) · e−πiτ e−2πiz.

The proof of the third item is as follows: Using the first and second items we only
need to consider the evaluation at z = 1

2 +
τ

2 . We have

θ

(
1
2
+

τ

2
,τ

)
=

∞

∑
n=−∞

(−1)n eπi(n2+n)τ .

For n ⩾ 0 the terms corresponding to n and −n−1 cancel each other.

Theorem 2.10 We have

θ(z,τ) =
∞

∏
n=1

(1−qn)
(

1+qn− 1
2 e2πiz

)(
1+qn− 1

2 e−2πiz
)
, (2.48)

where q = e2πiτ .

Proof. Note that in [SS03] the authors have used q = eπiτ . Let π(z,τ) be the right
hand side of (2.48). We prove that π(z,τ) is a holomorphic function in C×H and
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satisfies the same properties as of θ(z,τ) in Proposition 2.9. For the convergence we
use the criterion for convergence of infinite products. We have

(1−qn)
(

1+qn− 1
2 e2πiz

)(
1+qn− 1

2 e−2πiz
)
= 1+qn− 1

2
(
e2πiz + e−2πiz)+ · · ·

and
∞

∑
n=1

|q|n converges. The first functional equation for π in Proposition 2.9 is im-

mediate. The second functional equation follows from

π(z+ τ,τ) =
∞

∏
n=1

(1−qn)
(

1+qn+ 1
2 e2πiz

)(
1+qn− 3

2 e−2πiz
)

=

(
1+q−

1
2 e−2πiz

)
(

1+q
1
2 e2πiz

) π(z,τ)

We have 1+x
1+x−1 = x for x ̸= −1 and the second functional equation follows. The

product vanishes at a point (z,τ) if ±z+
(
n− 1

2

)
τ ∈ Z+ 1

2 which gives us the third
item in Proposition 2.9 for π .

Now, let us prove (2.48). Let F(z,τ) = θ(z,τ)
π(z,τ) . This as a function in z is double

periodic and has no poles. Therefore, it is constant as a function in z. Therefore
C(τ) = θ(z,τ)/π(z,τ). We put z = 1

2 and z = 1
4 and respectively get

C(τ) =

∞

∑
n=−∞

(−1)n q
1
2 n2

∞

∏
n=1

(
1−q

1
2 n
)(

1−qn− 1
2

) , (2.49)

C(τ) =

+∞

∑
n=−∞

(−1)n q2n2

∞

∏
n=1

(1−q2n)(1−q4n−2)
. (2.50)

The equalities (2.49) and (2.50) imply C(4τ) = C(τ) for all τ ∈ H. Since q4k → 0
when k → ∞ we conclude that C(τ) = 1.

Theorem 2.11 For τ ∈H and z ∈ C we have

θ

(
z,
−1
τ

)
=

√
τ

i
eπiτz2

θ(zτ,τ).

Here, we have chosen a branch of
√

τ

i ,τ ∈H such that for imaginary τ , it is positive.

It is convenient to replace z with z
τ

and rewrite the above formula:
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θ

(
z
τ
,
−1
τ

)
=

√
τ

i
eπi z2

τ θ(z,τ).

Proof. It is enough to prove the formula for z = a ∈ R and τ = it, t ∈ R+. We have
to prove the equality

∞

∑
n=−∞

e−
πn2

t e2πina = t
1
2 e−πta2

∞

∑
n=−∞

e−πn2te−2πnat .

We write this as
∞

∑
n=−∞

e−πt(n+a)2
= t−

1
2

∞

∑
n=−∞

e−
πn2

t e2πina.

This is exactly the Poisson summation formula that will be proved in Section 2.17.
Note that the Fourier transform of f (x) = e−πx2

is itself:∫
∞

−∞

e−πx2
e−2πixydx = e−πy2

.

This implies that the Fourier transform of f (x)= e−πt(x+a)2
is g(y)= t−

1
2 e−

πy2
t e2πiay.

We will frequently use the followings:

θ3(τ) := θ(0,τ) =
+∞

∑
n=−∞

q
1
2 n2

=
η(τ)5

η
( 1

2 τ
)2

η(2τ)2
,

θ4(τ) := θ

(
1
2
,τ

)
=

∞

∑
n=−∞

(−1)n q
1
2 n2

=
η
( 1

2 τ
)2

η(τ)
, (2.51)

θ2(τ) := θ

(
τ

2
,τ
)
= q−

1
8

+∞

∑
n=−∞

q
1
2 (n+ 1

2 )
2
=

2η(2τ)2

η(τ)
.

Exercise 2.31 Prove the equalities between θi and η as above. In particular, prove
that θ2θ3θ4 = 2η(τ)3.

Using Theorem 2.11 we get the following functional equations for θ3, θ4

θ3

(
−1
τ

)
=

√
τ

i
θ3(τ) (2.52)

θ4

(
−1
τ

)
=

√
τ

i
ζ8 ·θ2(τ)

where ζ8 = e
2πi
8 is the eighth root of unity. Let f (τ) = θ3(8τ)8. We have f (τ +1) =

f (τ) and f
(−1

4τ

)
=
(

τ

2

)4 f (τ) which says that f is a modular form for the group〈[
1 1
0 1

]
,

[
0 −1

2
1
2 0

]〉
⊆ SL(2,Q).
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Exercise 2.32 For a,b ∈ Q, we define the following shift of the Jacobi theta func-
tions:

θa,b : C×H→ C,

θa,b(z,τ) := ∑
n∈Z

e2πi( 1
2 (n+a)2·τ+(n+a)·(z+b))

= eπia2τ+2πia(z+b)
θ(z+aτ +b,τ).

In higher dimensions these are called Riemman’s theta functions, and they were
used by Humbert and Picard to study the double integrals of hyperelliptic surfaces,
see [Mov21, Chapter 3]. Such a theta function satisfies the functional equation

θa,b(z+ τm+n,τ) = e2πi(an−bm− 1
2 m2τ−mz)

θa,b(z,τ). (2.53)

Let Λ := {τm+n |m,n∈Z} and C/Λ be the corresponding complex compact torus.
In a more geometric language, one says that the exponential factors in (2.53) form a
line bundle in C/Λ and θa,b is a holomorphic section of this line bundle. Consider
the map

C/Λ → PN2−1, z 7→ [· · · ;θa,b(Nz,τ); · · · ] (2.54)

where (a,b) runs over representatives of 1
NZ/Z. Show that for N > 1 this map is

an embedding and for N = 2, its image is characterized by the intersection of two
quartics:

A2x2
0 = B2x2

1 +C2x2
2, A2x2

3 =C2x2
1 −B2x2

2

where

x0 = θ0,0(2z,τ), x1 = θ0, 1
2
(2z,τ), x2 = θ 1

2 ,0
(2z,τ), x1 = θ 1

2 ,
1
2
(2z,τ),

and

A = θ0,0(0,τ) = θ3(τ), B = θ0, 1
2
(0,τ) = θ4(τ), B = θ 1

2 ,0
(0,τ) = θ2(τ).

We have A4 = B4 +C4 which is called the Jacobi’s identity between the theta con-
stants. The main reference for this topic is [Mum91, Chapter 1, Section 5], see also
[Hus04, Chapter 10].

Exercise 2.33 Show that the Jacobi’s theta function satisfy the heat equation

∂θ(z,τ)
∂τ

=
1

4πi
∂ 2θ(z,τ)

∂ z2

This differential equation can be also found in [Fri16, page 414].

Exercise 2.34 Up to some factor, the Jacobi’s theta function and Weierstrass σ

functions seems to be the same, see for instance [Fri22, page 176] and [DLMF].
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Exercise 2.35 One of the ways to justify Jacobi’s theta function θa,b is through
Poincaré series. Recall our notation of a group Γ actting on a complex manifold M.
An automorphy factor j : Γ ×M → C∗ is a function which is holomorphic for fixed
A ∈ Γ and satisfies the functional equation

j(AB,z) = j(A,Bz) j(B,z), ∀A,B ∈ Γ , z ∈ M.

A trivial automorphy factor is given by j(A,z) = f (Az)
f (z) for some holomorphic func-

tion f : M → C∗. The set of autmorphy factor is a group and modulo trivial ones it
is called the Picard group of Γ \M. The elements of Picard group are in one to one
correspondance with line bundles in Γ \M. An automorphic form of weight k ∈ Z
with the automorphy factor j is any meromorphic function f on M such that

f (Az) = j(A,z)k f (z), ∀A ∈ Γ , z ∈ M. (2.55)

A way to obtain automorphic forms is through Poincaré series. These are convergent
series of the form ∑

∗
A∈Γ j(A,z)k f (Az) for a holomorphic function f : M →C, where

∗ means that summation is over an equivalence classes in Γ which gives us distinct
terms in the series. Show that the theta series θa,b can be written as Poincaré series
such that (2.53) becomes (2.55). Hint: Consider the lattice action of Γ :=Zτ +Z on
M := C. For more details in general see [Cha14].

2.16 Applications of theta series

We finish this section by a classical application of theta series that can be found
in [SS03, Chapter 10, Section 3] and [Zag08, Section 3.1]. For k ∈ N and a =
(a1, a2, . . .ak) ∈ Zk define the number

γk,a(n) = #{(x1, x2, . . . ,xk) ∈ Zk
∣∣∣a1x2

1 +a2x2
2 + · · ·+akx2

k = n}.

Its generating function can be written in terms of theta series:

∞

∑
n=0

γk,a(n)qn = θ(2a1τ) θ(2a2τ) · · ·θ(2akτ), (2.56)

where θ = θ3. In order to find formulas for γk,a(n) we have to study the analytic
function in the right hand side of (2.56). Let d1(n) denote the number of divisors of
n of the form 4k+1, and d3(n) the number of divisors of n of the form 4k+3.

Exercise 2.36 For n ⩾ 1 we have

γ2,(1,1)(n) = 4
(

d1(n)−d3(n)
)
. (2.57)

Hint: [SS03, page 299].
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2.17 Poisson summation formula

Poisson summation formula is the main ingredient of the proof of the functional
equation of Jacobi’s theta function in Theorem 2.11. In this section we present the
first and classical version of this formula for rank one lattices. For the same formula
for higher rank unimodular lattices see [CS99, Chapter 15 ], [Ebe94, Chapter 2]. We
mainly follow [Zag08, Appendix A].

Let ϕ : R→ C be any continuous function which decreases rapidly, let us say

ϕ(x)∼ |x|−c

for some c > 1 as x →±∞. Then the Fourier transform of ϕ is

ϕ̌(y) :=
∫
R

ϕ(x) e−2πixy dx.

Theorem 2.12 We have
∑
n∈Z

ϕ(n) = ∑
n∈Z

ϕ̌(n) (2.58)

which is called the Poisson summation formula.

Proof. The growth condition on ϕ(x) ensures that φ(x) := ∑n∈Z ϕ(x+n) converges
to a continuous function φ . This function satisfies φ(x+ 1) = φ(x) and so φ has
Fourier expansion

φ(x) = ∑
γ∈Z

cγ · e2πiγx, where cγ =
∫ 1

0
φ(x) e−2πiγx dx.

Substituting φ(x) in cγ we get

cγ =
∫ 1

0

(
∞

∑
n=−∞

ϕ(x+n)

)
e−2πiγ(x+n) dx

=
∞

∑
n=−∞

∫ n+1

n
ϕ(x) e−2πiγx dx

=
∫

∞

−∞

ϕ(x) e−2πiγx dx = ϕ̌(n).

This gives us
∑
n∈Z

ϕ(n) = φ(0) = ∑
γ∈Z

cγ = ∑
n∈Z

ϕ̌(n),

which is the desired statement.
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2.18 Some exercises based on Eisenstein’s work

According to [Wei99], [Eis47] fifteen years before Weierstrass did much of the work
that is now attributed to Weierstrass. In this section we formulate some exercises in
order to estimulate further reading of Weil’s book and Eisenstein original article.
It has been motivated by the formula in Theorem 2.13, for which the author was
able to give a proof using geometric arguments, see Section 9.13. W. Zudilin in a
private communication recommended the author to read Weil’s book and the present
section is the outcome of this reading. We have used the notations of the present
book instead of those in [Wei99]. Further, recall that our lattices are oriented, and
hence, Im(ω1

ω2
)> 0. Therefore, the nummber δ used in [Wei99] is equal to one. Let

us define:

Ek(z : ω1,ω2) = Ek(z) := ∑
ω∈Λ

1
(z+ω)k = ∑

ω∈Λ

1
(z+nω1 +mω2)k . (2.59)

For k = 1,2 we use Eisenstein summation

∑
ω∈Λ

:= ∑
n∈Z

∑
m∈Z

:= lim
N→∞

N

∑
n=−N

lim
M→∞

M

∑
m=−M

for which one also uses the notation Σe. Note that Eisenstein summation depends
on the choice of the basis ω1,ω2 for the lattice Λ , and in particular, the order of
summation in n and m. By abuse of notations we will also define

Ek(z,τ) := Ek(z : τ,1)

being clear in the context which is meant.

Exercise 2.37 Prove the following statements:

1. The series Ek, k ≥ 1 converges absolutely. For k ≥ 3 this is already proved in
Proposition 2.1.

2.
E1(z+nω1 +mω2) = E1(z)−2πi

n
ω2

. (2.60)

and so
E1(z+1,τ) = E(z,τ), E1(z+ τ,τ) = E1(z,τ)−2πi.

3. Let Λ ′ = Zω ′
1 +Zω ′

2 ⊂ Λ be a sub lattice and choose a basis [zi] ∈ Λ/Λ ′, i =
1,2, . . . ,N. We have

N

∑
i=1

E1(z+ zi;ω
′
1,ω

′
2) = E1(z)+

2πicz
ω2ω ′

2
− πie

ω ′
2
,

where c,e ∈ Z are defined through the equalities:



44 2 Modular forms[
ω ′

1
ω ′

2

]
=

[
a b
c d

][
ω1
ω2

]
,

N

∑
i=1

zi = eω1 + f ω2.

In particular, if we put Λ = Λ ′ we have

E1(z;ω
′
1,ω

′
2) = E1(z;ω1,ω2)+

2πicz
ω2ω ′

2
.

ands so
1

cτ +d
E1

(
z

cτ +d
,

aτ +b
cτ +d

)
= E1(z,τ)+

2πicz
cτ +d

.

4. We have

E1(z) =
1
z
−

∞

∑
m=1

Gmzm−1,

where Gm = 0 for m odd and for m even they are classical Eisenstein series (2.20).
5. Recall Weierstrass ℘ and ζ functions. We have

℘(z) = E2 −G2 (2.61)
ζ (z) = E1 −G2 · z, (2.62)

Hint: See [Wei99, Chapter III].

Theorem 2.13 We have the following identity for the Eisenstein series E2:

2πi
12

E2(τ) = 4+ ∑
(n,m)̸=(0,0)

4
(1−2nτ −2m)

+
2

(nτ +m)
+

1
(nτ +m)2 .

Proof. The right hand side of the above equality is

2ζ (
1
2
) = ζ (z+1)−ζ (z) =−G2 =

2πi
12

E2.

We have used the equalities (2.60) and (2.62).

2.19 Differential equations of theta series

Recall the theta series θ2,θ3,θ4 in (2.51).

Exercise 2.38 We have the following identities between the theta series and the
values of the Weierstrass ℘ function evaluated at half points
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θ2
∂τ

θ2
=

12
2πi

℘

(
Zτ +Z,

1
2

)
+E2,

θ3
∂τ

θ3
=

12
2πi

℘

(
Zτ +Z,

τ +1
2

)
+E2, (2.63)

θ4
∂τ

θ4
=

12
2πi

℘

(
Zτ +Z,

τ

2

)
+E2.

Moreover, these three quantities satisfy the Darboux-Halphen differential equation

H :

 ṫ1 = t1(t2 + t3)− t2t3,
ṫ2 = t2(t1 + t3)− t1t3,
ṫ3 = t3(t1 + t2)− t1t2.

(2.64)

It is expected to give an elementary proof (using only complex analysis) of Exer-
cise 2.38. The geometric origin of this will be explained in Section 9.13. The theta
sereis

θ 1
2 ,

1
2
(z,τ) := e

1
4 πiτ+πi(z+ 1

2 )θ(z+
1
2

τ +
1
2
,τ). (2.65)

is of particular interest. In Chapter 12 we will encounter

F(z,τ) :=
θ 1

2 ,
1
2

η3 = i(y1/2 − y−1/2)
∞

∏
n=1

(1− yqm)(1− y−1qm)

(1−qm)2 , (2.66)

where y = e2πiz, q = e2πiτ in our geometric setting of enhanced elliptic curves.

Exercise 2.39 Show that F satisfies the functional equation

F
(

z+λτ +µ

cτ +d
,

aτ +b
cτ +d

)
= (−1)λ+µ(cτ +d)−1eπi[ c(z+λτ+µ)2

cτ+d −(λ 2τ+2λ z)]F(τ,z)

(2.67)

for
[

a b
c b

]
∈ SL(2,Z) and (λ ,µ)∈Z2. We will see that F2 is a Jacobi form of weight

−2 and index 1.

Exercise 2.40 Show that

∂

∂ z
ln(F(z,τ)) = ζ (z,τ)+

(2πi)2

12
E2(τ) · z.

We will give a geometric framework for the following:

Exercise 2.41 The quantities

a :=(−2πi)−1
℘(z0) , b :=(−2πi)−

3
2℘

′(z0) , c :=−(−2πi)−
1
2

∂ ln(F)

∂ z
, d =−2ln(F),

t1 :=
2πi
12

E2(τ) , t2 := 12
(

2πi
12

)2

E4(τ) , t3 := 8
(

2πi
12

)3

E6(τ),
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satisfies the equality t3 = 4a3 − t2a−b2 and the ordinary differential equations

ȧ = −2a2 +2at1 +bc+ t2
3

ḃ = 6a2c− ct2
2 −3ab+3bt1

ċ = ac+ ct1 − b
2

ḋ = c2 −a+2t1
ṫ1 = t2

1 −
t2
12

ṫ2 = 4t1t2 −6t3

where ẋ :=
∂x
∂τ

(2.68)



ȧ = b
ḃ = 6a2 − t2

2
ċ = a+ t1
ḋ = 2c
ṫ1 = 0
ṫ2 = 0

where ẋ := (−2πi)−
1
2

∂x
∂ z

(2.69)

Hint: In (2.69) all the equalities are trivial except for the second and third one which
follow from Exercise 2.16 and Exercise 2.40, respectively. The main trick for prov-
ing (2.68) is as follows. We explain it for the first equality. We use (2.39) to have the
functional equation of c and observe that ∂a

∂τ
− bc is an elliptic function of weight

4. We compute its Laurent expansion at z = 0 and observe that the coefficients of
1
zi , i = 0,1,2,3,4 coincide with those in −2a2 +2at1 +

t2
3 . Therefore, the difference

of two quantities is a holomorphic elliptic function vanishing at z = 0, and hence it
must be zero.



Chapter 3
Elliptic curves and integrals

Although most of the seminars I couldn’t understand, after 10 times I started to get
something and that something could be very useful for my development in mathe-
matics or even to physics eventually, (S.-T. Yau in Kavli IPMU News No. 33 March
2016).

3.1 Introduction

In this chapter we study elliptic curves over complex numbers and the corresponding
elliptic integrals. Our discussion in this chapter closely follows [Mov21, Chapter 3]
and [Mov12] which aims to find the origin of Hodge theory in the study of elliptic
integrals. Our approach to elliptic integrals starts with Weierstrass familly of elliptic
curves, however, historically elliptic integrals of the Jacobi family y2 = (1−x2)(1−
k2x2) (the name borrowed from [Hus04, Chapter 4, Section 3]) have appeared in the
literature first. For instance, these integrals have been the main object of study in the
treatise [Jac29]. In order to have a precise historical account on elliptic integrals, the
reader might have a look at Fricke’s three volumes books [Fri16, Fri22, Fri11]. Note
that Fricke died in 1930 and the manuscript of the third volume was only published
in 2011. We assume the reader is familiar with the projective space P2 and curves
inside it, otherwise, the reader might read the first few sections of Chapter 4.

3.2 Elliptic integrals

We start with an elliptic integral of the form∫ b

a

dx√
p(x)

, (3.1)

47
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where p(x) is a polynomial of degree 3 and with three distinct real roots, and a,b
are two consecutive elements among the roots of p and ±∞. For instance, the poly-
nomial p(x) := 4x3 − t2x − t3, t2, t3 ∈ C has three distinct roots if and only if
∆ := 27t3

2 − t2
3 ̸= 0. If p(x) has repeated roots one can compute it easily.

Exercise 3.1 Compute the indefinite integral∫ dx√
p(x)

, (3.2)

where p is a polynomial of degree 1 and 2. Compute it also when p is of degree 3 but
it has double roots. These integrals are computable because y2 = P(x) is a rational
curve! Let p be a polynomial of degree 3 and with three real roots t1 < t2 < t3. Show
that two of the four integrals∫ t1

−∞

dx√
p(x)

,
∫ t2

t1

dx√
p(x)

,
∫ t3

t2

dx√
p(x)

,
∫ +∞

t3

dx√
p(x)

,

can be computed in terms of the other two.

In many calculus books we find tables of integrals and there we never find a
formula for elliptic integrals. Already in the 19th century, it was known that if we
choose p randomly (in other words for generic p) such integrals cannot be calculated
in terms of until then well-known functions. For particular examples of p we have
some formulas calculating elliptic integrals in terms of the values of the Gamma
function on rational numbers.

Exercise 3.2 For particular examples of polynomials p of degree 3, there are some
formulas for elliptic integrals (3.2) in terms of the values of the Gamma function on
rational numbers. For instance, verify the equality

∫ +∞

7

dx√
x3 −35x−98

=
Γ ( 1

7 )Γ ( 2
7 )Γ ( 4

7 )

2πi
√
−7

. (3.3)

In [Wal06, page 439] we find also the formulas

∫ 1

0

dx√
1− x3

=
Γ ( 1

3 )
2

2
4
3 3

1
2 π

,

∫ 1

0

dx√
x− x3

=
Γ ( 1

4 )
2

2
3
2 π

1
2
.

These formulas can be also derived using the software Mathematica. The Chowla-
Selberg theorem, see for instance Gross’s articles [Gro78, Gro79], describes this
phenomenon in a complete way. The right hand side of (3.3) can be written in terms
of the Beta function which is more natural when one deals with the periods of alge-
braic differential forms.
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The fact that we only need two of the integrals in (3.1) in order to calculate the
others, can be easily seen by considering the integration in the complex domain
x ∈ C, in which we may discard the assumption that p has only real roots. The
integration is done over a path γ in the x ∈ C domain which connects two points
in the set of roots of p and ∞, and avoids other roots except at its start and end
points. An amazing fact that we learn in a complex analysis course is that if the path
γ moves smoothly, without violating the properties as before, then the value of the
integral does not change. This is certainly the origin of homotopy theory, or at least
one of them. The next step in the study of elliptic integrals is the invention of the y
variable which is basically the square root of p(x):

E :=
{
(x,y) ∈ C2 | y2 = p(x)

}
. (3.4)

This is called an elliptic curve in Weierstrass form.

Exercise 3.3 Up to multiplication by a constant which can be computed explicitly,
the integral (3.1) can be written as ∫

δ

dx
y
,

where δ is a closed path in E.

We add another point O to E and will call it the point at infinity. We write Ē =
E∪{O} and sometimes by abuse of notation use the same letter E for Ē. If we write
the equation of E in homogeneous coordinates [x : y : z] ∈ P2 then

O = [0 : 1 : 0].

see for instance Chapter 4 for definition of the projective space P2. We define
H1(E,Z) as the abelization of the fundamental group of E, that is, the quotient
of the fundamental group of E by its subgroup generated by commutators:

H1(E,Z) := π1(E,b)/[π1(E,b),π1(E,b)], (3.5)

where for a group G, [G,G] is the subgroup of G generated by the commutators
aba−1b−1, a,b ∈ G. It turns out that the integrals∫

δ

dx
y
, δ ∈ H1(E,Z).

are well-defined.

Proposition 3.1 The abelian group H1(E,Z) is free of rank 2, and hence, it is iso-
morphic to (Z2,+).

Proof. We prove that the non-abelian group π1(E,b) is free and it is generated by
two elements. Let π : E → C be the projection into x-coordinate and a be the x-
coordinate of b. Let also pi = (ti,0) ∈ E. Our claim follows from the following
purely topological statement.
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Fig. 3.1 The elliptic curve y2 = p(x) in the four dimensional space C2.

Exercise 3.4 Let E be a connected real surface and π : E →C be a continuous map
which is a 2 to 1 covering outside three points pi = π−1(ti), i = 1,2,3. Moreover,
assume that near these points π is topologically equivalent to (C,0)→ (C,0), z →
z2. Then π1(E) is freely generated by two elements.

Proof (Continuation of the proof of Proposition 3.1). An element δ of the homo-
topy group π1(E,b) can be identified with γ := π(δ ) ∈ π1(C\{t1, t2, t3},a) which
has this property that the multivalued function y :=

√
p(x) along γ is one valued.

The closed paths γ1 and γ2 in Figure 3.1 have this property, and hence are in the
image of π , let us say π(δi) = γi, i = 1,2. We claim that δ1,δ2 generate π1(E,b)
freely. In order to see this, consider a system of 3 paths λi, i = 1,2,3 starting from
a and ending at a point near ti, turning around ti anti-clockwise, and returning to
a in the same way, and such that: 1. each path λi has no self intersection points,
except at a which is the starting and end point 2. two distinct paths λi and λ j meet
only at a. This system of paths is also called a distinguished set of paths. The ho-
motopoy group π1(C\{t1, t2, t3},a) is freely generated by λ1,λ2,λ3. The subgroup
of π1(C\{t1, t2, t3},a) consisting of elements γ such that y|γ is one valued, consists
of elements of the form λ

n1
1 λ

n2
2 λ

n3
3 · · · , where n1 +n2 +n3 + · · · is an even number.

This is generated by γ1 := λ1λ
−1
3 ,γ2 := λ2λ

−1
3 and λ 2

i , i = 1,2,3. The last three
elements gives us loops around pi’s and so they are homotopically zero in E. The
proof of the fact that between δ1 and δ2 in π1(E,b) there are no relations is left to
the reader in Exercise 3.4.

Theorem 3.1 The set E as a toplogical space is a compact torus minus one point,
see Figure 3.1.

Proof. We need to show that Ē = E ∪{O} is a torus. This is an oriented compact
surface. Its orientation comes from the canonical orientation of C. It is known that
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the genus g of an oriented compact surfaces S (the number of holes) classifies them.
Moreover, for a point p ∈ S, H1(S −{p},Z) ∼= Z2g. We use Proposition 3.1 and
conclude that in our case g = 1, and hence, Ē is a torus.

Exercise 3.5 Prove Theorem 3.1 in the framework of Exercise 3.4.

Another important ingredient of H1(E,Z) is the skew symmetric intersection
form or bilinear map

H1(E,Z)×H1(E,Z)→ Z. (3.6)

For two paths δ1,δ2 ∈ H1(E,Z) we can assume that they intersect each other trans-
versely. At each intersection point p we can attach a number ε(p) which is +1 or
−1, depending on whether near such a point δ1 together with δ2 give us the canoni-
cal orientation of E or not. Then we define

⟨δ1,δ2⟩ := ∑
p∈ intersection of δ1 and δ2

ε(p).

Exercise 3.6 Show that the intersection pairing (3.6) is well-defined.

The generators δ1 and δ2 of H1(E,Z) which are explicitly constructed in the proof
of Proposition 3.1, can be choosen in such a way that ⟨δ1,δ2⟩=−1. The following
proposition might have been the historical reason behind the interest on the upper
half plane H.

Proposition 3.2 For any δ ∈ H1(E,Z), δ ̸= 0 we have
∫

δ
dx
y ̸= 0. Moreover, let δ1

and δ2 be generators of H1(E,Z) with ⟨δ1,δ2⟩=−1. Then the quotient

τ :=

∫
δ1

dx
y∫

δ2
dx
y

has positive imaginary part.

Proof. It might be interesting to give an elementary proof of this proposition in
terms of the mathematics of 19th century, and trace back its first appearance in
the literature. One way to do this is to compute elliptic integrals in terms of Gauss
hypergeometric function, see Section 3.9. We give the following not so elementary
proof. The first statement follows from the second statement. First, we note that
ω := dx

y restricted to E is holomorphic even at y = 0 and the infinity point O. Next
we observe that

√
−1
(∫

δ2

ω

∫
δ1

ω −
∫

δ1

ω

∫
δ2

ω

)
=
√
−1
∫

E
ω ∧ ω̄ > 0,

where ω = dx
y . The equality follows from Stokes theorem for the complement of δ1

and δ2 in E. In order to see this we observe that in local holomorphic coordinate
system z = x1 +

√
−1x2 in E we have ω = dz. Therefore,
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E

dz∧dz̄ =
∫

E
d(zdz̄)

=
∫

δ2

zdz̄−
∫

δ2

(z+
∫

δ1

ω)dz̄+
∫

δ1

zdz̄−
∫

δ1

(z−
∫

δ2

ω)dz̄

=
∫

δ2

ω

∫
δ1

ω −
∫

δ1

ω

∫
δ2

ω.

Moreover, √
−1ω ∧ ω̄ =

√
−1dz∧dz̄ = dx1 ∧dx2,

whose integration over a domain is always positive.

Definition 3.1 The lattice of elliptic integrals is∫
H1(E,Z)

dx
y

= Z
∫

δ1

dx
y
+Z

∫
δ2

dx
y
,

where δ1,δ2 is a basis of H1(E,Z) with ⟨δ1,δ2⟩=−1.

In the forthcoming sections we will mainly consider

Et = Et2,t3 =
{
(x,y) ∈ C2

∣∣∣y2 = 4x3 − t2x− t3
}
, t ∈ S (3.7)

S := C2 −{(t2, t3) ∈ C2 | ∆ = 0}, ∆ := t3
2 −27t2

3 . (3.8)

The curve Et is called an elliptic curve in the Weierstrass format.

3.3 Picard-Lefschetz theory

The appearnace of the group SL(2,Z) in Section 2.2 does not reveal the nature
of this group in algebraic geometry. In this section we prove that this is actually the
monodromy group of the family of elliptic curves in Weierstrass format and in order
to explain this we sketch the Picard-Lefschetz theory and formula. The content of
the present section might not be as elementary as the rest of the text, however, we
hope that at least the reader get a taste of this beautiful topological theory.

Let us consider the family of elliptic curves in the Weierstrass format in (3.7).
By Ehresmann’s theorem the fibration Et , t ∈ S is a C∞ bundle over S, that is, it
is locally trivial. This is the basic stone for the Picard-Lefschetz theory (see for
instance [Mov21, Chapter 6] and the references therein). It gives us the following
linear action:

π1(S,b)×H1(Eb,Z)→ H1(Eb,Z), (γ,δ ) 7→ hγ(δ ),

where b ∈ S is a fixed point. The action of π1(S,b) on H1(Eb,Z) is called the mon-
odromy action. We have in a natural way a morphism of groups
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π1(S,b)→ Aut(H1(Eb,Z)),γ 7→ hγ

and its image is called the monodromy group. The intuition behind hγ(δ ) is the
following. Let us consider δ a closed path in Eb. As b = γ(0) moves on the path γ

to γ(t), δ can be also lifted to δt in Eγ(t). This lifiting is up to homotopy unique. For
instance, if δ is an oval in the real elliptic curve Eb as in Figure 3.2 and γ is part of
the real axis then this lifting can be seen in R2. As t varies from 0 to 1 we get a new
closed path in Eb := Eγ(1) which we call it hγ(δ ).

In order to calculate the monodromy group we proceed as follows: First we
choose two cycles δ1,δ2 ∈ H1(Eb,Z). For instance, we can take as in the proof
of Proposition 3.1, see also Figure 3.1. Picard-Lefschetz theory gives another recipe
in order to choose such cycles. This is as follows. For the fixed parameter t2 ̸= 0,
define the function f in the following way:

f : C2 → C, (x,y) 7→ −y2 +4x3 − t2x.

The function f has two critical values given by t̃3, ť3 = ±
√

t3
2

27 . Let b = (b2,b3).
In a regular fiber Et = f−1(b3) of f one can take two cycles δ1 and δ2 such that
⟨δ2,δ1⟩= 1 and δ1 (resp. δ2) vanishes along a straight line connecting b3 to t̃3 (resp.
ť3). These are called vanishing cycles. For the proof of the fact that δ1,δ2 form a
basis of H1(Eb,Z) see [Mov21, Theorem 6.4].

The corresponding clockwise monodromy around the critical value t̃3 (resp ť3)
can be computed using the Picard-Lefschetz formula:

δ1 7→ δ1, δ2 7→ δ2 +δ1 ( resp. δ1 7→ δ1 −δ2, δ2 7→ δ2).

It is not hard to see that the canonical map π1(C\{t̃3, ť3},b)→ π1(S, t), for t2 ̸= 0,
induced by inclusion is an isomorphism of groups and so the image of the mon-
odromy group written in the basis δ1 and δ2 is:

⟨A1,A2⟩= SL(2,Z), where A1 :=
[

1 0
1 1

]
, A2 :=

[
1 −1
0 1

]
.

Note that g1 := A−1
2 A−1

1 A−1
2 =

[
0 1
−1 0

]
, g2 := A−1

1 A−1
2 =

[
1 1
−1 0

]
and SL(2,Z) =

⟨g1,g2 | g2
1 = g3

2 =−I⟩, where I is the identity 2×2 matrix. We conclude that

Theorem 3.2 The monodromy morphism of groups h : π1(S,b)→ SL(2,Z) is sur-
jective.

Proof. This follows from Exercise 3.4 and the computation of the monodromy as
above.

Let us explain the above topological picture by the following one parameter fam-
ily of elliptic curves:

Eψ : y2 −4x3 +12x−4ψ = 0. (3.9)
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Fig. 3.2 Elliptic curves: y2 − x3 +12x−4ψ, ψ =−1.9,−1,0,2,3,5,10

For b a real number between 2 and −2 the elliptic curve Eb intersects the real plane
R2 in two connected pieces which one of them is an oval and we can take it as
δ2 with the anti-clockwise orientation. In this example as ψ moves from −2 to 2,
δ2 is born from the point (−1,0) and ends up in the α-shaped piece which is the
intersection of E2 with R2. The cycle δ1 lies in the complex domain and it vanishes
on the critical point (1,0) as ψ moves to 2. It intersects each connected component
of Eb ∩R2 once and it is oriented in such away that ⟨δ1,δ2⟩=−1.

Exercise 3.7 If we fix t1 and t3 and let t2 vary then we get three critical curves. De-
scribe the intersection number between the corresponding vanishing cycles δi, i =
1,2,3, linear relations between δi’s and the monodromy around each critical fiber.

Exercise 3.8 Discuss the Picard-Lefschetz theory as above for the Legendre family
of elliptic curves:

y2 = x(x−1)(x−λ )

More precisely, compute the monodromy group of this family and its index in
SL(2,Z).

Exercise 3.9 Let X be a simply connected manifold and G be a group acting on X
discretely and without non-identity stabilizers. Show that X/G is also a manifold
and for any point b ∈ X/G we have a canonical isomorphism π1(X/G,b)∼= G.

3.4 Weierstrass uniformization theorem I

Let
t := (g2,g3) = (60G4(Λ),140G6(Λ)),

where G4 and G6 are complex numbers defined in (2.13). From Theorem 2.9 it
follows that g3

2 − 27g2
3 is never zero in H, and so, t gives us a point in S, where S

defined in (3.8). Note that we are not allowed to use the product formula for the
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discriminant in (2.42), as the proof of this goes through Section 3.5 which we have
not yet been proved. Let Et be the corresponding elliptic curve in (3.7).

Theorem 3.3 (Weierstrass uniformization theorem) We have a well-defined map

f : C/Λ −→ Et , (3.10)
f (z) := [℘(Λ ,z) :℘

′(Λ ,z) : 1],
f (0) := O = [0 : 1 : 0],

which is an isomorphism of sets. Its inverse is given by:

f−1 : Et → C/Λ , (3.11)

f−1(P) :=
∫ P

O

dx
y
.

Actually, f is an isomorphism of Riemann surfaces. Moreover, we will see that Et
has a structure of a group and it is also a morphism of groups.

Proof. The fact that f is well-defined follows from the differential equation of the
Weierstrass ℘ function, see Theorem 2.2. The heart of the proof is Exercise 2.8. Let
(x,y)∈ Et . The elliptic function℘(z)−x has a pole of order two at z = 0. Therefore,
it must have two zeros z1,z2 in C/Λ . By the differential equation of ℘, we know
that {℘′(z1),℘

′(z2)}= {y,−y}. If y ̸= 0 then there is exactly one of zi’s, let us say
z1, such that ℘′(z1) = y. If y = 0 then ℘ has a zero of multiplicity 2 at z1 and hence
z1 = z2 in C/Λ . This argument proves that f is one to one and surjective.

Let δ1 and δ2 be closed paths in C/Λ which are the images of the vectors
ω1,ω2 ∈ C under the canonical map C → C/Λ . We also use the same notation
for their images in Et under the map (3.10). We have∫

δi

dx
y

= ωi, i = 1,2. (3.12)

In particular, the lattice of elliptic integrals for Et as above is Λ . The integration
in (3.11) can be interpreted in the following way. We take a path in the x-plane
which connects the infinity to the x-coordinate of P. We also choose a branch of
dx
y = dx√

P(x)
. In geometric terms, that is to say, we connect P to the point at infinity

O of Et and we integrate dx
y over this path. The map (3.11) is well-defined. By

the first part f is surjective and it is enough to prove the equality f−1 ◦ f = Id ( if
f−1 ◦ f = Id and f is surjective then f ◦ f−1 = Id). This follows from

f−1 ◦ f (z̃) =
∫ f (z̃)

O

dx
y

=
∫ z̃

0

d℘(z)
℘′(z)

=
∫ z̃

0
dz = z̃.
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Proposition 3.3 Let E be an elliptic curve in the Weierstrass format and P ∈ E be
a point. We have

x(P) =

(∫̂ P

O

dx
y

)−2

+∑

(∫ P

O

dx
y

)−2

−

(∫ P

O

dx
y
−
∫̂ P

O

dx
y

)−2


y(P) = (−2)∑

(∫ P

O

dx
y

)−3

where P = (x(P),y(P)) and the sum is taken over all, except one, non-homotopic
paths in E which connect O to P and

∫ P
O means integration over this path. The

integration over the exceptional path is denoted by
∫̂ P

O .

Proof. The proof follows from the equality f ◦ f−1 = Id. It is easy to see that the
formula for x(P) and y(P) as above, doesn’t depend on the choice of the exceptional
path.

Remark 3.1 The Eisenstein series can be written in the following way. Let E =
Et2,t3 be an elliptic curve in the Weierstrass format. Let also δ0 ∈ H1(E,Z) be a
primitive element, that is, it is not divisable by an integer. We have

bk ·ζ (2k) · ∑
δ a monodromy of δ0

(∫
δ

ω

)−2k

= tk, k = 2,3, (3.13)

where b2 = 60, b3 = 140 and the sum runs in all monodromies δ ∈ H1(E,ω) of
δ0 in the Weierstrass family. Since the monodromy group of the Weierstrass family
is SL(2,Z), we can also take the sum over all primitive elements of H1(E,Z). The
sum

∑
δ a monodromy of δ0, ⟨δ ,δ0⟩>0

(∫
δ

ω

)−k

, k ≥ 3 (3.14)

is related to the discussion in Exercise 2.19. These functions seem to give an em-
bedding of the universal cover of C2\{27t3

2 − t2
3 = 0} inside some affine space. The

following sum might be also interesting for one parameter families of elliptic curves:

∑
δ a clockwise monodromy of δ0

(∫
δ

ω

)−k

. (3.15)

3.5 Period domain and period map

Let L be the space of oriented lattices Λ ⊂ C. After choosing a basis ω1,ω2 for Λ

with ⟨ω1,ω2⟩=−1, we have
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L∼= SL(2,Z)

∖{[
ω1
ω2

]∣∣∣∣∣,ω1,ω2 ∈ C Im
(

ω1

ω2

)
> 0

}
, (3.16)

where the action is given by multiplication of matrices. In this way, L is the first
notion of a period domain that appears in the present text. In the following we will
use the coordinate system (t2, t3) for C2 and S := C2\{t3

2 −27t2
3 = 0}.

Theorem 3.4 The map given by

p : S→ L

(t2, t3) 7→
∫

H1(Et ,Z)

dx
y

is well-defined and it is a biholomorphism which satisfies

p(t2k−4, t3k−6) = kp(t2, t3), k ∈ C∗. (3.17)

Its inverse p−1 is given by the Eisenstein series:

Λ → (g2(Λ),g3(Λ)) = (60G4(Λ),140G6(Λ)).

The map p is also called the period map. We will see other versions of the period
map in Section 3.10 and Chapter 9.

Proof. The fact that p is well-defined follows from Proposition 3.2. The proof of
the equality (3.17) is as follows. Let

α : C2 → C2, (x,y) 7→ (k2x,k3y)

and f = y2 −4x3 + t2x+ t3. We have

k−6
α
∗( f ) = y2 −4x3 + t2k−4x+ t3k−6.

This implies that α induces an isomorphism of elliptic curves

(Et2k−4,t3k−6 ,k−1 dx
y
)→ (E(t2,t3),

dx
y
)

and the result follows. The equality (3.12) and the construction of δi’s before this
equality imply that p◦p−1 = Id, and so, p−1 is injective. We now prove that p−1 is
surjective, or equivalently p is injective. We have the commutative diagram

π1(S,b) π1(L, b̃)

SL(2,Z)

p∗

h
f ,
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where b̃ := p(b), p∗ is the induced map in homotopy groups and h is the monodromy
map discussed in Section 3.3. We write L as the quotient (3.16) and the action of
SL(2,Z) in this quotient has no non-identity stabilizer. If it has, let us say ω =
[ω1,ω2]

tr with A ∈ SL(2,Z),A ̸= I and Aω = ω , then Aω̄ = ω̄ too, and so, the 2×2
matrix formed by ω and ω̄ has zero determinant. This implies that ω2

ω1
is a real

number which is a contradiction. Therefore, by Exercise 3.9 f is an isomorphism:
π1(L, b̃)∼= SL(2,Z). Later, in Proposition 3.6 we will compute the derivative of the
period map p, and in particular, we will prove that p is a local biholomorphism.
This implies that p is a covering and if it is not injective then π1(S,b)

p∗→ π1(L, b̃) is
injective but not surjective. Since h is surjective (Theorem 3.2), p∗ is also surjective,
therefore, p must be injective.

Proof (Proof of Theorem 2.7). We give two proofs. The first uses the fact that the
inverse of j is a period map. The second proof will be give in Section 3.10. Theo-
rem 3.4 implies that we have a bijection S/C∗ → L/C∗. Under the identifications

S/C∗ ∼= C, (t2, t3) 7→
1728t3

2

t3
2 −27t2

3
,

L/C∗ ∼= SL(2,Z)\H,

[
ω1
ω2

]
7→ ω1

ω2
,

the inverse of this map is the map j : H/SL(2,Z)→ C in Theorem 2.7.

Proof (Proof of Theorem 2.5). If there is a polynomial P ∈ C[X ,Y ] such that
P(E4,E6) = 0 then the image of the inverse p−1 of the period map lies in the curve
P(X ,Y ) = 0 (up to multiplication of X and Y with constants). This contradicts the
fact that p is a biholomorphism. We regard modular forms as functions on the space
of lattices L. Under the bijection p any modular form of weight k becomes a holo-
morphic function f in S with the property

f (t2λ
4, t3λ

6) = λ
k f (t2, t3), λ ∈ C∗. (3.18)

We use the growth condition of f and prove that f is a polynomial of degree k
in the weighted ring C[t2, t3], weight (t2) = 4, weight (t3) = 6. Since the lattices
associated to τ and τ +1 are the same, we get a map

D−{0}→ L, q = e2πiτ 7→ Zτ +Z,

where D is the disc of radius 1 and center 0 in C. We compose it with p−1 and get
the map

i : D→ C2, q 7→ (g2(q),g3(q)).

Note that this map is even defined at 0 ∈ D and the image of 0 is in the discrim-
inant locus {∆ = 0}. The growth condition of f implies that f |Im(i) extends as a
holomorphic function at i(0). Now, under the C∗-action in C2 any point near to i(0)
is equivelent to a point in Im(i). This implies that f is bounded near i(0). By Rie-
mann’s extension theorem, see Exercise 3.10, f extends to a holomorphic function
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Fig. 3.3 Discriminant

in C2\{(0,0)} and by Hartogs extension theorem, see Exercise 3.11, we conclude
that f is holomorphic in C2. We write the Taylor series of f at (0,0) and (3.18)
implies the desired polynomiality of f , see Figure 3.3.

Let us now prove the second part which claims that if f is defined over Q then
P has rational coefficients. Let a = dimC[E4,E6]k. We choose a basis of monomials
mi = Eαi

4 Eβi
6 , i = 1,2, . . . ,a for C[E4,E6]k and define A to be the a×n matrix such

that Ai j is the j-th Fourier coefficient of mi. By Proposition 2.8, for n > k
12 the

rows of A are linearly independent. Therefore, for n > a (which is automatic by
Exercise 2.25) we can choose an a× a minor B of A with non-zero determinant.
We can derive from the equality f = P(E4,E6) another equality C f = CPB, where
the entries of the 1× a matrix C f are collected from the Fourier coefficients of f
and the entries of the 1× a matrix CP is formed by the coefficients of P. We have
CP =C f B−1 and the proof is finished.

Exercise 3.10 Let us take a connected neighborhood U of 0∈C2, remove the x-axis
{y = 0} from it and call it U −{y = 0}. Show that any bounded holomorphic func-
tion in U −{y = 0} extends to a holomorphic function in U . The same affirmation
is valid if instead of boundedness of f we assume that f extends to a neighborhood
of a point in {y = 0}. Hint: This follows from Riemann’s extension theorem, see
[Gun90, Vol. I, Chapter D].

Exercise 3.11 Let us take a connected neighborhood U of 0 ∈ C2, remove 0 from
it and call it U −{0}. Show that any holomorphic function in U −{0} extends to a
holomorphic function in U . Hint: This is Hartogs extension theorem, see [Gun90,
Vol. I, Chapter D].
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3.6 Gauss-Manin connection matrix

Elliptic integrals which depend on a parameter satisfy linear differential equations
which are called Picard-Fuchs equations. In many examples elliptic integrals depend
on more than one parameter and the description of the differential equations of such
integrals is done under the name Gauss-Manin connection. In this section we explain
these concepts for the Weierstrass family of elliptic curves. For more examples and
the algorithms which compute such differential equations see [Mov21, Chapter 12].
For our main statement in this section we need the follwoing:

Exercise 3.12 For an arbitrary δ ∈ H1(Et2,t3 ,Z), verify the following equalities

∫
δ

x2dx
y

=
1

12
t2
∫

δ

dx
y
,∫

δ

x3dx
y

=
3

20
t2
∫

δ

xdx
y

+
1

10
t3
∫

δ

dx
y
,∫

δ

x4dx
y

=
1
7

t3
∫

δ

xdx
y

+
5

336
t2
2

∫
δ

dx
y
,∫

δ

x5dx
y

=
7

240
t2
2

∫
δ

xdx
y

+
1

30
t2t3

∫
δ

dx
y
.

Hint: Restricted to the elliptic curve Et2,t3 we have the equality

d(xay) =
(
(4a+6)xa+2 − (a+

1
2
)t2xa −at3xa−1

)
dx
y
.

Proposition 3.4 Let us consider the Weierstrass family of elliptic curves Et : y2 =
p(x), p := 4x3 − t2x− t3. We haved

(∫ dx√
p(x)

)
d
(∫ xdx√

p(x)

)
=

− 1
12

d∆

∆
, 3

2
α

∆

− 1
8 t2 α

∆
, 1

12
d∆

∆



∫ dx√

p(x)∫ xdx√
p(x)

 , (3.19)

where
∆ := 27t2

3 − t3
2 , α := 3t3dt2 −2t2dt3.

The above data is the Gauss-Manin connection of the family of elliptic curves y2 =
p(x) before the invention of cohomology theories. The manipulations needed in its
proof are widely present in the works of many mathematicians of 19th century.

Definition 3.2 The two by two matrix A in (3.19) is called the Gauss-Manin con-
nection matrix of the family of elliptic curves y2 = 4x3 − t2x − t3 and written in
dx
y ,

xdx
y .

The period matrix is
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P :=

[∫
δ1

dx
y
∫

δ1
xdx

y∫
δ2

dx
y
∫

δ2
xdx

y

]
(3.20)

and it follows from Proposition 3.4 that it satisfies the following differential equa-
tion:

dPtr = APtr. (3.21)

The first application of Proposition 3.4 is the following:

Proposition 3.5 Let E be an elliptic curve in the Weierstrass format y2 = 4x3−t2x−
t3, t2, t3 ∈C, 27t2

3 − t3
2 ̸= 0 and let δ1,δ2 be a basis of H1(E,Z) with ⟨δ1, δ2⟩=−1.

We have ∫
δ2

dx
y

∫
δ1

xdx
y

−
∫

δ1

dx
y

∫
δ2

xdx
y

= 2π
√
−1. (3.22)

Equation (3.22) is called the Legendre relations between elliptic integrals.

Proof. We have to show that det(P) =−2πi. From (3.21) it follows that P satisfies

d (det(P)) = Trace(A)det(P),

and from the explicit expression of A in (3.19) we know that Trace(A) = 0. There-
fore, det(P) is a constant independent of t2, t3. It remains to compute it for a value
of t2, t3. We will do this for t2 = 12, t3 = 8 in Section 3.9.

Proposition 3.6 The period map p : S→ L defined in Theorem 3.4 is a local biholo-
morphism.

Proof. We need to prove that the derivative of p at any point is an isomorphism. For
a basis δ1,δ2 ∈ H1(Et2,t3 ,Z), it is enough to verify this for the multivalued function

p̃ : S→ C2, (t2, t3) 7→
(∫

δ1

dx
y
,
∫

δ2

dx
y

)
.

Let P :=
[

x1 x2
x3 x4

]
be the period matrix and A be the Gauss-Manin connection matrix

in (3.19). Let us write it as A = A2dt2 +A3dt3. By Proposition 3.4 the derivative of
p̃ at a point is [

∂x1
∂ t2

∂x3
∂ t2

∂x1
∂ t3

∂x3
∂ t3

]
= B

[
x1 x3
x2 x4

]
, B =

[
− 1

12
−3t2

2
∆

3
2

3t3
∆

− 1
12

2·27t3
∆

3
2
−2t2

∆

]
,

where the first and second row of B are the first row of A2 and A3, respectively.
Using Proposition 3.5 we conclude that the determinant of this matrix is not zero.

For the proof of Proposition 3.4 we need the following. We first write down the
equation which says that ∆ is the resultant of p and p′ (the derivation of p with
respect to x):

∆ =−p′ ·a1 + p ·a2,
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where
a1 =−36x4 +15t2x2 − t2

2 , a2 =−108x3 +27t2x−27t3

see Section 4.6 for an algorithm of this computation.

Proposition 3.7 For a polynomial A ∈ C[x] we have the following equality re-
stricted to the elliptic curve Et2,t3 :

Adx
y3 =

1
∆

(
a2A−2

∂

∂x
(Aa1)

)
dx
y
+

1
∆

d
(

2Aa1

y

)
.

Proof.

Adx
y3 =

1
∆

A(−p′a1 + pa2)dx
py

=
1
∆

(
a2A

dx
y
− Aa1

y
d p
p

)
=

1
∆
(a2A

dx
y
+2Aa1d(

1
y
))

Proof (Proof of Proposition 3.4). The proof is a mere calculation which is classical
and can be found in ([Sas74] p. 304, [Sai01] ). In the following we write y =

√
P(x)

and eliminate the integral sign from our computations. P. Deligne in a personal com-
munication (January 31, 2016) writes “When reading old literature, I find it useful
to mentally replace “integral” by “differential form”. It is often what they are really
concerned with, even if they had not the language to say so. I doubt that using the
“integral” terminology helps”.

We explain only the calculation of ∂

∂ t3
( dx

y ). We have

∂

∂ t3
(

dx
y
) =

1
2

dx
py

=
1
∆

(−p′a1 + pa2)dx
2py

=
1
∆
(

1
2

a2 −a′1)
dx
y

=
1
∆
(90x3 − 33

2
t2x− 27

2
t3)

dx
y

=
1
∆

(
−9

2
t3

dx
y
−3t2

xdx
y

)
.

The equalities are written modulo exact forms, whose integration over closed paths
are zero. Note that in the third equality above we use y2 = p(x) and Proposition 3.7.

Exercise 3.13 In a similar way as in the proof of Proposition 3.4 calculate ∂

∂ ti
( x jdx

y ), j =
1,2, i = 2,3.

We will write (3.19) in the following format
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y )

∇( xdx
y )

=

− 1
12

d∆

∆
, 3

2
α

∆

− 1
8 t2 α

∆
, 1

12
d∆

∆


 dx

y

xdx
y

 (3.23)

even though we have not defined what is this Gauss-Manin connection ∇. The reader
might simply put integral sign behind differential forms and replace ∇ with the
differential d in parameters, in order to go back to the hisorical version of Gauss-
Manin connection.

It is observed in [CMY21] that the inverse of the Gauss-Manin connection is
simpler than the Gauss-Manin connection itself. This is also the case in our main
example above

A =

[
−4t2 − 72t3

t2
6t3 4t2

]−1

dt2 +

[
−6t3 −4t2

t2
2
3 6t3

]−1

dt3.

Despite the fact the proof of Proposition 3.4 is a tedious elementary calculus manip-
ulation that can be performed by hand, one might seek for general algorithms and
their implementations which does this job for us. This is done in [Mov21, Chapter
12].

Exercise 3.14 Show that the Gauss-Manin connection matrix of the family of ellip-
tic curves y2 −4(x− t1)(x− t2)(x− t3) = 0 and written in dx

y ,
xdx

y is

dt1
2(t1 − t2)(t1 − t3)

[
−t1 1

t2t3 − t1(t2 + t3) t1

]
+ (3.24)

dt2
2(t2 − t1)(t2 − t3)

[
−t2 1

t1t3 − t2(t1 + t3) t2

]
+

dt3
2(t3 − t1)(t3 − t2)

[
−t3 1

t1t2 − t3(t1 + t2) t3

]

=
1
2

[
−t1 1

−(t1t2 + t1t3 − t2t3) t1

]−1

dt1 +
1
2

[
−t2 1

−(t1t2 − t1t3 + t2t3) t2

]−1

dt2

+
1
2

[
−t3 1

(t1t2 − t1t3 − t2t3) t3

]−1

dt3.

Exercise 3.15 Show that the Gauss-Manin connection matrix of the family of ellip-
tic curves y2 − (x− t1)(x− t2)(x− t3)(x− t4) = 0 and written in dx

y ,
xdx

y , x2dx
y is

 −2t1 2 0
0 −2t1 2

(t1t2t3 + t1t2t4 + t1t3t4 − t2t3t4) −(2t1t2 +2t1t3 +2t1t4) (t1 + t2 + t3 + t4)

−1

dt1 + · · ·

where · · · mean that we change the role of ti with t1 and write the Gauss-Manin
connection matrix of dti using the symmetry between ti’s.

Exercise 3.16 The j-invariant of the the family of elliptic curves
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E : y2 + xy− x3 +
36

j−1728
x+

1
j−1728

= 0, j ̸= 0,1728,

is the parameter j. Note that this family misses the elliptic curve with j = 1728. The
Gauss-Manin connection matrix of E in the basis [ dx

2y+x ,
dx

2y+x ]
tr is

1
j( j−1728)

(
−432 −60

−( j−1728) 432

)
.

Other families with the same property are y2 = x3+x2− 1
j and y2+xy = x3− 1

j (see
[Hus04, Proposition 5.3, page 76]).

3.7 Ramanujan and Darboux-Haphen vector field

Our main observation in this section is the following:

Proposition 3.8 In the parameter space of the family of elliptic curves y2 = 4(x−
t1)3 − t2(x− t1)− t3 there is a unique vector field R, such that

∇R(
dx
y
) =−xdx

y
, ∇R(

xdx
y

) = 0. (3.25)

The vector field R is given by

R= (t2
1 −

1
12

t2)
∂

∂ t1
+(4t1t2 −6t3)

∂

∂ t2
+(6t1t3 −

1
3

t2
2 )

∂

∂ t3
. (3.26)

Proof. This follows from the computation of Gauss-Main connection in Proposi-
tion 3.4 and explicit calculations.

The vector field R is called the Ramanujan vector field. Let us consider the family
of elliptic curves considered in Exercise 3.15. . A vector field with the properties
(3.25) is given by

H = (t1(t2 + t3)− t2t3)
∂

∂ t1
+(t2(t1 + t3)− t1t3)

∂

∂ t2
+(t3(t1 + t2)− t1t2)

∂

∂ t3
.

This is called the Darboux-Halphen vector field.

Exercise 3.17 Perform the calculations leading to a proof of Proposition 3.8. Per-
form also similar calculations leading to the Darboux-Halphen vector field.
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3.8 Picard-Fuchs equation

Before the invention of Gauss-Manin connection, the term Picard-Fuchs equation
was mainly used to denote the differential equation of elliptic and abelian integrals.
In this section we explain this with explicit families of elliptic curves.

Let us consider the following one parameter family of elliptic curves Eψ : y2 −
4x3 + 12x − 4ψ = 0 discussed in Section 3.3. We also consider a basis δ1,δ2 of
H1(Eψ ,Z), It follows from Proposition 3.4 that the matrix

Y =

[ ∫
δ1

dx
y
∫

δ2
dx
y∫

δ1
xdx

y
∫

δ2
xdx

y

]
(3.27)

forms a fundamental system of the linear differential equation:

Y ′ =
1

ψ2 −4

[−1
6 ψ

1
3

−1
3

1
6 ψ

]
Y, (3.28)

that is, any solution of (3.28) is a linear combination of the columns of Y with
C coefficients. This example shows a little bit the historical aspects of the Gauss-
Manin connection. From (3.28) it follows that the elliptic integral I :=

∫
δ

dx
y (resp.

I :=
∫

δ
xdx

y ) for all δ ∈ H1(Eψ ,Z) satisfies the differential equation

5
36

I +2ψI′+(ψ2 −4)I′′ = 0 ( resp.
−7
36

I +2ψI′+(ψ2 −4)I′′ = 0) (3.29)

where ′ = ∂

∂ψ
. These are called Picard-Fuchs equations. We give more (historical)

examples of Picard-Fuchs equations.

Exercise 3.18 Prove that for the Legendre, resp. Weierstrass, family of elliptic
curves Et : y2 − x(x − 1)(x − t), resp. Et : y2 − x3 + 3tx − 2t, the periods I(t) :=∫

δt
dx
y , δt ∈ H1(Et ,Z) satisfy the Picard-Fuchs equation L(I) = 0, where

L := 1+(8t −4)
∂

∂ t
+4t(t −1)

∂ 2

∂ 2t
, (3.30)

resp.

L := (27t +4)+144t(2t −1)
∂

∂ t
+144t2(t −1)

∂ 2

∂ 2t
, (3.31)

see [KZ01] for some discussion on these Picard-Fuchs equations.

Exercise 3.19 For the family of elliptic curves y2 = (1−x2)(1−k2x2) (Jacobi fam-
ily) we must choose the differential forms dx

y ,
xdx

y and x2dx
y in order to compute the

Gauss-Manin connection matrix. This is



66 3 Elliptic curves and integrals
k

k2−1 0 k
k2−1

0 − 1
k 0

− 1
k3−k 0 − k2−2

k3−k

 .
The Picard-Fuchs equation of these three differential forms are respectively:

k+(3k2 −1)∂ +(k3 − k)∂ 2

1+ k∂

3k+(5k2 −3)∂ +(k3 − k)∂ 2

where ∂ = ∂

∂k . In particular,
∫

δ
xdx

y =
cδ

k , where cδ is a constant which only depends

on δ . In [Hus04, page 92] we also find the family y2 = (1−σ2x2)(1− x2

σ2 ) which is
called the Jacobi family.

3.9 Hypergeometric functions

In this section we compute explicitly elliptic integrals. In most of our discussion we
have taken the domain of integration any δ ∈ H1(E,Z) without specifying it. For
the computation of elliptic integrals we need to fix such cycles. Let us consider the
family of elliptic curves (3.9) and δ1,δ2 ∈ H1(Eψ ,Z) described in Section 3.3: for
ψ a real number between −2 and 2, δ2 is the closed curve inside Eψ ∩R2 which
encircles (−1,0) and δ1 ∈ H1(Eψ ,Z) vanishes on the nodal point (1,0). Whenever
we need to emphasize that δi, i = 1,2 depends on ψ we write δi = δi,ψ . Recall that
the cycles δi, i = 1,2 form a basis of H1(Eψ ,Z) and [

∫
δi

dx
y ,
∫

δi
xdx

y ]tr, i = 1,2 are
solutions of (3.28). We make a linear transformation

z =
ψ +2

4

which sends the singularities ψ =−2,2 of (3.28) to z = 0,1. We write (3.28) in the
variable z. The integrals

∫
δ2

dx
y and

∫
δ2

xdx
y are holomorphic around z = 0. We write

X := [
∫

δ2
dx
y ,
∫

δ2
xdx

y ]tr as a formal power series in z X = ∑
∞
i=0 Yizi, substitute it in

(3.28) and obtain a recursive formula for Yi’s. The constant term turns out to be of
the form Y0 = [a0,−a0]

tr, where a0 is the value of
∫

δ2
dx
y at ψ = −2. This must be

calculated separately. The intersection of the elliptic curve Eψ ,−2 < ψ < 2 with the
real plane R2 has two connected component, one of them is δ2 and the other δ̃2 is a
closed path in Eψ which crosses the point at infinity [0;1;0]. It turns out that if we
give the clockwise orientation to δ̃2 then it is homotopic to δ2 in Eψ and

a0 =
∫

δ̃2

dx
y

∣∣∣∣
ψ=−2

= 2
∫

∞

2

dx
2(x+1)

√
x−2

=
2tang−1(

√
x−2√

3
)

√
3

∣∣∣∣∣∣
∞

2

=
π√
3
.



3.9 Hypergeometric functions 67

Note that for ψ a real number near −2, by Stokes formula we have
∫

δ2
dx
y =∫

∆2
dx∧dy

y2 > 0, where ∆2 is the region in R2 bounded by δ2, and so we already knew

that a0 ≥ 0. This explain the fact that why δ2 is homotopic to clockwise oriented δ̃2.
The result of all these calculations is:∫

δ2

dx
y

=
π√
3

F(
1
6
,

5
6
,1|ψ +2

4
), (3.32)

∫
δ2

xdx
y

=− π√
3

F(
−1
6

,
7
6
,1|ψ +2

4
),

where

F(a,b,c|z) =
∞

∑
n=0

(a)n(b)n

(c)nn!
zn, c ̸∈ {0,−1,−2,−3, . . .}, (3.33)

is the Gauss hypergeometric function and (a)n := a(a+1)(a+2) · · ·(a+n−1).
Let us now calculate the integrals

∫
δ1

xidx
y , i = 0,1. We have the isomorphism

E−ψ → Eψ , (x,y) 7→ (−x, iy) which sends the cycle δ2,−ψ to δ1,ψ and δ1,−ψ to
−δ2,ψ . This gives us the equalities:

∫
δ1,ψ

x jdx
y

= (−1) ji
∫

δ2,−ψ

x jdx
y

Finally, we have calculated all the entries of the Fundamental system Y in (3.27):

Y =

[
πi√

3
F( 1

6 ,
5
6 ,1|

−ψ+2
4 ) π√

3
F( 1

6 ,
5
6 ,1|

ψ+2
4 )

πi√
3
F(−1

6 , 7
6 ,1|

−ψ+2
4 ) − π√

3
F(−1

6 , 7
6 ,1|

ψ+2
4 )

]

The monodromy around z = 0 leaves δ2 invariant and takes δ1 to δ1 +δ2. From this
it follows that for a fixed complex number a:∫

δ1

dx
y

=
ln(az)

2πi
(
∫

δ2

dx
y
)+

1
2i
√

3
f (z) =

1
2i
√

3
(F(

1
6
,

5
6
,1|z) ln(az)+ f (z)), (3.34)

where f is a one valued function in a neighborhood of z = 0. From Exercise 3.20,
Item 4 it follows that f is holomorphic at z = 0. We choose a in such a way that the
value of f at z = 0 is 0. This is equivalent to the following formula for a:

a = exp(2πi(lim
z→0

∫
δ1

dx
y
− lnz

2πi

∫
δ2

dx
y
)).

According to Exercise 3.20, Item 4 we have

a =
1

432
.
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We write f = ∑
∞
i=1 fnzn and substitute (3.34) in the Picard-Fuchs equation (3.32)

and we obtain the following recursion for fn’s:

fn+1 =
(n− 1

6 )(n−
5
6 )

(n+1)2 fn +
( 1

6 )n(
5
6 )n

(n!)2
2n+1
(n+1)2 − 2

n+1
( 1

6 )n+1(
5
6 )n+1

((n+1)!)2 , f0 = 0.

We will need the value f1 =
13
18 .

Exercise 3.20 1. Deduce (3.29) from (3.28).
2. The integrals

∫
δ2

dx
y and

∫
δ2

xdx
y are holomorphic at z = 0.

3. Do the details of the calculations which lead to the equalities (3.32).
4. Prove

lim
z→0

πi√
3

F(
1
6
,

5
6
,1|1− z)− π√

3
F(

1
6
,

5
6
,1|z) ln(z)

2πi
=

ln(432)
2πi

.

Remark 3.2 Historically, the following identities are proved first:∫ 0

−∞

dx√
x(x−1)(x−λ )

= F(
1
2
,

1
2
,1|1−λ ),

∫
∞

1

dx√
x(x−1)(x−λ )

= F(
1
2
,

1
2
,1|λ ),

see [Hus04, Theorem 6.1, page 184].

3.10 Schwarz map

In Theorem 3.4 we can quotient both domain and image of the period map p by the
C∗ action and obtain

C→ SL(2,Z)\H, j 7→

[∫
δ1

dx
y∫

δ2
dx
y

]
(3.35)

where S/C∗ ∼= C, (t2, t3) 7→ 1728 t3
2

t3
2−27t2

3
. This is the inverse of the j-function

discussed in Section 2.12. We do not have a family of elliptic curves over j ∈ C.
In other words, the universal family of elliptic curves does not exist. Instead we
have the family in Exercise 3.16 which misses the elliptic curve with j = 1728. We
will therefore consider the family of elliptic curves (3.9) which at least contains all
elliptic curves, but repeated, becasue

j(Eψ) =
432

z(1− z)
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Recall the computation of elliptic integrals in this case in terms of Gauss hypergeo-
metric function. The multivalued function

p : C→H, z 7→
∫

δ1
dx
y∫

δ2
dx
y

= i
F( 1

6 ,
5
6 ,1|1− z)

F( 1
6 ,

5
6 ,1|z)

after composing with the projection is H→ SL(2,Z)\H is just the map (3.35) and
one might also call it a period map. However, historically this p is called the Schwarz
map. In the context of mirror symmetry it is also called the mirror map. We summa-
rize its global behavior in the following proposition:

Proposition 3.9 Let

U := {z ∈ C | Re(z)<
1
2
}\{z ∈ R | z ≤ 0}.

and consider the branch of the Schwarz map in U which has pure imaginary values
in 0 < z < 1

2 . Its image is the interior of the classical fundamental domain of the
action of SL(2,Z) in H depicted in Figure 2.3. Its analytic continuation result in the
triangulation of H as in Figure 2.3.

Basic ingredients of the proof are the global injectivity of the period map (3.35)
proved in Theorem 3.4 and the following exercise:

Exercise 3.21 Let p be the branch of the Schwarz map described in Proposition 3.9.
Prove the following:

1.
lim

z∈R, z→0+
p(z) = +∞.

2.
|p(1

2
+ ix)|= 1, x ∈ R.

3.

lim
x∈R, x→±∞

p(
1
2
+ ix) =±1

2
+

√
3

2
.

4. The analytic continuation of p from the upper half (resp. lower half) of C to R−

has the constant real part 1
2 (resp. − 1

2 ).

The hypergeometric functions F1 and F2 appearing in the denominator and nomina-
tor of the mirror map are a basis of solutions for the Picard-Fuchs equation

y
′′
+

2z−1
z2 − z

y′+
5
36

y = 0. (3.36)

Therefore, the Wronskian W = F ′
1F2 −F1F ′

2 satisfies the differential equation W ′
W =

− 2z−1
z2−1 and so

F ′
1F2 −F1F ′

2 = c
1

z(1− z)
, (3.37)
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where c is a constant. It can be computed for instance by asymptotic behaviour of
F1 and F2 at z = 0 or z = 1, or the evaluation at z = 1/2. In particular,

dτ = c
1

z(1− z)F2
2

dz.

Remark 3.3 In Hodge theory the global (resp. local) injectivity of the period map
is known as global (resp. local) Torelli problem. It might be useful to give a proof
of the injectivity of the period map p in Theorem 3.4 without using the explicit con-
struction of its inverse by Eisenstein series. This is as follows. After taking quotient
by C∗ action, we need to prove that the map p : C→ SL(2,Z)\H given by (3.35) is
injective. First, we observe that the quotient SL(2,Z)\H has a canonical structure
of a Riemann surface such that the map p is a local biholomorphism. Let U be a
subset of SL(2,Z)\H containing all τ with Im(τ)> 1. The map

U → D(0,e−2π), τ 7→ q = e2πiτ ,

where D(0,r) is a disk in C with center 0 and radius r, is a coordinate system
around each point of U . Using this map S̄ := SL(2,Z)\H∪{∞} becomes a compact
Riemann surface, where the value of the above coordinate at ∞ is q = 0. From
another side S/C∗ ∼= C admits also the canonical compactification S/C∗ which is
obtained by adding the single point a := {∆ = 0}/C∗. A coordinate system around
a for S/C∗ is given by (C,0)→ S/C∗, z 7→ (12,−4(4z− 2)). Note that we do not
choose the natural coordinate j−1 = 1

432 z(1− z). For this recall the one parameter
family of elliptic curves in Section 3.9. The map p written in these coordinates is:

z 7→ q = e
2πi

∫
δ1

dx
y∫

δ2
dx
y =

1
432

ze
f (z)

F( 1
6 , 5

6 ,1|z) =
1

432
ze

13
18 z+···

1+ 5
36 z+··· (3.38)

This is an invertible map at z = 0. All these imply that p extends to a local biholo-
morphism S/C∗ → S̄ without critical points. Since both the image and domain of
this map are compact Riemann surfaces of genus zero, we conclude that p is a global
biholomorphism.

3.11 Elliptic integrals and modular forms

In this section we explain a way to get modular forms working with elliptic in-
tegrals. This method is old and goes back to Jacobi, Legendre, Klein, Fricke and
Ramanujan among many others, however, it seems that it is neglected in the modern
treatment of modular forms, as rarely a classical book on modular forms covers this
topic. This tendency has persisted until physicists, and in particular string theoretist,
see for instance [CdlOGP91], produced q-expansions which encode Gromov-Witten
invariants, and for this they used periods of Calabi-Yau varieties. Calabi-Yau one
folds are elliptic curves, and such q-expansions are actually quasi-modular forms.
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This method is a systematic way to see the historical equalities:

4
√

E4(τ) = F(
1
12

,
5
12

,1;
1728
j(τ)

), (3.39)

due to [KF17a, KF17b], and

θ3(τ)
2 = F(

1
2
,

1
2
,1; t(τ)), t(τ) := 16

η(τ/2)8η(2τ)16

η(τ)24 , (3.40)

due to [Ram00, page 23-39], see also [Coo09]. It seems to the author that this was
known to Jacobi in the following format:

K(k) =
π

2
θ

2
3

(
i
K(

√
1− k2)

K(k)

)
, K(k) :=

∫ 1

0

dx√
(1− x2)(1− k2x2)

, (3.41)

noticing that K(k) := π

2 F( 1
2 ,

1
2 ,1;k2). These are called inversion formulas. In the

followng we explain how to get these and similar formulas starting from a family
of elliptic curves. However, one can also modify the presentation here starting from
the underlying Picard-Fuchs equations, and in general, Fuchsian linear differential
equations. For some examples see [DGMS13, Sti88]. For a brief history of inversion
formulas and more examples see [Coo09, Section 1.2].

Let Ez,z ∈ C be a family of elliptic curve over a curve C of an arbitrary genus.
For simplicity, we can take the base C = P1. Let A ⊂C be the set of critical values,
that is, those t with Et singular, and fix one element 0 ∈ A and a point b near to 0.
Our main example of this situation is the family (3.9) with ψ = 4z−2.

Eψ : y2 −4x3 +12x−4(4z−2) = 0. (3.42)

We assume that the anti-clockwise monodromy H1(Ez,Z)→ H1(Ez,Z) for z near b
and in a basis δ1,δ2 ∈ H1(Ez,Z),⟨δ1,δ2⟩=−1 is given by[

δ1
δ2

]
→
[

1 1
0 1

][
δ1
δ2

]
.

In Section 3.3 we have seen that this condition is valid for (3.42). We fix this
basis, and hence, we can identify the monodromy group Γ := Im(π1(C\A,b) →
Aut(H1(Eb,Z))) with a subgroup of SL(2,Z). Moreover, for a holomorphic differ-
ential form ω (for our example ω = dx

y ) we have

ω2,z :=
∫

δ2

ω = holomorphic in (C,b) and ω2,z(0) ̸= 0,

ω1,z :=
∫

δ1

ω =
ln(az)ω2,z + ω̃1,z

2πi
,

ω̃1,z is holomorphic in (C,0) and ω̃1,z(0) = 0,
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where z is a holomorphic coordinate system around 0 ∈C. Here, the complex num-
ber a is taken in such a way that the condition ω̃1,z(0) = 0 holds (for our example
a = 1

432 ). These conditions for (3.42) are verfied in Section 3.9. The Schwarz map
is defined in the following way

τ =
ω1,z

ω2,z
=

1
2πi

(
ln(az)+

ω̃1,z

ω2,z

)
q = e2πiτ = aze

ω̃1,z
ω2,z .

It follows that q(0) = 0 and it is regular at this point. Therefore, we can use it as a
coordinate system in (C,0) and holomorphic functions f in (C,0) can be written as
functions in q. In other words, we use the inverse z 7→ q(z) function and consider
the composition f (z(q)). For simplicity, we will denote this and f (z(e2πiτ)) by f (q)
and f (τ) respectively. Now, consider a function f which has analytic continuation
in C\A along any path, and possibly with ramification points in A, then f (τ) has
a chance to be a holomorphic (one valued) function in the upper half plane. Let γ

be a set of paths in C which connectes critical values of C to each other and C\γ

is simply connected. In our example, we take γ to be the real line P1(R) minus the
interbal (0,1). For z near to 0 and in the set C\γ , we take a branch of ln(az) with
0 < Im(ln(az))< 2π . Then τ is near i∞ and it is in the band

{τ ∈ C
∣∣∣0 < Re(τ)< 1, Im(τ)> r}

form some r ∈ R+. Therefore, the image D of the restriction of the Schwarz map to
C\γ is a polygon-type shape in H with one vertice at i∞. The analytic continuation of
τ will result on a triangulation of H with polygons. The domain D is the fundamental
domain of the action of the monodromy group Γ on H.

Theorem 3.5 For a rational function g on C and k ∈ Z, the function

f =
(∫

δ2

ω

)k

·g

regarded as a function in τ is a meromorphic modular form of weight k for the
monodromy group Γ .

Proof. We only need to verify the functional equation. Let ωi = ωi,z, i = 1,2. After

a monodromy A =

[
a b
c d

]
, we have the transformations ω1 7→ aω1 +bω2 and ω2 7→

cω1 +dω2. Therefore, τ transforms to A(τ) := aτ+b
cτ+d and f transforms to

(cω1 +dω2)
k ·g = (cτ +d)k

ω
k
2 ·g.

Regarding ωk
2 ·g as a function in A(τ) we get the result.
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It might be interesting to formulate a finer version of Theorem 3.5 in which we
specify rational functions g such that f becomes a holomorphic modular form. We
will do this only in our main example with some flavour of quasi modular forms. In
this way, we might also prove that any modular form for the monodromy group Γ is
obtained as in Theorem 3.5 and then characterize the algebra of modular forms for
Γ in terms of elliptic integrals (for an example see [Sti88, Theorem 5]).

Theorem 3.6 We have

F(−1
6
,

7
6
,1 | z)F(

1
6
,

5
6
,1 | z) = E2(i

F( 1
6 ,

5
6 ,1|1− z)

F( 1
6 ,

5
6 ,1|z)

), (3.43)

F(
1
6
,

5
6
,1 | z)4 = E4(i

F( 1
6 ,

5
6 ,1|1− z)

F( 1
6 ,

5
6 ,1|z)

),

(1−2z)F(
1
6
,

5
6
,1 | z)6 = E6(i

F( 1
6 ,

5
6 ,1|1− z)

F( 1
6 ,

5
6 ,1|z)

).

Theorem 3.6 is proved in [Mov12, Section 8.7] as a byproduct of the geometric
interpretation for quasi-modular forms. During the preparation of the present text,
we realized that similar formulas for E4 and E6 were known in [Sti88, Theorem 3,
Theorem 4]:

E4(τ) = F(
1

12
,

5
12

,1 | 1728
j(τ)

)4

E6(τ) = (1− 1728
j(τ)

)
1
2 F(

1
12

,
5

12
,1 | 1728

j(τ)
)6

In [Fri22, Section 10, page 336] many computations are carried in this direction,
however, direct relations with Eisenstein series is missing. In [Fri16, page 311] we
can find a formula which is basically equivalent to our formula for E2.

Proof. We can give three proofs. The first one which is in [Mov12] and will be
explained in Chapter 9 uses the notion of generalized period domain and map. This
is the way the author got these identities. For the second proof we take the left hand
side (3.43) and write their q-expansions. We only need to find the three constant
terms and one coefficient of q1. We then check that these constants coincide with
those in E2,E4,E6. We next verify that the left hand side of (3.43) as function in
τ satisfy the Ramanujan differential equation. For the third proof we must verify
that the left hand side of (3.43) as function in τ are holomorphic even at i∞. For
E4,E6 we then get the identity using Theorem 3.6 and the fact the space of modular
forms of weight 4 and 6 is one dimensional (Theorem 2.5). For E2, a similar as in
Theorem 3.6 we verify that the left hand side of (3.43) satisfy the same functional
equation as E2. The difference of this function with E2 is a modular form of weight
2, and hence, by Theorem 2.5 it is zero.

Exercise 3.22 Write down the details and computations for the the last two proofs
of Theorem (3.6).
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Since the j-invariant of the family elliptic curves Ez is j(Ez) =
432

z(1−z) we can rewrite
(3.43) in the followig historical format

F(−1
6
,

7
6
,1 | z)F(

1
6
,

5
6
,1 | z) = E2(τ), (3.44)

F(
1
6
,

5
6
,1 | z)4 = E4(τ),

(1−2z)F(
1
6
,

5
6
,1 | z)6 = E6(τ).

where z =
√

1
4 −

432
j + 1

2 .

Exercise 3.23 Prove the Fricke-Klein (3.39), Ramanujan (3.40) and Jacobi (3.41)
inversion formulas.

The n-th Fourier coefficient of the modular form f in Theorem 3.5 can be computed
in the following way: Since 2πi dq

q = ∂

∂τ
, we have

fn =
1

2πi

∫
f (q)q−n dq

q

=
∫

γ

f
(

ω1,z

ω2,z

)
e
−2πin

ω1,z
ω2,z d

(
ω1,z

ω2,z

)
=
∫

γ

g(z)ωk
2,z(az)−ne

−n
ω̃1,z
ω2,z

g̃(z)
ω2

2,z

dz
z

=
∫

γ

g(z)g̃(z)ωk−2
2,z

∞

∑
m=0

(az)−n

m!

(
−n

ω̃1,z

ω2,z

)m dz
z

=
∞

∑
m=0

a−n(−n)m

m!
The coefficient of zn in gm(z),

where g̃ = θω1,zω2,z −ω1,zω̃2,z turns out to be a rational function in z and

gm(z) := g(z)g̃(z)ωk−2
2,z

(
ω̃1,z

ω2,z

)m

.

Exercise 3.24 S. Ramanujan was aware of the relation of Eisenstein series and el-
liptic integrals. In [Ram16, pages 180, 187] in the footnote he writes the following
identities without proof:

P =
12ηω

π2 = (
2K
π

)2(
3E
K

+ k2 −2),

Q =
12g2ω4

π4 = (
2K
π

)4(1− k2 + k4),

R =
216g3ω6

π6 = (
2K
π

)6(1+ k2)(1−2k2)(1− 1
2

k2).
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Write down the missing definitions in these equalities.

Remark 3.4 It is of historical interest to trace back the origin of inversion formulas
presented in this section. The first appearance of the q variable as the exponential of
the quotient of two elliptic integrals seems to go back to [Jac29]. From Section 35,
page 84 on, he starts doing many computations and writting many elliptic integral
expressions in terms of q, see [Jac29, Section 36, page 89,90] . It is not clear for
the author his motivation. Legendre’s comments on Jacobi’s work also indicate this.
“...it is regrettable that the author fulfills the aim which he has imposed to himself
by a sort of divination, without sharing with us the secret whose conception has
progressively led him to the form for 1− y which is required in order to satisfy
the conditions of the problem”, see [Cog14, page 530]. Jacobi’s theta function, see
Section 47 and 51 of Jacobi’s book, is derived by similar inversion formulas.





Chapter 4
Rudiments of Algebraic Geometry of curves

If we agree with him [Hilbert] that problems are the lifeblood of mathematics, then
certainly we may say that algebraic geometry and number theory always have had
more open problems than solved ones, and that each progress towards their solution
has always brought with it a host of new and exciting methods, (J. Dieudonné in
[Die72]).

4.1 Introduction

Throughout the present text we work with a field k of arbitrary characteristic and
not necessarily algebraically closed. By k̄ we mean the algebraic closure of k. The
main examples that we have in mind are

k=Q,R,C,Fp :=
Z
pZ

,

and a number field. A number field k is a field that contains Q and has finite dimen-
sion, when considered as a vector space over Q. We also consider function fields
k̃(t) = k̃(t1, t2, . . . , ts) over a field k̃ (in the list above). It is the field of rational func-
tions a(t1,t2,··· ,ts)

b(t1,t2,...,ts)
, where a and b are polynomials in indeterminates t1, t2, . . . , ts and

with coefficients in k̃. It is recommended to the reader to read O. Zariski and A.
Weil article’s [Zar52, Wei52] in the international congress of mathematics 1950,
where they describe their own view of how general one must take the base field
in algebraic geometry. We do not assume that the reader is familiar with algebraic
geometry. Exceptions are Section 4.11 and Section 4.12 in which we use Riemann-
Roch theorem in order to prove that any abstract elliptic curve can be given in the
Weierstrass form. The reader might skip theses sections.

77
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4.2 Curves

Let k be a field and k[x1,x2, . . . ,xn] be the space of polynomials in n variables and
with coefficients in k. The n dimensional affine space over k is by definition

An(k) = k×k×·· ·×k, n times

and the projective n dimensional space is

Pn(k) := An+1(k)−{(0,0, · · · ,0)}/∼

a ∼ b if and only if ∃λ ∈ k,a = λb.

We will consider the following inclusion

An(k)→ Pn(k), (x1,x2, · · · ,xn) 7→ [x1;x2; · · · ;xn;1]

and call Pn(k) the compactification of An(k). The projective space at infinity is
defined to be

Pn−1
∞ (k) = Pn(k)−An(k) = {[x1;x2; · · · ;xn;xn+1] | xn+1 = 0}.

For simplicity, in the case n = 1,2 and 3 we use x, (x,y) and (x,y,z) instead of
x1,x2, . . .. The notation Pn and An are reserved for the same concepts as schemes,
see Section 4.3. Any polynomial f ∈ k[x,y] defines an affine curve

C(k) := {(x,y) ∈ k2 | f (x,y) = 0}.

One of the most famous curves is given by the polynomial f = xn + yn − 1 which
we call it Fermat curve. The set C(k) may be empty, for instance take k = Q, f =
x2+y2+1. This means that the identification of a curve with its points in some field
is not a good treatment of curves. One of the starting points of the theory of schemes
is this simple observation. We will handle this issue in Section 4.3.

For f ∈ k[x,y] we define the homogenization of f

F(x,y,z) = zd f (
x
z
,

y
z
), d := deg( f ).

The polynomial F defines a projective plane curve in P2(k):

C̄(k) := {[x;y;z] ∈ P2(k) | F(x,y,z) = 0}.

Note that
∀c ∈ k,(x,y,z) ∈ k3, F(cx,cy,cz) = cdF(x,y,z).

One has the injection
C(k)→ C̄(k), (x,y) 7→ [x;y;1]
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and for this reason one sometimes says that C̄(k) is the compactification of C(k).
Let g be the last homogeneous piece of the polynomial f . By definition it is a ho-
mogeneous polynomial of degree d. The points in

C̄(k)−C(k) = {[x;y] ∈ P1
∞ | g(x,y) = 0}

are called the points at infinity of C(k). The set of points at infinity of the Fermat
variety over k = Q is empty if n is even and it is {[1;−1;0]} if n is odd. Over Q̄ it
has n elements [ζ ;1;0], ζ n =−1.

From now on we use the notation C(k) to denote the curve C̄(k) in the previous
section. We simply say that the curve C(k) in an affine chart is given by f (x,y) = 0.
The projective space P2(k) is covered by three canonical charts:

αi : A2(k) ↪→ P2(k)

α1(x,y) = [x;y;1], α2(x,z) = [x;1;z], α3(y,z) = [1;y;z].

and the curve in each chart is respectively given by

f1(x,y) := F(x,y,1) = 0, f2 := F(x,1,z) = 0, and f3 := F(1,y,z) = 0.

We are also going to use the notion of an arbitrary curve over k from algebraic
geometry of schemes. Roughly speaking, a curve C over k means C over k̄ and the
ingredient polynomials of C are defined over k. The reader who is not familiar with
those general objects may follow the text for affine and projective curves as above.

4.3 Schemes

We defined P2(k) and C(k) without defining P2 and C. In this section we fill this
gap and we explain the rough idea behind the definition of the schemes P2 and C.
By the affine scheme A2 we simply think of the ring k[x,y]. Open subsets of A2

are given by the localization of k[x,y]. We will need two open subsets of A2 given
respectively by

k[x,y,
1
y
] and k[x,y,

1
x
].

By the projective scheme P2 we mean three copies of A2, namely

k[x,y], k[x,z], k[y,z]

together with the isomorphism of affine subsets:

k[x,y,
1
y
]∼= k[x,z,

1
z
], x 7→ x

z
, y 7→ 1

z
, (4.1)
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k[x,y,
1
x
]∼= k[y,z,

1
z
], x 7→ 1

z
, y 7→ y

z
,

k[x,z,
1
x
]∼= k[y,z,

1
y
], x 7→ 1

y
, z 7→ z

y
.

The best way to see these isomorphisms is, for instance: we look at an element of
k[x,y] as a function on the first chart A2(k) and for (a,b) in this chart we use the
identities

[a;b;1] = [
a
b

;1;
1
b
] = [1;

b
a

;
1
a
].

We sometimes write P2
k or P2/k in order to emphasize that it is defined over k. We

think of the the scheme C or C/k in the same way as P2, but replacing k[x,y] with
k[x,y]/⟨ f1⟩ and so on. We read C/k as ”C is defined over k”. Here ⟨ f1⟩ is the ideal
in k[x,y] generated by a single element f1. We can also think of C in the same way
as P2 but with the following additional relations between variables:

f1(x,y) = 0 in k[x,y],

f2(x,z) = 0 in k[x,z],

and
f3(y,z) = 0 in k[y,z].

Remark 4.1 The above discussion does not use the fact that k is a field. In fact, we
can use an arbitrary ring R instead of k. In this way, we say that we have a scheme
C over the ring R.

Definition 4.1 The function field of the projective space P2 is defined to be

k(P2) := k(x,y)∼= k(x,z)∼= k(y,z),

where the isomorphisms are given by (4.1). The field of rational function on the
curve C is the field of fractions of the ring k[x,y]/⟨ f1⟩. Using the isomorphism (4.1),
this definition does not depend on the chart with (x,y) coordinates. We can also think
of k(C) as k(x,y) but with the relation f1(x,y) = 0 between the variables x,y. Any
f ∈ k(C) induces a map C(k)→ k that we denote it by the same letter f .

An algebraic curve C over k̄ can be identified with its k̄-rational points and it might
be helpful to have the following in mind.

Exercise 4.1 Let f ,g ∈ k[x,y] (resp. F,G ∈ k[x,y,z] homogeneous) and assume that
f (resp. F) is irreducible over k̄. Let C be the curve in A2

k (resp. P2
k) given by f = 0

(resp. F = 0). If g (resp. G) evaluaed at the points of C(k̄) is zero then f (resp. F)
divides g (resp. G) in the ring k[x,y] (resp. k[x,y,z]).

A rational function f in C can be identified with the restriction of P(x,y,z)
Q(x,y,z) to C(k̄)→

k̄, where P and Q are two homogeneous polynomial of the same degree. If two such
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quotients P1
Q1

and P2
Q2

give the same function C(k̄) then by Exercise 4.1, P1Q2 −P2Q
is divisable by the equation of C.

Exercise 4.2 A full definition of of a scheme can be found in [Har77, Chapter 2].
For a scheme X over Sepc(R), where R is a ring, the set of R-points of X is denoted
by X(R) and it consists of all scheme morphisms Sepc(R)→ X . Show that

Pn
Z(Z)∼= {(m0,m1, · · · ,mn) ∈ Zn+1 | gcd(m0,m1, · · · ,mn) = 1}/{±1}.

One of the fundamental observation in Grothendieck’s revolution of Algebraic
Geometry, replacing varieties with schemes, is that

Sepc(Z) := { prime ideals of Z} ≃ {2,3,5, . . . , p, . . .}

is like a parameter, for instance, the parameter λ in the Legendre family of elliptic
curves Eλ : y2 = 4x(x−1)(x−λ ), λ ∈ C. We consider Eλ as a curve over the ring

C[λ ]. The prime ideals of C[λ ] are Sepc(C[λ ]) := {(λ − λ0)C[λ ]
∣∣∣∣λ0 ∈ C} ≃ C.

For a prime ideal P ⊆ C[λ ], the residue field is naturally isomorphic to C

C[λ ]/(λ −λ0)C[λ ]∼= C, p(λ ) 7→ P(λ0).

The process of substituting λ with λ0, can be interpreted as considering Eλ over
the residue field. In a similar way for an elliptic curve over Z, for instance E : y2 =
x3 +1, the process of working modulo a prime number p is the same as considering
E over the residue field Fp.

Another reason for using schemes is that defining ideal of affine varieties have
more data than the underlying variety. For instance, the underlying variety of the
ideal I = ⟨x,xy⟩ ⊂ k[x,y] is just {x = 0}, however, we have I = ⟨x⟩ ∩ ⟨x,y⟩ which
means that we must look at the underlying variety as a union of {x = y = 0} and
{x = 0}.

4.4 Singularities and smooth curves

Definition 4.2 We say that an affine curve given by f (x,y) = 0 is singular if there
is a point (a,b) ∈ k̄2 such that

f (a,b) = fx(a,b) = fy(a,b) = 0,

where fx is the derivation of f with respect to x and so on. The point (a,b) is called
a singularity of the affine curve. A projective curve is singular in one of its affine
charts it has a singularity. For a curve C, affine or projective, we denote by Sing(C)⊂
C(k̄) the set of singular points of C.
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Exercise 4.3 Show that the singularities of a projective curve C given by the homo-
geneous polynomial F(x,y,z) are given by

Sing(C) :=
{
[x;y;z] ∈ P2

k̄ | ∂F
∂x

=
∂F
∂y

=
∂F
∂ z

= 0
}
.

.

Exercise 4.4 Let C be an affine curve in A2
k given by the polynomial f ∈ k[x,y]

and let f = fd + fd−1 + · · · be its decomposition into homogeneous pieces, that is,
fi ∈ k[x,y] is homogebeous of degree i. For k an algebraically closed field we can
write fd = ∏

d
i=1(aix−biy), ai,bi ∈ k. Show that the points at infinity of C are given

by [bi;ai;0] ∈ P2, i = 1,2, . . . ,d}. The point [bi;ai;0] is singular if and only if for
some j different from i we have [bi;ai;0] = [b j;a j;0] and fd−1(bi,a j) = 0.

4.5 Coordinate system on a curve

In Chapter 2 we have seen that an elliptic function g can be considered as a mero-
morphic function on the torus C\Λ and at each point p of this torus we have a
coordinate system given by the coordinate system z of C, and we can write the Tay-
lor or Laurant series of g at p. In this section we aim to reproduce all these replacing
the torus with an algebraic curve defined over k, point p with a smooth k-rational
point p of C and g with a rational function on C. We would like to highlight that k
can be a field of arbitrary characteristic and not necessarily algebraically closed.

Let C ⊂ P2 be a curve defined over a field k and p ∈C(k) be a smooth k-rational
point. For simplicity, we take an affine chart (x,y) containing the point p and assume
that C is given by f (x,y) = 0 for f ∈ k[x,y].

Definition 4.3 For a rational function g in C, we say that g is regular at p of if there
is P,Q ∈ k[x,y] with g = P(x,y)

Q(x,y) ,Q(p) ̸= 0. We say that g has a pole at p if g is not
regular at p.

Note that if f (x,y) is the equation of C and we have g = P(x,y)
Q(x,y) with P(p) = 0 and

Q(p) = 0 then there might be a different P and Q such that Q(p) ̸= 0. For instance,
for the curve y2 = 4x3 − t2

2 x, t2 ∈ k, t2 ̸= 0 we have the point p = ( t2
2 ,0) ∈C(k) and

g =
4x2 − t2

y
=

y
x

The first expression of g cannot be used for evaluation at p, but the second expresion
implies that g(p) = 0. For p = (0,0), the first expression implies that p is a pole of
g.

Definition 4.4 The germ of regular functions in a neighborhood of p is defined

OC,p := {g ∈ k(C) | g is regular at p} .
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This is a ring and it has the maximal ideal

mC,p :=
{

g ∈ OC,p | g(p) = 0
}
.

The quotient mC,p/m
2
C,p is called the cotangent space of C at p.

Exercise 4.5 Show that p is a smooth point of C if and only if the cotangent space
of C at p is a one dimensional k-vector space.

Definition 4.5 A coordinate system t in a neighborhood of a smooth point p in C is
any generator of the one dimensional cotangent vector space of C at p.

Exercise 4.6 If p is smooth point of C show that for all n ∈ N, mn
C,p/m

n+1
C,p is gen-

erated by tn, where t is a coordinate system arround p. For a rational function g on
C with a pole at p, we have a ∈ N such that tag is regular at p, that is, we can write
g = g̃

ta for some g̃ ∈ OC,p. The smallest a with this property is called the pole order
of g at p.

Exercise 4.7 [Algebraic Taylor series] Let g be a rational function in a curve C
defined over k, p ∈ C(k) be a smooth point of C with g regular at p, and t be a
coordinate system around p. We have

g =
+∞

∑
i=0

git i, fi ∈ k. (4.2)

This means that there is a formal power series as in the right hand side of (4.2) such
that for all n ∈ N0 we have

g−
n

∑
i=0

git i ∈mn+1
C,p .

If g0 = g1 = · · ·= ga−1 = 0 and ga ̸= 0 then we say that g has a zero of order a at p.
If g has a pole at p then in a similar way we can write the Laurant series of g at p:

g =
+∞

∑
i=−a

git i, gi ∈ k, ga ̸= 0, (4.3)

where a ∈ N is the pole order of g at p.

Exercise 4.8 Let g be a rational function on a curve C defined over an algebraically
closed field k̄. The number of zeros and poles of g, counted with multiplicity, are
equal.

4.6 Discriminant

In this section we define the discriminant of a polynomials f ∈ R[x] following
[Mov21, Section 10.9]. Let R be a ring and k be the field of fractions of R.
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Definition 4.6 Let us be given a polynomial f ∈ R[x,y, · · · ], where (x,y, · · ·) is a
multi variable. The discriminant ideal of f contains all element ∆ ∈ R such that

∆ = f a1 + fxa2 + fya3 + · · · , for some a1,a2, . . . ∈ R[x,y, . . .].

When the discriminant ideal is principal we denote by ∆ its generator and we call
it the discriminant of the polynomial f . It is defined up to units of the ring R, and
hence in the case R= Z it is defined up to sign. In this case we fix this ambiguity by
assuming that ∆ is positive.

Our main example is the following:

Proposition 4.1 Let f = y2 − 4x3 + t2x+ t3 defined over R := Z[ 1
6 , t2, t3] and V :=

R[x,y]/⟨ fx, fy⟩. The discriminant ∆ is the determinant of the multiplication by f in
V .

Proof. Using the explicit form of f , we can easily verify that the R-module V is
freely generated by 1,x (here we use the fact that 2 and 3 are invertible in R). Let
M : V →V, M(ω) = f ω . We write M in the basis 1,x:

M =

(
t3 1

18 t2
2

2
3 t2 t3

)
.

Let p(z) := z2− tr(M)z+det(M) = det(M− zI2×2) be the characteristic polynomial
of M. We have P( f )V = 0 and this implies that det(M) = −1

27 ∆ is in the discriminant
ideal. The rest of the proof is in Exercise 4.9.

Exercise 4.9 In Proposition 4.1, ∆ generates the discriminant ideal is left to the
reader in

Exercise 4.10 For
f = y2 − x3 − t4x− t6, t4, t6 ∈ R; (4.4)

show that the discriminant ideal is generated by

∆ = 2(4t3
4 +27t2

6 ),

The corresponding a1,a2 and a3 in this case are given by

a1 = 2(27x3 −27y2 +(27t4)x+(−27t6)),

a2 = 2(−9x4 +(−15t4)x2 +(−4t2
4 )), a3 =−54x3y+27y3 +(−54t4)xy.

In this cases, ∆ is the resultant of the polynomials P and ∂P
∂x , where P = x3+t4x+t6.

In all the case below, the discriminant ideal is principal and we have calculated its
generator.

f = y2 − x3 − t4x− t6 − t2x2 + t1xy+ t3y. (4.5)
∆ = (t61 t6 − t51 t3t4 + t41 t2t23 +12t41 t2t6 − t41 t24 −8t31 t2t3t4 − t31 t33 −36t31 t3t6 +8t21 t22 t23 +48t21 t22 t6 −8t21 t2t24

+30t21 t23 t4 −72t21 t4t6 −16t1t22 t3t4 −36t1t2t33 −144t1t2t3t6 +96t1t3t24 +16t32 t23 +64t32 t6 −16t22 t24
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−72t2t23 t4 −288t2t4t6 +27t43 +216t23 t6 +64t34 +432t26 ),

a1 = 432x3 −432y2 +(−432t1)xy+(432t2)x
2 +(−432t3)y+(432t4)x+(−t61 −12t41 t2 +36t31 t3 −48t21 t22

+72t21 t4 +144t1t2t3 −64t32 +288t2t4 −216t23 −432t6),

a2 =−144x4 +(−48t21 −192t2)x
3 +(−t41 −8t21 t2 −120t1t3 −16t22 −240t4)x

2 +(−t51 )y+(6t41 t2 −20t31 t3+

24t21 t22 −40t21 t4 −80t1t2t3 +32t32 −160t2t4)x+(t41 t4 +4t31 t2t3 +8t21 t2t4 −16t21 t23

+8t1t22 t3 −64t1t3t4 +16t22 t4 −64t24 ),

a3 =−432x3y+216y3 +(−144t1)x
4 +(324t1)xy2 +(54t21 −432t2)x

2y+(−3t31 −120t1t2 −216t3)x
3+

(324t3)y
2 +(108t1t3 −432t4)xy+(−t51 +4t31 t2 −21t21 t3 +8t1t22 −96t1t4 −216t2t3)x

2 +(t61 +6t41 t2 −18t31 t3 +24t21 t22

−36t21 t4 −72t1t2t3 +32t32 −144t2t4 +162t23 )y+(−t51 t2 + t41 t3 +2t31 t4 +4t21 t2t3 +8t1t2t4 −27t1t23 −216t3t4)x

+(−t51 t4 + t41 t2t3 −4t31 t2t4 − t31 t23 +8t21 t22 t3 +14t21 t3t4 −8t1t22 t4 −36t1t2t23 +32t1t24 +16t32 t3 −72t2t3t4 +27t33 ).

This modulo 2 is:

∆ = t4
1 t2t2

3 + t5
1 t3t4 + t6

1 t6 + t3
1 t3

3 + t4
1 t2

4 + t4
3 ,

a1 = t6
1 , a2 = t4

1 x2 + t5
1 y+ t4

1 t4,

a3 = t5
1 x2 + t3

1 x3 + t6
1 y+ t5

1 t2x+ t4
1 t3x+ t2

1 t3x2 + t4
1 t2t3 + t5

1 t4 + t3
1 t2

3 + t1t2
3 x+ t3

3 .

For the case
f = y2 − x3 − t4x− t6 − t2x2, (4.6)

we have
∆ = 2(4t3

2 t6 − t2
2 t2

4 −18t2t4t6 +4t3
4 +27t2

6 ),

a1 = 2(27x3 −27y2 +(27t2)x2 +(27t4)x+(−4t3
2 +18t2t4 −27t6)),

a2 = 2(−9x4 +(−12t2)x3 +(−t2
2 −15t4)x2 +(2t3

2 −10t2t4)x+(t2
2 t4 −4t2

4 )),

a3 =−54x3y+27y3 +(−54t2)x2y+(−54t4)xy+(4t3
2 −18t2t4)y.

Modulo 3 this is:
∆ = t2

2 t2
4 − t3

2 t6 − t3
4 ,

a1 = t3
2 , a2 = t2

2 x2 + t3
2 x+ t2t4x− t2

2 t4 + t2
4 , a3 = t3

2 y.

The main property of the discriminant ideal is:

Exercise 4.11 Let I be any maximal ideal of R and so R/I is a field. The affine
variety f = 0 is singular over the field R/I if and only if the discriminant ideal is a
subset of I. Hint: the proof is a slight modification of [Mov21, Proposition 10.8].

Let us describe our main examples for Exercise 4.11.

1. R= k and so I = {0}.
2. R= Z. This is a principal ideal domain and so the discriminat ideal is generated

by some ∆ ∈ N and I is generated by some prime p ∈ N. In this case, f = 0 is
singular over Fp if and only if p | ∆ .

3. R = k[t] and for a ∈ ks, I is the ideal of R generate by ti − ai, i = 1,2, . . . ,s.
Let also assume that the discriminant ideal is generated by ∆ . In this case, the
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curve f = 0 with the evaluation of the parameters t = a is singular if and only if
∆(a) = 0.

Definition 4.7 Let C ⊂ P2 be a curve over the ring R. We define its discriminant
ideal to be the ideal generated by all discriminant ideals of C in affine charts.

Exercise 4.12 Let us take the curve y2z− x3 − 17z3 = 0 over Z. Its discriminant
in the affine coordinates z = 1, respectively y = 1, is 2 · 3 · 172, respectively 24. Its
discriminant is 24 ·3 ·72.

4.7 Curves of genus zero and bigger than one

Let f ∈ k[x,y] and let C be the curve induced by f = 0 in P2
k. Let us assume that f

is of degree 2 and it is irreducible over k̄, that is, it is not the product of two linear
polynomials in k̄[x,y]. Further, assume that C(k) has at least one point P. Note that if
we look C in an affine chart then this point can be a point at infinity. The following
procedure finds all the points of C(k). We fix a line L in P2

k defined over k, for
instance take y = 0. For any point X ∈ L(k), we connect X to P by a line L′ and find
the second intersection g(X) of L′ with C. Since P ∈C(k), we have g(X)∈C(k) and
we get a bijection

g : L(k)→C(k).

Exercise 4.13 Use the above geometric argument and find all k-rational points of
the Diophantine equation

tx2 + sy2 = t + s.

for some s, t ∈ k. Take for instance t = s = 1.

The argument discussed in the previous paragraph works in the following case:

Exercise 4.14 Let f ∈ k[x,y] be a degree 3, irreducible polynomial over k̄ and the
induced curve C in P2

k is singular. Show that Sing(C) consists of only one point
which is a k-rational point of C.

Therefore, if C is singular we have an automatically a unique singular point P ∈
C(k). This point serves us as the point with the same name in the previous paragraph.

Exercise 4.15 Find all the k-rational points of the Diophantine equation

y2 − x3 − t4x− t6 = 0,

for some t4, t6 ∈ k with 4t3
4 +27t2

6 = 0.

Let C/Q be a smooth projective curve of degree d in P2, that is, its defining polyno-
mial is of degree d. Its genus is given by g(C) := (d−1)(d−2)

2 . The main objective of
the Diophantine theory is to describe the set C(Q) for the curves defined over Q. The
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most famous example is the Fermat curve given by the polynomial f = xd + yd −1.
The machinery of algebraic geometry is very useful to distinguish between various
types of Diophantine equations. For instance, one can describe the rational points
of genus zero curves, that is, d = 1,2. We have already discussed this at the begin-
ning of this section. The genus one curves (d = 3) are called elliptic curves and the
study of their rational points is the objective of the present text. For higher genus
we have a conjecture of Mordell around 1922 which is proved by Faltings in 1982:
A non-singular projective curve of genus > 1 and defined over Q has only finitely
many Q-rational points. In fact, the above theorem is true even for number fields.
For instance, the above theorem says that the Fermat curve has a finite number of
Q-rational points. However, it does not say something about the nature of its rational
points. Mordell’s conjecture for function fields was proved by in [Man63, Man64],
and interestingly enough, this is the origin of the name Gauss-Manin connection
discussed in the earlier chapter. It was invented by A. Grothendieck after reading
Manin’s paper, see [Pha79].

4.8 Elliptic curves in Weierstrass form

Let E be a complete smooth curve of genus one over the field k. If the reader is
not familiar with the notion of a curve over a field, he can use the curves in P2

which we worked out in the previous section, and hence, E is given by a degree 3
homogeneous polynomial f (x,y,z).

Definition 4.8 An elliptic curve over k is a pair (E,O), where E is a genus one
complete smooth curve and O is a k-rational point of E, that is, O ∈ E(k).

Therefore, by definition an elliptic curve over k has at least one k-rational point. A
smooth projective curve of degree 3 is therefore an elliptic curve if it has a k-rational
point. For instance, the Fermat curve

F3 : x3 + y3 = z3

is an elliptic curve over Q in many different ways, depending on the choice of the
Q-rational point, such as [0,1,1] or [1,0,1]. However

Exercise 4.16 The curve

E : 3x3 +4y3 +5z3 = 0

has not Q-rational points and so it is not an elliptic curve defined over Q. It is an
interesting fact to mention that E(Qp) for all prime p and E(R) are not empty. This
example is due to Selmer, see [Cas66, Sel51].

Definition 4.9 An elliptic curve in the Weierstrass form E is the affine curve given
by the polynomial
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Et2,t3 : y2 − x3 − t2x− t3, t2, t3 ∈ k, ∆ := 2(4t3
2 +27t2

3 ) ̸= 0. (4.7)

Note that we have assumed that k is not of characteristic 2 and so Et2,t3 is smooth.
In homogeneous coordinates it is written in the form

Ēt2,t2 : zy2 − x3 − t2xz2 − t3z3 = 0.

It has only one point at infinity, namely [0;1;0], which is considered as the marked
point in the definition of an elliptic curve.

The point [0 : 1 : 0] is in fact a smooth point of Ēt2,t3 which is tangent to the projective
line at infinity of order 3 and it is the only intersection point of the line at infinity
with Ēt2,t2 . If char(k) = 2 then the curve Et2,t3 is always singular. We have already
seen in Exercise 4.11 that ∆ = 0 if and only if the corresponding curve is singular.

4.9 Real geometry of elliptic curves

For a projective smooth curve C defined over R the set C(R) ⊂ P2(R) has many
connected components, all of them topologically isomorphic to a circle. We call
each of them an oval. For an elliptic curve E defined over R we want to analyze the
topology of E(R). For simplicity (in fact because of Proposition 4.3 which will be
presented later) we assume that E =Et2,t3 is in the Weierstrass form. For (t2, t3)∈R2

let ∆ = 2(4t3
2 +27t2

3 ) be the discriminant of the elliptic curve E. We have:

1. If ∆ < 0 then E(R) has two connected components, one is a closed path in R2,
which we call it an affine oval, and the other a closed path in P2(R). We call it a
projective oval.

2. If ∆ > 0 then E(R) has only one component which is a projective oval.
3. If ∆ = 0 and t3 < 0 then E(R) is an α-shaped path in R2 (∞-shaped path in

P2(R)). In this case, we say that E has a real nodal singularity.
4. If ∆ = 0 and t3 > 0 then E(R) is a union of a point and a projective oval. In this

case, we say that E has a complex nodal singularity.
5. If t2 = t3 = 0 then E(R) look likes a broken line in R2. In this case, we say that

E has a cuspidal singularity.

Note that E(R) intersects the line at infinity only at [0;1;0]. To see/prove all the
topological statements above, it is enough to take an example in each class and
draw the corresponding E(R). Note that in the (t2, t3)-space each set defined by the
above items is connected and the topology of E(R) does not change in each item
(see Figure 4.1 and Equation (4.5), the correspondence between the values of t2, t3
and Et2,t3(R) are done by colours).

Exercise 4.17 For a smooth elliptic curve E over R and in the Weierstrass form
describe the real curves E(R) inside the torus E(C). Hint: Use the Riemann-Hurwitz
formula.
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Fig. 4.1 Elliptic curves: y2 − x3 − t2x− t3 = 0.
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Fig. 4.2 The discriminant curve 4t3
2 + t2

3 = 0.

4.10 The group law in elliptic curves

In this section we define the group structure of an elliptic curve. According to
[Hus04, Section 5, page 13] “It was Jacobi [1835] in Du usu Theoriae Integralium
Ellipticorum et Integralium Abelianorum in Analysi Diophantea who first suggested
the use of a group law on a projective cubic curve”. Let E be a smooth cubic curve
in P2. Let also P,Q ∈ E(k) and L be the line in P2 connecting two points P and Q. If
P = Q then L is the tangent line to E at P. The line L is defined over k and it is easy
to verify that the third intersection R := PQ of E(k̄) with L(k̄) is also in E(k). Fix a
point O ∈ E(k) and call it the zero element of E(k). Define

P+Q = O(PQ).

that is, in order to find P+Q we connect P to Q by a line and find its third interstion
point PQ with E. Then we connect PQ to O by a line and find its intersection point
with E and call it P+Q.

Remark 4.2 For an elliptic curve in the weierstrass form y2 = 4x3−t2x−t3, 27t2
3 −

t3
2 ̸= 0, one usually take O = [0;1;0], that is the point at infinity. In this way th line

connecting a point P to O is the perpendicular line to the x axis in the (x,y) chart.
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The point O is a smooth point of E and the line at infinity intersects E only at O,
therefore, it has a tangency of order 3 with E. This is also called an inflection point
of E. Note that we do not need this property of O. For instance, by our definition
we can verify O+O = O easily: we draw the tangent line to E at O and find its
third intersction point OO with E. The line connecting OO to O (the same line as
before) intersects E in the third point O as this line is tangent to E at O. If O is not
an inflection point of E then the line L tangent to E at O intersects E at the third
point OO. In this case, by the definition of addition we know that P,−P and OO lies
in the same line (and not P,−P,O). Therefore, in this case for two points P,Q ∈ E(k)
we have −PQ ̸ P+Q. In general we have the following statement: O is an inflection
point of E if and only if for any line L intersecting E at three points P,Q,R we have
P+Q+R = O.

Theorem 4.1 The above construction turns E(k) into a commutative group.

Proof. The only non-trivial piece of the proof is the associativity property of +:

(P+Q)+R = P+(Q+R).

The proof constitutes of three pieces:
1. Let Pi = [xi;yi;zi] be 8 points in P2(k̄) such that the vectors (x3

i , · · · ,z3
i ) ∈ k̄10

of monomials of degree 3 in xi,yi,zi are linearly independent. A cubic polynomial F
passing through all Pi’s corresponds to a vector a ∈ k̄10 such that Pi ·a = 0 and so the
space of such cubic polynomials is two dimensional. This means that there is two
cubic polynomial F and G such that any other cubic polynomial passing through
Pi’s is of the form λF +µG and so it crosses a ninth point too.

2. We apply the first part to the eight points

O,P,Q,R,PQ,QR,P+Q,Q+R, (4.8)

and conclude that (P+Q)R = P(Q+R). Here, we take three generic points P,Q,R.
We have to show that these 8 points satisfy the hypothesis of the first item, see
Exercise 4.18. Note that from these 8 points it crosses three cubic polynomials: E,
the product of lines through (0,PQ,P+Q), (R,Q,QR), (P(Q+R),P,Q+R) and the
product of the lines (0,QR,Q+R), (PQ,Q,P), (P+Q,R,(P+Q)R): P+Q PQ O

R Q QR
(P+Q)R,P(Q+R) P Q+R


Each column or row corresponds to a line.

3. The morphisms E×E×E →E,(P,Q,R) 7→ (P+Q)+R,P+(Q+R) coincides
in a Zariski open subset and so they are equal.

Exercise 4.18 Show that for all triples P,Q,R ∈ E(k̄), except for a finite number,
the vectors in k̄10 attached to eight points (4.8) are linearly independent.

Exercise 4.19 On the elliptic curve
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E : y2 = x3 +17

over Q, we have the points

P1 = (−2,3), P2 = (−1,4), P3 = (2,5), P4 = (4,9), P5 = (8,23),

P6 = (43,282), P7 = (52,375), P8 = (5234,378661).

Verify the following identities:

−P5 = 2P1, P4 = P1 −P3, 3P1 −P3 = P7.

Prove that E(Q) is freely generated by P1 and P3 and there are only 16 integral
points ±Pi, i = 1,2, . . . ,8. Hint: See [Nag35] and [Sil92a, page 60].

Exercise 4.20 For the elliptic curve En : y2 = x3 − n2x find an explicit formula for
the x coordinates of inflection points, see [Kob93b, page 35, problem 4b].

Exercise 4.21 How many elements of En(R) are of order 2,3 and 4? Describe geo-
metrically where these points are located, see [Kob93b, page 36, problem 7].

Exercise 4.22 For an elliptic curve over R prove that E(R) (as a group) is isomor-
phic to R/Z or R/Z×Z/2Z, see [Kob93b, page 36, problem 9].

4.11 Riemann-Roch theorem

Let C be a smooth curve over a field k. If the reader is not familiar with the definition
of an abstract curve, then he can take C a smooth curve of degree d in P2. Recall the
pole and zero order of a rational function on C presnted in Section 4.5.

Definition 4.10 A divisor in C and defined over k is a formal finite sum D :=
∑i ni pi, ni ∈Z, pi ∈C(k̄) such that pi’s are poles (resp. zeros) of a rational function
f (defined over k) on C and ni is the pole order (resp. zero order) at p.

Note that in the above definition it does not make any difference if we take zeros or
poles of f (instead of f we use 1

f ).

Exercise 4.23 A formal finite sum D := ∑i ni pi, ni ∈ Z, pi ∈ C(k̄) is a divisor
defined over k if and only if it is invariant under the Galois group Gal(k̄/k), that is,

σ(D) = D, ∀σ ∈ Gal(k̄/k),

where
σ(∑

i
ni pi) := ∑

i
niσ(pi).

The set of divisors over k, let us denote it by Div(C/k) form an abelian group in a
natural way. For any rational function f ∈ k(C) we define
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div( f ) := ∑
i

ni pi,

where f is of order ni at pi. It is a divisor defined over k. The set of such divisors
form an abelian group which we denote it by Div(k(C)). The Picard group of C is
defined to be

Pic(C) := Div(C)/Div(k(C)).

The Chern class map is defined in the following way

c : Pic(C)→ Z, c(∑
i

niPi) := ∑
i

ni.

Note that by Exercise 4.8, c evaluated on Div(k(C)) is zero, and so our definition is
well-defined. We define

Pic0(C) := ker(Pic(C)→ Z).

Now, assume that C is an elliptic curve E. Recall that by Definition 4.8 one has to
take a k-rational point O ∈ E(k). Take, for instance a degree 3 smooth curve in P2

with a k-rational point O. We have a canonical map

E(k)→ Pic0(E), P 7→ P−O (4.9)

Proposition 4.2 The map (4.9) is an isomorphism of groups.

Proof. First of all we notice that it is a group morphism. Just for this proof we denote
by ⊕ the addition structure in E(k). Let L1, respectively L2, be the equation of the
line in P2 passing through P,Q,PQ, respectively O,PQ,P⊕Q. We have L1

L2
∈ k(E)

with the divisor
P+Q+PQ−O−PQ−P⊕Q

and so in Pic0(E) we have P−O+Q−O = P⊕Q−O. Now we prove that our map
is surjective. For ∑i niPi with ∑i ni = 0 we have ∑i niPi = ∑i ni(Pi −O) which is the
image of ⊕iniPi. For the injectivity we note that for P ∈ E(k) different from O, there
is no rational function f on E with div( f ) = P−O. This can be easily checked for
curves

The following is the algebraic counterpart of Exercise 2.17.

Exercise 4.24 Let (E,O) be an elliptic curve over a field k of characteristic zero.
For a torsion point of order N the line bundle associated to the divisor N[P]−N[O]
is trivial, that is, there is a rational function f on E defined over k such that div( f ) =
N[P]−N[O]. For instance, if E is written in the Weierstrass format y2 = p(x) then
for N = 2 we have f = x−a, where a is a root of p. Compute f for N = 3. Hint: The
rational function f is a product of L1

L2
attached to the the equality P+aP = (a+1)P

in the proof of Proposition 4.2.
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Originally, I formulated Exercise 4.24 after reformulating Picard’s differential equa-
tion in [Mov22b], see also Chapter 13. Later I realized that [Mil04], [Sil92a, Theo-
rem XI.8.1] give algorithms to compute f .

Definition 4.11 We say that a divisor D = ∑i ni pi is positive and write D ≥ 0 if all
coefficients ni are non negative integers. In a similar way we define D ≤ 0.

For a divisor D on a curve C/k define the linear system

L (D) = { f ∈ k(C), f ̸= 0 | div( f )+D ≥ 0}∪{0}

and
l(D) = dimk(L (D)).

Theorem 4.2 (Riemann-Roch theorem) Let C be a smooth curve over k.

l(D)− l(K −D) = deg(D)−g+1,

where K is the canonical divisor and g is the genus of C.

We only need to know that the canonical divisor satisfies:

deg(K) = 2g−2

and so for deg(D)> 2g−2, equivalently deg(K −D)< 0, we have

l(D) = deg(D)−g+1. (4.10)

4.12 Weierstrass form revised

In this section we prove that any elliptic curve can be realized as a certain curve
in P2 which is a generalization of Weierstrass format. The following proposition is
proved in [Sil92a, III, Proposition 3.1].

Proposition 4.3 Let E be an elliptic curve over a field k. There exist functions x,y ∈
k(E) such that the map

E → P2, a 7→ [x(a);y(a);1],

give an isomorphism of E/k onto a curve given by

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6, a1, · · · , . . . ,a6 ∈ k,

sending O to [0;1;0]. If further char(k) ̸= 2,3 we can assume that the image curve
is given by

y2 = 4x3 − t2x− t3, t2, t3 ∈ k, t3
2 −27t2

3 ̸= 0.
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We call x and y the Weierstrass coordinates of of E.

Proof. Using Riemann-Roch theorem and in particular (4.10) with g = 1 and D =
nO we get l(D)= n. For n= 2 we can choose x,y∈ k(E) such that 1,x form a basis of
L (2O) and 1,x,y form a basis of L (3O). The function x (resp. y) has a pole of order
2 (resp. 3) at O. Now L (6O) has dimension 6 and 1,x,y,x2,xy,y2,x3 ∈ L (6O). It
follows that there is a relation

ay2 +a1xy+a3y = bx3 +a2x2 +a4x+a6, a1, · · · , . . . ,a6,a,b ∈ k.

Note that ab ̸= 0, otherwise every term would have a different pole order at O and so
all the coefficients would vanish. Multiplying x,y with some constants and dividing
the whole equation with another constant, we get the desired equation. The map
induced by x and y is the desired map (check the details).

If char(k) ̸= 2,3 we make the change of variables x′ = x,y′ = y− a1x
2 and we

eliminate xy term. A change of variables x′ = x− a2
3 , y′ = y− a3

2 will eliminate x2

and y terms.

Exercise 4.25 Write the following elliptic curves in the Weierstrass form:

y2 = x4 −1, O = [0;1;0]

x3 + y3 = 1, O = [0;1;1]

Exercise 4.26 The intersection of two quadrics in P3 turns out to be a genus one
curve, and hence, if we pick a point O in it, it is an elliptic curve. Discuss the
Weierstrass form of these elliptic curves. Hint: Have a look at [Hus04, Section 8,
page 21].

We will need the following refinement of Proposition 4.3.

Proposition 4.4 Let E be an elliptic curve over a field k of characteristic ̸= 2,3 and
let ω be a regular differential form on E. There exist unique functions x,y ∈ k(E)
such that the map

E → P2, a 7→ [x(a);y(a);1]

gives an isomorphism between the curve E and the curve in P2 given by

y2 = 4x3 − t2x− t3, t2, t3 ∈ k

Under this isomorphism O is identified with [0;1;0] and ω = dx
y .

We call x and y the Weierstrass coordinates of E. Since x,y ∈ k(E) the above iso-
morphism is defined over k. Note that x

y has a zero of order one at O and hence the
map E → P2 is well-defined at O and it takes the value [ x

y (O);1; 1
y (O)] = [0;1;0].

Proof. This is a consequence of Proposition 4.3.
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4.13 Moduli of elliptic curves

Now, we can state what is the moduli of elliptic curves. Recall an elliptic curve Et2,t3
in Weierstrass form (4.7).

Proposition 4.5 Assume that char(k) ̸= 2,3. Two elliptic curves Et2,t3 and Et ′2,t
′
3

are
isomorphic if and only if there exists λ ∈ k, λ ̸= 0 such that

t ′2 = λ
4t2, t ′3 = λ

6t3.

The isomorphism is given by

(x,y) 7→ (λ 2x,λ 3y).

Proof. Let (x,y) and (x′,y′) be two sets of Weierstrass coordinate functions on an
elliptic curve Et2,t3 . It follows that {1,x} and {1,x′} are both bases of L (2O), and
similarly {1,x,y} and {1,x′,y′} are both bases for L (3O). Writing x′,y′ in terms
of x,y and substituting in the equation of Et ′2,t

′
3

we get the first affirmation of the
proposition. The second affirmation is easy to check.

Combining Proposition 4.3 and Proposition 4.5 we conclude that the moduli space
of elliptic curves over a field of characteristic ̸= 2,3 is

M1(k) :=
(
A2(k)−{(t2, t3) | 4t3

2 +27t2
3 = 0}

)
/∼,

where

(t2, t3)∼ (t ′2, t
′
3) if and only if ∃λ ∈ k, λ ̸= 0, (t ′2, t

′
3) = (λ 4t2,λ 6t3).

If k is algebraically closed then this is the set of k-rational points of the weighted
projective space P2,3(k) minus a point induced in P2,3 by ∆ = 0. In this case the
j-invariant of elliptic curves

j : M1(k)→ A(k), j[t2; t3] =
1728 ·4t3

2

4t3
2 +27t2

3

is an isomorphism and so the moduli of elliptic curves over k is A1(k). However,
note that if k is not algebraically closed then j has non-trivial fibers. For instance,
all the elliptic curves

y2 = x3 − t3, t3 ∈Q

are isomorphic over Q̄ but not over Q.

Exercise 4.27 For j0 ̸= 0,1728, the elliptic curve:

E j0 : y2 + xy = x3 − 36
j0 −1728

x− 1
j0 −1728

.

has the j-invariant j(E) = j0.
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4.14 The addition formula

In this section we give formulas for the addition in an elliptic curve in the Weirstrass
format and defined over a field. We also derive similar formulas for the Weierstrass
℘ function. The comparison between algebraic and transcendental methods in order
to describe algebraic structures has been the core tool in the developement of elliptic
curves from the old time, see for instance [Fri22, Chapter 1, Section 1, page 156].

Recall the Weierstrass uniformization theorem Theorem 3.3 which says that

f : C/Λ → Et(C), f (z) := [℘(Λ ,z) :℘
′(Λ ,z) : 1]

is a bijection and described its inverse. The torus C/Λ is equipped with an abelian
group structure induced from (C,+) and in this chapter we have seen than Et(C)
also enjoys a an abelian group structure. The main goal of the present section is to
prove that

Theorem 4.3 The map f in Weierstrass uniformization theorem is a morphism of
abelian groups.

Proof. Since the inverse of z (resp. (x,y)) in C/Λ (resp. Et ) is −z (resp. (x,−y)),
and we have ℘(−z) =℘(z) and ℘′(−z) = −℘′(z), we know that f respects the
inverse element. Therefore, it is enough to prove that

f (−z1 − z2)+ f (z1)+ f (z2) = O, ∀z1,z2 ∈ C/Λ .

By definition of the group structure of Et this is equivalent to say that P :=
f (z1), Q := f (z2) and R = f (−z1 − z2) are colinear. In other words, if we inter-
sect a line ax+ by+ c = 0, b ̸= 0 in C2 with Et and get three points P,Q,R then
by definition of group structure of Et we know that P+Q+R = O (the case b = 0
reduces to the discussion of f and inverse elements at the begining of the proof).
We need to prove that if z1,z2,z3 are three roots of a℘(z)+b℘′(z)+ c = 0 then we
must have z1 + z2 + z3 = 0. The equation of line in C2 with (x,y) coordinate system
and passing through the points (℘(z1),℘

′(z1)) and (℘(z2),℘
′(z2)) is given by∣∣∣∣∣∣

℘(z1) ℘′(z1) 1
℘(z2) ℘′(z2) 1

x y 1

∣∣∣∣∣∣= 0.

We need to prove that (℘(z3),℘
′(z3)) = (℘(z1 + z2),−℘′(z1 + z2)) lies in this line.

The theorem follows from Proposition 4.6.

Proposition 4.6 The Weierstrass ℘-function satisfies∣∣∣∣∣∣
℘(z), ℘′(z) 1
℘(y), ℘′(y) 1

℘(z+ y), −℘′(z+ y), 1

∣∣∣∣∣∣= 0, z,y ∈ C. (4.11)
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Proof. For a fixed y ∈ C, y ̸= 0, let us consider ℘(z+ y) and ℘′(z+ y) as functions
in z. Let f be the left hand side of 4.11. It is an elliptic function with possible poles at
z = 0,−y. It is enough to prove that f is holomorphic at these points and it vanishes
at z = 0. This follows from the Laurant series of ℘ at z = 0 and its derivation, see
Theorem 2.1. We only need to know

℘(z) =
1
z2 +3g2z2 +O(z4), ℘

′(z) =
−2
z3 +6g2z+O(z3).

Proposition 4.7 We have

℘(z+ y) =
1
4

(
℘′(z)−℘′(y)
℘(z)−℘(y)

)2

−℘(z)−℘(y). (4.12)

Proof. For a fixed y ∈ C, y ̸= 0, let us consider ℘(z+ y) which is double periodic
in z, and hence, it is a rational function in ℘ and ℘′. This means that we (4.12) is
expected. For fixed y, let f (z) be the difference between the left and the right hand
sides of (4.12). Its only possible poles are in

z = 0, ±y.

We examine the Laurent expansion of f (z) at the point z = 0 and see that it is
holomorphic at z = 0 and there it vanishes. In a similar way, it has no poles at z = y
and so, at worst it has a simple pole at z =−y. Since f is double periodic we get the
result.

Exercise 4.28 Write down the details of the proof of Proposition 4.7.

In (4.12) we let y go to z and we get

℘(2z) =
1
4

(
℘′′(z)
℘′(z)

)2

−2℘(z). (4.13)

We can state the same formulas as in (4.11),(4.12) and (4.13) in a purely algebraic
context. Consider an elliptic curve Et over the field k of characteristic ̸= 2 with the
Weierstrass coordinates x and y and the equation y2 = 4x3 − t2x− t3. The field can
be of an arbitrary characteristic ̸= 2 and it is not necessarily algebraically closed.
For a point P ∈ Et(k) we write P = (x(P),y(Q)), as x,y ara rational functions in E
with poles at O, and hence, they can be evaluated at P.

Proposition 4.8 We have
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x(P), y(P) 1
x(Q), y(Q) 1

x(P+Q) −y(P+Q), 1

∣∣∣∣∣∣= 0, (4.14)

x(P+Q) =
1
4

(
y(P)− y(Q)

x(P)− x(Q)

)2

− x(P)− x(Q), (4.15)

x(2P) =
1
4

(
6x(P)2 − 1

2 t2
y(P)

)2

−2x(P). (4.16)

Proof. The proof of (4.14) is trivial as the equality says that the three points P,Q,PQ
are colinear. Note that x(PQ) = x(P+Q) and y(PQ) =−y(P+Q). The proof of the
others is left to the reader.

Exercise 4.29 Prove the equalities (4.15) and (4.16) for an elliptic curve E over a
field of arbitrary characteristic and using the definition of the group structure of E
in Section 4.10.



Chapter 5
Mordell-Weil Theorem

Mathematicians have been familiar with very few questions for so long a period with
so little accomplished in the way of general results, as that of finding the rational
solntions, or say for shortness, the solutions of indeterminate equations of genus
unity of the forms ... (L. J. Mordell in [Mor22, page 179]).

5.1 Introduction

In this chapter we prove the Mordell-Weil theorem. Some parts of the proof is left
to the reader so that he reproduce them using classical references such as [Sil92b].

Theorem 5.1 (Mordell-Weil theorem) For an elliptic curve E over a number field
Q the group E(Q) of Q-rational points is finitely generated abelian group.

The above theorem is proved in [Mor22]. Its generalization for an arbitrary number
field is proved in [Wei29] and it is known as the Mordell-Weil theorem. For the
proof we follow [Lan78a, Hus04]. The book [Ser97] is also recommended for those
who wants to understand this theorem for abelian varieties. Theorem 5.1 implies
that the torsion subgroup of E(Q)

E(Q)tors := {P ∈ E(Q) | nP = 0, for some n ∈ N},

is finite and E(Q)free := E(Q)/E(Q)tors is a freely generated Z-module of finite
rank, let us say r ∈ N.

Definition 5.1 The non-negative integer r is called the rank of E(Q).

The free part of E(Q) is mysterious. We do not know whether there exists an elliptic
curve of arbitrary rank or not. The proof of Mordell’s theorem consist of two steps.
1: E(Q)/2E(Q) is finite group. This is sometimes called the weak Mordell theorem.
2. The existence of a height function on E(Q).
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Exercise 5.1 Show that for an elliptic curve defined over C (resp. Q̄) E(C) (resp.
E(Q̄)) is not finitely generated

5.2 Descent theorem

Method of infinite descent, which is also called Fermat’s method of descent, has
been extensively used in elementray number theory in order to prove statements
like:

Exercise 5.2 The square root of two is irrational and x4 + y4 = w2 has no non-zero
solutions in pairwise coprime integers x,y,z.

Exercise 5.3 Show that the only solutions of 2y2 = x4+1 over rational numbers are
(±1,±1). This example is due to Euler, see [SS96, page 61].

This method seems to have originated the height notion.

Theorem 5.2 (Descent theorem). Let Γ be a commutative group. Suppose that there
is a function h : Γ → [0,∞) such that

1. For any real number M, the set {P ∈ Γ | h(P)⩽ M} is finite.
2. For every P0 ∈ Γ , there is a constant k0 such that

h(P+P0)≤ 2h(P)+ k0 ∀P ∈ Γ .

3. There is a constant k such that

h(2P)≥ 4h(P)− k ∀P ∈ Γ .

4. |Γ /2Γ |< ∞.

Then Γ is finitely generated.

Definition 5.2 The function h in Theorem 5.2 with the properties 1,2,3 and 4 is
called the height funtion.

Proof. Let Γ /2Γ = Q1, Q2, . . . , Qn. For every P ∈ Γ there exists Qi1 , depending
on P such that P−Qi1 = 2P1 ∈ 2Γ . We repeat this for P2 and get:

P−Qi1 = 2P1,
P1 −Qi2 = 2P2,

...
Pm−1 −Qim = 2Pm.

This implies that

P = Qi1 +2Qi2 +22Qi3 + · · ·+2m−1Qim +2mPm.
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Now we use the height function . We have

h(P−Qi)⩽ 2h(P)+ k′ ∀P ∈ Γ i = 1, . . . ,n

where k′ is the maximum of ki’s attached to each Qi in property 2 of h. We use
property 3 of h and we have

4h(Pj) ⩽ h(2Pj)+ k = h
(
Pj−1 −Qi j

)
+ k

⩽ 2h(Pj−1)+ k′+ k.

We conclude that

h(Pj) ⩽
1
2

h
(
Pj−1

)
+

k+ k′

4

=
3
4

h(Pj−1)−
1
4

(
h(Pj−1)− (k+ k′)

)
.

Therefore, if h(Pj−1)⩾ k+ k′ then

h(Pj)⩽
3
4

h(Pj−1).

We do this process until for some m h(Pm) ⩽ k+ k′ and so by property 1 of h the
set of such Pm is finite. We conclude that Γ is generated by

Q1, Q2, . . . , Qn, {P ∈ Γ

∣∣∣ h(P)⩽ k+ k′}.

For more on descent procedure see [Sil92b, page 199 chapter VIII].

5.3 The construction of height function

For a rational number x := m
n with (m,n) = 1 let us define H(x) to be the maximum

of the norms of its nominator and denominator:

H(x) = max{|m|, |n|}.

Let E be an elliptic curve over Q in the Weierstrass format y2 = x3− t2x− t3, t2, t3 ∈
Q. By a linear change of the form (x,y) 7→ (a2x,a3y), a ∈ Q, we can assume that
t2, t3 ∈Z. We construct a height function for E(Q). For P = (x, y)∈ E(Q) we define

H(P) := H(x) = max{|m|, |n|},
h(P) := logH(P).
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Let
P = (x,y) =

(m
e2 ,

n
e3

)
∈ E(Q), m,n,e ∈ Z. (5.1)

and so n2 = m3+ t2e4m+ t3e6. From this equality, we can assume that that (m,e2) =
1. If there is a prime p such that p|m and p|e, this equality implies that p2|m, p3|n
and we can replace m,n,e with m

p ,
n
p and e

p . We have

|n|2 ⩽ |m|3 + |t2| e4|m|+ |t3| e6

⩽ k2 H(P)3

and so |n| ⩽ kH(P)
3
2 , where k is a constant number which only depends on E.

Let P0 = (x0,y0) ∈ E(Q) be another point. We would like to estimate h(P+ P0)
from above in terms of P0 and the data of E. We first use the addition formula, see
Proposition 4.7:

x(P+P0) =

(
y− y0

x− x0

)2

− x− x0

=
(y− y0)

2 − (x− x0)
2(x+ x0)

(x− x0)2

=
Ay+Bx2 +Cx+D

Ex2 +Fx+G
.

Here, we have used y2 = x3 − t2x− t3 and A, B, . . . , G are constants depending only
on E and P0. We write P in the format (5.1) and we have

H(P+P0)⩽ max
{ ∣∣∣Ane+Bm2 +Cme2 +De4

∣∣∣, ∣∣∣Em2 +Fme2 +Ge4
∣∣∣ } .

But, we know that

|e|⩽ H(P)
1
2 , |n|⩽ k ·H(P)

3
2 , |m|⩽ H(P),

which implies that
H(P+P0)⩽ K0H(P)2,

where K0 is a constant term depends only on E and P0. Taking the logarithm of this,
we have the property 2 of h. Let us prove the property 3 of h. We use again the
addition formula and let x goes to x0. We get

x(2P) =
f ′(x)2

4 f (x)
−2x,

where f (x) := x3 − t2x− t3 and y2 = f (x) is the elliptic curve E. We assume that
2P ̸= 0

x(2P) =
P(x)
Q(x)

, degP(x) = 4, degQ(x) = 3,



5.3 The construction of height function 103

where the coefficients of P,Q only depends on the elliptic curve. Let ∆ := 4(27t2
3 −

4t3
2 ) be the discriminant of E. This is the resultant of P(x) and Q(x). This means that

f1(x)P(x)+ f2(x)Q(x) = ∆ ,

f1, f2 ∈ Z[x], deg f1, deg f2 ⩽ 3.

We need also
g1(x)P(x)+g2(x)Q(x) = ∆ · x7,

g1, g2 ∈ Z[x], deg g1, deg g2 ⩽ 3.

This can be considered as the resultant of x4P
( 1

x

)
, x4Q

( 1
x

)
, see Exercise 4.10. From

now one we replace a polynomial p(x) of degree d and in one variable x, with its
homogenization P(x,y) := yd p( x

y ) and use the capital letter P. With this notation,
let x = a

b , (a,b) = 1 and

x(2P) =
F(a,b)
G(a,b)

, δ := gcd
(

F(a,b), G(a,b)
)
.

Therefore,

F1(a,b) F(a,b)+ F2(a,b) G(a,b) = 4∆b7,

G1(a,b) F(a,b)+ G2(a,b) G(a,b) = 4∆a7.
(5.2)

This gives δ
∣∣4∆ and

∣∣δ ∣∣⩽ ∣∣4∆
∣∣. Therefore,

H(2P)⩾ max {
∣∣F(a,b)

∣∣, ∣∣G(a,b)
∣∣ } / ∣∣4∆

∣∣.
On the other hands∣∣4∆ b7∣∣⩽ 2 max{

∣∣F1
∣∣, ∣∣F2

∣∣ } max {
∣∣F∣∣, ∣∣G∣∣},∣∣4∆ a7∣∣⩽ 2 max{

∣∣G1
∣∣, ∣∣G2

∣∣ } max {
∣∣ f ∣∣, ∣∣G∣∣}, (5.3)

where F1, F2 . . . are evaluated at (a,b). Now F1, F2, G1, G2 are polynomials of
degree ⩽ 3 and so

max {
∣∣F1
∣∣, ∣∣F2

∣∣, ∣∣G1
∣∣, ∣∣G2

∣∣ }⩽C max {
∣∣a∣∣3, ∣∣b∣∣3 }, (5.4)

where C is a constant which only depends on E. Combining (5.3) and (5.4) we get∣∣4∆
∣∣max {

∣∣a7∣∣, ∣∣b7∣∣ }⩽ 2C ·max{
∣∣a3∣∣, ∣∣b3∣∣ } max {F(a,b), G(a,b)}

and so

H(2P) =
max{

∣∣F(a,b)
∣∣,∣∣G(a,b)

∣∣}
δ

⩾
max{

∣∣F(a,b)
∣∣,∣∣G(a,b)

∣∣}
4∆

⩾ (2C)−1max{
∣∣a∣∣, ∣∣b∣∣}= (2C)−1H(P).
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Exercise 5.4 Write a summary of a different proof of Mordell-Weil theorem in the
literature.

Exercise 5.5 Let E be an elliptic curve over Q. For all P1,P2 ∈ E(Q) we have

h(P1 +P2)+h(P1 −P2)⩽ 2h(P1)+2h(P2)+ k, (5.5)

where k only depends on E. Hint: see [Sil92b, page 216].

Proposition 5.1 . Let E be an elliptic curve over Q and P ∈ E(Q). The limit

ĥ(P) :=
1
2

lim
N→∞

4−Nh(2NP)

exists. The function ĥ is called the canonical or Neron-Tate height of E.

Proof. The proof is taken from from [Sil92b, Proposition 9.1, page 228]. We show
that the sequence in the limit is a Cauchy sequence. In (5.5) we put P = P1 = P2∣∣∣h(2P)−4h(P)

∣∣∣⩽ k,

where k is a constant depending only on k. For N ⩾ M ⩾ 0 integers, we have∣∣∣∣4−Nh(2NP)−4−Mh(2MP)
∣∣∣∣=
∣∣∣∣∣N−1

∑
n=M

4−n−1 h(2n+1P)−4−n h(2nP)

∣∣∣∣∣
⩽

N−1
∑

n=M
4−n−1

∣∣∣∣∣ h(2n+1P)−4h(2nP)

∣∣∣∣∣⩽ N−1
∑

n=M
4−n−1 k

⩽ k
4M+1 .

Exercise 5.6 The canonical height ĥ satisfies

1. For all P,Q ∈ E(Q)

ĥ(P+Q)+ ĥ(P−Q) = 2ĥ(P)+2ĥ(Q).

2. For all P ∈ E(Q) and m ∈ Z

ĥ(mP) = m2ĥ(P).

3. ĥ is a quadratic form in E(Q), that is, ĥ is even and the pairing

⟨· , ·⟩ : E(Q)×E(Q)→ R,
⟨P,Q⟩= ĥ(P,Q)− ĥ(P)− ĥ(Q).

is bilinear.
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4. For P ∈ E(Q) we have ĥ(P)⩾ 0 and ĥ(P) = 0 if and only if P is a torsion point.
5. 2ĥ−h is bounded on E(Q).

Hint: See [Sil92b, Theorem 9.3 page 229].

Definition 5.3 Let P1, P2, . . .Pγ be a basis of the free part of E(Q) The regulator of
E/Q is defined

RE/Q := det
∣∣∣⟨Pi, Pj⟩

∣∣∣.
Exercise 5.7 (Weak Mordell-Weil theorem) Let E be an elliptic curve over a
number field k. Then E(k)/mE(k) is finite for all m ∈ N. Hint: For a proof see
[Hus04, Chapter 6 Section 3]. The proof uses an explicit 2-isogeny, see [Hus04][Chapter
4, Section 5].

Elliptic curves over rational numbers and of high rank are rare, and searching for
them is of major interest in the theory of elliptic curves. For an overview of the
results and also the last rank record see [Elk07].

Exercise 5.8 For a table of rank of elliptic curves of the format y2 = x3 +ax, y2 =
x3+a, a ∈Z see [Hus04, Section 3, page 37]. Check at least one entry of this table.

Remark 5.1 The rank of elliptic curves over function fields, such as C(t), has many
links to algebraic geometry of elliptically fibered surfaces and their Hodge theory.
In [Shi86, Shi92] it is proved that the elliptic curve Ed : y2+x3+ zd −1, d ≥ 2 over
C(z) has rank ≤ 68. The equality happens if and only if d is divisible by 360. Using
a computer implementation of Hodge cycles, one can show, for instance

rank(E90) = 36, rank(E120) = 56, rank(E180) = 60, rank(E360) = 68,

see [Mov21, Section 15.13]. There is an analogy between a Hodge cycle and a
rational point of an elliptic curve, for instance, the self-intersection of a Hodge cycle
is parallel to the canonical height of a rational point. For the geometric context we
have the notion of dimension of the tangent space of a Hodge locus. The author does
not know any parallel of this in the arithmetic side.





Chapter 6
Torsions and isogeny

...number theory swarms with bugs, waiting to bite the tempted flower-lovers who,
once bitten, are inspired to excesses of effort! (B. Mazur in [Maz91]).

6.1 Introduction

Torsion points from the transcendental point of view are related to the computability
of elliptic integrals. We have formulated this in Exercise 6.3. For instance, it says
that for any integer m ∈ N, m ≥ 2 and t ∈ R, t > 1, there is a point b ∈ R, b > t
such that we have an equality of the form

m
∫ +∞

b

dx√
x(x−1)(x− t)

=
∫ 1

0

dx√
x(x−1)(x− t)

. (6.1)

Both integrations are taking place in the real line. For instance, for m = 2 we can
take b = t. In general b will be a x coordinate of a m-torsion point of the elliptic
curve y2 = x(x−1)(x− t). It is a matter of studying history of mathematics to find
out this aspect of torsion points in the huge amount of literature produced in the
19th century on elliptic integrals. On the other hand the arithmetic study of torsion
points seems to be initiated by Beppo Levi, who produced a series of paper from
1906 to 1911. This has been glorified with a complete classification of the group of
torsion points of elliptic curves over rationals in [Maz77, Maz78]. For a historical
account on this see [SS96].

6.2 Torsion points

Using the period map in Theorem 3.4 we have seen a correspondence between the
space of lattices Λ ⊂ C and the space of pairs (E,ω), where E is an elliptic curve
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over C and ω is a regular differential 1-form. Since we have not defined these objects
intrinsically, we may take E in the Weierstrass format y2 = 4x3 − t2x− t3, and ω =
dx
y . Note that in one side of this correspondance, we can talk about pairs (E,ω)

defined over an arbitrary field k.

Definition 6.1 A pair (E,ω) is called an enhanced elliptic curve. There will be
other enhancements of elliptic curves, and in order to reduce confusion, we say that
E is enhanced with a regular differential 1-form.

Definition 6.2 Let E be an elliptic curve over a field k. The set of m-torsions of E
is defined as

E[m] := {P ∈ E(k) | mP = O} .

This is a subgroup of E(k).

Proposition 6.1 Let E be an elliptic curve over a field k of characteristic zero. We
have an embedding of groups

E[m] ↪→ Z
mZ

× Z
mZ

and for k an algebraically closed field, this is an isomorphism.

Proof. For k an arbitrary field, since we have the embedding E(k) ↪→ E(k̄) which is
a morphism of groups, it is enough to prove only the second part of the proposition.
We first prove it for k = C. By Proposition 4.3, we can write E in the Weierstrass
format. By Weierstrass uniformization theorem Theorem 3.3 and the fact that it is a
morphism of groups, see Theorem 4.3, we can assume that E is the complex torus
C/Λ . In this case

E[m]≃ 1
m

Λ/Λ ≃ Z
mZ

× Z
mZ

.

Now, assume that k is an arbitrary algebraically closed field of characteristic zero.
The argument is a typical example of the so called Lefschetz principle. Since E uses
a finite number of elements of k, we replace k with its subfield generated over Q
by the coefficients of E, and we can assume that there is an embedding of fields
σ : k ↪→ C, see Exercise 6.1. For instance, if E is in the Weierstrass format y2 =
4x3 − t2x− t3, t2, t3 ∈ k, we replace k with Q(t2, t3)⊂ k. Let Eσ be the elliptic curve
over C obtained from E and regarding its coefficients as complex numbers. We have
an embedding of groups

E[m] ↪→ Eσ [m]≃ Z
mZ

× Z
mZ

.

Now, let us take E over a characteristic zero and algebraicaly closed field k. We have
a subfield ǩ⊂ k such that E is defined over ǩ and we call it Ě. We have (Z/mZ)2 ∼=
Ě[m] ↪→ E[m] and we have to show that E[m] has no more points that Ě[m]. Let us
consider the polynomial equations of mP = O together with equations of the curve
E. In the case of E in the Weierstrass format this is in total 3 polynomial equations
in x,y. This system of polynomial equations has m2 distinct solution over ǩ, and it
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is defined over ǩ. Since both ǩ is algebraically closed, there will be no more points
if we enlarge ǩ.

Remark 6.1 Let E an elliptic curve over k. For n,m ∈ N, both E[n] and E[m] are
subsets of E[nm] and so E(k)tors is a direct limit of E[n]’s according to these inclu-
sions. If if k = C then by Weierstrass uniformization E is biholomorphic to a torus
C/Λ , Λ = Zω1 +Zω2, and so, E(C)tors =

Qω1+Qω2
Zω1+Zω2

. For n and m as above we have
also the map E[nm]→ E[n], P 7→ mP and so we can take inverse limit of E[n]’s and
define a new object. For instance, for p ∈ N we have

· · · → E[pn+1]→ E[pn]→ ··· → E[p].

and the inverse limit of this is called the Tate module TpE.

Exercise 6.1 Show that any field k of characteritic zero contains Q and if it is
finitely generated over Q, that is k = Q(t1, t2, . . . , ts) for some ti ∈ k, then we have
always an embedding k ↪→ C of fields.

Exercise 6.2 For the elliptic curve E : y2 = (x− t1)(x− t2)(x− t3), where ti’s are
three distinct elements in k, show that

E[2] = {(t1,0),(t2,0),(t3,0),O}.

For families of elliptic curves with a 3-torsion point see [Hus04, Chapter 4, Section
2].

Exercise 6.3 Let E be an elliptic curve over Q and ω be a regular differential 1-
form on E. For a torsion point of order m of E and γ a path from O to P in E(C)
show that

m
∫ P

O
ω =

∫
δ

ω,

for some δ ∈ H1(E,Z) which depends on γ . If this language looks fancy (you do
not understand it) then try to prove the equality (6.3) which is a mere calculus.

Exercise 6.4 Show that for the elliptic curve

y2(x− z)−ax2y+(a+b)xyz−bxz2 = 0, a ∈Q, b =−(a−1)(a−2), (6.2)

with the neutral element O := [1 : 1 : 1], P = [1 : 0 : 0] is a torsion point of order 8.
Conversely, any elliptic curve with rational torsion point of order 8 can be written
in the above format. This family of elliptic curves is due to B. Levi, see [SS96]. For
which values of a, the above curve is singular?

Exercise 6.5 Show that there is no elliptic curve over Q with a rational torsion point
of order 16. This result is due to B. Levi, see [SS96, page 61].
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6.3 Isogeny

Let Λ̌ ⊆ Λ ⊆ C be two lattices and let N := #Λ/Λ̌ . Let E = C/Λ and Ě = C/Λ̌ be
the corresponding tori. The identity map C→ C induces a map of tori

f : Ě → E (6.3)

This is actually a holomorphic map between two Riemann surfaces. It is also a mor-
phism of groups. We have also f ∗ω = ω̌ , where ω and ω̌ are the differential form
dz induced in E and Ě, respectively, where z ∈C is the coordinate function. Further-
more, f−1([z]) = [z]+ Λ

Λ̌
which means that f is a N to 1 map with no ramification

points.

Definition 6.3 The map f as in (6.3) is called an isogeny of degree N. We have
NΛ ⊆ Λ̌ ⊆ Λ and this gives us the maps

E
g−→ Ě

f−→ E
[z] 7−→ [Nz]

[z] −→ [z]

The map g is called the dual isogeny of f . Note that both f ◦g, g◦ f are multipli-
cation by N map that we denote it by [N]. Note also that in the level of differential
forms f ∗ω = ω̌ and g∗ω̌ = Nω .

Exercise 6.6 Let G be a finite abelian group generated by at most two elements.
There are unique d1, d2 ∈ N such that

G ≃ Z
d1Z

⊕ Z
d1d2Z

.

Conclude that any isogeny E1 → E2 can be uniquely written as

E1
[d1]−−→ E1

β−→ E2,

where [d1] is a multiplication by d1 and kernel of β is cyclic of order d2.

Remark 6.2 Let a ∈ C∗ amd Λ ⊆ C be a lattice. Let also Ě := C/aΛ , E := C/Λ .
We have the map

fa : E → Ě, z 7→ [az],

which is a bijection and its inverse is given by fa−1 . Moreover, f ∗a ω = aω̌ . Under
the isomorphism between lattices and enhanced elliptic curves, the lattices aΛ and
Λ corresponds to (E,aω),(E,ω), respectively.

Exercise 6.7 Show that the number of sublattices Λ̌ ⊆ Λ of a fixed lattice Λ with
#Λ/Λ̌ = n is σ(n) = ∑d|n d. Hint: Take a basis ω1,ω2 of Λ and show that
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SL(2,Z)\Matn(2,Z) ∼=
{

Λ̌ ⊆ Λ , #Λ/Λ̌ = n
}[

a b
c d

]
7→ Λ̌ generated by

[
a b
c d

][
ω1
ω2

]
The quotient in the left hand side has representatives[

a b
0 d

]
0 ⩽ b ⩽ d −1, a ·d = n.

Next, we would like to describe isogeny of elliptic curves over a field k. Like in
the 19th century such that Algebraic Geometry was only a chapter in the theory of
transcendental functions, we use Weierstrass ℘ function and uniformization theo-
rem, see Theorem 3.3, in order to write the tori E and Ě in the Weierstrass format,
and then explain the algebraic expression of an isogeny. Let us assume that E is
defined over Q̄, that is, the corresponding t2, t3 in its Weierstrass format are alge-
braic numbers. Let also G := Λ/Λ̌ . We know that G is a subgroup of E[N] and by
Proposition 6.1 we have E[N] ⊂ E(Q). We may think of Ě as the quotient E/G.
The pull-back of ℘(z,Λ) and ℘′(z,Λ) by the isogeny map (6.3) are elliptic func-
tions with respect to the lattice Λ̌ . Therefore, by Exercise 2.14 they can be written
as rational functions in ℘(z,Λ̌) and ℘′(z,Λ̌). More precisely, we have

℘(z,Λ) = P(℘(z,Λ̌)),

℘′(z,Λ) =℘′(z,Λ̌) ·Q(℘(z,Λ̌)),

where P(x) and Q(x) are rational functions in x and with coefficients in C. This
follows from the fact that℘(z,Λ) and℘′(z,Λ) are respectively even and odd elliptic
functions.

Theorem 6.1 If E is defined over Q then the isogeny

Ě → E (x,y)→
(

P(x),yQ(x)
)

is also defined over Q, that is, Ě and P,Q are defined over Q.

This will be proved in Section 7.3 in which we introduce Hecke operator. The
reader can consult more Algebro-Geometric oriented books in elliptic curves, such
as [Sil94b, Sil92a], for a purely algebraic notion of an isogeny.

Exercise 6.8 Show that the Dwork family x3+y3 = 1−3αxy is 3 isogeneous to the
Hessian family y2 + 3αxy+ y = x3. Hint: See [Hus04, page 91]. Despite the name
“Dwork family”, this family was in use much before Dwork, see for instance [Fri11,
page 93].

Exercise 6.9 According to A. Weil in [Wei52], L. Kronecker studied the family of
elliptic curves Eρ : y2 = 1−ρx2 + x4. He shows that for a ρ ′ algebraic over Q(ρ),

we have an isogeny Eρ → Eρ ′ of the form (x,y) 7→
(

xnF( 1
x )

F(x) , G(x)
F(x)2

)
, where F,G are
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polynomials with coefficients in Q(σ ,σ ′) and σ ,σ ′ are roots of 1−ρx2 + x4 and
1−ρ ′x2 + x4, respectively. Discuss this isogeny in more details.

We might define an isogeny in a more general context of complex analysis. We
avoid the general definition of complex manifolds and holomorphic maps between
them and present this in the following way.

Definition 6.4 We say that a map f : E → Ě between two complex tori is holomor-
phic if there are holomorphic maps fi : Ui → Vi, where Ui,Vi are open subsets of C
for i = 1,2, . . . ,k, such that the diagram

E
f→ Ě

↑ ↑
Ui

fi→ Vi.

commutes and the image of Ui’s under the canonical projection C→E form a cover-
ing of E. We say that it is an isogeny if it is not a constant map and it is a homomor-
phism of groups. The endomorphism group of a torus E is the set of all holomorphic
maps f : E → E which are also homomorphism of groups.

Exercise 6.10 Show that any isogeny f : E → Ě is of the form in Remark 6.2,
and hence, if we change the coordinate function from z to az, it is of the form
in Definition 6.3. Show that for any endomorphism f : E → E there is a complex
number a such that aΛ ⊂ Λ and f is induced by C→ C, z 7→ az.

It turns out that we have a natural isomorphism

End(E)∼= {α ∈ C | αΛ ⊂ Λ},

where End(E) is the group of endomorphisms of E.

Definition 6.5 We have Z ⊂ End(E) and we say that E is CM (short for complex
multiplication) if the inclusion is strict.

Later, we will encounter two spcial CM elliptic curves as follows:

Exercise 6.11 Classify all elliptic curves E with α ∈ End(E) which is not multipli-
cation by ±1 and is an isomorphism. More precisely, show that we have only two
such elliptic curve

E = E⟨τ,1⟩, τ = i,
−1+ i

√
3

2
.

6.4 Nagell-Lutz and Mazur theorems

Two important arithmetic results on torsion points of elliptic curves over Q are
Nagell-Lutz theorem and Mazur theorem. In this section we state both theorems
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and leave the proofs to the readers as there are many excellent textbooks on the
topic.

Nagell-Lutz theorem was independently proved by Trygve Nagell in 1935 and
by Elisabeth Lutz in 1937, see [Cas90, Lut37]. It gives a finite set of possibilities
for a torsion point of an elliptic curve defined over Z, and so, it is a useful tool to
compute torsion points.

Theorem 6.2 (Nagell-Lutz Theorem) Let E be an elliptic curve with the Weier-
strass equation:

y2 = x3 + t2x+ t3, t2, t3 ∈ Z, ∆ := 4t3
2 +27t2

3 ̸= 0.

Then for all non-zero torsion points P = (a,b) ∈ E(Q) we have:

1. The coordinates of P are in Z, that is, a,b ∈ Z.
2. If P is of order greater than 2, then b2 divides ∆ .
3. If P is of order 2 then b = 0 and a3 + t2a+ t3 = 0.

A proof of this theorem can be found in [Sil92a, page 221] or [ST92, page 56].

Exercise 6.12 Compute the torsion subgroup of the elliptic curve.

y2 = x3 +2, · · ·

see [Mil20, Exercise 8.11] for a list of other elliptic curves.

Next, we state Mazur theorem. ´

Theorem 6.3 ([Maz77, Maz78]) Let E be an elliptic curve over Q. Then the tor-
sion subgroup E(Q)tors is one of the following fifteen groups:

Z/NZ, 1 ≤ N ≤ 10, or N = 12

Z/2Z×Z/2NZ, 1 ≤ N ≤ 4.

In particular,
#(E(Q)tors)≤ 16. (6.4)

The early history of Mazur theorem goes back to Beppo Levi, who produced a se-
ries of paper from 1906 to 1911 and for instance, he proved Exercise 6.5. He also
formulated the boundedness of #(E(Q)tors) which is known as torsion conjecture
or uniform boundedness conjecture. It was also reformulated in [Nag52] and in
[Ogg71]. The torsion conjecture for abelian varieties is still open. It is natural to
conjecture that if E is an elliptic curve over a number field k then the order of the
torsion subgroup of E(k) is bounded by a constant which depends only on the de-
gree of k over Q. It is proved in [Kam92] for all quadratic fields and in [Mer96] for
all number fields. For the proof of these statements one needs the notion of mod-
ular curve X0(N) and modular forms which will be introduced in the forthcoming
chapters.
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Exercise 6.13 Let E be the elliptic curve defined by the equation y2 = x3 + ax,
where a is a fourth-power free integer. Then

E(Q)tors ∼=

Z/2Z⊕Z/2Z, −a is square
Z/4Z, a = 4
Z/2Z, otherwise.

Hint: See [Hus04, Section 3, page 34].

Exercise 6.14 Let E be the elliptic curve defined by the equation y2 = x3+a, where
a is a sixth-power free integer. Then

E(Q)tors ∼=


Z/6Z, a = 1
Z/4Z, if a is a square different from 1, or a =−432
Z/2Z, if a is a cube different from 1
0, otherwise.

Hint: See [Hus04, Section 3, page 37].

Exercise 6.15 The following exericise is the first theorem announced in the treatise
[Jac29, Section 15, page 28]. Let us consider the Jacobi’s family of elliptic curves
Eu2 : y2 = (1− x2)(1−u2x2). Show that for (u,v) in the curve

u6 − v6 +5u2v2(u2 − v2)+4uv(1−u4v4) = 0

we have the following isogeny

f : Eu8 → Ev8 , (x,y) 7→ (X ,Y )

X :=
v(v−u5)x+u3(u2 + v2)(v−u5)x3 +u10(1−uv3)x5

v2(1−uv3)+uv2(u2 + v2)(v−u5)x2 +u6v3(v−u5)x4 ,

Y := y
v(1−uv3)

v−u5
∂X
∂x

,

such that f ∗ dx
y = v−u5

v(1−uv3)
dx
y . In Jacobi’s book this is written as:

v(1−uv3)dX√
(1−X2)(1− v8X2)

=
(v−u5)dx√

(1− x2)(1−u8x2)

Find out Jacobi’s motivation which resulted in this computation, see also [Cog14]



Chapter 7
Hecke operators

The final scene shows the 83-year-old Alexander von Humboldt following Eisen-
stein’s coffin at the cemetery at Blucherplatz. He had obtained money from the King
for Eisenstein to go to Sicily for a cure, but it was already too late. The plague of
the nineteenth century had taken yet another distinguished victim, (N. Schappacher
in [BKK+98a, page 60]).

7.1 Introduction

In this chapter we introduce one of the fundamental features of modular forms which
is responsible for many arithmetic properties. This is namely the Hecke operators
acting on the space of modular forms. There are many text books covering this topic
perfectly, see for instance [Apo90, Chapter 6], [Zag08] and [Ser78]. We will adopt a
more geometric approach suitable for the same topic in the context of algebraic ge-
ometry of elliptic curves, see Section 9.15. The first application of Hecke operators
is the following.

Theorem 7.1 Let τ be the Ramanujan’s τ function in Section 2.11. The numbers
τ(n) are multiplicative, that is, for all n,m ∈ N with (n,m) = 1 we have

τ(n ·m) = τ(n) · τ(m).

7.2 Hecke operators

For A ∈ GL(2,R) and a modular form f of weight k we define the slash operator

f |kA := (detA)k−1(cτ +d)−k f (Aτ), A =

[
∗ ∗
c d

]
.

115
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In some books, the power k− 1 of detA is different. For instance, in Chapter 7 the
slash operator is different. For A ∈ SL(2,R) this will not make any difference.

Proposition 7.1 If B ∈ GL(2,R)and f is a meromorphic (resp. holomorphic or
weakly holomorphic) modular form of weight k for some group Γ ∈ GL(2,R) then
f |kB is a meromorphic (resp. holomorphic or weakly holomorphic) modular form
of the same weight for the group B−1Γ B.

Proof. This follows from

( f |kB)|kB−1AB = ( f |kA)|kB = f |kB

For a fixed integer k, there is a one to one correspondance between the following
functions:

1. Holomorphic functions f : H→ C such that

(cτ +d)−k f
(

aτ +b
cτ +d

)
= f (τ), ∀τ ∈H,

[
a b
c d

]
∈ SL(2,Z). (7.1)

2. Holomorphic functions in the space L of lattices such that f (λΛ) = λ−k f (Λ).
3. Holomorphic functions in the space of enhanced elliptic curves (E,ω) such that

f (E,λω) = λ−k f (E,ω). We say that f is a homogeneous function.

Inserting the growth condition in each item above, we get three different encarnation
of modular forms. For the first item we know already what growth condition is, for
others we do not know how to define it without translating the modular form to the
one in the first item. We will discuss this for the third item for quasi modular forms
in Section 9.8.

Let Mk = Mk(SL(2,Z)) be the vector space of modular forms of weight k. The
Hecke operator

Tn : Mk → Mk

is a linear map and it is given by one of the following equivalent definitions:

1. For f : H→ C a modular form of weight k we have

Tn( f ) = ∑
[A]∈SL(2,Z)\Matn(2,Z)

f |kA =
s

∑
i=1

f |kAi,

where {[A1], [A2], · · · [As]}= SL(2,Z)\Matn(2,Z).
2. For f : L→ C a modular form of weight k we have

Tn( f )(Λ) = nk−1
∑

Λ ′⊂Λ , #Λ/Λ ′=n
f (Λ ′),

where Λ ′ runs through all sublattices Λ ′ ⊂ Λ of index n.
3. For f a homogeneous function on the sapce of enhanced elliptic curves (E,ω),

we have
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Tn f (E,ω) = nk−1
∑ f (Ě, ω̌),

where Ě, ω̌ runs though all isogenies α : Ě → E such that α∗(ω) = ω̌ and
deg(α) = n. In this case f can be considered as a homogeneous polynomial of
degree k in C[t2, t3], deg(t2) = 4, deg(t3) = 6 and we can rewrite

Tn( f )(t2, t3) = nk−1
∑
t ′

f (t ′),

where t ′ = (t ′2, t
′
3) runs through all parameters for which there is an isogeny α :

Et ′ → Et such that α∗( dx
y ) =

dx
y and deg(α) = n.

Exercise 7.1 Prove the equivalence of the above three definitions.

Exercise 7.2 Prove that each equivalence class in SL(2,Z)\Matn(2,Z) is repre-
sented exactly by one of the matrices[

d b
0 n

d

]
, d|n, 0 ≤ b <

n
d
.

Using the Exercise 7.2 we know that the action of the Hecke operator Tn on a mod-
ular form of weight k is given by

Tn( f )(τ) = nk−1
∑

a·d=n, 0≤b≤d−1
d−k f

(
aτ +b

d

)
. (7.2)

Theorem 7.2 For two natural numbers n and m and Hecke operators Tn,Tm ∈
Mk → Mk we have

Tn ◦Tm = ∑
d|(n,m)

dk−1Tnm
d2
. (7.3)

In particular, for n and m coprime we have

Tn ◦Tm = Tnm

and for p a prime number

Tp ◦Tpe = Tpe+1 + pk−1Tpk−1 . (7.4)

Proof. For a proof see [Sil94b, page 62]. We give two essentially same proofs, one
for modular forms as holomorphic functions on H and the other for modular forms
as functions on pairs (E,ω). Let Kn := SL(2,Z)\Matn(2,Z). Let us take represen-
tatives Ai, i = 1,2, · · · ,σ(n), Bi, i = 1,2, · · · ,σ(m) for Kn and Km, respectively. For
a fixed d|(n,m) we also take representatives Cd,r, r = 1,2, · · · ,σ( nm

d2 ) for K nm
d2

. It is
not hard to show that for any Cd,r there is exactly d pairs (Ai,B j) such that

AiB j =

[
d 0
0 d

]
Cd,r.
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see the second part of Exercise 7.3. Now we have

Tn ◦Tm f (τ) =
σ(n)

∑
i=1

σ(m)

∑
j=1

f |kAiB j

= ∑
d|(n,m)

σ( nm
d2 )

∑
r=1

d · f |k
[

d 0
0 d

]
Cd,r

= ∑
d|(n,m)

σ( nm
d2 )

∑
r=1

dk−1 · f |kCd,r.

Now we reproduce the proof for modular forms as functions on the sapce of (E,ω).
Let n, m ∈ N and d|(n,m) be fixed. We prove that for pairs of isogenies.

E1
α−−→ E2

β−−→ E, degα = n, degβ = m

there is a unique isogeny E1
γ−→ E, degγ = nm

d2 such that

γ ◦ [d] = β ◦α

and for γ fixed we have d pairs of such isogenies α,β . Here [d] : E1 → E1 is the
multiplication by d map. This decomposition is inspired by the identity

σ(n) ·σ(m) = ∑
d|(n,m)

d ·σ
(

nm
d2

)
.

If this is the case, then

Tn ◦Tm f (E,ω) = (nm)k−1
∑

E1
α→E2

β

→E

f
(

E1,(β ◦α)∗ω

)

= ∑
d|(n,m)

(nm)k−1 d ∑
E1

γ→E

f
(

E1,(γ ◦ [d])∗ω

)
= ∑

d|(n,m)

dk−1 Tnm
d2
.

We have used [d]∗ω = dω and f (E,d∗) = d−k f (E,∗). In order to prove the affir-
mation on isogenies we have to prove the corresponding affirmation on lattices. Let
Λ ⊆ C be a fixed lattices and

Λ1 ⊆ Λ2 ⊆ Λ , #
Λ2

Λ1
= n, #

Λ

Λ2
= m.
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For (n,m) = 1, Λ2 is uniquely characterized by Λ2 = {x ∈ Λ | nx ∈ Λ1} and the
affirmation is trivial. For a subgroup Gd := Z/dZ×Z/dZ⊆ Λ/Λ1 we define

Λ3 = pull-back of Gd by Λ → Λ/Λ1.

We have dΛ3 ⊆ Λ1 ⊆ Λ3 and the index in both inclusions dΛ3 ⊆ Λ3 and Λ1 ⊆
Λ3 is d2. Therefore, dΛ3 = Λ1, and hence, E1 ∼= C/Λ3. The proof follows from
Exercise 7.3.

Exercise 7.3 Let G be a finite abelian group generated by at most two elements,
#G = nm and d := (n,m). Show that the number of subgroups Ǧ ⊂ G with #Ǧ = n is
d times the number of subsgroups of G isomorphic to Z/dZ×Z/dZ. This problem
is equivalent to the following. Let Kn := SL(2,Z)\Matn(2,Z). Let us take represen-
tatives Ai, i = 1,2, · · · ,σ(n), Bi, i = 1,2, · · · ,σ(m) for Kn and Km, respectively. For
a fixed d|(n,m) we also take representatives Cd,r, r = 1,2, · · · ,σ( nm

d2 ) for K nm
d2

. For
any Cd,r there is exactly d pairs (Ai,B j) such that

AiB j =

[
d 0
0 d

]
Cd,r.

The formula (7.3) is summarized in the following formal equality:

∞

∑
n=1

Tnn−s = ∏
p
(1−Tp p−s + pk−1−2s)−1.

Proposition 7.2 Let f be a modular form with the Fourier expansion:

f (τ) =
∞

∑
n=0

anqn, q = e2iπτ .

For m ∈ N, we have Tm f (τ) =
∞

∑
n=0

bnqn, where

bn = ∑
d|gcd(m,n)

dk−1amn/d2 .

In particular, if f is defined over Q then Tn f is also defined over Q.

Proof. This follows from Equation (7.2):
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Tm( f )(q) = mk−1
∑

a·d=m, 0≤b≤d−1
d−k

∞

∑
n=0

anq
an
d e

2πibn
d

= mk−1
∞

∑
n=0

∑
a·d=m

d−kanq
an
d

(
d−1

∑
b=0

e
2πibn

d

)

= mk−1
∞

∑
n=0

∑
d|(n,m)

d−k+1anq
mn
d2

= mk−1
∞

∑
n=0

∑
d|(n,m)

(
m
d
)−k+1a nm

d2
qn.

In the last line we have made the change of variables ñ := nm
d2 , d̃ = m

d , and then we
have removed the tilde.

Exercise 7.4 Show that the Eisenstein series Ek is an eigenform for all Hecke oper-
ators Tn with eigenvalue σk−1(n):

TnEk = σk−1(n)Ek.

Hint: This follows directly from the definition of Ek and Tn, see [Sil94b, 1.25, page
92].

Proposition 7.3 A modular form of weight k with f0 = 1 is an eigenform for all
Hecke operators if and only if f is the Eiseinstein series Ek.

Proof. Let f be an eigenform for all Tn’s. We have Tn f = λn · f and so

λn fm = (Tn f )m = ∑
d|(n,m)

dk−1 f nm
d2

(7.5)

We put m = 0 and get λn f0 = σk−1(n) f0, and λn = σk−1(n). If we put m = 1 we get
also λn f1 = fn.

Theorem 7.3 Let f be a cusp form of weight k and suppose that f is an eigen form
for all Hecke operators and f1 = 1. Then

Tn f = fn · f

Proof. We have Tn f = λn · f and so in (7.5) we put m = 1 and get λn = fn.

Definition 7.1 A normalized eigenform is a modular form f with

1. f is a cusp form with f1 = 1.
2. For all n ∈ N we have Tn f = fn · f .

Theorem 7.4 Let f (τ) = ∑
∞
n=1 fn qn be a normalized eigenfunction of weight k.

Then
fn fm = ∑

d|(n,m)

dk−1 f nm
d2
.
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Fig. 7.1 Isogeny

In particular,
fnm = fn fm (n,m) = 1,
fpn · fp = fpn+1 + pk−1 fpn−1 p prime.

Proof. We just apply Equation (7.3) to f .

Now we are ready to prove Theorem 7.1.

Theorem 7.5 Let

∆ = q
∞

∏
n=1

(1−qn)24 = ∑
n=1

τ(n)qn.

We have

τ(n)τ(m) = τ(nm) (n,m) = 1,

τ(p)τ(pn) = τ(pn+1) + p11
τ(pn−1), p prime.

(7.6)

Proof. This follows from the fact that S12 ((SL(2,Z)) is generated by ∆ . The iden-
tities were conjectured by Ramanujan and proved by Mordell.

Exercise 7.5 Find a basis of Sn (SL(2,Z)) , n = 14, 16, 18 which are normalized
eigenforms.
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7.3 Proof of Theorem 6.1

First, we prove that Ě is defined over Q. Let f ∈ Mk be a modular form defined over
Q. We consider f as a function on the sapce of lattices and define

Pf (x) = ∏
Λ̌⊂Λ , #Λ/Λ̌=n

(
x− f (Λ̌)

)
.

Let us write P(x) = ∏
N
i=1(x− xi), where N := σ(n). The coefficients of P(x) are

symmetric polynomials with Q coefficients in the quantities

Tn f m =
N

∑
i=1

xm
i , m = 1,2, . . . ,N.

By Proposition 7.2 we know that Hecke operators send a modular form defined over
Q and weight k to a modular form defined over Q and weight k, and hence,

Pf (x) = xN +
N

∑
i=1

fixN−i, fi ∈ Mik(SL(2,Z))Q.

By Theorem 2.5, fi can be written as a polynomial of degree ik in Q[E4,E6] with
deg(E4) = 4, deg(E6) = 6, and so we can write Pf = Pf (x,E4,E6)∈Q[x,E4,E6]. By
Theorem 2.2 and Theorem 2.3 we know that 1

(2πi)a ta, a = 2,3 is a modular form of
weight 2a defined over Q. This implies that Pta ∈ (2πi)−NaQ[x, t2, t3], a = 2,3. Let
us consider an elliptic curve E :=C/Λ defined over Q̄, that is, t2(Λ), t3(Λ)∈ Q̄. Up
to some power of 2πi factor Pta(x, t2(Λ), t3(Λ)) ∈ Q̄[x] and this finishes the proof of
the fact that Ě is defined over Q̄.

Let (e1,0) be a 2-torsion point of E, see Section 2.14. The function x− e1 has a
zero of order 2 at P and a pole of order 2 at O. Therefore, the zero and polar set of
(x−e1)◦ f = P(x)−e1 are respectivey f−1(P) and f−1(O). Since Ě is defined over
Q, its torsion points are also defined over Q, and in paricular f−1(O), f−1(P) ⊂
E(Q̄). This implies that all the zeros of P(x) are defined over Q̄, and hence P(x)
up to multiplication by a constant is defined over Q̄. Since f sends torsions of Ě
to torsions of E, evaluating (x− e1) ◦ f at any torsion points of Ě, which is not in
f−1(O) and f−1(P), we get the fact that P itself is defined over Q̄. In a similar way,
we consider y◦ f

y̌ which is an even function and its zeros and poles are all on torsion
points of Ě, see Figure 7.1.



Chapter 8
Congruence groups

The real purpose of mathematics is to be the means to illuminate reason and to
exercise spiritual forces (August Leopold Crelle, see [BKK+98b, page 32]).

8.1 Introduction

In this chapter we work with modular forms for subgroups of SL(2,Z), and in par-
ticular for congruence groups. One of the most well-known applications of such
modular forms is the so-called arithmetic modularity theorem which has been one
of the great achievements in mathematics of 20th century.

8.2 Congruence groups

We have seen that SL(2,Z) appears as the monodromy group of the Weierstrass
familly of elliptic curves. If we take other families of elliptic curves and compute
the corresponding monodromy group then we will get subgroups of SL(2,Z) of
finite index. Congruence groups are the most well-known subgroups of SL(2,Z).
They appear as monodromy groups of universal family of elliptic curves enhanced
with torsion structures.

Let N be a positive integer number. Define

Γ (N) :=

{
A ∈ SL(2,Z)

∣∣∣∣∣A ≡N

[
1 0
0 1

] }
.

not]Γ (N), congruence group It is the kernel of the canonical homomorphism of
groups SL(2,Z)→ SL(2,Z/NZ).

123
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Definition 8.1 A subgroup Γ ⊂ SL(2,Z) is called a congruence subgroup of level
N if Γ (N)⊂ Γ .std]Congruence subgroup of level N

Our main examples are

Γ0(N) :=

{
A ∈ SL(2,Z)

∣∣∣∣∣A ≡N

[
∗ ∗
0 ∗

]}
,

not]Γ0(N), congruence group

Γ1(N) :=

{
A ∈ SL(2,Z)

∣∣∣∣∣A ≡N

[
1 ∗
0 1

] }
,

not]Γ1(N), congruence group which are congruence groups of level N.

Exercise 8.1 For a description of a fundamental domain for the action of Γ0(p), p
a prime number, see [Apo90, Theorem 4.2]. Write a report on this.

Definition 8.2 std]Modular form A holomorphic function f : H → C is called a
moduler form of weight k for Γ if

1. For all A ∈ Γ we have f |kA = f .
2. For all A ∈ SL(2,Z) the limit limIm(τ)→+∞ f |kA exists.

8.3 Weil pairing

Let Λ = Zω1 +Zω2 ⊂ C be a lattice with Im(ω1
ω2
) > 0 and let E = C/Λ be the

corresponding elliptic curve. Recall the set E[N] of N-torsion points of E defined in
Chapter 6. The following definition of Weil pairing is taken from [Sil94b, page 89]
and [Sil92b, Chapter 3, Section 8].

Definition 8.3 std]Weil pairingnot]eN , Weil pairing Let E be an elliptic curve. The
Weil pairing is

eN E[N]×E[N]→ µN

eN

(
aω1 +bω2

N
,

cω1 +dω2

N

)
= e2πi ad−bc

N ,

where µN := {e
2πik

N | k ∈ Z}.

For an elliptic curve E in the Weierstrass format we consider the Weil pairing in E
through the Weierstrass uniformization theorem.

Exercise 8.2 Prove that the above definition is well-defined, that is, it is indepen-
dent of the choice of the basis ω1,ω2 for Λ . Moreover, the Weil pairing
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1. is bilinear, eN(P1 + P2,Q) = eN(P1,Q)eN(P2,Q)) and alternating, eN(P,Q) =
eN(Q,P)−1.

2. It is non-degenerate, if eN(P,Q) = 1 for all Q, then P = O.
3. It is Galois invariant, eN(σ(P),σ(Q)) = σ(eN(P,Q))) for all σ ∈ Gal(C/Q).
4. It is compatible, eNN′(P,Q) = eN(N′P,Q) for P ∈ E[NN′] and Q ∈ E[N].

Theorem 8.1 Let

Y0(N) := Γ0(N)\H, Y1(N) := Γ1(N)\H, Y (N) := Γ (N)\H.

not]Y0(N), modular curvenot]Y1(N), modular curvenot]Y (N), modular curve

1. The set Y0(N) is the moduli space of pairs (E,C), where E is a complex elliptic
curve and C is a cyclic subgroup of E of order N. For τ ∈Y0(N) the correspond-
ing pair is:

(E,C) =

(
C/(Zτ +Z),

{[
1
N

]
,

[
2
N

]
, . . . ,

[
N −1

N

]})
.

2. The set Y1(N) is the moduli space of pairs (E, p), where E is a complex elliptic
curve and p is a point of E of order N. For τ ∈ Y1(N) the corresponding pair is:

(E,C) = (C/(Zτ +Z), [
1
N
]).

3. The set Y (N) is the moduli space of pairs (E,(p,q)), where E is a complex elliptic
curve and (p,q) is a pair of points of E that generates the N-torsion subgroup of
E with Weil pairing eN(p,q) = e

2πi
N . For τ ∈ Y1(N) the corresponding pair is:

(E,C) = (C/(Zτ +Z),([
τ

N
], [

1
N
])).

The proof is simple and can be found in [DS05, Theorem 1.5.1, page 38].

Exercise 8.3 Show that

#[SL(2,Z) : Γ1(N)] = n2 Π

(
1− 1

p2

)
#[SL(2,Z) : Γ (N)] = n3 Π

(
1− 1

p2

)
#[SL(2,Z) : Γ0(N)] = ψ(N) := n Π

(
1+ 1

p

)
.

Here, ψ(N) is called the Dedekind ψ function.std]Dedekind ψ function

Remark 8.1 It is a natural question to ask when universal families over modular
curves exist. In [MFK94, Theorem 7.9 and comments after] it is stated that if N >
6g ·d ·

√
g! then the fine moduli scheme Ag,d,N for abelian varieties of dimension g,

with level N structure and polarization of degree d exists. It is a quasi-projective
over Sepc(Z). Actually there is a finer result which is called Serre’s Lemma and it
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states that N ≥ 3 is enough for the existence of such universal families. The main
reference for this discussion is [Gro62, Appendix by Serre].

8.4 Modular forms for congruence groups

We consider the moduli space of elliptic curves enhanced with torsion point struc-
tures and holomorphic 1-forms. The difference between these moduli spaces and
those in Theorem 8.1 is the presence of a differential form ω together with E. Recall
that by integration the pair (E,ω) is identified with a lattice Λ ⊂C. not]L1(N),L0(N),L(N),
moduli of enhanced elliptic curves

L := moduli of elliptic curves (E,ω),

L1(N) := moduli of (E,ω,z), z ∈ E[N] a torsion point of order N ,

L(N) := moduli of (E,ω,{z1,z2}), z1,z2 ∈ E[N], eN(z1,z2) = ζN ,

L0(N) := moduli of (E,ω,C), C ⊂ E[N] cyclic group of order N.

Let f be an elliptic function of weight k with poles at 0. For instance, we use f =
℘,℘′ which are of weight 2 and 3, respectively. We know the following functions
on these moduli spaces:

f1,N : L1(N)→ C, f1,N(E,ω,z) = f (Λ ,z),

f i
N : L(N) → C, fN(E,ω,z1,z2) = f (Λ ,zi), i = 1,2, Λ :=

∫
H1(E,Z)

ω

f0,N : L0(N)→ C, f0,N(E,ω,C) = ∑
z∈C

f (Λ ,z).

Note that in the last item we could f0,N in different ways. For instance, the sum can
run 1. all generators z of C. 2. For d ∈ N dividing N, it can run on all z ∈ C with
dz = 0. Depending on applications, these other definitions might be useful. Any
function g as above has the following functional equation:

g(E,aω,∗) = a−kg(E,ω,∗), ∀a ∈ C∗, (8.1)

where k is the weight of the elliptic function f . We consider the following maps

i : H→ L1(N) τ 7→ (C/(Zτ +Z),dz,
[ 1

N

]
),

i : H→ L(N) τ 7→
(
C/(Zτ +Z),dz,

([
τ

N

]
,
[ 1

N

]))
,

i : H→ L0(N) τ 7→
(
C/(Zτ +Z),dz,

{[ 1
N

]
,
[ 2

N

]
, . . . ,

[N−1
N

]})
.

Proposition 8.1 Let f be an elliptic function of weigh k with poles at Λ . Then
the pull-back of f1,N , fN , f0,N by i is a holomorphic modular form of weight k for
Γ1(N),Γ (N), and Γ0(N) respectively.
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Proof. We only prove the L1(N) case. The other cases are similar. For all
[

a b
c d

]
∈

Γ1(N) we have

f1,N

(
aτ +b
cτ +d

)
= f

(
Z

aτ +b
cτ +d

+Z,
1
N

)
= (cτ +d)k f (Z(aτ +b)+Z(cτ +d),

cτ +d
N

)

= (cτ +d)k f (Zτ +Z,
1
N
).

Now, we have to show the growth condition. For this by Exercise 2.14 it is enough
to assume that f =℘ or ℘′. Note that if f has poles only at Λ then R1,R2 in Ex-
ercise 2.14 are polynomials in ℘(z). In these cases the affirmation follows from
Exercise 2.10.

Exercise 8.4 Write the proof of Proposition 8.1 for L0(N) and L(N).

Proposition 8.2 If f is a modular form of weight k for SL(2,Z) then g(τ) := f (Nτ)
is a modular form of weight k for Γ0(N).

Proof. First note that Nk−1 · g = f |k
[

N 0
0 1

]
and so g(τ) is a priori a modular form

for [
N 0
0 1

]−1

SL(2,Z)
[

N 0
0 1

]
.

For A =

[
a b
c d

]
∈ SL(2,Z) we have

[
N−1 0

0 1

][
a b
c d

][
N 0
0 1

]
=

[
a N−1b

N · c d

]
,

If we take A’s with N|b, this means that g is modular for Γ0(N).

Another important example of a modular forms comes from the following. Despite
being trivial and well-known for experts, I found it in a natural way in the study of
geometric quasi-modular forms in [Mov22b], see also Chapter 13.

Proposition 8.3 The following is a modular form of weight two for Γ0(N):

N ·E2(Nτ)−E2(τ). (8.2)

Proof. The proof is a mere computation and it follows from the functional equation

of E2 in Theorem 2.4. Let f be the holomorphic function in (8.2). For
[

a b
c s

]
∈Γ0(N)

we have
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f
(

aτ +b
cτ +d

)
= NE2

(
aNτ +Nb

cN−1Nτ +d

)
−E2

(
aτ +b
cτ +d

)
= N

(
(cτ +d)2E2(τ)+

12
2πi

cN−1(cτ +d)
)

−(cτ +d)2E2(τ)−
12
2πi

c(cτ +d)

= (cτ +d)2 f (τ).

The following modular form appears in a natural way in the study of Picard’s curious
example in Theorem 13.5.

Exercise 8.5 For N ∈ N let fN be an elliptic function with pole and zero of order
N at [0] and [ 1

N ], respectively, and with no other poles or zeros (see Exercise 2.17).
The following function

FN(τ) :=
1
N

f ′N
fN

− 1
2

℘′(z,τ)+℘′( 1
N ,τ)

℘(z,τ)−℘( 1
N ,τ)

is independent of z and it is a modular form for Γ1(N). Here, ′ is derivation with
respect to z. Hint: The two terms in FN(τ) have poles of order one at [0] and [ 1

N ]
with residues 1 and −1 at these points. Therefore, the difference is a holomorphic
elliptic function in z, and hence, it is constant in z. For the functional equation of
FN(τ) either prove it directly or interpret it as a function in L1(N).

The motivation for the following exercise comes from Picard’s moduli space in
Section 13.7 and in particular Theorem 13.5.

Exercise 8.6 Let

a :=
℘
( 1

N ,τ
)

FN
, b :=

℘′ ( 1
N ,τ
)

FN
, c :=

60G4(τ)

FN
.

Show that there is a meomorphic function g on the upper half plane such that

g · ∂a
∂τ

= 2c−24a2 +6ab+6b,

g · ∂b
∂τ

= −3c+36a2 −36ab+9b2,

g · ∂c
∂τ

= 12ca+12cb−144a3 +36b2.

8.5 Fourier or q-expansion

Let f be a modular form of weight k for a congruence group Γ of level N. It follows
that for all A ∈ SL(2,Z), f |kA has Fourier expansion and in this section we aim to
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explain this. We have

T N =

[
1 N
0 1

]
∈ Γ (N), where T :=

[
1 1
0 0

]
,

and so for all A ∈ SL(2,Z)

( f |kA)|kT N = f |k(AT NA−1)|kA = f |kA

because AT NA−1 ∈Γ (N)⊂Γ . This implies that if we define qN := e
2πiτ

N thennot]qN ,
the q-expansion

f |kA =
∞

∑
n=0

fn qn
N , an ∈ C.

Exercise 8.7 For an elliptic function f such as ℘, compute the first few coefficients
of q-expansions of modular forms f1,N , fN , f0,N in Proposition 8.1 and FN in Propo-
sition 8.3.

Exercise 8.8 The quotient

ϕ(τ) :=
∆(Nτ)

∆(τ)

is a modular function for the group Γ0(N). This follows from the functional equation
of ∆(τ). It is a holomorphic in H and at i∞:

ϕ(τ) =

qN
∞

∏
n=1

(1−qnN)24

q
∞

∏
n=1

(1−qn)24

and so it has a zero of order N −1 at q = 0. There are no non-constant holomorphic
functions on a compact Riemann surface, and so, ϕ as a function on Γ0(N)\H is nec-
essarily meromorphic. Compute its pole order at other cusps. For more information
on ϕ see [Apo90, Section 4.7].

Definition 8.4 Let us now consider the equality[
0 −1
N 0

]−1 [a b
c d

][
0 −1
N 0

]
=

[
d −cN−1

−N ·b a

]
This together with Proposition 7.1 implies that we have a well-defined map

WN : Mk(Γ )→ Mk(Γ ), f 7→ N−1
τ
−k f (

−1
Nτ

), Γ = Γ0(N),Γ1(N). (8.3)

This map sends cusp forms to cusp forms and it is called the Fricke involution.
std]Fricke involutionnot]WN , Fricke involution
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8.6 Transcendence degree of modular forms

Let Γ ⊂ SL(2,Z) be a subgroup of finite index a and f ∈ Mk(Γ ). We define

a

∑
i=0

ga−i ·X i = ∏
A∈Γ \SL(2,Z)

(X − f |kA) , g0 := 1 (8.4)

Theorem 8.2 We have gi ∈ Mk·i(SL(2,Z)).

Proof. Let P(X) be the right hand side of (8.4). Then for B ∈ SL(2,Z) we have

P(X)|kB = ∏
A∈Γ \SL(2,Z)

(
X − ( f |kA)|kB

)
= P(X).

Therefore, the coefficients of P(X) has the correct functional equation. The finite
growth of gi’s follow from the finite growth of f |kA’s for all A ∈ Γ \SL(2,Z).

As a corrolary we get:

Proposition 8.4 Let N ∈N be a natural number and f be a modular form of weight
k for SL(2,Z). There are modular forms gi ∈ Mk·i(SL(2,Z)), i = 0,1, . . . ,ψ(N)
such that

ψ(N)

∑
i=0

gψ(N)−i f (N · τ)i = 0.

Proof. We know that f (Nτ) is a modular form for Γ0(N), see Proposition 8.2, and
the index of Γ0(N) is SL(2,Z) is ψ(N), see Exercise 8.3. In this way Proposition 8.4
follows from Theorem 8.2.

We have also the following statement.

Theorem 8.3 The field generated by modular forms for congruence groups is of
transcendence degree two. More precisely, any modular form for a congruence
group is in the algebraic closure of the field C(E4,E6).

We may also try to state Proposition 8.4 for weakly holomorphic modular forms,
that is, in Proposition 8.4 assume that f is a weakly holomorphic modular forms
of weight k and pole order m1,m2, . . . ,ms at the cusps of H/Γ . Then gi must be a
weakly holomorphic modular form of weight k · i and its pole order at i∞ must be
computed in terms of mi’s. This might lead to a proof of some classial statements
such as Exercise 13.1.

Let us consider the converse of Theorem 8.2, that is, let us consider gi ∈
Mk·i

(
SL(2,Z)

)
, i = 1,2, ..a, and define

P(X) =
a

∑
i=0

ga−i ·X i.

The resultant of P(X) is a homogeneous polynomial of degree 2 · k ·a in
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Q[g1,g2, . . . ,ga], weight (gi) = ki.

This is a weight 2ka modular form for SL(2,Z). Assume that this resultant has no
zeros. Since H is simply connected, we can find holomorphic functions f1, f2, .., fa :
H→ C such that

P(X) = (X − f1)(X − f2) · · ·(X − fa).

We have the representation

χ : SL(2,Z)→ GL(a,Z),

whose image is isomorphic to the permutation group in a elements and such that
f1|kA
f2|kA

...
fa|A

= χ(A)


f1
f2

fa

 , ∀A ∈ SL(2,Z). (8.5)

Here, χ(A) is just a permutation matrix in 1,2, . . . ,a. Let

Γi := {A ∈ SL(2,Z)
∣∣∣χ(A)ei = ei},

where ei = [0,0, . . . ,1,0, . . . ,0]tr and 1 is in the i-th place. We have fi ∈Mk(Γi) which
is a direct consequence of (8.5) and the definition of Γi.

Exercise 8.9 Show that P(X) is irreducible over Mk

(
SL(2,Z)

)
[X ] if and only if an

orbit of χ in {1,2, . . . ,a} is the whole set. It follows that if P(X) is irreducible over
Mk

(
SL(2,Z)

)
[X ]. Then

{ f1, f2, . . . , fa}= { fi|kA, A ∈ Γ \SL(2,Z)}

and
Γi := A−1

Γ1A A ∈ Γ \SL(2,Z).

The following question is natural to ask: under which conditions on gi’s, Γ1 is a
congruence group?





Chapter 9
Quasi-modular forms

There are five elementary arithmetical operations: addition, subtraction, multipli-
cation, division, and modular forms, (a quote atributed to Martin Eichler).

9.1 Introduction

Like modular forms, examples of quasi-modular forms are abundant in the literature
of 19 and 20 centuries. Typical examples are the Eisenstein series E2 and logarith-
mic derivatives of theta series. The job of defining the algebra of quasi-modular
forms, and also stamping the name, is done in [KZ95]. In this article the authors
give a direct proof for a formula stated in [Dij95] which deals with counting rami-
fied covering of elliptic curves and it is in the context of string theory. An algebraic
geometric framework for quasi-modular forms using de Rham cohomology of ellip-
tic curves has been introduced by the author in [Mov08, Mov12].

In Chapter 2 we have seen that the classical modular fotms are holomorphic
functions on the Poincaré upper half plane which satisfy a functional equation with
respect to the action of a subgroup of SL(2,Z) on H and have some growth condition
at infinity. Quasi-modular forms can be also presented in a similar way, despite
the fact that their functional equation is longer, and so uglier. We will skip this
approach and refer the reader to [MR05]. Instead, we adopt the algebraic geometric
encarnation of quasi-modular forms in [Mov12], as this is open to generalizations in
the context of Calabi-Yau varieties. The bridge between the two notions of algebraic
and holomorphic quasi-modular forms is given by the generalized period map which
is constructed by elliptic integrals.

Algebraic de Rham cohomology of algebraic varieties is introduced by A.
Grothendieck in [Gro66]. Our aim in this chapter is to introduce this concept for
elliptic curves without going to the details of the general theory. For a computa-
tional approach using a covering (Čech cohomology) see also [MV21]. Let E be
an elliptic curve over a field k of characteristic zero. The algebraic de Rham coho-
mologies H i

dR(E), i = 0,1,2 are k-vector spaces of dimensions respectively 1,2 and

133
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1, see Proposition 9.2, Proposition 9.4 and Proposition 9.5. We have H0
dR(E) = k,

an isomorphism Tr : H2
dR(E)∼= k and a bilinear map

H1
dR(E)×H1

dR(E)→ H2
dR(E).

The map Tr composed with the bilinear map gives us:

⟨·, ·⟩ : H1
dR(E)×H1

dR(E)→ k

which is non-degenerate and anti symmetric. We call it the intersection bilinear
form. We have also a natural filtration of H1

dR(E) which is called the Hodge filtra-
tion:

{0}= F2 ⊂ F1 ⊂ F0 = H1
dR(E)

Its non-trivial piece F1 is generated by a regular differential form (a differential
form of the first kind). In the present chapter we define all these in a down-to-earth
manner.

9.2 De Rham cohomology of affine varieties

In this section we recall basic definitions and properties of differential forms in an
algebraic geometry. For further details the reader is referred to [Har77, page 172]
and [Mov21, Chapter 10].

Let A and R be commutative k-algebra and R→ A be a morphism of k-algebras.
In all of our examples R will be a sub algebra of A. Using this morphism, A can be
seen as an R-algebra. We assume that A as an R-algebra is finitely generated.

Definition 9.1 Let ΩA/R denote the module of relative (Kähler) differentials, that
is, ΩA/R is the quotient of the A-module freely generated by symbols dr, r ∈ A,
modulo its submodule generated by

dr, r ∈ R, d(ab)−adb−bda, d(a+b)−da−db, a,b ∈ A.

The A-module ΩA/R is finitely generated and it is equipped with the derivation

d : A → ΩA/R, r 7→ dr.

It has the universal property that for any R-linear derivation D : A → M with the
A-module M, there is a unique A-linear map ψ : ΩA/R → M such that D = ψ ◦ d.
Let X = Sepc(A) and T = Sepc(R) be the corresponding affine varieties over k and
X → T be the map obtained by R→ A. We will mainly use the Algebraic Geometry
notation Ω 1

X/T := ΩA/R.

Definition 9.2 Let

Ω
i
X/T =

i∧
k=1

ΩA/R,



9.2 De Rham cohomology of affine varieties 135

be the i-th wedge product of ΩX/T over A, that is, Ω i
X/T is the quotient of the A-

module freely generated by the symbols ω1 ∧ω2 ∧ ·· · ∧ωi modulo its submodule
generated by elements which make ∧ A-linear in each ωi and

ω1 ∧·· ·∧ω j ∧ω j+1 ∧·· ·∧ωi = 0, for ω j = ω j+1.

It is convenient to define
Ω

0
X/T := A.

Definition 9.3 The differential operator

di : Ω
i
X/T → Ω

i+1
X/T

is defined by assuming that it is R-linear and

di(ada1 ∧·· ·∧dai) = da∧da1 ∧·· ·∧dai, a,a1, . . . ,ai ∈ A.

Sometimes it is convenient to remember that di’s are defined relative to R. One
can verify easily that di is in fact well-defined and satisfy all the properties of the
classical differential operator on differential forms on manifolds. From now on we
simply write d instead of di. If R= k is a field then we write X instead of X/T .

Exercise 9.1 1. Prove the universal property of the differential map d : A → ΩA/R.
2. Prove the following properties of the wedge product: For α ∈ Ω i

X/T , β ∈
Ω

j
X/T , γ ∈ Ω r

X/T
(α ∧β )∧ γ = α ∧ (β ∧ γ),

α ∧β ∧ γ = (−1)i j+ jr+ir
γ ∧β ∧α,

3. Prove that d ◦d = 0.
4. For α ∈ Ω i

X/T , β ∈ Ω
j

X/T we have:

d(α ∧β ) = (dα)∧β +(−1)i
α ∧ (dβ ).

After the definition of differential forms, we get the de Rham complex of X/T ,
namely:

Ω
0
X/T → Ω

1
X/T → ·· ·Ω i

X/T → Ω
i+1
X/T → ···

Since d ◦d = 0, we can define the de Rham cohomologies

H i
dR(X/T ) :=

ker(Ω i
X/T

d→ Ω
i+1
X/T )

Im(Ω i−1
X/T

d→ Ω i
X/T )

.

Exercise 9.2 1. Let m be the number of generators of the R-algebra A. Show that
for i ≥ m+1 we have Ω i

X/T = 0 and hence H i
dR(X/T ) = 0.
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2. Let A = R[x1,x2, . . . ,xn]. In this case, we use the notation An
R := Sepc(A). The

A-module Ω 1
An
R

is freely generated by the elements dx1,dx2, . . . ,dxn. Prove that

H i(An
R) = 0, i = 1,2, . . .

This is in [Eis95, Exercise 16.15c, page 414].
3. Let us come back to the case of an arbitrary A. Let a1,a2, . . . ,am ∈ A generate the

R-algebra A. Define

I = {P ∈ R[x1,x2, . . . ,xm] | P(a1,a2, . . . ,am) = 0}.

The set I is an ideal of R[x1,x2, . . . ,xm] and we have

A ∼= R[x1,x2, . . . ,xm]/I,

Ω
i
X/T

∼= Ω
i
An
R
/(dI ∧Ω

i−1
An
R
+ IΩ

i
An
R
),

where by dI ∧Ω
i−1
An
R
+ IΩ i

An
R

we mean the A-module generated by

dr1 ∧ω1 + r2ω2, r1,r2 ∈ I, ω1 ∈ Ω
i−1
An
R
, ω2 ∈ Ω

i
An
R
.

4. Discuss conditions on A such that H0(X/T ) = R. For instance, show that if R=
k is an algebraically closed field of characteristic zero and X is an irreducible
reduced variety over k then H0(X) = k.

9.3 Two incomplete elliptic curves

In this section we find an explicit basis for the de Rham cohomology of the main
examples of this text, that is, affine elliptic curves in Weierstrass form. The gen-
eral theory uses the notion of a Brieskorn module which is essentially the same
as de Rham cohomology. Our main source for this section is [Mov21, Chapter 10]
[Ked08].

Let t2, t3 ∈ R, P(x) = 4x3 − t2x − t3 ∈ R[x] and f = y2 − P(x). Define A =
R[x,y]/⟨ f ⟩, where ⟨ f ⟩ is the ideal generated by f . We have

Ω
1
X/T = Ω

1
A2
R
/⟨ f Ω

1
A2
R
+Ω

0
A2
R

d f ⟩, Ω
2
X/T = Ω

2
A2
R
/⟨ f Ω

2
A2
R
+d f ∧Ω

1
A2
R
⟩.

We have to say some words about Ω 2
X/T . We define the auxiliary R-module:

V := Ω
2
A2
R
/d f ∧Ω

1
A2
R
,

and ∆ := 27t2
3 −t3

2 . The quotient R[x,y]/⟨ fx, fy⟩ is isomorphic to V by sending P∈V
to Pdx∧dy.
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Proposition 9.1 We have
∆Ω

2
X/T = 0.

Proof. This is just the reformulation of Proposition 4.1.

From now on we assume that ∆ is irreducible in R and we replace R with its
localization on its multiplicative group generated by ∆ . Therefore, ∆ is invertible
in R and we can talk about the pole or zero order along ∆ of an element in any
R-module. In this way Ω 2

X/T = 0 and

H1
dR(X/T )∼= Ω

1
A2
R
/⟨ f Ω

1
A2
R
+d f Ω

0
A2
R
+dΩ

0
A2
R
⟩.

There are two polynomials A,B ∈ R[x] such that AP+BP′ = ∆ . We define

ω =
1
∆
(Aydx+2Bdy),

which satisfies:
dx = yω,dy =

1
2

P′
ω, (9.1)

We denote by dx
y and xdx

y the elements ω , respectively xω . Note that these two
elements have poles of order at most one along ∆ .

Proposition 9.2 The R-module H1
dR(X/T ) is freely generated by the elements dx

y

and xdx
y .

Proof. Using the equalities (9.1) and y2 = P(x), every element of H1
dR(X/T ) can be

written in the form (C+yD)ω, C,D ∈ R[x]. Since Dyω = Ddx is exact, this reduces
to Cω . From another side the elements

d(xay) = (
1
2

P′xa +axa−1P)ω

are cohomologous to zero. This equality can be written as

d(xay) =
(
(4a+6)xa+2 − (a+

1
2
)t2xa −at3xa−1

)
dx
y
.

If deg(C) ≥ 2, we can choose a monomial F = xa in such a way that the leading
coefficient of ( 1

2 P′F +F ′P) is equal to the leading coefficient of C. We subtract
d(Fy) from Cω and we get smaller degree for C. We repeat this until getting a
degree one C.

The following is the same as Exercise 3.12 without integral sign.

Exercise 9.3 Show that restricted to the elliptic curve Et2,t3 we have the following
equalities:
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x2dx
y

=
1

12
t2

dx
y
+d(

y
6
),

x3dx
y

=
1

10
t3

dx
y
+

3
20

t2
xdx

y
+d(

xy
10

)

x4dx
y

=
5

336
t2
2

dx
y
+

1
7

t3
xdx

y
+d(

1
14

x2y+
5

168
t2y)

x5dx
y

=
1

30
t2t3

dx
y
+

7
240

t2
2

xdx
y

+d(
1

18
x3y+

7
360

t2xy+
1

36
t3y).

In H1
dR(X/T ) we can further ignore the exact differential forms. The expression of

exact forms will be used in Chapter 12. Hint: See Exercise 3.12.

Remark 9.1 The proof of Proposition 9.2 shows that for n ∈ N we have

xn dx
y

= a0(t2, t3)
dx
y
+a1(t2, t3)

xdx
y

+d(yQ(x))

for some homogeneous polynomials a0,a1 ∈ Q[t2, t2], deg(t2) = 2, deg(t3) = 3 of
degree n and n−1, respectively, and a polynomial Q ∈Q[x] of degree ≤ n−2.

Let P(x) ∈ R[x] be as before and

A = R[x,y,z]/⟨y2 −P(x),yz−1⟩

We will simply write 1
y instead of z.

Proposition 9.3 The R module H1
dR(X/T ) is freely generated by

dx
y
,

xdx
y

,
dx
y2 ,

xdx
y2 ,

x2dx
y2 ,

Proof. In this example dy = 1
2y P′dx and so every element ω of H1

dR(X/T ) can be
written in the form Cy−kdx+Cy−k+1, C,D ∈ R[x], k ≥ 1. We use the equality

d(xay−b) = axa−1y−bdx+
−b
2

xay−b−2P′dx

for b = −1,−2, . . . and see that ω is reduced to a form with k = 1 (each time we
multiply ω with ∆ = BP′+Ay2). Now, for terms Cy−2dx we make the division of
C by P and we are thus left with the generators dx

y2 ,
xdx
y2 , x2dx

y2 . For terms Dy−1dx we

proceed as in Proposition 9.2 and we are left with the generators dx
y ,

xdx
y .
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9.4 Algebraic de Rham cohomology of complete curves

Let X = X/R be a curve over the ring R of characteristic zero. For simplicity, we
will cut /R from our notations. We take a covering X = U0 ∪U1 by two open set
U0 and U1. We denote by Ω i

U j
, i, j = 0,1 the set of of differential i-forms in U j. By

definition Ω 0
U j

is the ring of regular functions in U j. The de Rham cohomologies of
X relative to this covering are defined in the following way:

H0(X/R) := R

H1(X/R) :=
{(ω0,ω1) ∈ Ω 1

U0
×Ω 1

U1
| ω1 −ω0 ∈ d(Ω 0

U0∩U1
)}

dΩ 0
U0

×dΩ 0
U1

H2(X/R) :=
Ω 1

U0∩U1

(Ω 1
U0

+Ω 1
U1

+dΩ 0
U0∩U1

)
.

The definition using a covering with n open sets is similar and together with the
following exercise is left to the reader.

Exercise 9.4 Show that for any two covering of X , the corresponding de Rham
cohomologies are isomorphic in a natural way.

As usual, our main example of an elliptic curve is written in the Weierstrass format:

X = E = Proj(R[x,y,z]/⟨zy2 −4x3 + t2xz2 + t3z3⟩)

which is covered by two open sets

U0 = Sepc(R[x,y]/⟨y2 −4x3 + t2x+ t3⟩),

U1 = Sepc(R[x,z]/⟨z−4x3 + t2xz2 + t3z3⟩).

The elliptic curve E has a closed point O := [0;1;0] which is in the affine chart U1.
It is sometimes called the point at infinity. In the next section we will carry out some
residue calculus at this point.

9.5 Residue calculus, trace map and cup product

We need to carry out some residue calculus near the closed smooth point O, see for
instance [Tat68]. Such a machinery is usually developed for curves over a field and
so it seems to be necessary to consider the elliptic curve E over the fractional field
k1 of R, that is, we use E ⊗R k1 instead of E. However, most of our calculations lead
to elements in R which will be used later in the theory of quasi-modular forms.

A regular function t in a neighborhood of O = [0;1;0] is called a coordinate
system at O if t(O) = 0 and t generates the one dimensional k1-space mO/m2

O, where
mO is the ring of regular functions in a neighborhood of O such that they vanish at
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O, and m2
O is the OX ,O-module generated by ab, a,b ∈ mO. Recall that O is a smooth

point of E. Any meromorphic function f (meromorphic 1-form ω) near O has an
expansion in t:

f =
∞

∑
i=−a

fit i, resp. ω = (
∞

∑
i=−a

fit i)dt, fi ∈ k1, (9.2)

where a is some integer. The stalk of the ring of meromorphic differential 1-forms at
O is a OX ,O-module generated by dt and so ω = f dt for some meromorphic function
near O. Therefore, it is enough to explain the first equality. Let a be the pole order
of f at O. We work with ta f and so without loosing the generality we can assume
that f is regular at O. Let f0 = f (O). For some f1 ∈ k1 we have f − f0 − f1t ∈ m2

O.
We repeat this process and get a sequence f0, f1, f2, . . . , fm, fm+1, . . . ∈ k1 such that

f −
m

∑
i=0

fit i ∈ mm+1
O .

Another way of reformulating the above statement is:

f =
m

∑
i=0

fit i +O(tm+1),

where O(t i) means a sum ∑ j≥i a jt j. This is what we have written in (9.2).
The residue of ω at O is defined to be f−1. It is independent of the choice of the

coordinate t. In our example, we take the coordinate t = x
y with the notation of chart

U0 (in the chart U1 we have t = x). The expansions of x and y in t are of the form:

x =
1
4

t−2 +O(t0), y =
1
4

t−3 +O(t−1). (9.3)

Exercise 9.5 1. Show that O is a smooth point of E, that is, the k1-vector space
mO/m2

O is one dimensional.
2. Verify the equalities (9.3) and prove that the notion of residue does not depend

on the coordinate system t.
3. Calculate the residue of xndx

y2 , n = 0,1,2,3,4,5 at O.

4. Calculate the first 4 coefficients of the expansion of dx
y in the coordinate t = x

y .
5. Let us take the coordinates (x,z) in which the elliptic curve E is given by z−4x3−

t2xz2 − t3z3 and we have O = (0,0), t = x. Consider E over the ring R. A regular
function f at O can be written as P(x,z)

Q(x,z) with Q(0,0) ̸= 0. Show that if Q(0,0)
is invertible in R and P,Q ∈ R[x,z] then all the coefficients in the expansion of f
belong to R (Hint: Verify this for f = z.)

Recall the open covering {U0,U1} of E introduced in Section 9.4.

Proposition 9.4 The canonical restriction map
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H1
dR(E)→ H1

dR(U0), (ω0,ω1)→ ω0

is an isomorphism of R-modules.

Proof. First we check that it is injective. Let us take an element (ω0,ω1) ∈ H1
dR(X)

with ω0 = 0. By definition ω1 = ω1 −ω0 = d f , f ∈ Ω 0
U0∩U1

. Since ω1 has not poles
at the closed point O ∈ X , f has not too, which implies that (ω0,ω1) is cohomolo-
gous to zero.

Now, we prove the surjectivity. The restriction map is R-linear and so by Propo-
sition 9.2, it is enough to prove that dx

y ,
xdx

y are in the image of the restriction map.
In fact, the corresponding elements in H1

dR(E) are respectively

(
dx
y
,

dx
y
), (

xdx
y

,
xdx

y
− 1

2
d(

y
x
)).

We prove this affirmation for xdx
y . We define Ũ1 =U1\{x = 0} and use the definition

of hypercohomology with the covering {U0,Ũ1}. We compute x and y in terms of the
local coordinate t = y

x around the point at infinity O and we have (9.3). Substituting
this in xdx

y , we get the desired result.

Let U0,U1 be a covering of a smooth curve X . We have a well-defined map

Tr : H2
dR(X)→ R, Tr(ω) = sum of the residues of ω01 around the points X\U0,

where ω is represented by ω01 ∈ Ω 1
U0∩U1

. For the elliptic curve E in the weierstrass
format we take the canonical charts of E described in Section 9.4. The map Tr turns
out to be an isomorphism of R-modules.

Proposition 9.5 For the elliptic curve E in the Weierstrass format the R-module
H2

dR(X) is of rank one.

Proof. According to Proposition 9.3 any element in Ω 1
U0∩U1

modulo exact forms
can be reduced to an R-linear combination of 5 elements. The classes of all these
elements in H2

dR(X) is zero, except the last one x2dx
y2 . The first two elements are

regular forms in U0 and the next two forms are regular in U1. We have proved that
any element ω ∈ H2

dR(X) is reduced to r x2dx
y2 , r ∈ R. Since x2dx

y2 at O has the residue
−1
2 (use the local coordinate t = x

y and the equalities (9.3)), we get the desired result.

Exercise 9.6 1. Let us take two open sets U1,Ũ1 ⊂ E which contain O. Show that
the definition of de Rham cohomologies of E attached to the coverings {U0,U1}
and {U0,Ũ1} are canonically isomorphic.

2. By our definition of residue, it takes values in k1, the fractional field of E. Show
that the map Tr has values in R.

Now we define the cup product in the case of a curve defined over R. Let us take
two elements ω,α ∈ H1

dR(X). We take an arbitrary covering X = ∪iUi of X and we
assume that ω and α are given by {ωi j}i, j∈Iand {αi j}i, j∈Iwith
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ω j −ωi = d fi j, α j −αi = dgi j.

We define
γ := ω ∪α ∈ H2

dR(X)

which is given by:
γi j = gi jω j − fi jα j + fi jdgi j. (9.4)

Let us consider the elliptic curve in the Weierstrass format as in Section 9.4. In this
case

dx
y
∪ xdx

y
= {ω01}, ω01 =

−1
2

dx
x
,

and
⟨dx

y
,

xdx
y

⟩= 1. (9.5)

Exercise 9.7 1. Show that the definition of ω ∪α does not depend on the covering
of the curve X and that ∪ is non-degenerate.

2. For a curve over complex numbers show its algebraic de Rham cohomology, cup
product and intersection form are essentially the same objects defined by C∞-
functions.

9.6 Eisenstein modular forms

In this section we give an application of the residue computations in Section 9.5. It
can be skipped as we will not need it later. We aim to recover the Laurent expansion
of the Weierstrass ℘ function, see Theorem 2.1, in an algebraic framework.

Let E be an elliptic curve over k and ω be a regular differential 1-form (ω ∈
F1H1

dR(E)). We take the Weierstrass coordinates (x,y) of the pair (E,ω), and so

E : y2 = 4x3 − t2x− t3, ω =
dx
y
, t2, t3 ∈ k.

For our discussion we may only consider a ring R ⊂ k with t2, t3 ∈ R. Let also t
be a coordinate system around the point O = [0;1;0], for instance take t = x

y . We
have dx

y = Pdt for some regular function P in a neighborhood of O. Let us write the
formal series of P at O and then write it as a derivation of some other formal power
series z = z(t) = ∑

∞
i=1 zit i. We have

dx
y

= dz, z1 =−2.

We call z the analytic coordinate system on E. Note that the first coefficients in the
formal power series of t3y, t2x in t are invertible and so z(t) has coefficients in R.
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Proposition 9.6 We have

x =
1
z2 +

∞

∑
k=1

g2k+2z2k,

and

y =
∂x
∂ z

=
−2
z3 +

∞

∑
k=1

2k ·g2k+2z2k, g2k+2 ∈ R.

Proof. We have z(t) =−2t+O(t2) and write t in terms of z, that is, t = t(z) = −1
2 z+

O(z2). Since the coefficients of z(t) are in R and z(t) starts with −2t, the coefficients
of t(z) are also in R. We write x in terms of z and we have: x = ∑

∞
k=−2 gkzk for some

gk ∈ R. The elliptic curve E is invariant under the involution (x,y) 7→ (x,−y). The
coordinates t and z are mapped to −t and −z, respectively, and x is invariant. This
implies that gk = 0 for all odd integers k. Calculating g0,g2 we see that g0 = g2 = 0.
The expansion of y follows from the equality dx = ydz.

Proposition 9.7 The mapping (E,ω)→ g2k+2 is a full modular form of weight 2k+
2.

We denote this modular form with G2k+2 and we call it the (algebraic) Eisenstein
modular form of weight 2k+2.

Proof. The growth condition in the definition of a quasi-modular form follows from
the fact that in the process of defining G2k+2, all the coefficients are in R. For k ∈
Gm, the Weierstrass coordinates system of (E,ω)•k is (x̃, ỹ) = (k−2x,k−3y). In this
coordinates system t̃ = kt and z̃ = kz which give us the desired functional property
of g2k+2’s with respect to the action of Gm.

Exercise 9.8 Show the last piece of the proof of Proposition 9.6, that is, g0 = g2 = 0.
Calculate G4 and G6.

9.7 Ibiporanga: enhanced elliptic curves

Let N be a positive integer. In this section we use the notation of groups Γ0(N), Γ1(N)
and Γ (N) without using them, see Chapter 6 for their definitions. Their appearance
in this section is for the sake of following the terminology in the literature. They are
the monodromy groups of universal families of elliptic curves enhanced with cer-
tain torsion points, and hence, one usually do not see them in an algebraic context,
however they are hidden there, see Section 3.3.

Definition 9.4 An enhanced elliptic curve for Γ0(N) is a 3-tuple (E,C,ω), where E
is an elliptic curve over k, C is a cyclic subgroup of E(k) of order N and ω is an
element in H1

dR(E)\F1. An enhanced elliptic curve for Γ1(N) is a 3-tuple (E,Q,ω),
where E,ω are as before and Q is a point of E(k) of order N. Let us fix a primitive
root of unity of order N in k, say ζ . An enhanced elliptic curve for Γ (N) is a 3-tuple
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(E,(P,Q),ω), where E,ω are as before and P and Q are a pair of points of E(k)
that generates the N-torsion subgroup E[N] with Weil pairing eN(P,Q) = ζ . For the
definition of Weil pairing see Chapter 8. We call C,Q or (P,Q) a torsion structure
on E. The number of enhanced elliptic curves for Γ with fixed E and ω is finite and
it can be shown that it is the cardinality of the quotient Γ \SL(2,Z). For N = 1 an
enhanced elliptic curve for all Γ0(N),Γ1(N) and Γ (N) is the same and so we write
Γ = SL(2,Z) = Γ0(N) = Γ1(N) = Γ (N).

The choice of ω ∈ H1
dR(E)\F1 determines in a unique way a regular differential 1-

form ω1 ∈ F1 with ⟨ω1,ω⟩= 1. This is because F1 is a one dimensional subspace of
H1

dR(E) and any non-zero element in F1 together with ω form a basis of H1
dR(E), and

hence, it has non-zero intersection with ω (otherwise the intersection form would be
identically zero). In this way, ω1,ω form a basis of the k-vector space H1

dR(E). In a
similar way we can define a family of enhanced elliptic curves, see [Har77, Chapter
III, Section 10].

Remark 9.2 The general definition of an enhanced projective varieties given in
[Mov22a, Chapter 3] includes a marked polarization θ ∈ H2

dR(E) with Tr(θ) ∈ N.
This is a discrete object and its presense in the enhancement can be neglected. As
before, we choose ω1 ∈ F1HdR(E) in such a way that ⟨ω1,ω⟩ := Tr(ω1 ∪ω) =
Tr(θ) · ω1∪ω

θ
= 1. In the case of polarized abelian varieties this will produce differ-

ent moduli spaces, see [Mov22a, Chapter 11].

Let T0(N),T1(N) and T(N) be the set of enhanced elliptic curves for Γ0(N),Γ1(N)
and Γ (N) respectively, and modulo canonical isomorphisms. In the following we
will denote by T one of these moduli spaces. The additive group Ga = (k,+) and
the multiplicative group Gm = (k∗, ·) acts in a canonical way on T:

(∗,∗,ω)• k = (∗,∗,k−1
ω), k ∈Gm, (∗,∗,ω) ∈ T,

(∗,∗,ω)• k = (∗,∗,k′ω1 +ω), k′ ∈Ga, (∗,∗,ω) ∈ T.

Both these actions can be summarized in the action of the algebraic group

G=

{[
k k′

0 k−1

]
| k′ ∈ k,k ∈ k−{0}

}
∼=Ga ×Gm (9.6)

that is,
(∗,∗,ω)•g = (∗,∗,k′ω1 + k−1

ω), g ∈ G, (∗,∗,ω) ∈ T.

For N = 1, our three moduli spaces are the same T := T0(1) = T1(1) = T(1), and
we have:

Proposition 9.8 For N = 1 the moduli space T is defined over Q and it is the affine
variety

T= SepcQ[t1, t2, t3,
1
∆
], ∆ := 27t2

3 − t3
2

We have a universal family over T given by E→ T, where
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E : zy2 −4(x− t1)3 + t2z2(x− t1)+ t3z3 = 0,
[x;y;z]× (t1, t2, t3) ∈ P2 ×T,

ω :=
[

xdx
y

]
∈ H1

dR(E/T), given in the affine coordinate z = 1.

The action of the algebraic group G on T is given by

t •g := (t1k−2 + k′k−1, t2k−4, t3k−6), t = (t1, t2, t3),g =

[
k k′

0 k−1

]
∈ G.

Proof. We use Proposition 4.4 to write a pair (E,ω1) of elliptic curve and holomor-
phic 1-form ω1 in the Weierstrass format. We get ω = xdx

y + t1 dx
y . The proof of the

action of the algebraic group is as follows: Let

α : A2
k → A2

k, (x,y) 7→ (k2x− k′k,k3y)

and f = y2 −4(x− t1)3 + t2(x− t1)+ t3. We have

k−6
α
∗( f ) = y2 −4k−6(k2x− k′k− t1)3 + t2k−6(k2x− k′k− t1)+ t3k−6 =

y2 −4(x− k′k−1 − t1k−2)3 + t2k−4(x− k′k−1 − t1k−2)+ t3k−6.

This implies that α induces an isomorphism of elliptic curves

α : (Et•g,α
∗(

xdx
y

)→ (Et ,
xdx

y
).

Since
α
∗ xdx

y
= k

xdx
y

− k′
dx
y

we get the result.

Note that from the beginning we could work with the elliptic curve E in the Weier-
strass form with t1 = 0. We have the isomorphism

({y2 = 4(x− t1)3 − t2(x− t1)− t3},
xdx

y
)∼= ({y2 = 4x3 − t2x− t3},

xdx
y

+ t1
dx
y
),

(x,y) 7→ (x− t1,y). (9.7)

For historical reasons, we also present the following proposition.

Proposition 9.9 The moduli space T[2] is defined over Q and it is the affine variety

T= SepcQ[t1, t2, t3,
1

t1 − t2
,

1
t1 − t3

,
1

t2 − t3
],

We have a universal family over T given by E→ T, where



146 9 Quasi-modular forms

E : zy2 −4(x− t1z)(x− t2z)(x− t3z),

[x;y;z]× (t1, t2, t3) ∈ P2 ×T,

P = [t1;0 : 1], Q = [t2;0;1]

ω :=
[

xdx
y

]
∈ H1

dR(E/T), given in the affine coordinate z = 1.

The action of the algebraic group G on T is given by

t •g := (t1k−2+k′k−1, t2k−2+k′k−1, t3k−2+k′k−1), t = (t1, t2, t3),g =

[
k k′

0 k−1

]
∈G.

Recall that in Section 3.7 we have reinterpreted the Ramanujan (resp. Darboux-
Halphen) differential equation as a vector field in the parameter space T in Proposi-
tion 9.8 (resp. Proposition 9.9).

9.8 Quasi-modular forms

The algebraic group G acts from the right on T and so it acts from the left on the
space of functions on T.

Definition 9.5 A quasi-modular form f of weight m and differential order or depth
n for Γ is a function T→ k with the following properties:

1. With respect to the action of Gm, f satisfies

k • f = km f , k ∈Gm. (9.8)

2. With respect to the action of Ga, f satisfies the following condition: there are
functions fi : T→ k, i = 0,1,2, . . . ,n such that

k′ • f =
n

∑
i=0

(
n
i

)
k′i fi, k′ ∈Ga. (9.9)

3. (Growth condition)?

We were not able to formulate a growth condition for quasi-modular forms in a
purely algebraic and intrinsic way using degeneration of curves. Such a condition
would correspond to the classical growth condition for holomorphic quasi-modular
forms. In [Kat76b], this condition is formulated in terms of Tate curves and Eisen-
stein series. This does not seem to be a natural one because it assumes a priori that
we know Eisenstein series. The formulation in [Hid12] allows modular forms to
have poles on cusps. We are going to introduce this condition using one of its main
consequences, namely, the k-algebra of quasi-modular forms for SL(2,Z) is gener-
ated by three Weierstrass coordinates. Note that combining both actions (9.8) and
(9.9) we have:
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f •g = k−m
n

∑
i=0

(
n
i

)
k′iki fi, ∀g =

[
k k′

0 k−1

]
∈ G. (9.10)

Let us consider the case Γ = SL(2,Z). We are going to describe the growth
condition in this case. Using Proposition 9.8, the Weierstrass coordinate ti, i= 1,2,3
of an enhanced elliptic curve (E,ω) satisfies the functional equations (9.8) and (9.9)
with weight m = 2i and differential order n = 1 for t1 and n = 0 for t2 and t4. The
growth condition for f in this case is that f is an element in the k-algebra

k[t1, t2, t3], weight(ti) = 2i, i = 1,2,3.

It follows that it is homogeneous with deg( f ) = m and degt1 f ≤ n. A quasi-modular
form for SL(2,Z) is also called a full quasi-modular form.

Let us now describe the growth condition for arbitrary N. We only work with
T[N]. The argument for other moduli spaces is similar. Assume that k is alge-
braically closed and consider f : T[N]→ k with the properties (9.8) and (9.9). We
define gi : T → k, i = 1,2, . . . ,a = deg(T[N]→ T[1]) satisfying (9.8) and (9.9) with
weight mi and differential order ni in the following way:

gi : T [1]→ k,

gi(E,ω) := ∑
∗1,∗2,∗2,...,∗i

f (E,∗1,ω) f (E,∗2,ω) · · · f (E,∗i,ω),

where ∗1,∗2,∗2, . . . ,∗i runs through i-tuples of torsion structures on E and attached
to Γ . It follows that f is a root of the polynomial

Xa −g1Xa−1 +g2Xa−2 −·· ·+(−1)a−1ga−1X +(−1)aga. (9.11)

The growth condition for f is that the corresponding gi’s are full quasi-modular
forms (the case N = 1). It follows that

gi ∈ k[t1, t2, t3], gi homogeneous, deg(gi) = mi, degt1(gi)≤ ni.

For n = 0 we recover the definition of modular forms of weight m, see [Kat76b].
A modular form of weight m is a function from the set of enhanced elliptic curves
as before but with this difference that ω ∈ F1 is a regular differential form and not
an element in H1

dR(E)\F1. The action of Gm is given by (∗,∗,ω) • k = (∗,∗,kω)
and f satisfies k • f = k−m f , k ∈Gm. The growth condition in this case can be also
expressed using Tate curves.

We denote by Mn
m = Mn

m(T), for T one of T(N),T0(N),T1(N), the set of quasi-
modular forms of weight m and differential order n and we set

M = ∑
m∈Z,n∈N0

Mn
m.

If n ≤ n′ then Mn
m ⊂ Mn′

m and
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Mn
mMn′

m′ ⊂ Mn+n′
m+m′ , Mn

m +Mn′
m = Mn′

m .

We see that M has a structure of a graded k-algebra. The k-algebra of full quasi-
modular forms has also a differential structure which is given by:

Mn
m → Mn+1

m+2, t 7→ dt(R) =
3

∑
i=1

∂ t
∂ ti

Ri

where R= ∑
3
i=1Ri

∂

∂ ti
is the Ramanujan vector field. We sometimes use R : M → M

to denote this differential operator.

Exercise 9.9 1. There is a canonical bijection between modular forms of weight m
and quasi-modular forms of weight m and differential order 0.

2. In Definition 9.5, verify that fi is a quasi-modular form of weight m− 2i and
differential order n− i. In particular, fn is a modular form of weight m−2n.

3. The algebra M(Γ (2)) is freely generated by three quasi-modular form s1,s2,s3
of weight 2 and differential order 1. Show that the polynomial in (9.11) for each
si is

((X − t1)3 − 1
4

t2(X − t1)−
1
4

t3)2.

Remark 9.3 It is desirable to have a coordinate free description of k[t1, t2, t3]. It
turns out that k[t1, t2, t3] is the k-algebra generated by Ria, i = 1,2, . . . , where a
runs through all invertible element in OT. Note that the set of invertible elements in
OT is a multiplicative group generated by ∆ . This kind of statement does not seem
to be valid in general. For example it fails for mirror quintc, see [Mov17].

9.9 Quasi-modular forms over C

In this section we recall the definition of quasi-modular forms as holomorphic func-
tions on the upper half plane H which satisfy a functional property with respect to
the action of a subgroup of SL(2,Z) on H and have some growth condition at in-
finity. The main references and more details can be found in [MR05, Mov08]. We
show that what we have developed so far in the algebraic geometric framework is
essentially the same as its complex counterpart. The bridge between two notions is
the generalized period map which is constructed by elliptic integrals.

For A =

[
a b
c d

]
∈ SL(2,R),τ ∈ H, m ∈ Z and f a holomorphic function in H,

recall the slash operator f |mA = (cτ +d)−m f (Aτ). Let Γ be a subgroup of SL(2,Z).
For instance, take a congruence group of level N.

Definition 9.6 A quasi-modular form of weight m and differential order n = 0 is
a classical modular form of weight m. A holomorphic function f on H is called
a quasi-modular form of weight m and differential order n if the following two
conditions are satisfied:
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1. There are holomorphic functions fi, i = 0,1, . . . ,n on H such that

f |mA =
n

∑
i=0

(
n
i

)
ci(cτ +d)−i fi, ∀A ∈ Γ . (9.12)

2. fi |m A, i = 0,1,2, . . . ,n have finite growths when Im(τ) tends to +∞ for all A ∈
SL(2,Z), that is

lim
Im(τ)→+∞

( fi |m A)(τ) = ai,A < ∞, ai,A ∈ C.

We will also denote by Mn
m the set of quasi-modular forms of weight m and differ-

ential order n and we set
M := ∑

m∈Z,n∈N0

Mn
m.

For an f ∈ Mn
m we have f |mI = f0 and so f0 = f . Note that for a quasi-modular form

f the associated functions fi are unique. If f ∈ Mn
m with the associated functions fi

then fi ∈ Mn−i
m−2i with the associated functions fi j := fi+ j. The set M is a differential

C-algebra:
∂

∂τ
: Mn

m → Mn+1
m+2.

If n ≤ n′ then Mn
m ⊂ Mn′

m and Mn
mMn′

m′ ⊂ Mn+n′
m+m′ . It is useful to define

f ||mA := (detA)m−n−1
n

∑
i=0

(
n
i

)
(cA−1)i(cτ +d)i−m fi(Aτ), (9.13)

A ∈ GL(2,R), f ∈ Mn
m, cA−1 =

−c
det(A)

.

Exercise 9.10 Prove the following:

1. The equality (9.12) is written in the form

f = f ||mA, ∀A ∈ Γ . (9.14)

2. We have
f ||mA = f ||m(BA), ∀A ∈ GL(2,R), B ∈ Γ , f ∈ Mn

m.

3. The growth condition on f is required only for a finite number of cases fi||mα, α ∈
Γ \SL(2,Z), i = 0,1,2 . . . ,n.

4. The relation of ||m with ∂

∂τ
is given by:

∂ ( f ||mA)
∂τ

=
∂ f
∂τ

||m+2A, ∀A ∈ GL(2,R). (9.15)

5. Let A ∈ SL(2,Z). If f ∈ Mn
m(Γ ) with the associated functions fi then f ||mA ∈

Mn
m(A

−1Γ A) with the associated functions fi||mA ∈ Mn−i
m−2i(A

−1Γ A).
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For a congruence group Γ of level N we have

TN :=
[

1 N
0 1

]
∈ Γ .

Now assume that Γ is a normal subgroup of SL(2,Z). For an f ∈ Mn
m(Γ ) and A ∈

SL(2,Z) with [A] = α ∈ Γ \SL(2,Z) we have ( f ||mA)|mTN = f and so we can write
the Fourier expansion of f ||mA at α

f ||mA =
+∞

∑
n=0

anqn
N , an ∈ C, qN := e2πiNτ .

We have used the growth condition on f to see that the above function in qN is
holomorphic at 0.

9.10 Generlized period domain and generalized period map

Quasi-modular forms as holomorphic functions on the upper half plane H are best
viewed first as holomorphic functions on the generalized period domain

Π :=

{[
x1 x2
x3 x4

]∣∣∣∣∣x1,x2,x3,x4 ∈ C, x1x4 − x2x3 = 1, Im(x1x3)> 0

}
. (9.16)

We let the group SL(2,Z) (resp. G in (9.6) with k = C) act from the left (resp.
right) on Π by usual multiplication of matrices. The Poincaré upper half plane H is
embedded in Π in the following way:

τ → τ̃ =

[
τ −1
1 0

]
.

We denote by H̃ the image of H under this map. Note that any element of Π is
equivalent to an element of H̃ under the action of G because:[

x1 x2
x3 x4

]
=

[ x1
x3

−1
1 0

][
x3 x4

0 det(x)
x3

]
. (9.17)

The map

J : GL(2,R)×H→ G, J(A,τ) =
[
(cτ +d) −c

0 (cτ +d)−1 det(A)

]
is an automorphy factor, that is, it satisfies the functional equation:

J(AB,τ) = J(A,Bτ)J(B,τ), A,B ∈ GL(2,R), τ ∈H.
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This follows from the equality

A
[

τ −1
1 0

]
=

[
Aτ −1
1 0

]
J(A,τ), A ∈ GL(2,R), τ ∈H.

Proposition 9.10 Quasi-modular forms f ∈Mn
m are in a one to one correspondence

with holomorphic functions F = φ( f ) : Π→ C with the following properties:

1. The function F is Γ -invariant.
2. There are holomorphic functions Fi : Π→ C, i = 0,1, . . . ,n such that

F(x ·g) = k−m
n

∑
i=0

(
n
i

)
k′ikiFi(x), ∀x ∈ Π, g ∈ G, (9.18)

3. For all α ∈ SL(2,Z) the restriction of Fi to H̃α has finite growth at infinity, where
H̃α is the image of H̃ under the action of α from the left on Π.

In fact we have Fi = φ( fi). The proof is a mere calculation and can be found in
[Mov08], Proposition 6.

Exercise 9.11 1. Verify that the vector field

X :=−x2
∂

∂x1
− x4

∂

∂x3
(9.19)

is invariant under the action of SL(2,Z) and hence it induces a vector field X̃ in
the quotient Γ \Π.

2. Show that under the correspondence in Proposition 9.10, the differential operator
on quasi-modular forms as functions on Γ \Π is given by the vector field X̃ . Note
that X restricted to the loci H̃ is ∂

∂τ
.

9.11 Generalized period map and it inverse

Recall the notations of Section 9.8 for the base field k = C and Section 9.8. Recall
also that that for Γ = SL(2,Z) we have

T := TΓ = {(t1, t2, t3) ∈ C3 | 27t2
3 − t3

2 ̸= 0}.

If Γ is one of Γ (N),Γ1(N),Γ0(N) then we know that the projection map β : TΓ →T
(neglecting the torsion point structure) is a covering of degree #(Γ \SL(2,Z)) (see
Exercise 9.12) and so TΓ has a natural structure of a complex manifold. We define
RΓ to be the pull-back of the Ramanujan vector field in TΓ .

Let us fix b∈TΓ and a basis δ 0
1 ,δ

0
2 of the Z-module H1(Eβ (b),Z) with ⟨δ 0

1 ,δ
0
2 ⟩=

1. For any path γ which connects b to an arbitrary point t ∈ TΓ we define δ1,δ2 ∈
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H1(Et ,Z) to be the monodromy of δ 0
1 and δ 0

2 along the path γ . The generalized
period map is defined by

P : TΓ → Γ \Π, t 7→

[
1√
−2πi

[∫
δ1

dx
y
∫

δ1
xdx

y∫
δ2

dx
y
∫

δ2
xdx

y

]]
.

We also use P for the multi-valued map TΓ → Π; being clear in the text which
we mean. Brackets [·] means the equivalence class in the quotient Γ \Π. It is well-
defined because of Proposition 3.2, Proposition 3.5 and the following fact: different
choices of the path γ lead to the action of Γ from the left on Π which is already
absorbed in the quotient Γ \Π. Different choices of b and δ 0

1 ,δ
0
2 lead to the com-

position of the generalized period map with canonical automorphisms of Γ \Π (see
Exercise 9.12, Item 2). The factor 1√

−2πi
is inserted so that the determinant of the

matrix is one (Legendre relation between elliptic integrals).

Proposition 9.11 The Gauss-Manin connection of the family of elliptic curves y2 =
4(x− t1)3 − t2(x− t1)− t3 written in the basis dx

y ,
xdx

y is given as bellow:

∇

(
dx
y

xdx
y

)
= A

(
dx
y

xdx
y

)
(9.20)

where

A =
1
∆

[
− 3

2 t1α − 1
12 d∆

3
2 α

∆dt1 − 1
6 t1d∆ − ( 3

2 t2
1 +

1
8 t2)α 3

2 t1α + 1
12 d∆

]
,

∆ = 27t2
3 − t3

2 , α = 3t3dt2 −2t2dt3.

In particular, the period matrix P satisfies the following differential equation:

dPtr = APtr. (9.21)

Proof. This is an easy consequence of Proposition 3.4 after inserting shifting x with
t1. For this recall the isomorphism (9.7).

Proposition 9.12 We have

1. The generalized period map is a biholomorphism;
2. It satisfies

P(t •g) = P(t) ·g, t ∈ TΓ , g ∈ G; (9.22)

3. The push forward of the vector field RΓ by the generalized period map P is the
vector field X in (9.19).

Proof. It is enough to prove the Proposition for Γ = SL(2,Z) (Exercise 9.12,
Item 4). The equality (9.22) follows from Proposition 9.8. The last statement fol-
lows from Proposition 9.11 as follows:

dP(R) = P(t) ·Atr(R) = P

[
0 0
−1 0

]
=

[
−x2 0
−x4 0

]
.



9.11 Generalized period map and it inverse 153

We have used the notation P =

[
x1 x2
x3 x4

]
. Using the equality (9.21) and det(P) = 1

we have:

dx1 ∧dx3 ∧dx2 = A11 ∧A12 ∧ (x1A3 + x2A22)

=
1

∆ 3 (−
1

12
d∆)∧ (

3
2

α)∧ (x1∆dt1)

=
3x1

4∆
dt1 ∧dt2 ∧dt3,

where A = [Ai j] is the Gauss-Manin connection in the basis in Proposition 9.11.
Using Proposition 3.2 we know that x1 ̸= 0 and we conclude that P is a local biholo-
morphism. The fact the P is a global biholomorphism follows from the local case
and the fact that after taking the quotient by the group G we have the inverse of the
j function as in Section 3.5.

Exercise 9.12 1. For Γ =Γ0(N), Γ1(N), Γ (N) show that the cardinality of Γ \SL(2,Z)
is the number of enhanced elliptic curves for Γ with (E,ω) fixed.

2. Show that the generalized period map P is well-defined.
3. For A ∈Γ \SL(2,Z) we have the well-defined map FA : Γ \Π→Γ \Π, x 7→ Ax. A

different choice of δ 0
1 ,δ

0
2 in the definition of the generalized period map leads to

the composition P◦FA.
4. Proposition 9.12 for Γ = SL(2,Z) implies the same proposition for arbitrary Γ .

Now, let us consider the case Γ = SL(2,Z) and

g = (g1,g2,g3) : H→ T (9.23)

be the composition H→ SL(2,Z)\Π P−1
→ T. Here, P−1 is the inverse of the general-

ized period map. From Proposition 9.12 part 2 it follows that gi’s satisfy

(cτ +d)−2igi(
aτ +b
cτ +d

) = gi(τ), i = 2,3, (9.24)

(cτ +d)−2g1(
aτ +b
cτ +d

) = g1(τ)+ c(cτ +d)−1, τ ∈H,

[
a b
c d

]
∈ SL(2,Z).

From Proposition 9.12 part 3 it follows also that g is a solution of the vector field R,
that is,

∂g1

∂τ
= g2

1 −
1

12
g2,

∂g2

∂τ
= 4g1g2 −6g3,

∂g3

∂τ
= 6g1g3 −

1
3

g2
2 (9.25)

Since
[

1 1
0 1

]
∈ SL(2,Z), the functions gi are invariant under τ 7→ τ +1, and so, they

can be written in terms of the new variable q = e2πiτ . In Section 9.12 we will prove
that gi’s have a finite growth at infinity and hence as functions in q are holomorphic
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at q = 0. This implies that up to multiplication with some constants, g1,g2,g3 are
E2,E4,E6, respectivly. The precise equalities will be obtained in this section.

9.12 Periods and Ramanujan

In this section we consider the full modular group Γ = SL(2,Z) and the corre-
sponding generalized period map. We are interested in the image L of the map g
constructed in Section 9.11. This is the locus L of parameters t ∈ T such that:∫

δ1

xdx
y

=−
√
−2πi,

∫
δ2

xdx
y

= 0, (9.26)

for some δ1,δ2 ∈ H1(Et ,Z) with ⟨δ1,δ2⟩ = −1. Using Proposition 9.12, part 2 and
the equality (9.17), we know that the locus of such parameters is given by:

I = (I1, I2, I3) := (t1, t2, t3)•

[
( 1√

−2πi

∫
δ2

dx
y )

−1 − 1√
−2πi

∫
δ2

xdx
y

0 1√
−2πi

∫
δ2

dx
y

]
=

(
−t1(2πi)−1(

∫
δ2

dx
y
)2 +(2πi)−1

∫
δ2

xdx
y

∫
δ2

dx
y
,

t2 · (2πi)−2(
∫

δ2

dx
y
)4, −t3(2πi)−3(

∫
δ2

dx
y
)6
)
.

The mentioned locus is one dimensional and the above parametrization is by us-
ing three parameters t1, t2, t3. We may restrict it to a one dimensional subspace
t = (0,12,−4ψ) as in Section 3.9, use the formulas of elliptic integrals in terms
of hypergeometric functions (3.32) and obtain the following parametrization of L:

I =(
a1F(−1

6
,

7
6
,1 | τ)F(

1
6
,

5
6
,1 | z), a2F(

1
6
,

5
6
,1 | z)4, a3(1−2τ)F(

1
6
,

5
6
,1 | z)6

)
,

where
(a1,a2,a3) = (

2πi
12

,12(
2πi
12

)2,8(
2πi
12

)3). (9.27)

Since the generalized period map sends R to X , and the canonical map H→Π sends
∂

∂τ
to X , we conclude that if we write Ii’s in terms of the new variable

τ =

∫
δ1

dx
y∫

δ2
dx
y

= i
F( 1

6 ,
5
6 ,1|1− z)

F( 1
6 ,

5
6 ,1|z)

,
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that is (I1, I2, I3) = (g1(τ),g2(τ),g3(τ)) then g is a solution of R. Here, gi’s are the
same as in (9.23). We can write gi’s in terms of q = e2πiτ . This is gi := Ii(p

−1(q)),
where p : (C,0) → (C,0) is the map given by (3.38). It follows that gi as a func-
tion in q is one valued and holomorphic in the disc of radius one and center 0.
Now, by (9.24) we know that g1,g2,g3’s satisfy the same functional equations as the
E2,E4,E6. This to gether with Theorem 2.5 implies that

E2i(τ) = a−1
i gi(τ), i = 1,2,3. (9.28)

Note that by Theorem 2.5 there is no modular form of weight 2 and hence we know
that g1 must be a multiple of E2 .

Proof (Proof of Theorem 2.4). This is a direct consequence of (9.28) and the func-
tional equation of g1 in (9.24).

9.13 Comparision theorem

Now, we are in a position to prove that the algebraic and analytic notions of quasi-
modular forms are equivalent.

Theorem 9.1 The differential graded algebra of quasi-modular forms in the Poincaré
upper half plane together with the differential operator ∂

∂τ
is isomorphic to the

graded differential algebra of quasi-modular forms defined in Section 9.8 together
with the differential operator RΓ .

Proof. According to Proposition 9.10, quasi-modular forms can be viewed as func-
tions on Γ \Π. Now, the generalized period map which is a biholomorphism gives
us the desired isomorphism of algebras.

Our geometric approach toward quasi-modular forms and the fact that the gen-
eralized period map is a biholomorphism give also the double sum formula for the
Eisenstein series E2 in Theorem 2.13.

Proof (Proof of Theorem 2.13). Let us consider the family of elliptic curves y2 =
4x3 − t2x− t3 with α = dx

y , ω = (x+ t1) dx
y and

(t1, t2, t3) = (a1E2(τ),a2E4(τ),a3E6(τ)),

where ai’s are given in (12.22). By Theorem 2.2 and Theorem 2.3, if we use the bi-
holomorphism C/(Zτ +Z) ∼= E, z 7→ (

√
−2πi−2

℘(z),
√
−2πi−3

℘′(z)) and define
δ1,δ2 to be cycles in E corresponding to vectors τ,1 ∈ C then

1√
−2πi

[∫
δ1

dx
y
∫

δ1
(x+ t1) dx

y∫
δ2

dx
y
∫

δ2
(x+ t1) dx

y

]
=

[
τ −1
1 0

]
.

Note that in the Weierstrass uniformization the coefficients
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(g2,g3) = (60 ·2 ·ζ (4) ·E4,140 ·2 ·ζ (6) ·E6) = ((−2πi)2a2E4,(−2πi)3a3E6)

appears. Let us consider the equality corresponding to (1,2) and (2,2) entries:

t1 · τ = −1− 1√
−2πi

∫
δ1

xdx
y

=−1−
∫

τ

0
℘(τ,z)dz (9.29)

t1 = − 1√
−2πi

∫
δ2

xdx
y

=−
∫ 1

0
℘(τ,z)dz. (9.30)

The integration in (9.30) can be replaced with integration over the following path γ:

−ε ε 1− ε

Recall the Weierstrass zeta function in Exercise 2.11. We continue the computation
of t1:

t1 =
∫

γ

dζ (z) = ζ (1− ε)−ζ (−ε) = 2ζ (
1
2
)

which gives us the result.

9.14 Partial compactifications

Once a moduli space T is given, one has also the problem of its partial compacti-
fications, that is, enlarging T in such a way that it parameterizes degenerations of
the underlying objects. In our main example T in Section 9.7 after constructing
coordinate system on T we get in 9.8 that T := C3\{∆ = 0}. The main goal of
partial compactifications in algebraic geometry is to construct ∆ = 0, or part of it
like ∆ = 0 minus its singularity which is the origin, without describing the ring of
functions coordinate freely, as in general there are no methods to choose such cor-
rdinates. In other words, it is desiable to have ∆ = 0 as a kind of moduli space. In
this section do this.

We consider the moduli of (P1,O,P,α1,α2), where P = {P1,P2},O,P1,P2 ∈ P1

and P1,P2 are distinct different from O, and are not ordered and α1 ∈ H1
dR(P1 −P)

and α2 ∈ H1
dR(P1 −P)⊕H1

dR(P1,P) with ⟨α1,α2⟩= 1.
We choose a coordinate function y on P1 with pole or order 1 at O. Further, we

assume that y(P1)+ y(P2) = 0, and hence (y− y(P1))(y− y(P2)) = y2 −b for some
b ∈ C. We consider the following generators of our one dimensional vector spaces

ω1 :=
dy

y2 −b
∈ H1

dR(P1 −P), ω2 := dy ∈ H1
dR(P1,P),

and we can verify that ⟨ω1,ω2⟩ = 1. The choice of y is not unique and can be re-
placed by any Ay+B, A ∈ C∗, B ∈ C. Since we assumed that y(P1)+ y(P2) = 0 we
have B = 0. We conclude that our moduli space is Sepc(C[b,c, 1

b ]) and we have the
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universal family over it given α1 =
dy

y2−b and α2 = dy+ c dy
y2−b . We want to see this

in the boundary of the moduli space T in Section 9.7. For this we have to identify
the point P1 and P2 and get a singular curve, more precisely, we need a morphism
P1 → PN such that is an embedding outside P1 and P2 and these poins are mapped
to a single point. We can see that y 7→ [y2 − b : y(y2 − b) : 1] is the desired map. In
the affine coordinates (X ,Y ) for P2 we get

Y 2 = X2(X +b), α1 =
dX
2Y

, α2 =
(X + c)dX

2Y
.

Further transformation (X ,Y ) 7→ (X − 1
3 b, 1

2Y ) puts our moduli space as degenera-
tion of T.

9.15 Hecke operators

The theory of Hecke operators for quasi-modular forms is similar to the classical
case and it has been developed in [Mov15b]. In this section we review this and its
main consequence:

Theorem 9.2 Let N ∈ N be a natural number and f be a quasi-modular form
of weight k for SL(2,Z) defined over Q. There are quasi-modular forms gi, i =
0,1, . . . ,ψ(N) of weight ki for SL(2,Z) such that

ψ(N)

∑
i=0

gψ(N)−i f (N · τ)i = 0.

This same statement for modular forms is presented in Proposition 8.4.





Chapter 10
Riemann zeta function

I have told the story before, but it is ironic that being at the same university, Artin
had discovered a new type of L-series and Hecke, in trying to figure out what kind
of modular forms of weight one there were, said they should correspond to some
kind of L-function. The L-functions Hecke sought were among those that Artin had
defined, but they never made contact-it took almost forty years until this connection
was guessed and ten more before it was proved, by Langlands. Hecke was older
than Artin by about ten years, but I think the main reason they did not make contact
was their difference in mathematical taste. Moral: Be open to all approaches to a
subject, (J. Tate in [RS11] page 446).

10.1 Introduction

In this chapter we introduce the Riemann zeta function. We will follow mainly the
Riemann’s original article [Rie59] and the book [Edw01] which explain a historical
account on Riemann’s paper. Euler considered the zeta function

ζ (s) :=
∞

∑
n=1

1
ns

for real s and Riemann introduced ζ (s) for complex s and its extension as a mero-
morphic function to the whole s-plane. In particular, it was known before Riemann
that

ζ (2) =
π2

6
, ζ (4) =

π4

90
, ζ (6) =

π6

945
, ζ (8) =

π8

9450
.

We will then consider Hecke’s L-functions which are natural generalization of ζ in
the framework of modular forms.

159
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10.2 Riemann zeta function

In this section we are going to study the first of all zeta function, namely the Rie-
mann zeta function:

ζ (s) :=
∞

∑
n=1

1
ns

We mainly use the Riemman’s original article [Rie59].

Proposition 10.1 The series ζ (s) converges for all s ∈ C with Re(s)> 1 and

ζ (s) = ∏
p

1
(1− p−s)

, (10.1)

where p runs over all primes.

Equation (10.1) is known as Euler’s product formula and [Rie59, page 671] men-
tions that it is a remark made by Euler.

Proof. We have |n−s| = nRe(s) and so it is enough to prove the proposition for s ∈
R,s > 1. We have

∞

∑
n=2

1
ns <

∫
∞

1
x−sdx =

x−s+1

−s+1

∣∣∣∣∣
+∞

1

=
1

s−1
if s > 1.

In the last equality we assume that s is a real number bigger than 1. For a prime
number p we have p−s < 1 and so

(1− p−s)−1 =
∞

∑
m=0

p−ms.

By unique factorization theorem

∏
p≤N

(1− p−s)−1 = ∑
n≤N

n−s +RN(s).

Clearly

RN(s)≤
∞

∑
n=N+1

n−s.

Since ζ (s) converges we have RN(s)→ 0 as N → ∞ and the result follows.

10.3 The big Oh notation

In this section for a ∈ R∪{±∞} we define the interval Ia to be a small one sided
neighborhood of a. If a ∈ R this means that Ia = (a,a+ ε) or = (a− ε,a) for some
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Fig. 10.1 Riemann’s zeta function converges.

small ε and for a =+∞ this means Ia = (b,+∞) for a big positive number b and for
a =−∞ this means Ia = (−∞,−b) for a big positive number b.

Definition 10.1 Let f ,g be two complex valued function in Ia we write

f = O(g) or f ∼x→a g

to say that f (x)
g(x) is bounded near a, that is there exists a constant M such that

| f (x)| ≤ M|g(x)|, ∀x ∈ Ia.

For three complex valued functions f ,g and h in Ia we write f (x) = h(x)+O(g(x))
if f (x)−h(x) = O(g(x)).

We mainly use the following convergence criterion: Let f be a complex valued
continuous function in Ia,a ∈ R and

f ∼x→a (x−a)s, s ∈ R.

For a = ±∞ we assume f ∼x→a xs. We can extend this assumption to s = ±∞. For
instance for a ∈ R the expression f ∼x→a (x−a)+∞ means

∀s ∈ R+, f ∼x→a (x−a)s.

Proposition 10.2 Let f be a complex valued continuous function in Ia,a ∈ R and
f ∼x→a (x−a)s, s ∈ R. For a,s ∈ R the integral

∫
Ia f (x)dx converges if s > −1. If

a =±∞, s ∈ R then the integral
∫

Ia f (x)dx converges if s <−1.

Proof. We have∣∣∣∣∫Ia
f (x)dx

∣∣∣∣≤ ∫Ia
| f (x)|dx ≤ M

∫
Ia
|x−a|sdx = (x−a)s+1

∣∣∣∣∣
a+ε

a

,
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where the equality is written for Ia = (a,a+ε). The last quantity is finite if s+1> 0.
The other cases are similar.

Proposition 10.2 in some instances is not enough to prove the convergence of inte-
grals. A simple change of variable in this proposition gives us:

Proposition 10.3 Let f be a complex valued continuous function in Ia,a ∈ R and
f ∼x→a ln(x− a)r(x− a)s, s,r ∈ R. The integral

∫
Ia f (x)dx converges if s > −1. If

s =−1, s ∈ R then the integral
∫

Ia f (x)dx converges if r <−1.

Proof. For simplicity we assume that Ia = (a,a+ ε). We make the change of vari-
able y =− ln(x−a) and we have

f (x)dx =− f (e−y +a)e−ydy ∼y→+∞ yre−y(s+1).

If s+1 > 0 then
yre−y(s+1) ∼y→+∞ y−n−1, ∀n ∈ N. (10.2)

and so by Proposition 10.2 the desired integral converges. If s =−1 then∣∣∣∣∫Ia
f (x)dx

∣∣∣∣≤ ∫ +∞

ln(y)rd(ln(y)) =
1

r+1

∫ +∞

d(ln(y)r+1),

and the statement follows.

Remark 10.1 We know that ln(x)∼x→0+ x−ε for all positive ε , however, there is no
a ∈ C such that ln(x)−1 ∼x→0+ xa. This means that we cannot use Proposition 10.2
directly for integrals whose integrand contains ln(x)−1, that is why we have reformu-
lated Proposition 10.3 which will be used in Section 10.9. Note also that f ∼x→a g
does not imply f s ∼x→a gs for an arbitrary s, and f ∼x→a g does not imply g∼x→a f .
In 09 June 2021 I was using ln(x) ∼x→0+ x−ε implies ln(x)s ∼x→0+ x−sε for an ar-
bitrary s, which is trivially false, and it took a full day to find this bug in my mind!

10.4 Gamma function

The gamma function is defined by

Γ (s) =
∫

∞

0
xs−1e−xdx, Re(s)> 0.

It converges because near 0

xs−1e−x ∼x→0 xRe(s)−1

and so for Re(s) > 0 the integral near zero converges. Near infinity it is always
convergent because

xs−1e−x ∼x→+∞ x−n−1, ∀n ∈ N. (10.3)
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We have
Γ (s) = (s−1)Γ (s−1) (10.4)

because

Γ (s) =−
∫

∞

0
xs−1de−x =−xs−1e−x

∣∣∣∣∣
∞

0

+
∫

∞

0
e−xdxs−1 = (s−1)Γ (s−1).

Since Γ (1) = 1 this implies that

Γ (n) = (n−1)!, n ∈ N

and so the Γ -function is the interpolation of the factorial function.

Proposition 10.4 The Γ -function has analytic continuation to a meromorphic func-
tion in the whole complex s-palne with poles of simple order at s = 0,−1,−2, . . ..
Moreover, it has no zeros.

Proof. The equalities

Γ (s) =
Γ (s+1)

s
= · · ·= Γ (s+n+1)

s(s+1) · · ·(s+n)
, n ∈ N

proves the first statement. The second statement follows from Euler’s reflection for-
mula

Γ (1− s)Γ (s) =
π

sin(πs)
(10.5)

There are three well-known functional equations involving the Gamma function.
Two of them we have already seen in (10.4) and (10.5). The third one is the Gauss
multiplication relation:

1
Γ (m · z)

m−1

∏
k=0

Γ (z+
k
m
) = m

1
2−m·z(2π)

m−1
2 , (10.6)

for z ∈ C. We call these three the standard relations of the Γ function. For m = 2
this is the Legendre duplication formula

Γ (z) Γ

(
z+

1
2

)
= 21−2z √

π Γ (2z).

Exercise 10.1 Prove Euler’s reflection formula (10.5) and Gauss multiplication re-
lation (10.6).

Remark 10.2 Gauss introduced the notation Π(s) =Γ (s+1) which is used in Rie-
mann’s original article. The notation Γ is due to Legendre, see [Edw01, page 8].

Definition 10.2 The Mellin transform of a function f defined on R+ is
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∞

0
xs f (x)

dx
x
.

Proposition 10.5 If f (x) is locally integrable along the positive real line, and

f (x)x→0+ = O(xu) and f (x)x→+∞ = O(xv)

then its Mellin transform converges in the fundamental strip [−u,−v].

Proof. This follows from Proposition 10.2.

By definition the Γ function is the Mellin transform of e−x.

10.5 Analytic extension of Riemann’s zeta function, I

Riemann in his paper [Rie59] introduces two methods to prove the analytic exten-
sion of ζ (s) to the whole s ∈ C. In this section we present the first one. From the
definition of Γ -function it follows:

Γ (s)
ns =

∫
∞

0
xs−1e−nxdx, Re(s)> 1. (10.7)

Taking sum for n = 1,2, . . . we obtain

Γ (s)ζ (s) =
∫

∞

0

xs−1dx
ex −1

, Re(s)> 1.

One can see that near +∞ we have 1
ex−1 = O(x−∞) and near 0 we have 1

ex−1 =

O(x−1). Therefore, the convergence strip for the above integral is Re(s) ∈ (1,+∞),
see Proposition 10.5. Now, we consider the integral

I(s) :=
∫ +∞

+∞

(−x)s

ex −1
dx
x
.

Here, we have taken the branch of (−x)s = es ln(−x) in C\R+ such that ln(−x) for
negative x is a real number. The path of integration begins at +∞, moves to the left
down the positive real axis, circles the origin once in the clockwise direction, and
returns up the positive real axis to +∞, see Figure 10.2. Now, the above integral is
convergent for all s and it gives an entire function in s. A simple calculation shows
that it is equal to

I(s) = (eπis − e−πis)
∫

∞

0

xs

ex −1
dx
x
, Re(s)> 1.

In particular, this shows that I(s) vanishes in s = 2,3, . . .. Therefore, we get
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Fig. 10.2 A path of integration

2isin(πs)Γ (s)ζ (s) =
∫ +∞

+∞

(−x)s

ex −1
dx
x

and by (10.5)

ζ (s) =
Γ (1− s)

2πi

∫ +∞

+∞

(−x)s

ex −1
dx
x
. (10.8)

Note that for s ∈ Z the integral I(s) can be written as

I(s) =
∫
|x|=ε

(−x)s

ex −1
dx
x

where the domain of integration is oriented clockwise.

Proposition 10.6 We have

1. ζ (s) extends to a meromorphic function on the s-plane.
2. It has a unique pole at s = 1. The point s = 1 is a simple pole of ζ .
3. It vanishs at s =−2,−4,−6, . . . and for s = 0,−1,−3,−5, . . .

ζ (s) = (−1)s B1−s

1− s
,

where Bm’s are Bernoulli numbers given by

x
ex −1

=
∞

∑
m=0

Bm
xm

m!
= 1+

−1
2
1!

x+
1
6
2!

x2 +
−1
30
4!

x4 +
1
42
6!

x6 +
1
32
8!

x8 +
5
66

10!
x10 + · · · .

Proof. The first item follows from the equality (10.8). The second item follows from
the fact that Γ (1− s) has a simple pole at s = 1,2,3, . . .. Since ζ (s) has no poles at
s = 2,3, . . . we conclude that the integral I(s) in (10.8) must vanish at these points.
The equality ∫

|x|=ε

(−x)
ex −1

dx
x

= 2πi ̸= 0,
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shows that the pole at s = 1 survives. We now prove the third item. For s ∈ Z,s ≤ 0
we have

ζ (s) =
Γ (1− s)

2πi

∫
|x|=ε

(
∞

∑
m=0

(−1)s Bmxm+s−1

m!

)
dx
x

= Γ (1− s)(−1)s B1−s

(1− s)!

= (−1)s B1−s

1− s
,

where the domain of integration is oriented clockwise.

By Cauchy theorem for s with Re(s)< 0 we get

2sin(πs)Γ (s)ζ (s) = (2π)s((−i)s−1 + is−1)
∞

∑
n=1

ns−1

see [Edw01, Section 1.6] for further details. In other words the function

Γ (
s
2
)π− s

2 ζ (s)

remains invariant under s 7→ 1− s. By analytic continuation this holds in the whole
s-plane. In our way we also find the values of ζ for even positive integers:

Exercise 10.2 Prove that

ζ (2n) =
(2π)2n(−1)n+1B2n

2 · (2n)!
, n ∈ N.

10.6 Second proof for functional equation

In this section we present the second proof of the functional equation of ζ (s). This
proof is more interesting, as in it appears a theta series and it has been the main
motivation for Hecke to generalize it for a bigger class using modular forms.

In the equality (10.7) we make the change of variables x → n2πx and s → s
2 and

we obtain:
Γ ( s

2 )

ns π
− s

2 =
∫

∞

0
x

s
2−1e−n2πxdx, Re(s)> 1.

Define

ψ(x) :=
∞

∑
n=1

e−n2πx

and so
ζ (s)Γ (

s
2
)π− s

2 =
∫

∞

0
x

s
2−1

ψ(x)dx, Re(s)> 1. (10.9)
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Note that the sum in ψ cannot start from n = 0 as the integral
∫

∞

0 x
s
2−1dx is not con-

vergent for all s ∈ C. Since ψ is a subseries of the geometric series ∑
∞
n=1(e

−πx)n, it
is convergent in the interval (−1,1). For this we could also use directly the Cauchy-
Hadamard theorem. We need the following functional equation of ψ . .

Proposition 10.7 We have

1+2ψ(x) = x−
1
2

(
1+2ψ(

1
x
)

)
. (10.10)

We prove this in Theorem 2.11, where the main ingredient is the Poisson summation
formula. We have the theta series

θ3(τ) :=
∞

∑
n=−∞

q
1
2 n2

, q = e2πiτ , τ ∈H

which is related to ψ by θ3(τ) = 1+2ψ(−iτ). Using (10.10) we continue comput-
ing (10.9).

ζ (s)Γ (
s
2
)π− s

2 =
∫

∞

1
x

s
2−1

ψ(x)dx+
∫ 1

0
x

s
2−1

ψ(x)dx

=
∫

∞

1
(x

s
2 + x

1−s
2 )ψ(x)

dx
x
+

1
s(s−1)

, s ∈ C

for which the right hand side is convergent for all s ∈ C. We multiply the above
equality by s(s−1)

2 and define

ξ (s) := Γ

( s
2
+1
)
(s−1)π− s

2 ζ (s)

which is an entire function and satisfies ξ (s) = ξ (1− s).

10.7 Hecke’s L-functions

In this section we present Hecke’s L-functions introduced in [Hec36]. This is mainly
the imitation of the first proof of the functional equation of ζ (s) discussed in Sec-
tion 10.6, however, it gives a general framework for the second proof.

Let us consider a series of the form

f = f0 + f1q
1
λ + f2q

2
λ + · · ·+ fnq

n
λ + · · · , (10.11)

where fi ∈ C and λ ∈ R+. We assume that f is convergent in the unit disk and
hence if we set q = e2πiτ then it defines a holomorphic function f : H → C. We
further assume that f satisfies the functional equation
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f
(
−1
τ

)
= γ · (−iτ)k f (τ) (10.12)

for some γ = ±1 and k ∈ Q. This format of a functional equation is useful when
we restrict to the imaginary axis τ = ix, x ∈ R+. The real function g(x) := f (ix)
satisfies

g(x−1) = γ · xkg(x).

Note that by definition f also satisfies the functional equation

f (τ +λ ) = f (τ).

Definition 10.3 The Hecke’s L-function attached to f is

L( f ,s) :=
∞

∑
n=1

fn

ns

which converges in the region Re(s)> a, where we have assumed that fn ∼ na.

Note that the constant term f0 of f does not appear in the expression of L. We have

Γ (s)
ns =

∫
∞

0
xs−1 e−nx dx, Re(s)> 1

which implies

L( f ,s)Γ (s) =
∫

∞

0
xs−1

(
∞

∑
n=1

fn · e−nx
)

dx.

We make the change of variables x → 2πx ·λ−1 and get

L( f ,s) ·Γ (s)
(2πλ−1)s =

∫
∞

0
xs−1 f̃ (ix)dx = (−i)s

∫ i∞

0
τ

s−1 f̃ (τ)dτ , τ := ix (10.13)

where f = f0 + f̃ . In the following we will use the notation

f (i∞) := f0.

Theorem 10.1 Let f be a holomorphic function in the upper half plane with a q-
expansion of the form (10.12) and the functional equation (10.12). If f (i∞) = 0 then
the integral

R( f ,s) := (−i)s
∫ i∞

0
τ

s−1( f (τ)− f (i∞))dτ

is a holomorphic function in the entire plane s ∈ C and if f (i∞) ̸= 0 then it is a
holomorphic function in the half plane Re(s)>max{0,k} and it has a meromorphic
extension to the whole s ∈ C with poles of order one at s = 0,k. In both cases it
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satisfies the functional equation

R( f , k− s) = γ R( f ,s), γ =±1. (10.14)

Proof. This integral is always convergent at i∞. The argument is as follows. Let
τ = ix, x ∈ R+. Using the q-series of f̃ in (10.11) we know that there are positive
constants M and N such that

| f̃ (ix)|⩽ M · e−2πx, ∀x ∈ (N,+∞).

This together with
lim

x→+∞
e−x · xm = 0, ∀m ∈ N

imply the convergence at i∞ for all s ∈ C. The convergence at 0 happens if f0 = 0
and all s ∈ C or f0 ̸= 0 and for all s ∈ C with Re(s) > max{1,k}. For this we use
the functional equation (10.12) which implies the functional equation of f̃ :

f̃

(
−1
τ

)
= f0 · (γ(−iτ)k −1)+ γ(−iτ)k f̃ (τ).

or equivaelntly

f̃

(
i
1
x

)
= f0 · (γxk −1)+ γxk f̃ (ix).

We have

R( f ,s) =
∫

∞

0
xs−1( f (ix)− f (i∞))dx

=
∫ 1

0
xs−1 f̃ (ix)dx+

∫
∞

1
xs−1 f̃ (ix)dx

=
∫

∞

1

(
x1−s f̃ (ix−1)x−2 + xs−1 f̃ (ix)

)
dx

=
∫

∞

1

(
γx−1−s+k f̃ (ix)+ xs−1 f̃ (ix)

)
dx+ f0

∫
∞

1
x−1−s(γxk −1)dx

=
∫

∞

1

(
γx−1−s+k + xs−1

)
f̃ (ix)dx+ f0 ·

(
1
−s

− γ

−s+ k

)
(10.15)

If f0 ̸= 0 then we have used Re(s)> k and Re(s)> 0 in order to compute the last in-
tegral. The first integral is a holomorphic entire function in s ∈C and so the theorem
is proved. Note that for (10.14) we have used γ =±1.

Remark 10.3 If we do not remove the constant term f0 of f and then define∫
∞

0 τs−1 f (τ)dτ then the difference of this with the previous one is f0
∫

∞

0 τs−1dτ

which is not convergent. This implies that
∫

∞

0 τs−1 f (τ)dτ is not convergent for
f0 ̸= 0.
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Example 10.1 For the theta series

θ3 =
+∞

∑
n=−∞

q
1
2 n2

= 1+2
∞

∑
n=1

q
1
2 n2

we know that

θ3

(
−1
τ

)
= (−iτ)

1
2 θ3(τ)

and so k = 1
2 , γ =+1, λ = 2 and f0 = 1. In this case

L(θ3,s) = 2
∞

∑
n=1

1
(n2)s = 2ζ (2s)

and so we get the functional equation and analytic continuation of ζ (s). We recover
the content of Section 10.6 in this case.

Example 10.2 In this example f is the Eisenstein series Ek, k ≥ 4. We have

L(Ek ,s) = b k
2

∞

∑
n=1

σk−1(n)
ns = b k

2

∞

∑
d=1

∞

∑
m=1

1
ds−k+1 ms

= b k
2
ζ (s− k+1)ζ (s),

(10.16)

where b2 = 240,b3 =−504 and in general bk = (−1)k 4k
Bk

.

Example 10.3 We can also formulate Hecke’s L-function for quasi-modular forms.
Let us explain this for E2 which satisfies the functional equation

E2

(
−1
τ

)
= τ

2 E2(τ)+
12
2πi

τ

instead of (10.12), and describe the functional equation of L(E2,s). Note that similar
to (10.16) we have

L(E2, f ) =−24ζ (s−1)ζ (s)

Note that b1 =−24. If E2 = 1+ Ẽ2 then the functional equation of Ẽ2 is

Ẽ2

(
−1
τ

)
= (−iτ)2 −1+(−iτ)k Ẽ2(τ)+

12
2πi

τ

Similar to (10.15) this gives us

L(E2,s) =
∫

∞

1

(
x1−s + xs−1

)
f̃ (τ)dx+

(
1
−s

− 1
−s+2

)
+

6
π

1
s−1
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For the extra integration due to 12
2πi τ we have to assume that Re(s)> 1. Because of

this we have the functional equation

R(E2,s)−R(E2,2− s) =
12
π

1
s−1

.

Remark 10.4 It is well-known that any quasi-modular form f of weight k and order
≤ s can be written as ∑

s
i=0 DiFi +αD

k
2 E2, where Fi is a modular form of weight

k−2i and α = 0 if s < k
2 , see [MR05, Proposition 4.2]. This implies that

L( f ,s) =
s

∑
i=0

L(Fi,s− i)+αL(E2,s−
k
2
).

10.8 L-function of cusp forms

An important class of L-functions are those attached to cusp forms, see for instance

[Sil94a, pages 80-84]. Let f =
∞

∑
n=1

fnqn, f1 = 1, be a normalized eigenfunction of

weight k. Then in Chapter 7 we have seen that

fmn = fm fn , (n,m) = 1,
fpe · fp = fpe+1 + pk−1 fpe−1 e ⩾ 1.

Proposition 10.8 We have

L( f ,s) :=
∞

∑
n=1

fn

ns = ∏
p prime

1
1− fp p−s + pk−1−2s (10.17)

for Re(s)> k
2 +1.

Proof. The convergence follows from fn ∼ n
k
2 (see Theorem 2.8) and the same

convergence statement for Riemann zeta function. For the product formula we first
observe that

L( f ,s) = ∑ fn ·n−s = ∏
p prime

∑
e⩾◦

fpe · p−es.

Then we have
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(1− fp p−s + pk−1−2s)

(
∑
e⩾◦

fpe · p−es

)
= ∑

e⩾◦
fpe p−es

︸ ︷︷ ︸
A

− ∑
e⩾◦

fp · fpe p−s−es

︸ ︷︷ ︸
B

+ ∑
e⩾◦

fpe pk−1−2s−es

︸ ︷︷ ︸
C

= A+C− ∑
e⩾1

( fpe+1 + pk−1 fpe−1)p−s−es − fp · p−s

= A+C− (A−1− fp p−s)−C− fp p−s = 1.

The product in (10.17) is also called the Euler’s product formula of L-function.

Theorem 10.2 Let f be a cusp form of weight k for SL(2,Z). Then

1. L( f ,s) has an analytic extension to an entire holomorphic function in s ∈ C.
2. If we set R( f ,s) := (2π)−sΓ (s)L( f ,s) then

R( f ,k− s) = (−1)
k
2 R( f ,s).

Note that R is symmetric with respect to Re(s) = k
2 .

Proof. This is a particular case of Hecke’s theorem, see Theorem 10.1. We have
γ = (−1)

k
2 , λ = 1, f (i∞) = 0. Note that k is even.

Remark 10.5 For the analytic continuation of L-functions attached to cusp forms
for Γ0(N) or Γ1(N) we use the map WN introduced in (8.3). For more details see
[DS05, Section 5.10, page 204],

Remark 10.6 We may analyze L-functions of cusp forms from a point of view
which has to do with elliptic points of the action of SL(2,Z) on H. Let γ = γ1 − γ2,
where γ1 connects i∞ to i and γ2 connects 0 to i. Both paths are in the imaginary
axis. Note that

γ2 = S · γ1, S =

[
0 1
−1 0

]
.

In some sense, R( f , s) = (−i)s ∫
γ

f (τ)τs · dτ

τ
is attached to S with S2 = −I and its

fixed point i. Recall that the analytic continuation of R to C is done through

L( f , s) =
∫

γ1

f (τ)τs · dτ

τ
−
∫

γ2

f (τ)τs · dτ

τ
=
∫

γ1

(
f (τ)τs · dτ

τ
+ f (τ)τk(

−1
τ

)s dτ

τ

)
.

This gives us the convergency at 0 and the functional equation R( f ,k− s) = R( f ,s).
Here, we are using the fact that k is even. Now, consider

A =
(

1 1
−1 0

)
with A3 =−I, Aρ = ρ , where ρ = −1+i

√
3

2 . Under the iteration of A we have
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Fig. 10.3 L-function

i∞ →−1 → 0 → i∞
τ → τ+1

−τ
→ −1

τ+1 → τ.

Furthermore, we have the functional equations

f

(
τ +1
−τ

)
= (−τ)k f (τ) f

(
−1

τ +1

)
= (τ +1)k f (τ)

Let δ1 be the path in the upper half plane which connects i∞ to ρ . For instance,
it can be in the straight line Re(τ) = Re(ρ). Let also δ2 = Aδ1 and δ3 = Aδ2, see
Figure 10.3. We define

γ1 = δ1 −δ2, γ2 = δ2 −δ3, γ3 = δ3 −δ1

Ri := (−i)s
∫

γi

f (τ)τs−1, i = 1,2,3
(10.18)

We have
R1 +R2 +R3 = 0

The integrals in (10.18) are convergent at i∞,−1, 0 respectively. Since γ3 connects
i∞ to 0, we conclude that R3 = R( f ,s). By substituting the Fourier expansion of f
inside these integrals one arrives at incomplete Gamma functions, and it might be
interesting to investigate this further.

Remark 10.7 Let f be an eigenform of weight 2 for Γ0(N). Recall from (10.13)
that the L-function of a modular form is basically a Mellin transform
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Γ (s)
(−2πi)s L( f ,s) =

∫ i∞

0
τ

s−1 f (τ)dτ (10.19)

We use Mellin inversion theorem and write

f (τ) =
1

2πi

∫ c+i∞

c−i∞
τ
−s Γ (s)

(−2π)s L( f ,s)ds (10.20)

Now let E be an elliptic curve over Q and f be the corresponding modular form
L(E,s) = L( f ,s). In the absence of f , it is tempting to insert a mirror map in (10.20)
and try to recover f through this formula:

f

(∫
δ1

ω∫
δ2

ω

)
=

1
2πi

∫ c+i∞

c−i∞

(∫
δ1

ω∫
δ2

ω

)−s
Γ (s)

(−2π)s L(E,s)ds. (10.21)

Note that the Left hand side is a polynomial expression in terms of elliptic integrals.
One might replace E with a variety for which arithmetic modularity is not known,
compute experimentally the right hand side and observe which kind of periods must
pop-up in the left hand side. For instance, if the left hand side of (10.21) is a period
then it must satisfy a polynomial differential equation, and one might try to compute
such a differential equation directly from the right hand side (this is also true directly
the formula (10.20)).

10.9 L-function attached to Gauss hypergeometric equation

Using the analytic continuation of the mirror map in Section 3.10 we can define
a vast generalization of L-functions attached to linear differential equations. The
main idea is that if we have a modular form f (τ) and we replace τ with the Schwarz
map then we get polynomial expressions of periods. For simplicity, we will do this
only in the case of Gauss hypergeometric equation with the Schwarz map in Sec-
tion 3.10. This method seems to be elaborated in [Sti88] in which the author in page
229 says “A number of specific arithmetic applications will be fully discussed in
our forthcoming paper ...”. The paper’s name is “η ,θ ,ζ ” which seems to be never
published.

Recall the identities (3.43) in Section 3.11. Let us take for instance the identity
involving E4. We substitute the schwarz map in (10.16) and get

ζ (s−3)ζ (s) =
1

240
L(E4,s) =

(2π)s

240 ·Γ (s)

∫ 1

0

(
F( 1

6 ,
5
6 ,1|1− z)

F( 1
6 ,

5
6 ,1|z)

)s−1(
F(

1
6
,

5
6
,1 | z)4 −1

)
d

(
F( 1

6 ,
5
6 ,1|1− z)

F( 1
6 ,

5
6 ,1|z)

)
.
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Recall the differential equation (3.36) satisfied by the nominator and denominator
of the Schwarz map, and the equality (3.37). We conclude that up to multiplication
by a constant independent of s we have

ζ (s−3)ζ (s) =

(2π)s

Γ (s)

∫ 1

0

(
F( 1

6 ,
5
6 ,1|1− z)

F( 1
6 ,

5
6 ,1|z)

)s−1(
F(

1
6
,

5
6
,1 | z)2 −F(

1
6
,

5
6
,1 | z)−2

)(
dz
z
+

dz
1− z

)
(10.22)

Let R(E4,s) be the integral in the above formula. In order to see the functional

equation R(E4,4− s) = R(E4,s), we set τ :=
(

F( 1
6 ,

5
6 ,1|1−z)

F( 1
6 ,

5
6 ,1|z)

)
, F = F( 1

6 ,
5
6 ,1|z) and

we write

R(E4,s) =
∫ 1

0
A(s,z) =

∫ 1
2

0
A(s,z)+

∫ 1

1
2

A(s,z)

=
∫ 1

2

0
A(s,z)−A(s,1− z)

=
∫ 1

2

0
(τs−1 + τ

3−s)(F2 −F−2)

(
dz
z
+

dz
1− z

)
+

∫ 1
2

0
(τ3−s − τ

−1−s)F−2
(

dz
z
+

dz
1− z

)

For the computation of the second integral, we return back to the τ coordinate and it
is −( 1

s +
1

4−s ). This is clearly invariant under s → 4− s. This part also contains the
poles s = 0,s = 4.

By Proposition 10.3 the integral 10.22 is convergent at z = 0 for all s ∈C because
its integrand has the asymptotic

integrand ∼ (ln(z))s−1.

Note that 1
z

(
F( 1

6 ,
5
6 ,1 | z)2 −F( 1

6 ,
5
6 ,1 | z)−2

)
is holomorphic at z = 0. By Proposi-

tion 10.3 the convergency at z = 1 happens only for Re(s)> 4. This is because near
z = 1 we have F( 1

6 ,
5
6 ,1|z) = hol · ln(z−1)+hol and so

integrand ∼z→1 (ln(z−1))1−s+2(z−1)−1

Remark 10.8 Similar change of variable is used in [Rog13] and [KZ01, page 24]
in order to compute special values of Ramanujan’s L-function.

For a modular form f with the constant term f0 we have used f (τ)− f0 in the
expression of L( f ,s). This does not seem to be an elegant way, as we expect to
make a sum of f with another modular form of the same weight and not weigh 0
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modular form which is the constant f0. This is why the L function of cusp forms
are more natural. There is a very trivial way to construct cuspidal quasi-modular
forms. Namely, if f is a quasi-modular form then its derivation with respect to τ is
a cuspidal form and so we can directly define its R-function:

R( f ′,s) :=
∫ i∞

0
τ

s−1 ∂ f
∂τ

dτ =
∫ i∞

0
τ

s−1d f (τ)

For instance, for f = E4, we get

ζ (s−4)ζ (s−1) =
1

240
L(E ′

4,s) =

(−2πi)s

240Γ (s)

∫ 1

0

(
F( 1

6 ,
5
6 ,1|1− z)

F( 1
6 ,

5
6 ,1|z)

)s−1

d
(

F(
1
6
,

5
6
,1 | z)4

)
(10.23)

In order to simplify this formula further, it seems natural to define

x = F(
1
6
,

5
6
,1 | z)4 −1 : (C,0)→ (C,0) and (0,1)→ (0,+∞)

and define its inverse by M(x). Let

F(
1
6
,

5
6
,1|1− z) = F(

1
6
,

5
6
,1|z) ln(

1
432

z)+G(z)

where G is holomorphic at z = 0 and G(0) = 0. We have

ζ (s−4)ζ (s−1) =
(−2πi)s

240Γ (s)

∫ +∞

0

(
ln(

1
432

M(x))+
G(M(x))

(1+ x)
1
4

)s−1

dx (10.24)

Since F( 1
6 ,

5
6 ,1 | z) is an elliptic integral of the first kind, it never vanishes in

C\{0,1}. We have to prove that its derivative in z does not vanish in (0,1) in order
to be able to talk about the inverse of G(x) which is defined in (0,+∞). Even if this
is the case, F ′ might have zeros in other places. A consequence of this is that the
Taylor series of G(x) might have a finite radius of convergence.
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Fig. 10.4 A change of coordinate.





Chapter 11
Hasse-Weil zeta function

I should like to conclude with a brief discussion of a very interesting conjecture, due,
I believe, to Hasse. As we have said, from the Kroneckerian point of view the fields
of dimension 1 are the number-fields and the function-fields of curves over finite
fields; to each one of these there belongs a zeta-function, the properties of which
may be said to epitomize in analytic garb some of the more important properties of
the field. It is therefore reasonable to guess that similar functions can be attached
to fields of higher dimension, and in the first place to the fields of dimension 2, i.e.,
to the curves over an algebraic number-field, and to the surfaces over a finite field,
([Wei52, page 99]).

11.1 Introduction

11.2 Finite fields

A finite field, as its name indicates, is a field with finite cardinality. By definition of
a field and finiteness property, the characteristic of a finite field is a prime number
p > 1. Finite fields are completely classified as follows:

Exercise 11.1 We have the following:

1. The order of a finite field of characteristic p is pn for some n ∈ N.
2. There is a unique (up to isomorphism of fields) finite field with pn, n ∈ N ele-

ments.
3. For a prime number the finite field with cardinality p is simply the quotient Fp :=

Z
pZ .

4. For q = pn, n ∈ N the finite field with cardinality pn is denoted by Fq. It is the
spliting field of the polynomial xq − x over Fp.

5. Every finite integral domain is a field and in particular, let f (T ) be a monic
irreducible polynomial of degree n in Fp[T ]. Then the quotient Fq[T ]/⟨ f ⟩ is a
finite field with pn elements.

179
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6. Let f (x,y) ∈ Fp[x,y] be a polynomial and I be a non zero prime ideal of R :=
Fp[x,y]/⟨ f ⟩. Then the quotient R/I is a finite field.

7. We have

Fp =
∞⋃

n=1

Fpn . (11.1)

For more on finite fields the reader is referred to [Jac85].

11.3 Zeta functions of elliptic curves over finite fields

In this section we review the zeta function of elliptic curves over finite fields which
are rational functions, and hence, much simpler than L-functions. The general defi-
nition and rationality was conjectured in [Wei49] and was proved by P. Deligne (see
for instance [Kat76a] for an exposition of Deligne results). In the following, p is a
prime.

Definition 11.1 Let X be an affine or projective variety defined over Fp. The zeta
function of X is defined to be the formal power series in T :

Z(X ,T ) = exp(
∞

∑
r=1

#X(Fpr)

r
T r).

Theorem 11.1 Let E be an elliptic curve defined over Fp. Then

Z(E,T ) =
1+2aET + pT 2

(1−T )(1− pT )
. (11.2)

where aE is an integer depending only on E. Moreover, the Riemann hypothesis
holds for E, i.e. the only zeros of

ζ (C,s) := Z(E, p−s)

are in the line Re(s) = 1
2 .

Proof. For a proof see [Mil20, Theorem 9.10, page 202].

Let
1−2aET + pT 2 = (1−αT )(1−βT )

and so
α +β = 2aE , αβ = p (11.3)

Note that α and β are algebraic integers:

α,β = aE ±
√

a2
E − p. (11.4)
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We take the logarithmic derivative of both sides of (11.2) and one easily finds the
equalities

#E(Fpr) = pr +1−α
r −β

r, r = 1,2,3, . . . (11.5)

For r = 1 we obtain
#E(Fp) = p+1−2aE (11.6)

We conclude that

Corollary 11.1 For elliptic curves over a finite field Fp the number of Fp-rational
points determine the number of Fpr -rational points.

Proof. This follows from the equalities (11.4), (11.5) and (11.6).

Corollary 11.2 For an elliptic curve E over a finite field Fp, the Riemann hypothe-
sis holds for Z(E, p−s) if and only if

|#E(Fp)− p−1| ≤ 2
√

p. (11.7)

Proof. By the rationality statement in Theorem 11.1 we know that if

|α|= |β |= p
1
2 . (11.8)

then the Riemann hypothesis holds for Z(E, p−s). Therefore,

|#E(Fp)− p−1|= |2aE |= |α +β |< 2
√

p.

The equality cannot occur because p is prime. Conversely, if (11.7) happens then
a2

E − p < 0 and so the roots of the polynomial 1−2aET + pT 2 are complex conju-
gate, β = ᾱ and since αβ = p, we get |α|= |β |= p

1
2 .

11.4 One dimensional algebraic groups

Let us consider a singular curve E of degree 3 in P2
k given by f (x,y,z) = 0, where

f ∈ k[x,y,z] is a homogeneous polynomial. It is not hard to see that the singular
point P of E is defined over k and it is unique, see Exercise 4.14. In this section,
we want to remark that there is three type of singularities P. In the literature, see
for instance [Mil20, Chapter II, Section 3, page 70], this is usually done using the
language of algebraic groups that we mention it at the end of the this section.

For two points A and B in P2
k(k) let LAB be the line through A and B. Let us take

an arbitrary line P1
k in P2

k which does not cross P and define the map

f : P1
k(k)→ E(k), Q 7→ the third intersection point of LPQ with E

1. There is exactly one point A ∈ P1
k(k) which is mapped to P. In this case P is

called a cuspidal singularity.
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2. There are exactly two points A,B∈P1
k(k) which are mapped to P (A,B are defined

over k). This is called the nodal singularity with the extra information that the two
tangent lines to E to two branches of E passing through P are defined over k.

3. There is a ∈ k which is not square in k and there are exactly two points A,B ∈
P1
k(k(

√
a)) which are mapped to P (A,B are defined over k(

√
a)). This is called

the nodal singularity with the extra information that the two tangent lines to E
to two branches of E passing through P are Galois conjugate or equivalently the
product of these two lines is defined over k.

Exercise 11.2 Verify the classification above for the curve:

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6, a1, · · · , . . . ,a6 ∈ k,

or for sub familly of this (for instance take a1 = a3 = 0).

These corresponds to the following algebraic groups which is used in [Mil20].

1. The additive group Ga :=A1 := Sepc(k[x]). The group structure in the k-rational
points Ga(k) = k is the usual addition in k.

2. The multiplicative group Gm := A1 −{0} := Sepc(k[x, 1
x ]). The group structure

in the k-rational points Gm(k) = k∗ is the usual multiplication of k.
3. Twisted multiplicative group Gm[a] := Sepc(k[x,y]/⟨x2 − ay2 − 1⟩) for an ele-

ment a ∈ k∗. The group structure in the k-rational points Gm[a](k) is given by

(x,y) · (x′,y′) = (xx′+ayy′,xy′+ x′y).

which is induced by the multilication in the field extension k⊂ k(
√

a).

Exercise 11.3 In the above we have not given the scheme theoretical definitions of
group structures, for instance, for the additive group the group structure is induced
by k[x]→ k[x]⊗k k[x], x 7→ x⊗1+1⊗ x. Give a detailed exposition of the scheme
theoretical definitions of the above algebraic groups. You may consult [Mil17]

Exercise 11.4 Show that

Gm[a]∼=Gm[ac2], a,c ∈ k−0,

In particular, Gm[c2]∼=Gm. Moreover,

Gm[a](Fp) = p+1.

By Bezout theorem a singular cubic curve E in P2 has a unique singular point (if
there are two singularities then the line connecting that points meets the curve in 4
points counted with multiplicities). The singular point is defined over k because it
is fixed under the action of the Galois group Gal(k̄/k). Let S be the singular point
of of E and

Ens(k) := E(k)\{S}.

The same definition of group law for elliptic curves applies for Ens and it turns out
that Ens is a group and:
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Exercise 11.5 If the elliptic curve E is given by the Weierstrass form

y2 = x3 + t4x+ t6, t2, t3 ∈ k,∆ = 2(4t3
4 +27t2

6 ) = 0.

then Ens is isomorphic to the three one dimensional group described above:

Ens(k)∼=Gm(k) or Gm[c](k), or Ga(k).

Do we need char(k) ̸= 2,3? See [Mil20, page 74,75].

Exercise 11.6 For char(k) = 3 (resp. char(k) = 2) we have to consider the case
(4.6) (resp. (4.4)). Discuss the reduction modulo 2 and 3 in such cases.

11.5 Reduction of elliptic curves

We take an elliptic curve in the Weierstrass form

y2 = x3 + t4x+ t6, t2, t3 ∈Q,∆ := 2(4t3
4 +27t2

6 ) ̸= 0. (11.9)

and by change of coordinates (x,y) 7→ (c2x,c3y), c ∈Q we assume that |∆ | is mini-
mal.

Exercise 11.7 For p prime different from 2 and 3 we have the curve E/Fp and the
reduction map

E(Q)→ E(Fp).

1. It is called a good reduction if that E/Fp is a (smooth) elliptic curve. This hap-
pens if p does not divide ∆

2. It is called cuspidal reduction/additive reduction if the curve E/Fp has a cusp as
singularity, that is, its non-singular part is an additive group. This case happens
if and only if p | ∆ , and p | 2t4t6.

3. Nodal reduction/split multiplicative. The reduced curve Ens/Fp is a multiplica-
tive group. This happens if and only if −2t4t6 is a square in Fp.

4. Nodal reduction/nonsplit multiplicative. The reduced curve Ens/Fp is a twisted
multiplicative group. This happens if and only if −2t4t6 is not a square in Fp.

See [Mil20, page 78]

Exercise 11.8 Reduction modulo 3 of the elliptic curve (11.9) is singular if and
only if t4 = 0. In the singular case it is always a cusp. In reduction modulo 2 the
elliptic curve E/F2 is always singular and its singular point is S = (t4, t6). Find the
four groups Ens(F2) corresponding to the four choice of (t4, t6).

Exercise 11.9 Let E/Q : y2 + y = x3 − x2 +2x−2. Show that 1. the primes of bad
reduction for E are p = 5 and 7. 2. The reduction at p = 5 is additive, while the
reduction at p = 7 is multiplicative.

Exercise 11.10 [Mil20, Exercise 3.4]. This exercise is taken from [Fre86].
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11.6 Zeta functions of elliptic curves over Q

We follow [Mil20, Chapter IV, Section 10, page 213].

Definition 11.2 The non-complete zeta function of a smooth curve E : f (x,y) =
0, f ∈ Z[x,y] is defined to be

ζS(E,s) = ∏
p̸∈S

ζ (E/Fp,s),

where S is a finite number of prime numbers such that E/Fp is singular.

In the case of elliptic curves it is natural to define

LS(E,s) := ∏
p ̸∈S

1
1+(#(E(Fp))− p−1)p−s + p1−2s

and call it non-complete L-function. We have

ζS(E,s) =
ζS(s)ζS(s−1)

LS(E,s)

Proposition 11.1 The product ζS(E,s) and hence LS(E,s) converges for Re(s)> 3
2

Proof. It is direct consequence of the Riemann hypothesis for elliptic curves over
finite fields, see Theorem 11.1, and the convergence of the Riemann zeta function,
see Proposition 10.1.

We we want to define the complete L function by adding bad prime numbers p ∈ S.
We define

Lp(T ) =


1+(#(E(Fp))− p−1)T + pT 2 good reduction
1−T split multiplicative reduction
1+T non-split multiplicative reduction
1 additive reduction

We have defined this in such a way that

Lp(p−1) =
#Ens(Fp)

p

Now we define the L-function of an elliptic curve E over Q:

L(E,s) = ∏
p

1
Lp(p−s)

.

Definition 11.3 The conductor of an elliptic curve over Q is defined to be
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NE/Q = ∏
p bad

p fp

where fp = 1 if E has multiplicative reduction at p, fp = 2 if p ̸ |2,3 and E has
additive reduction at p. For the case in which we have additive reduction modulo
p = 2,3 we have fp ≥ 2, fp ∈ N and fp depends on wild ramification in the action
of the inertia group at of Gal(Q̄/Q) on the Tate module of E.

Exercise 11.11 Discuss the case p = 2,3 in the above definition. [Mil20] is also
talking about a formula of Ogg fp = ordp∆ +1−mp using Néron models. Can you
obtain some information on this.

Exercise 11.12 Show that the zeta function of the elliptic curve y2 = x3 −1 can be
expressed in terms of Dedekind’s L-functions for the field Q(1

1
3 ). This is taken from

[Wei52, page 99]. It seems to me that A. Weil has called it Hecke’s L-function and
not Dedekind.

11.7 Hasse-Weil conjecture

Define
Λ(E,s) := N

s
2

E/Q(2π)−s
Γ (s)L(E,s)

Theorem 11.2 (Hasse-Weil conjecture for elliptic curves) The function Λ(E,s) can
be analytically continued to a meromorphic function on the whole C and it satisfies
the functional equation

Λ(E,s) =±Λ(E,2− s).

This theorem was first proved for CM elliptic curves by Deuring 1951/1952. It is
proved in its generality by the works of Eichler and Shimura, Wiles, Taylor, Dia-
mond and others, see ??.

11.8 Birch Swinnerton-Dyer conjecture

For the functional equation of L the value s = 1 is in the middle, that is, it is the
fixed point of s 7→ 2− s.

Conjecture 11.1 (Birch Swinnerton-Dyer conjecture(BSD)) For an elliptic curve
E over Q, the function L(E,s) is holomorphic at s = 1 and its order of vanishing at
s = 1 is the rank of the elliptic curve E.

A weak form of this conjecture is not also proved:

Conjecture 11.2 (Weak BSD conjecture) L(E,1) = 0 if and only if E has infinitely
many rational points.
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For papers on BSD conjecture see [CW77, BSD63, BSD65, Tun83, Lan78b] [Ser89],
[Mor69].

11.9 Congruent numbers

In this chapter we follow [Kob93b].

Definition 11.4 A natural number n is said to be congruent if it is the area of a right
triangle whose sides have rational length.

In other words, for a natural number n ∈ N, we are looking for the Diophantine
equation:

Cn : x2 + y2 = z2, n =
1
2

xy

in Q, where x,y and z are the sides of a triangle. Consider the affine curve Cn/Q in
A3 defined by the above equations. It intersects the projective space at infinity in 4
points:

[x;y;z;w] = [0;±1;1;0], [±1;0;1;0].

Let
Dn : y2 = x4 −n2, En : y2 = x3 −n2x.

We have morphisms

Cn → Dn, (x,y,z) 7→ (
z
2
,

x2 − y2

4
)

and
Dn → En, (x,y) 7→ (x2,xy)

defined over Q.

Proposition 11.2 A necessary and sufficient condition for the point (x,y) ∈ En(Q)
to be in the image of Cn(Q)→ En(Q) is that

1. x is a square and
2. its denominator is divisible by two and
3. its numerator has no common factor with n.

The proof is simple and is left to the reader, see [Kob93b].

Exercise 11.13 Let C̄n be the projectivization of Cn in P3. Is C̄n smooth? If yes
determine its genus.

Exercise 11.14 [Kob93b, Exercises 1,2,3,4, page 5].

We want to analyze the torsion points of

En : y2 = x3 −n2x
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By definition of the group structure of En we know that

O,(0,0),(0,±n)

are 2-torsions of En. .

Proposition 11.3 We have

En(Q)tors = {O,(0,0),(0,±n)}

and so #En(Q)tors = 4.

Proof. We follow [Kob93b, page 44, Proposition 4]. Let us first give the strategy of
the proof. Let E/Q be an a elliptic curve in the Weierstrass form and let p > 2 be
a prime number which does not divide the discriminant of E. By a linear change of
variable (x,y) 7→ (a2x,a3y) we can assume that the ingredient coefficients of E are
in Z. Let Ē/Fp be the elliptic curve obtained from E by considering the coefficients
of E modulo p. The main ingredient of the proof is the reduction map

E(Q)→ Ē(Fp),

which is a group homomorphism. Note that by our assumption on p, Ē/Fp is not
singular. This is an injection of E(Q)tors inside E(Fp) for all but finitely many p and
so for such primes m := #E(Q)tors divides #E(Fp). In fact, we have not yet proved
that E(Q)tors is finite (a corollary of Mordell-Weil theorem). Therefore, we take a
finite subgroup G of #E(Q)tors and prove that the reduction map restricted to G is
an injection and so m := #G divides #E(Fp). From another side, we prove that for
E = En:

#En(Fp) = p+1, ∀p prime p ≡−1 mod 4 (11.10)

Therefore, for all but finitely many primes p ≡−1 mod 4 we have p ≡−1 mod m.
This implies that m = 4. Therefore, every finite subgroup of E(Q)tors is of order 4.
Since all the elements of E(Q)tors are torsion, we conclude that #En(Q)tors = 4.

Now let us prove that the reduction map induces an injection in a finite subgroup
G of E(Q)tors. Two points P = [x;y;z],Q = [x′;y′;z′] ∈ E(Q) are the same after
reduction if and only if

xy′− x′y,xz′− x′z,yz′− y′z (11.11)

are zero modulo p. For all pairs P,Q in G, the number of numbers (11.11) is finite
and so there are finitely many primes dividing at least one of them. For all other
primes p, we have the injection of G in E(Fp) by the reduction map. The proof of
(11.10) is done in the next proposition.

Proposition 11.4 Let q = p f , p ̸ |2n. Suppose that q ≡ −1 mod 4. Then there are
q+1 Fq points on the elliptic curve En : y2 = x3 −n2x.

Proof. Consider the map

f : Fq → Fq, f (x) = x3 −n2x
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f is an odd function, i.e. f (−x) = − f (x), and −1 is not in its image (this follows
from the hypothesis on p). It follows that the index of the multiplicative group F2

q −
{0} in Fq −{0} is two and so for all x ∈ Fq −{0} exactly one of x or −x is square
and so for all x ∈ Fq −{0,n,−n} exactly one of f (x) or f (−x) is square. Each such
a pair (x,y), y = f (x) gives us two points (x,y), (x,−y) ∈ En(Fq) and so in total we
have 3+2 q−1

2 points in En(Fq).

Proposition 11.5 The natural number n is congruent if and only if En(Q) has non-
zero rank.

Proof. If n is a congruent number then by Proposition 11.2, En has Q-rational point
with x-coordinate in (Q+)2. The x coordinates of 2-torsion points in the affine chart
x,y are 0,±n. The fact that n is square free and Proposition 11.3 implies that such a
rational point is of infinite order.

Conversely, suppose that P is a rational point of infinite order in En. We use
Exercise 11.15 to finish the proof.

Exercise 11.15 ([Kob93b, page 35, Exercise 2c]) If P is a point not of order 2 in
En(Q), then the x-coordinate of 2P is a square of rational number having an even
denominator. By Proposition 11.2, 2P comes from a point in Cn(Q) and hence n is
a congruent number.

Exercise 11.16 [Kob93b, pages 49-50, Exercises 4,5,6, 7,9].

Let us now state the main result in Section 11.3 for the elliptic curve En related to
the congruent numbers. The Legendre symbol is defined for integers a and positive
odd primes p by

(
a
p

)
=


0 if p divides a
1 for some x ∈ Z, a ≡ x2 mod p
−1 otherwise

Exercise 11.17 In the zeta function of En : y2 = x3−n2x defined over Fp, p a prime
p ̸ |2n, we have:

α =

{
i
√

p if p ≡ 3( mod 4) in this case aEn = 0

2k+
(

n
p

)
+2ki if p ≡ 1( mod 4) in this case aEn = 2k+

(
n
p

)
In the second case k is determined by the fact that αᾱ = p

Exercise 11.18 The bad prime numbers for the elliptic curve En : y2 = x3 −nx are
those which divide 2n. For p | 2n, p ̸= 2 or p= 2, 2|n we have an additive reduction.
For p = 2 and p ̸ |n we have apparently a multiplicative reduction: y2 = x3 + x.
The singular point in this case is S = (1,0) and Ens(F2) = {O,(0,0)} which is
isomorphic to (A(F2),+) and so it is additive.The conductor of En is:

NEn/Q =

{
24n2 if n is even
25n2 if n is odd
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Exercise 11.19 In Theorem 11.2 the root number ± is determined in the following
way: {

+1 if n ≡ 1,2,3 (8)
−1 if n ≡ 5,6,7 (8)

Exercise 11.20 Reformulating Exercise 11.17 we have we have:

(1−T )(1− pT )Z(En/Fp,T ) = ∏
p|⟨p⟩

(1− (αpT )deg(p))

where

αp =


i
√

p if p= ⟨p⟩
a+ ib if p splits, where a+ ib is the unique generator of p

which is congruent to ( n
p ) mod 2+2i.

0 p | 2n

The L function of En is

L(En,s) = ∏
p⊂Z[i] prime

(1− (αp)
deg(p)(Np)−s)−1

Now Z[i] is a Dedekind domain and so we can define a unique map χ from the ideals
of Z[i] to C such that χn(p) = α

deg(p)
p . Therefore

L(En,s) = ∏
p⊂Z[i] prime

(1−χ(p)(Np)−s)−1 = ∑
a⊂Z[i]

χn(a)(Na)−s

where the sum is taken over all non-zero ideals.





Chapter 12
Jacobi forms

Monsieur, un jeune géomètre ose vous présenter quelques découvertes faites dans
la théorie des fonctions elliptiques, auxquelles il a été conduit par l’étude assidue
de vos beaux écrits. C’est à vous, Monsieur, que cette partie brillante de l’analyse
doit le haut degré de perfectionnement auquel elle a été portée, et ce n’est qu’en
marchant sur les vestiges d’un si grand maı̂tre, que les géomètres pourront parvenir
à la pousser au delà des bornes qui lui ont été prescrites jusqu’ici. C’est donc à
vous que je dois offrir ce qui suit comme un juste tribut d’admiration et de recon-
naissance, (in Jacobi’s letter to Legendre, see [Cog14, page 533]).

12.1 Introduction

In this chapter we recover the theory of Jacobi forms in the frame work of the moduli
of enhanced elliptic curves. Despite examples of Jacobi forms going back to Jacobi
himself, its systematic treatment has been started in [EZ85]. The geometrization of
Jacabi forms in terms of relative algebraic de Rham cohomology of elliptic curves
with two marked point has been started in [CMV24] and in this chapter we follow
and extend the results of this article. The relative algebraic de Rham cohomology in
general is defined through the hypercohomology of a certain complex and the reader
can find the missing definitions in [MV21]. We hope that the reader has become
familiar with hypercohomology in Chapter 9.

12.2 Jacobi group and Jacobi forms

For any commutative ring R with unit 1, the Jacobi group ΓR is a subgroup of
the symplectic group Sp(4,R) consisting of matrices with fourth row of the form
[0,0,0,1]. For our purpose we consider its conjugate with the matrix which per-
mutes the first and second coordinates of R4 and hence

191
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ΓR =




1 λ µ κ

0 α β µ
′

0 γ δ −λ
′

0 0 0 1

 ∈ Mat(4,R) | αδ −βγ = 1, [λ ,µ] = [λ
′
,µ

′
]

[
α β

γ δ

] .

The group ΓR acts on C×H by

g · (τ,z) = (
z+λτ +µ

γτ +δ
,

ατ +β

γτ +δ
), g ∈ ΓR.

Exercise 12.1 The stabilizer of the point (0, i) is the group SO(2,R)×ZR, where

SO(2,R) :=
{[

α β

−β α

]
| α

2 +β
2 = 1

}
,

and and ZR is the subgroup of ΓR generated by


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

. This action induces an

ismorphism
ΓR/(SO(2,R)×ZR)

∼=−→ C×H, g → g(i,0)

Hint: For further details see [BS98] or [EZ85].

Definition 12.1 A weak Jacobi form of weight k and index m is a holomorphic func-
tion f : C×H→ C satisfying:

f (
z+λτ +µ

γτ +δ
,

ατ +β

γτ +δ
) = (γτ +δ )ke2πim[

γ(z+λτ+µ)2
γτ+δ

−(λ 2τ+2λ z)]
φ(τ,z) (12.1)

for
[

α β

γ δ

]
∈ SL(2,Z) and (λ ,µ)∈Z2 together with a Fourier expansion of the form

f (τ,z) =
∞

∑
n=0

∑
r∈Z

c(n,r)e2πi(nτ+rz).

We denote the space of weak Jacobi forms of weight k and index m by J̃k,m. If we
replace the third condition by a Fourier expansion of the form

f (z,τ) =
∞

∑
n=0

∑
r∈Z,r2≤4nm

c(n,r)e2πi(nτ+rz),

f (z,τ) is a Jacobi form of weight k and index m and the space of Jacobi forms of
weight k and index m is denoted by Jk,m.

Now, consider the function F defined (2.66). By Exercise 2.39 we know that
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F2 ∈ J̃−2,1

is a Jacobi form of weight k = −2 and index m = 1. Moreover, by the product
formula of F , we know that F2 has a zero of order 2 at z ∈ Zτ +Z.

Theorem 12.1 Any weak Jacobi form of f of weight k and index m can be written
as

f = F2m

(
a0(τ)+a1(τ)℘+

(
m−1

∑
i=0

fi(τ)℘
i +℘

′
m−2

∑
i=0

gi(τ)℘
i

)′)
, (12.2)

where ′ means derivation with respect to z and a0,a1, fi,gi are modular form for
SL(2,Z) of weight k+2m,k+2m−2,k+2m−2i−1, k+2m−4−2i, respectively.

Proof. For a Jacobi form f of weight k and index m, the quotient f
F2m is of weight

k+2m and index 0. Therefore, it is an elliptic function and by Exercise 2.14 it can
be written as R1[℘(z)] +℘′(z)R2[℘(z)], where R1,R2 are rational functions in ℘.
As f

F2m has only poles at z = 0, R1,R2 are polynomials. It is of weight k+2m which
implies 2deg(R1),3+ 2deg(R2) ≤ k + 2m. Let R̃2(x) be the integration of R2(x),
that is, the derivation of R̃2(x) with respect to x is R2(x). In the geometric frame
work with Weierstrass coordinates (x,y) = (℘,℘′) we have

f
F2m dz = R1(x)

dx
y
+d(R̃2(x)) = (a0 +a1x)

dx
y
+d(R̃2(x)+ yQ(x))

where the last equality is written resticted to the elliptic curve Et2,t3 and Q(x) can be
computed using Proposition 9.2 and Remark 9.1. We also have

deg(R̃2(x))≤ m+
k−1

2
, deg(Q(x))≤ m+

k
2
−2.

From another side the pole order of f
F2m at z = 0 is ≤ 2m. This means that

deg(R̃2(x))≤ m− 1
2
,deg(Q)≤ m−2,

which are stronger than the previous degree condition.

Corollary 12.1 ([EZ85, Theorem 9.4]) The ring of weak Jacobi forms J̃∗,∗ has the
following structure:

M∗(SL(2,Z))[a,b,c]⟨c2 =
1

432
a(b3 −3E4a2b+2E6a3)⟩

where

a = F2 ∈ J̃−2,1, b =
12

(2πi)2 F2
℘∈ J̃0,1, c =

−1
(2πi)3 F4

℘
′ ∈ J̃−1,2.

.
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Proof. We use Theorem 12.1 and we have

F2m
℘

′
℘

m−2 = cbm−2,

F2m
℘

′′
℘

m−2 = F2m(6℘
2 − 1

2
g2)℘

m−2 = ∗6bm −∗1
2

g2a2bm−2,

F2m
℘

′2
℘

m−3 = F2m(4℘
3 −g2℘−g3)℘

m−3 = ∗4bm −∗g2a2bm−2 −∗g3a3bm−3,

where ∗’s are some constants.

Remark 12.1 The functional equation of the Jacobi theta function involves the ex-
ponential function, and a direct geometric realization of this on the moduli space T
seems to be impossible. We need to do extra enhancement of elliptic curves with
objects not related directly to de Rham cohomologies. The first suggestion is the
following: consider the line bundle O(−2O) over the elliptic curve E. By definition
its dual O(2O) has a global holomorphic section s with div(s) = 2O. We can view
s as s : O(−2O)→ C which is linear at each fiber. The new enhancement is a point
Q ̸= 0 over the fiber of O(−2O) over P. The fiber of the line bundle O(−2O) at
P ∈ E is given by meromorphic differential forms ω with simple poles at O and P.
In the Weierstrass coordinates this is given explicitly given by

O(−2O)P := C
y+b
x−a

dx
y
, P = [a : b : 1].

where y+b
x−a

dx
y can be interpreted as a global section of O(−2O) with a pole of order

two at O.

12.3 Relative de Rham cohomology

Definition 12.2 Let X be a smooth variety over k and Y be a smooth subvariety of
X . We consider the complex (Ω •

X/k,d) (resp. (Ω •
Y/k,d)) of regular differential forms

on X (resp. Y ). The (algebraic) relative de Rham cohomology of (X ,Y ) is defined to
be the hypercohomology of the following complex

Hm
dR((X ,Y )/k) := Hm(Ω •

(X ,Y )/k,d),

where
Ω

m
(X ,Y )/k := Ω

m
X/k⊕Ω

m−1
Y/k

and
d : Ω

m
(X ,Y )/k → Ω

m+1
(X ,Y )/k , (ω,α)→ (dω,ω|Y −dα).

Consider the case in which Y consists of two points O and P. The short exact se-
quence

0 → Ω
•−1
Y/k → Ω

•
(X ,Y )/k → Ω

•
X/k → 0
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induces the long exact sequence

· · · → H0(X ,Ω •
X/k)→ H1(Y,Ω •−1

Y/k )→ H1(X ,Ω •
(X ,Y )/k)→ H1(X ,Ω •

X/k)→ ·· ·

which gives us the exact sequence

0 → H0
dR(X/k)→ H0

dR(Y/k)→ H1
dR((X ,Y )/k)→ H1

dR(X/k)→ 0, (12.3)

together with the isomorphisms

H i
dR((X ,Y )/k)∼= H i

dR(X/k), ∀i ≥ 2.

It follows from (12.3) that dimkH1
dR((X ,Y )/k) = H1

dR(X/k)+1 and

coker (H0
dR(X/k)→ H0

dR(Y/k)) = k · f ,

where f : Y → k is given by f (O) = 1 and f (P) = 0.
Let us now X be a smooth projective curve of genus one given by the Weierstrass

equation zy2 = 4x3− t2xz2− t3z3 in the homogeneous coordinates [x : y : z]∈ P2
k, and

let Y := {O,P}, where O = [0 : 1 : 0] is the infinity point and P = [a : b : 1]. Hence
t3 = 4a3 − t2a−b2. We choose the following covering for X :

U0 = X −O, U1 = X −{x = 0}.

in order to write down the double complex of the the relative algebraic de Rham
cohomology. The associated simple complex turns out to be:

0 → Ω
0(U0)⊕Ω

0(U1)→ Ω
1(U0,U0 ∩Y )⊕Ω

1(U1,U1 ∩Y )⊕Ω
0(U0 ∩U1)

→ Ω
1(U0 ∩U1,U0 ∩U1 ∩Y )→ 0.

(12.4)

Here, for the differential of the double complex, we choose the sign rule defined in
[MV21, page 29]. In particular, we have

H1
dR(X ,Y ) =

{((ω0,α0),(ω1,α1), f01) | d f01 = ω1|U01 −ω0|U01 , f01|Y = α1|U10 −α0|U10}
{((d f0, f0|Y∩U0),(d f1, f1|Y∩U1), f1|U01 − f0|U01)}

(12.5)

where fi ∈ Ω 0(Ui), f01 ∈ Ω 0(U0 ∩U1),(ωi,αi) ∈ Ω 1
(X ,Y )(Ui,Ui ∩Y ) and U01 =U0 ∩

U1.

Proposition 12.1 For a ̸= 0, we can choose a basis of H1
dR((X ,Y )/k) as follows:

1. ((0,0),(d f ,0), f |U01), where f = x−a
x ;

2. (( dx
y |U0 ,0),(

dx
y |U1 ,0),0), where dx

y is a holomorphic 1-form on X;

3. (( xdx
y ,0),( xdx

y +dg,g|Y ),g|U01), where g =− y
2x .
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Proof. For the second and third item, they form a basis of H1
dR(X/k) and the details

can be found in [Mov12, Proposition 2.4]. For the first one, it is enough to show
that this element is not zero in H1

dR((X ,Y )/C). If this is not true, then we can write
((0,0),(d f ,0), f |U01) as

((d f0, f0|Y∩U0),(d f1, f1|Y∩U1), f1|U01 − f0|U01).

Then f0 = 0 and hence f1 = f . However the infinite point O ∈Y ∩U1 and f (O) = 1,
which is a contradiction with f1|Y∩U1 = 0.

12.4 Meromorphic forms without residues

In this section we provide another algebraic interpretation of the relative de Rham
cohomology. It depends on the choice of an affine chart U containing Y = {O,P}.
The advantage of this description is that the Gauss-Manin connection becomes much
simpler to compute and it can be used to integrate elements of algebraic de Rham
cohomologies over paths.

Proposition 12.2 Let U ⊆ X be an affine open set such that Y ⊆U and take U0 :=
X −{O}, U1 =U as a covering of X. We have the isomorphism given by

H1
dR(X ,Y )∼=

ω ∈ Γ (Ω 1
U ) without residues on X −U

exact forms d f with f |Y = 0
. (12.6)

given by
((ω0, f0),(ω1, f1), f01) 7→ ω1 +( f1(P)− f1(O))d f

where f is any regular function in U with f (P) = 0 and f (O) = 1.

Proof. The proof in [CMV24][Proposition 2.4, Proposition 2.5] is not elementary.
It must be rewritten.

Under the isomorphism (12.6), we may choose the basis of the relative de Rham
cohomology directly rather than using the representatives in the Čech complex. This
will be useful when we compute the Gauss-Manin connection later. Depending on
the coordinates of the point P, we choose the following basis on H1

dR(X ,Y ):

d
(

x−a
x

)
,

dx
y
,

xdx
y

−d
( y

2x

)
− b

2a
d
(

x−a
x

)
, a ̸= 0, (12.7)

d
(

x−a
x−1

)
,

dx
y
,

xdx
y

−d
(

y
2(x−1)

)
− b

2(a−1)
d
(

x−a
x−1

)
, a ̸= 1.

Note that for a ̸= 0 we are considering U = (X −{x = 0})∪{O}, while for a ̸= 1
we take U = (X −{x = 1})∪{O}. The first differential form ω1 = d f is chosen
in such a way that f (O) = 1, f (P) = 0. Note also that the correction of xdx

y with
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an exact differential form kills its pole at O. The computations are similar as in
[Mov12, Section 2.8]. We remark that when a ̸= 0,1 both basis are equal in the
right hand side of (12.6) for U = (X −{x(x − 1) = 0})∪ {O}. For instance, the
difference of the third element in both basis is an exact differential form dg with
g(P) = g(O) = b

2a −
b

2(a−1) .
For the general definition of cup product in relative algebraic de Rham coho-

mology see [CMV24, Section 3]. In thi section we explain what it is in the case of
elliptic curves. We choose the affine open cover {U0,U1,U01} of the smooth projec-
tive curve and ake two elements (ω,α) and (ν ,β ) which are represented as

((ω0,α0),(ω1,α1),ω01),((ν0,β0),(ν1,β1),ν01).

We have

(ω0 ∧ν0,−ω0|Y ∧β0),(ω1 ∧ν1,−ω1|Y ∧β1),(−ω0 ∧ν01 +ω01 ∧ν1,−ω01|Y ∧β1)

In particular, using the basis ωi, i = 1,2,3 of H1
dR((X ,Y )/C) given in 12.1, we get

that

ω1 ∪ω2 =

(
(0,0),

(
d f ∧ dx

y
,0
)
,

(
(x−a)dx

xy
,0
))

, (12.8)

ω1 ∪ω3 =

(
(0,0),

(
d f ∧ xdx

y
,0
)
,

(
(x−a)dx

y
,0
))

, (12.9)

ω2 ∪ω3 =

(
(0,0),(0,0),

(
−dx

2x
,0
))

(12.10)

We have the composition

H1
dR(X ,Y )×H1

dR(X ,Y )→ H2
dR(X ,Y )→ H2

dR(X)
Tr→ C (12.11)

which gives us the bilinear map

⟨·, ·⟩ : H1
dR(X ,Y )×H1

dR(X ,Y )→ C,

which is called the relative trace map. We find that

⟨ω2,ω3⟩=−⟨ω3,ω2⟩= 1,

and the others are zero. Here we used the fact that the trace map is the residue of
ω01 around the infinite point, see for instance [Mov12, Page 19].

12.5 Mixed Hodge structures

The following definition is the outcome of a general definition of mixed Hodge
structures.
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Definition 12.3 The polarized mixed Hodge structure in H1(X ,Y ) consists of the
following data:

1. The Hodge filtration

0 =: F2 ⊂ F1 = Holomorphic differential 1-forms in X ⊂ F0 := H1
dR(X ,Y )

2. The weight filtration

0 =: W−1 ⊂W0 := ker(H1
dR(X ,Y )→ H1

dR(X))⊂W1 := H1
dR(X ,Y ).

3. The bilinear map (polarization) H1
dR(X ,Y )×H1

dR(X ,Y )→ k.

The one dimensional vector space is generated by (2) and W0 is generated by (1).
We also need the mixed Hodge structure in H1

dR(X −Y ):

1. The Hodge filtration

0 =: F2 ⊂ F1 ⊂ F0 := H1
dR(X −Y )

where F1 is generated by regular differential 1-forms in X −Y with pole order
≤ 1 along Y .

2. The weight filtration

0 =: W0 ⊂W1 := Im(H1
dR(X)→ H1

dR(X −Y ))⊂W2 := H1
dR(X ,Y ).

A basis of H1
dR(X −Y ) is given by

dx
y
,

xdx
y

,
1
2

y+b
x−a

dx
y
.

W1 (resp. F1) is generated by dx
y ,

xdx
y (resp. dx

y ,
1
2

y+b
x−a

dx
y ).

We would like to have a four dimensional vector space H1
dR(X −Y,Y ) canonically

attached to (X ,Y ) with filtrations

W0 ⊂W1 ⊂W2 = H, 0 = F2 ⊂ F1 ⊂ F0 = H1
dR(X −Y,Y )

such that W1/W−1 ∼= H1
dR(X ,Y ) and W2/W0 ∼= H1

dR(X −Y ) are ismorphism of mixed
Hodge structures. The main issue is how to choose ω3 ∈W2/W1 and define

H1
dR(X −Y,Y ) = H1(X ,Y )⊕Cω3.

We choose ω3 ∈ F1H1
dR(X −Y ) and assume that it has residue +1 at P. We have the

freedom ω1 ∈ W1 ∩F1 which is one dimensional. Therefore, we fix a parameter s
and consider ω3 + sω1.

Further, we would like to have a pairing ⟨·, ·⟩ : H1
dR(X −Y,Y )×H1

dR(X −Y,Y )→
C which coincides with the canonical pairing of W1 and it is symplectic. We choose
a basis ω0,ω1,ω2 of H1

dR(X ,Y ) with the intersection matrix
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[⟨ωi,ω j⟩]i, j=0,1,2 :=

0 0 0
0 0 1
0 −1 0

 .

Let

[⟨ωi,ω j⟩]i, j=0,1,2,3 :=


0 0 0 a0
0 0 1 a1
0 −1 0 a2

−a0 −a1 −a2 0

 .

where ai’s are unknown quantities depending only on a,b, t2, t3. In order to find a
symplectic basis, we must replace ω3 with ω3

a0
which changes the residue of ω3

at P3. Therefore, a0 must be necessarily 1. Moreover, we replace ω3 with ω3 −
a1ω2+a2ω1 in order to get the symplectic basis. The computations in Section 12.12
suggests that for

ω0 = d
(

x−a
x

)
, ω1 :=

dx
y
, ω2 =

xdx
y

−d
( y

2x

)
, ω3 =

1
2

y+b
x−a

dx
y
. (12.12)

we must have:

[⟨ωi,ω j⟩]i, j=0,1,2,3 :=


0 0 0 1
0 0 1 0
0 −1 0 b

2a
−1 0 − b

2a 0

 .

Recall that ω3 has a one dimensional freedom. If we change ω3 to ω3+sω1, in order
to have the same cup product as before, and in particular ⟨ω3,ω2⟩ unchanged, we
must replace ω2 with ω2 + sω0. Note that multilication of ω3 by a constant is not
allowed. We call again these elements ω3 and ω2 and keep in mind that it depends
on a parameter s.

In the 4 dimensional space H1
dR(X −Y,Y ) the weight filtration comes from limit

mixed Hodge structure, see [Sch73]. The monodromy matrix is topological and can
be written as I +N, where I is the identity matrix and N is the nilpotent matrix
with N14 = 1 and elsewhere zero (N2 = 0). The nilpotent matrix N acts on H and
W0 = Im(N) and W1 = ker(N).

12.6 The moduli space T

In this section we introduce a new enhancement of an elliptic curve which is a
combination of enhancement with elements of the relative de Rham cohomology
H1(X ,Y ) in [CMV24] and enhancement with differential forms with simple poles
in Y which produces Picard curious example in [Mov22b, Section 10]. This has been
elaborated in [CM24]

Definition 12.4 An enhanced elliptic curve with two marked points is the data



200 12 Jacobi forms

(X ,Y ), [α0,α1,α2,α4]

where Y = {O,P}, P ̸= O and α0,α1,α2,α3 form a basis of H1
dR(X −Y,Y ) com-

patible with the mixed Hodge structure and with constant intersection matrix. This
means that α0 ∈W0,α1 ∈ F1 ∩W1, α2 ∈W1, α3 ∈W2 such that

[⟨αi,α j⟩]i, j=0,1,2,3 :=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 (12.13)

and
ResiPα3 =+1.

The following algebraic group acts on T.

G=




1 0 v u
0 k k′ vk
0 0 k−1 0
0 0 0 1

 ,k′,v,u ∈ C,k ∈ C∗

 ,

It acts on the enhancement [α0,α1,α2,α3] by usual multiplication from the right:

[α0,α1,α2,α3]g = [α0,kα1,vα0 + k′α1 + k−1
α2,wα0 + kvα1 +α3]

In order to construct the moduli space T we start with the the Weierstrass familly and
the basis ω0,ω1,ω2 in Proposition 12.1. Recall that with ω̃3 := ω3 + a1ω2 − a2ω1,
the intersection matrix in this basis is already of the desired format (12.13) and it
is compatible with the mixed Hodge structure. The most general basis compatibel
with MHS is given by Sω , where

1 0 0 0
0 1 0 0

c− b
2a t1 1 0

d c− b
2a 0 1

 ,

The zeros in this matrix are due to the compatibility with MHS and the equality of
(3,1) and (4,2) is due to ⟨α2,α3⟩= 0. The correction of c with b

2a is due to the fact
that the corrected c will turn out to be log derivative of Jacobi theta function. We
will use the letter d and we hope that it will not be confused with the differential.
We have proved:

Proposition 12.3 We have

T := Sepc k[a,b,c,d,e, t1, t2,
1
∆
]

and the universal family of enhanced elliptic curves over T exists and it is given by



12.7 Self-similar homology 201

X : y2 = 4x3 − t2x− t3,P = (a,b),

α0 :=
[

d
(

x−a
x

)]
,α1 :=

[
dx
y

]
,

α2 =

[(
c− b

2a

)
α0 + t1

dx
y
+

xdx
y

−d
( y

2x

)]
,

α3 :=
1
2

y+b
x−a

dx
y
+ cα1 +d ·α0.

Proposition 12.4 The group action of G on the coordinates (a,b,c,d, t1, t2) ∈ T is
given by

(a,b,c,d, t1, t2)→ t •g = (k−2a,k−3b,v+ k−1c,d +w+u,k−1k′+ k−2t1,k−4t2).

Proof. The proof is just a mere computation. Let

α : C2 → C2, (x,y) 7→ (k2x,k3y)

and f = y2 −4x3 + t2x+ t3. We have

k−6
α
∗( f ) = y2 −4x3 + t2k−4x+ t3k−6.

This implies that α induces an isomorphism

(Et2k−4,t3k−6 ,ω0,k−1
ω1,kω2,ω3,(k−2a,k−3b))→ (E(t2,t3),ω0,ω1,ω2,ω4,(a,b))

which implies that

(Et2,t3 ,g
tr

α)= (Et2,t3 ,g
trS(a,b,c, t1,d)ω)= (Et2k−4,t3k−6 , g̃S(k−2a,k−3b,ck−1,k−2t1,d)ω)

where

g̃ =


1 0 v w
0 1 k−1k′ v
0 0 1 0
0 0 0 1



12.7 Self-similar homology

Let (X ,O) be an elliptic curve, P ∈ X with P ̸= O and Y = {O,P}. Let also

φ : X → X , φ(Q) = Q+P

be the translation function (and hence φ(O) = P).
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Fig. 12.1 Self-similar paths

Fig. 12.2 Homology of self-similar paths

Definition 12.5 A path δ in X with boundaries at Y is called self-similar if near to
O and P it behaves the same, that is, the pull-back of δ near P by φ is minus δ near
O, see Figure 12.1.

For instance, if the self-similar path turns N-times around O anticlockwise before
departing to P, then when it reaches P it must turn N-times around P clockwise
before ending in P.

For simplicity, we take an anticlockwise oriented loop δO around O and define
δP := φ∗δO. For two self-similar paths δ and δ̃ we construct a closed path δ − δ̃ in
X −Y in the following way. Near to O we take the point ε̃ (resp. ε) of intersection
between δ̃ (resp. δ ) and δO. The closed path δ − δ̃ is as follows. It start from ε̃ goes
along δO until ε , then along δ until P+ ε , then along δP until the point P+ ε̃ and
returns back to ε̃ along −δ̃ . We say that δ and δ̃ are homologous if the closed path
δ − δ̃ is homologous to zero in X −Y . Note that the pieces of δ − δ̃ on the paths δO
and δP are not mapped to each other under φ . Under the identification δP = φ∗δO,
these pieces forming the full loop δO. The homology of self-similar paths is an
equivalence relation.
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Fig. 12.3 Four paths

Definition 12.6 The self-similar homololgy is defined in the following way:

H1(X −Y,Y ) :=
Z-module generated by self-similar paths

Z-module of homologous to zero self-similar paths

Proposition 12.5 The self-similar homology H1(X −Y,Y ) is a free Z-module of
rank 4.

Proof. We fix paths δ0,δ1,δ2,δ3 in X as follows: δ0 is a self-similar path from O to
P, δ3 is an anticlockwise loop arround P, and δ1,δ2 are closed loops in X −Y which
from a basis of H1(X ,Z). We prove that H1(X −Y,Y ) is freely generated by these
four paths. write more details.

12.8 Self-similar cohomology

Definition 12.7 Let ω be a meromorphic differential i-form (i = 0,1) in X with
order M at O and P (if M is negative −M is pole order and if M ≥ 0 this is zero
order). It might have other poles. Let N ∈ N. We say that ω is N-th self similar at
O and P if φ ∗ω −ω has order ≤ M +N at O (if M is negative then the pole order
decreases by N). In case ω has poles at P (M < 0), we say that ω is self similar if it
is −M-th self similar, that is φ ∗ω −ω is holomorphic at O.

For i = 0, that is ω = f is a rational function, and M = 0, that is f is holomorphic at
O,P, and N = 1, the N-th self similarity is equivalent to f (O) = f (P). This has been
used in the definition of relative de Rham cohomology. Moreover, if f is a rational
function in X with pole at P of order M and homomorphic at 2P then φ ∗ f + f
is self semilar. Anothr example of self-similar differential forms is a holomorphic
differential form in X .

Definition 12.8 The self similarity cohomology is defined as follows:
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H1
dR(X −Y,Y ) :=

{ω ∈ Ω 1(∗Y ) | ω is residue free self similar}
{d f |d f is (−M+1)-th self similar}

.

where M is the order of f at Y . Here residue free, means that ω has residue zero
except at O and P.

The main reason for defining self-similar differential forms is that their integration
over self-similar paths is well-defined. Recall that a self similar path γ can be written
as γ̃ = γ1 + γ2 + γ3, where the path γ3 is the image of γ1 under the translation φ but
with the oposite direction, see Figure 12.1.

Proposition 12.6 For a self-similar differential 1-forms ω the following limit exists:∫
γ

ω := lim
ε→O

∫
γ2

ω

Proof. The proposition has been inspired by the following not so rigorous equalities
(the first integral diverges at both ends of its domain):∫

γ

ω =
∫

γ1

ω +
∫

γ2

ω +
∫

γ3

ω

=
∫

γ1

ω +
∫

γ2

ω −
∫

γ1

φ
∗
ω

=
∫

γ2

ω −
∫

γ1

(φ ∗
ω −ω)

In order to make this rigorous we observe that the last quantity is a well-defined
integral and it does not depend on ε . Moreover, φ ∗ω −ω is holomorphic in a neigh-
borhood of O and hence limε→O

∫
γ1

ω = 0.

Proposition 12.7 We have the following:

1. A meromorphic function f is self-similar if and only if d f is self-similar. For a
self-similar exact 1-form d f we have:∫ P

O
d f = (φ ∗ f − f )(O).

2. For a meromorphic function f on X, the 1-form d f
f is self-similar if it has the

same order at O and P and:∫ P

O

d f
f

∈ ln(
φ ∗ f

f
(O))+2πiZ.

3. A meromorphic 1-form with poles of order 1 at O and P (and other poles of
arbitrary order in other points) is self-similar if and only if it has the same residue
at O and P.

4. For the Weierstrass coordinates x,y of X and P = (a,b), the following differential
form is self-similar
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y+b
x−a

dx
y
− dx

x
.

Proof. The first part is a direct consequence of the definition. Observe that the inte-
gration is f (ε +P)− f (ε) = φ ∗ f (ε)− f (ε). The proof of the second part is similar.
Note that the integral is defined up to 2πiZ which is due to other poles and zeros of
f .

Remark 12.2 The topic of the present section might be considered as a gener-
alization of Cauchy principal value. Note that the way we would like to have
∞−∞ = 0 highly depends on self-similar differential forms and choice of points
ε and ε +P which converge to O and P, repectively. We could also take the mor-
phism X → X , Q 7→ 2Q for a computation of an integral from P to 2P. All these
choices might result in different values. The following easy examples taken from
Wikipedia explain this in an elementary way:

lim
a→∞

∫ a

−a

2xdx
x2 +1

= 0, lim
a→∞

∫ a

−2a

2xdx
x2 +1

=− ln4.

Thanks to Y. Nikdelan, R. Villaflor and IGADPEs team for the remark.

12.9 Gauss-Manin connection of self-similar integrals

The Gauss-Manin connection of differential forms with poles and residues at O
and P is closely related to Picard’s curious example which has been formulated
in [Mov22b, Section 10]. We reproduce the computation in this reference with the
data of exact forms so that we can glue the Gauss-Manin connection of the open and
relative cohomologies H1

dR(X −Y ) and H1
dR(X ,Y ). Let

ω0 := d
(

x−a
x

)
, ω1 :=

dx
y
, ω2 :=

xdx
y

−d
( y

2x

)
, ω3 :=

1
2

y+b
x−a

dx
y
. (12.14)

The differential form ω3 has a simple pole at O and P with residues −1 and +1,
respectively.

Definition 12.9 Even though the integration of differential 1-form ω3 over a path
from O to P is divergent, we define∫ P

O
ω3 :=

∫
δ0

(
ω3 −

dx
x

)
+ ln(a). (12.15)

Note that ω3 − dx
x has simple poles at O and P with residues both equal to +1. The

path of integration δ0 : [0,1] → X , δ0(0) := O,δ0(1) = P is self-similar, that is, it
is taken in such a way that for ε a positive number near to 0 we have δ0(ε)+P =
δ0(1− ε), see Figure 12.4. Note that the first plus sign refers to the group structure
of the elliptic curve. This choice of δ0 implies that the integration of ω3 − dx

x over
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δ0 is convergent. The correction ln(a) is actually
∫ P

O
dx
x = ln(a)−∞, and we have

removed the evaluation of ln at O which is infinity. We choose a in a neighborhood
of a point in R+ and ln(a) takes real values for a positive real number.

Proposition 12.8 For the family of elliptic curve

X : y2 = 4(x3 −a3)− t2(x−a)+b2, (12.16)

we have

d
(∫ P

O

(
1
2

y+b
x−a

dx
y

))
= B30 +B31 ·

∫ P

O

(
xdx
y

−d(
y

2x
)

)
+B32 ·

∫ P

O

dx
y
, (12.17)

where d is the differential of holomorphic functions in (a,b, t2) ∈ C3 and B3i, i =
0,1,2,3 are given by

2ab∆B30 = (24t22 a2b−360t2a4b+63t2ab3 +864a6b−324a3b3 +27b5)da

+(2t32 a−54t22 a3 +2t22 b2 +432t2a5 −90t2a2b2 −864a7 +360a4b2 −36ab4)db

− 1
2
(2t22 ab−30t2a3b+3t2b3 +72a5b−18a2b3)dt2

∆B31 =
−1
2

(3t22 b+54t2a2b−216a4b+54ab3)da

−(2t22 a−30t2a3 +3t2b2 +72a5 −18a2b2)db+
9t2ab−36a3b+9b3

4
dt2

∆B32 = (45t2ab−108a3b+27b3)da+(2t22 −30t2a2 +72a4 −18ab2)db−
3t2b

2
dt2

Proof. We first do the following easy hand computation:

∂

∂a

∫ P

O

1
2

y+b
x−a

dx
y

=
∫ P

O

−3b(x+a)dx
y3

∂

∂b

∫ P

O

1
2

y+b
x−a

dx
y

=
∫ P

O

(2(x2 +ax+a2)− 1
2 t2)dx

y3 (12.18)

∂

∂ t2

∫ P

O

1
2

y+b
x−a

dx
y

=
∫ P

O

1
4 b dx

y3

For instance, we explain the first equality which has also the contribution from the
domain of integration. We skip the integral sign which is from δ0(ε) to P+δ0(ε) =
δ0(1− ε) and the exact terms d f means f (P+ δ0(ε))− f (δ0(ε)). At the end of
computation we see that the limit under ε → 0 exists.
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∂

∂a

∫ y+b
x−a

dx
y

=
∂

∂a

∫ (y+b
x−a

dx
y
− dx

x

)
+

1
a

= d(
y+b
x−a

1
y
− 1

x
)+

∂

∂a

(
1

x−a
y+b

y

)
dx+

1
a

= d(
y+b
x−a

1
y
)+

1
(x−a)2 (1+

b
y
)dx+

1
x−a

−b
2

∂ p
∂a
y3 dx

=
b

x−a
d(

1
y
)+

1
x−a

−b
2

∂ p
∂a
y3 dx

=
−1
2

b
x−a

(
∂ p
∂x +

∂ p
∂a

y3

)
dx

Knowing that ∂ p
∂x +

∂ p
∂a = 12(x−a)(x+a) we get the result. From the second equality

on, we have to add the evaluation of y+b
x−a

1
y −

1
x at δ0(ε). Since under ε → 0 it is zero,

we have not written this term. The evaluation of y+b
x−a

1
y −

1
x at O is zero, that is why we

have written differential of this function instead of its evaluation at P+ δ0(ε). The
integration of −d( 1

x ) over the path δ0 cancels with 1
a . For derivations with respect

to s := t2,b we have ∂ lna
∂ s = 0, and in these cases there are no exact terms.

Exercise 12.2 Prove the the last two equalities in (12.18).

In the next all the equalities are written restricted to the elliptic curve. We have

d(xay) =
(
(4a+6)xa+2 − (a+

1
2
)t2xa −at3xa−1

)
dx
y
.

and write

x2dx
y

=
1

12
t2

dx
y
+d(

y
6
),

x3dx
y

=
1

10
t3

dx
y
+

3
20

t2
xdx
y

+d(
xy
10

)

x4dx
y

=
5

336
t2
2

dx
y
+

1
7

t3
xdx
y

+d(
1

14
x2y+

5
168

t2y)

x5dx
y

=
1

30
t2t3

dx
y
+

7
240

t2
2

xdx
y

+d(
1

18
x3y+

7
360

t2xy+
1
36

t3y).

This is formulated in Proposition 9.2 and Exercise 9.3. Moreover, for a polynomial
A ∈ C[x] we have
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Adx
y3 =

1
∆

A(−p′a1 + pa2)dx
py

=
1
∆

(
a2A

dx
y
− Aa1

y
dp
p

)
=

1
∆
(a2A

dx
y
+2Aa1d(

1
y
))

=
1
∆

(
a2A−2

∂

∂x
(Aa1)

)
dx
y
+

1
∆

d
(

2Aa1

y

)
=

1
∆

(
A1

dx
y
+A2

xdx
y

)
+

1
∆

d(yB)+
1
∆

d(
2Aa1

y
)

=
1
∆

(
A1

dx
y
+A2

(
xdx
y

−d(
y

2x
)

))
+

1
∆

(
d
(

2xpB+4xAa1 +A2 p
2yx

))
This is formulated in Proposition 3.7. As it is expected, the polynomial

C := 2xpB+4xAa1 +A2 p

for our three examples of A are of degree ≤ 2 and so C
2yx evaluated at O is 0. We

summarize our computations as follows:

A =−3b(x+a), A1 =
−1
2

(3t22 b+54t2a2b−216a4b+54ab3), A2 = (45t2ab−108a3b+27b3)

C = −(6t22 b+108t2a2b−432a4b+108ab3) · x2 − (15t22 ab−36t2a3b+9t2b3) · x

+(45t22 a2b−288t2a4b+72t2ab3 +432a6b−216a3b3 +27b5)

A =
1
2
(4(x2 +ax+a2)− t2), A1 =−(2t22 a−30t2a3 +3t2b2 +72a5 −18a2b2), A2 := (2t22 −30t2a2 +72a4 −18ab2)

C = −(8t22 a−120t2a3 +12t2b2 +288a5 −72a2b2) · x2 − (8t22 a2 −120t2a4 +30t2ab2 +288a6 −144a3b2 +18b4) · x

+(2t32 a−38t22 a3 +2t22 b2 +192t2a5 −48t2a2b2 −288a7 +144a4b2 −18ab4)

A =
b
4
, A1 =

9t2ab−36a3b+9b3

4
, A2 :=−

3t2b
2

C = (9t2ab−36a3b+9b3) · x2 +
t22 b

2
· x−

3t22 ab−12t2a3b+3t2b3

2

12.10 Gauss-Manin connection in relative cohomology

In order to compute the Gauss-Manin connection in relative cohomology we first
recover the exact terms produced in the computation of the usual Gauss-Manin con-
nection in Proposition 3.4.

Proposition 12.9 We have d
(∫ P

O

dx
y

)
d
(∫ P

O

(
xdx

y −d( y
2x )
))

=

− 1
12

d∆

∆
, 3

2
α

∆

− 1
8 t2 α

∆
, 1

12
d∆

∆




∫ P

O

dx
y∫ P

O

(
xdx

y −d( y
2x )
)
−

B21

B31

 ,

(12.19)
where
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B21 =
1
∆
(g1dt2 +g2dt3)−

da
b
, (12.20)

B31 =
1
∆
(g3dt2 +g1dt3)−

ada
b

+d
(

b
2a

)
g1 =

−2a2t2
2 +3at2t3 +9t2

3
4ab

, (12.21)

g2 =
18a2t3 −at2

2 −3t2t3
2ab

,

g3 =
6a2t2t3 +(18t2

3 − t3
2 )a− t2

2 t3
8ab

.

Proof. First, we note the following equalities:

∂

∂a

∫ P

O

xidx
y

=
∫ P

O
d(

xi

y
)+

∫ P

O

−1
2

∂ p
∂a xi

y3 dx

∂

∂ s

∫ P

O

xidx
y

=
∫ P

O

−1
2

∂ p
∂ s xi

y3 dx, s = t2,b.

We only consider i = 0,1 for which xi

y (O) = 0. Moreover,

∂

∂a

∫ P

O

(
xdx
y

−d(
y

2x
)

)
=
∫ P

O

(
d(

x
y
)−d(

∂y
∂x x− y

2x2 )

)
+
∫ P

O

(
−1
2

∂ p
∂a x

y3 dx−d(
1
2

∂ p
∂a

2xy
)

)

=
∫ P

O
d
(

D
2x2y

)
+
∫ P

O

(
−1
2

∂ p
∂a x

y3 dx−d(
1
2

∂ p
∂a

2xy
)

)

where

D := 2x3 − 1
2

∂ p
∂x

x+ p =− t2
2

x+ t2a−4a3 +b2

Now we use Proposition 3.7 in order to finish the computation.

12.11 Gluing Gauss-Manin connections

The Gauss-Manin connection matrix in the basis (12.14) is given by

∇


ω0
ω1
ω2
ω3

=


0 0 0 0

B10 B11 B12 0
B20 B21 B22 0
B30 B31 B32 0




ω0
ω1
ω2
ω3


where the submatrix {0,1,2}×{0,1,2} corresponds to the Gauss-Manin in ω0,ω1,ω2 ∈
H1

dR(X ,Y ) and the submatrix {1,2,3}× {1,2,3} corresponds to Gauss-Manin in
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Fig. 12.4 Four paths

ω1,ω2,ω3 ∈ H1
dR(X −Y ). Recall the definition of αi’s in (12.24). The Gauss-Manin

connection matrix in this basis is given by A, where the first and last column of A
are zero and its last row is given by:

A30 = (−B30 + cA10 − (c− b
2a

)B32 +d(d)),

A31 = B31 −B32t1 +dc+ cA11,

A32 = (B32 + cA12)α2.

This follows from ∇(ω3) =−B30ω0 +B31ω1 +B32ω2 and

∇(α3) = ∇(ω3 + cα1 +d ·α0)

= (−B30 − (c− b
2a

)B32 + cA10 +d(d))α0 +(B31 −B32t1 +dc+ cA11)α1

+(B32 + cA12)α2

Note that α2 = (c− b
2a )α0 + t1 dx

y +ω2. We note that A is integrable, that is,

dA= A∧A.

//--the procedure for writing P(x)dx/y in terms of dx/y and xdx/y with exact terms--
proc linearw(poly A, number t(2), number t(3))

{
int i=deg(A) div deg(var(1)); poly B=A; poly exact; poly LM; list Bl;
while (i>1)

{LM=lasthomo(B);
B=B-LM+leadcoef(LM)*((i-2+1/2)/number(4*(i-2)+6)*t(2)*var(1)ˆ(i-2));
if (i>2){B=B+leadcoef(LM)*(i-2)/number(4*(i-2)+6)*t(3)*var(1)ˆ(i-2-1);}
exact=exact+leadcoef(LM)*(1/number(4*(i-2)+6)*var(1)ˆ(i-2));
i=deg(B) div deg(var(1));

}
Bl=subst(B,var(1),0), subst(B,var(1),1)-subst(B,var(1),0);
return(list(Bl, exact));
}

//--Simplifying the integrand after derivation--
proc hum(poly A, poly a1, poly a2)

{
A=A*a2-2*diff(A*a1,x);
return(A);
}

//---Computing the 4*4 Gauss-Manin connection matrix--------------------------
LIB "foliation.lib";
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ring r=(0,t(1),t(2),a,b,c,d), (x, dt(1), dt(2), da,db,dc, dd),dp;
number t(3)=4*aˆ 3-t(2)*a-bˆ2; poly P=4*xˆ3-t(2)*x-t(3);
poly a1=-36*xˆ4+(15*t(2))*xˆ2-t(2)ˆ2; poly a2=(-108)*xˆ3+(27*t(2))*x+(-27*t(3));
number Delta=(-t(2)ˆ3+27*t(3)ˆ2); -diff(P,x)*a1+P*a2-Delta;
matrix B[4][4]; matrix A[4][4]; //Gauss-Manin connection matrices--
//---These are obtained after derivation of (y+b)/(2y(x-a))--
poly Aa=-6*b*(x+a)*(1/2);
poly Ab=(4*(xˆ2+a*x+aˆ2)-t(2))*(1/2);
poly At2=(b/2)*(1/2);
list la=linearw(hum(Aa,a1,a2), t(2),t(3));
list lb=linearw(hum(Ab,a1,a2), t(2),t(3));
list lt2=linearw(hum(At2,a1,a2), t(2),t(3));
poly Ca=2*var(1)*(P*la[2]+2*Aa*a1)+P*la[1][2];
poly Cb=2*var(1)*(P*lb[2]+2*Ab*a1)+P*lb[1][2];
poly Ct2=2*var(1)*(P*lt2[2]+2*At2*a1)+P*lt2[1][2];
B[4,1]=subst(Ca,var(1),a)*da+subst(Cb,var(1),a)*db+subst(Ct2,var(1),a)*dt(2);
B[4,2]=la[1][1]*da+lb[1][1]*db+lt2[1][1]*dt(2);
B[4,3]=la[1][2]*da+lb[1][2]*db+lt2[1][2]*dt(2);
B[4,1]=(1/Delta)*(1/(2*a*b))*B[4,1];
B[4,2]=(1/Delta)*B[4,2]; B[4,3]=(1/Delta)*B[4,3];
//------B[4,1]=B[4,1]+db/b;
B[4,1]=-B[4,1];
//--The Gauss-Manin connection of the relative cohomology--
Aa=(-1/2)*diffpar(P,a);
Ab=(-1/2)*diffpar(P,b);
At2=(-1/2)*diffpar(P,t(2));
la=linearw(hum(Aa,a1,a2), t(2),t(3));
lb=linearw(hum(Ab,a1,a2), t(2),t(3));
lt2=linearw(hum(At2,a1,a2), t(2),t(3));
Ca=Delta*2*var(1)+ 2*var(1)*(P*la[2]+2*Aa*a1)+P*la[1][2];
Cb= 2*var(1)*(P*lb[2]+2*Ab*a1)+P*lb[1][2];
Ct2= 2*var(1)*(P*lt2[2]+2*At2*a1)+P*lt2[1][2];
B[2,1]=subst(Ca,var(1),a)*da+subst(Cb,var(1),a)*db+subst(Ct2,var(1),a)*dt(2);
B[2,2]=la[1][1]*da+lb[1][1]*db+lt2[1][1]*dt(2);
B[2,3]=la[1][2]*da+lb[1][2]*db+lt2[1][2]*dt(2);
B[2,1]=(1/Delta)*(1/(2*a*b))*B[2,1]; B[2,2]=(1/Delta)*B[2,2]; B[2,3]=(1/Delta)*B[2,3];
B[2,1]=-B[2,1];
//---------
Aa=(-1/2)*diffpar(P,a)*var(1);
Ab=(-1/2)*diffpar(P,b)*var(1);
At2=(-1/2)*diffpar(P,t(2))*var(1);
la=linearw(hum(Aa,a1,a2), t(2),t(3));
lb=linearw(hum(Ab,a1,a2), t(2),t(3));
lt2=linearw(hum(At2,a1,a2), t(2),t(3));
poly D=2*var(1)ˆ3-(1/2)*diff(P,var(1))*var(1)+P;
Ca= -(1/2)*diffpar(P,a)*Delta+ 2*var(1)*(P*la[2]+2*Aa*a1)+P*la[1][2];
Cb= -(1/2)*diffpar(P,b)*Delta+ 2*var(1)*(P*lb[2]+2*Ab*a1)+P*lb[1][2];
Ct2=-(1/2)*diffpar(P,t(2))*Delta+2*var(1)*(P*lt2[2]+2*At2*a1)+P*lt2[1][2];
B[3,1]=(subst(Ca,var(1),a))*da+subst(Cb,var(1),a)*db+subst(Ct2,var(1),a)*dt(2);
B[3,1]=(1/(Delta*2*a*b))*B[3,1]+(subst(D,var(1),a)/(2*aˆ2*b))*da;
B[3,1]=-B[3,1];
B[3,2]=la[1][1]*da+lb[1][1]*db+lt2[1][1]*dt(2);
B[3,3]=la[1][2]*da+lb[1][2]*db+lt2[1][2]*dt(2);
B[3,2]=(1/Delta)*B[3,2]; B[3,3]=(1/Delta)*B[3,3];
//--Computing the Gauss-Manin connection matrix B--

matrix S[4][4]=1,0,0,0,0,1,0,0,c-b/(2*a),t(1),1,0,d,c,0,1; matrix Si=inverse(S);
matrix A[4][4]=diffpar(S,d)*Si*dd+ diffpar(S,t(1))*Si*dt(1)+ diffpar(S,c)*Si*dc+
diffpar(S,a)*Si*da+diffpar(S,b)*Si*db+S*B*Si;
//----Checking the integrability of A--
list ll=diff(A,da), diff(A,db), diff(A,dc), diff(A,dd), diff(A,dt(1)), diff(A,dt(2));
list lv=a,b,c,d,t(1),t(2); int i; int j;
for (i=1; i<=6; i=i+1)

{for (j=i+1; j<=6; j=j+1)
{
i,j;
print(diffpar(ll[j],lv[i])-diffpar(ll[i],lv[j])-ll[i]*ll[j]+ll[j]*ll[i]);
}

}
//--Computing modular vector field--
matrix Cz[4][4]=0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0; print(Cz);
matrix Ct[4][4]=0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0; print(Ct);
ideal I=A-Cz; I=std(I); list lz;
lz=reduce(da,I),reduce(db,I),reduce(dc,I),reduce(dd,I),reduce(dt(1),I),reduce(dt(2),I);lz;
ideal I=A-Ct; I=std(I); list lt;
lt=reduce(da,I),reduce(db,I),reduce(dc,I),reduce(dd,I),reduce(dt(1),I),reduce(dt(2),I);lt;
//----Check local embedding of the period map--
matrix lobi[3][3]=-2*a,-3*b, -4*t(2),lz[1],lz[2],lz[6],lt[1],lt[2],lt[6];
det(lobi)-2/3*Delta;
//----Other vector fields four vector fields--
matrix C1[4][4]=0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0; print(C1); ideal I=A-C1; I=std(I);
reduce(da, I),reduce(db, I), reduce(dc, I), reduce(dd, I), reduce(dt(1), I), reduce(dt(2), I);
matrix C2[4][4]=0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0; print(C2); ideal I=A-C2; I=std(I);
reduce(da, I),reduce(db, I), reduce(dc, I), reduce(dd, I), reduce(dt(1), I), reduce(dt(2), I);
matrix C3[4][4]=0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0; print(C3); ideal I=A-C3; I=std(I);
reduce(da, I),reduce(db, I), reduce(dc, I), reduce(dd, I), reduce(dt(1), I), reduce(dt(2), I);
matrix C4[4][4]=0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0; print(C4); ideal I=A-C4; I=std(I);
reduce(da, I),reduce(db, I), reduce(dc, I), reduce(dd, I), reduce(dt(1), I), reduce(dt(2), I);
//-----------relation between periods---------------------
ring r=(0,s),(x(1..4),z(1..4),inf),dp;



212 12 Jacobi forms

matrix Ih[4][4]=0,0,0,-1,0,0,-1,0,0,1,0,0,1,0,0,0; print(Ih);
matrix P[4][4]=-1,z(1),z(2),inf,0,x(1),x(2),z(3),0,x(3),x(4),z(4),0,0,0,-1; print(P);
matrix Ic[4][4]=0,0,0,1,0,0,-1,0,0,1,0,0,-1,0,0,0; print(Ic);
Ic-transpose(P)*transpose(inverse(Ih))*P;
//-----modular vector fields in the fake period domain----
LIB "foliation.lib"; ring r=(0,x(1..4),z(1..2), W), (dx(1..4),dz(1..2), dW) ,dp;
matrix P[4][4]=-1,z(1),z(2),W,0,x(1),x(2),x(2)*z(1)-x(1)*z(2),0,x(3),x(4),x(4)*z(1)-x(3)*z(2),0,0,0,-1; print(P);
matrix dP[4][4]=0,dz(1),dz(2),dW,0,dx(1),dx(2),dx(2)*z(1)-dx(1)*z(2)+x(2)*dz(1)-x(1)*dz(2),
0,dx(3),dx(4), dx(4)*z(1)-dx(3)*z(2)+x(4)*dz(1)-x(3)*dz(2),0,0,0,0; print(dP);
matrix A=transpose(inverse(P)*dP);
A=substpar(A, x(4), (1+x(2)*x(3))/x(1));
A=subst(A, dx(4), (x(1)*x(2)*dx(3)+x(1)*x(3)*dx(2)-(1+x(2)*x(3))*dx(1))/x(1)ˆ2);
matrix Cz[4][4]=0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0; print(Cz);
matrix Ct[4][4]=0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0; print(Ct);
ideal I=A-Cz; I=std(I);
list lz=reduce(dx(1), I),reduce(dx(2), I), reduce(dx(3), I), reduce(dz(1), I), reduce(dz(2), I), reduce(dW, I); lz;
ideal I=A-Ct; I=std(I);
list lt=reduce(dx(1), I),reduce(dx(2), I), reduce(dx(3), I), reduce(dz(1), I), reduce(dz(2), I), reduce(dW, I); lt;
matrix C1[4][4]=0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0; print(C1); ideal I=A-C1; I=std(I);
reduce(dx(1), I),reduce(dx(2), I), reduce(dx(3), I), reduce(dz(1), I), reduce(dz(2), I), reduce(dW, I);
matrix C2[4][4]=0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0; print(C2); ideal I=A-C2; I=std(I);
reduce(dx(1), I),reduce(dx(2), I), reduce(dx(3), I), reduce(dz(1), I), reduce(dz(2), I), reduce(dW, I);
matrix C3[4][4]=0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0; print(C3); ideal I=A-C3; I=std(I);
reduce(dx(1), I),reduce(dx(2), I), reduce(dx(3), I), reduce(dz(1), I), reduce(dz(2), I), reduce(dW, I);
matrix C4[4][4]=0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0; print(C4); ideal I=A-C4; I=std(I);
reduce(dx(1), I),reduce(dx(2), I), reduce(dx(3), I), reduce(dz(1), I), reduce(dz(2), I), reduce(dW, I);
//--------Fake generalized period domain is invariant under Jacobi group action-----------
LIB "foliation.lib"; ring r=(0,x(1..4),z(1..2), W,a,b,c,d,mu, la,ka), x ,dp;
matrix P[4][4]=-1,z(1),z(2),W,0,x(1),x(2),x(2)*z(1)-x(1)*z(2),0,x(3),x(4),x(4)*z(1)-x(3)*z(2),0,0,0,-1; print(P);
number lap=la*d-mu*c; number mup=-la*b+mu*a;
matrix A[4][4]=1, la, mu, ka, 0,a,b,mup,0,c,d,-lap,0,0,0,1; print(A);
matrix B=A*P;
poly p1=B[2,3]*B[1,2]-B[2,2]*B[1,3]-B[2,4]; subst(p1, x(4),(1+x(2)*x(3))/x(1));
poly p2=B[3,3]*B[1,2]-B[3,2]*B[1,3]-B[3,4]; subst(p2, x(4),(1+x(2)*x(3))/x(1));
//---------Reducing to tau locus------
LIB "foliation.lib"; ring r=(0,x(1..4),z(1..2), W), x ,dp;
matrix P[4][4]=-1,z(1),z(2),W,0,x(1),x(2),x(2)*z(1)-x(1)*z(2),0,x(3),x(4),x(4)*z(1)-x(3)*z(2),0,0,0,-1; print(P);
matrix g[4][4]=1,0,z(2)*x(3)-z(1)*x(4),W+z(1)*(z(2)-z(1)*x(3)ˆ(-1)*x(4)),0,1/x(3),-x(4),z(2)-z(1)*x(3)ˆ(-1)*x(4),0,0,x(3),0,0,0,0,1;
print(g); print(substpar(P*g,x(4),(1+x(2)*x(3))/x(1) ));

12.12 Computation of a period matrix

In this section we explain the computation of period matrix using Weierstrass
uniformization of elliptic curves. Let us consider the family of elliptic curves
y2 = 4x3 − t2x− t3 with α = dx

y , ω = (x+ t1) dx
y and

(t1, t2, t3) = (a1E2(τ),a2E4(τ),a3E6(τ)), (a1,a2,a3) = (
2πi
12

,12(
2πi
12

)2,8(
2πi
12

)3).

(12.22)
By Weierstrass uniformization theorem if we use the biholomorphism

C/(Zτ +Z)∼= E, z 7→ (
√
−2πi

−2
℘(z),

√
−2πi

−3
℘

′(z))

and define δ1,δ2 to be cycles in E corresponding to vectors τ,1 ∈ C then

1√
−2πi

[∫
δ1

dx
y
∫

δ1
(x+ t1) dx

y∫
δ2

dx
y
∫

δ2
(x+ t1) dx

y

]
=

[
τ −1
1 0

]
. (12.23)

see Section 9.13. We also define δ0 (resp. δ3) to be the image of the straight paths
from 0 to z0 in E (resp. an anticlockwise oriented closed path around P). In order to
be able to integrate differential forms αi over δi’s we have to modify them according
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Fig. 12.5 Four paths

to Figure 12.5. In this figure ε is small complex number near to 0 with negative real
and imaginary parts.

Proposition 12.10 Let us consider the differential forms

α0 = d
(

x−a
x

)
, α1 :=

dx
y
,

α2 =

(
c− b

2a

)
α0 + t1

dx
y
+

xdx
y

−d
( y

2x

)
, (12.24)

α3 =
1
2

y+b
x−a

dx
y
+ cα1 +d ·α0

where

(a,b,c,d, t1, t2, t3) = (12.25)(
k2

℘ ,k3
℘

′,−k ln(F)′,−2ln(kF),−k−2

12
E2,

k−4

12
E4,

−k−6

63 E6

)
,

where k = (−2πi)−
1
2 and ′ is derivation with respect to z. The period matrix is of

the format: 
∫

δ0
α0 k

∫
δ0

α1 k
∫

δ0
α2 k2 ∫

δ0
α3∫

δ1
α0 k

∫
δ1

α1 k
∫

δ1
α2 k2 ∫

δ1
α3∫

δ2
α0 k

∫
δ2

α1 k
∫

δ2
α2 k2 ∫

δ2
α3∫

δ3
α0 k

∫
δ3

α1 k
∫

δ3
α2 k2 ∫

δ3
α3

=


−1 z0 0 Z
0 τ −1 z0 −1
0 1 0 1
0 0 0 −1

 .

Proof. The computation of the first column and the last row is trivial. The submatrix
{1,2}×{1,2} is already mentioned in (12.23) and k

∫
δ0

α1 = z0 is also easy. The
proof of

∫
δ0

α2 = 0 is:
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(−2πi)
1
2

∫
δ0

(
xdx
y

−d(
y

2x
)

)
=
∫ z0

0
℘(z)dz−d(

℘′(z)
2℘(z)

)

= −
∫ z0

0
d(ζ (z)+

℘′(z)
2℘(z)

) =−ζ (z0)−
℘′(z0)

2℘(z0)

= −J1 − (−2πi)
1
2 t1
∫

δ0

dx
y
− (−2πi)

1
2

b
2a

= (−2πi)
1
2

(
(c− b

2a
)− t1

∫
δ0

dx
y

)
We have used J1 =

∂

∂ z lnF and

J1(z0) = ζ (z0)+
(2πi)2

12
E2z0, (12.26)

see Exercise 2.40. Therefore, J1 = ζ − (−2πi)
1
2 t1
∫

δ0
dx
y .

Next, we prove the equalities corresponding to (1,4),(2,4) and (3,4) entries. we
are going to use the equality

1
2

℘
′
(u)−℘

′
(v)

℘(u)−℘(v)
= ζ (u+ v)−ζ (u)−ζ (v).

see Exercise 2.12. Using (12.26) we have

1
2

℘
′
(z)−℘

′
(−z0)

℘(z)−℘(−z0)
= (J1(z− z0)− J1(z)+ J1(z0))

=
∂

∂ z

(
ln
(

F(z− z0)

F(z)

)
+ zJ1(z0))

)
The proof of

∫
δ0

α3 ∈ 2πiZ is as follows:∫
δ0

ω3 − ln(a) :=
∫

δ0

(ω3 −
dx
x
)

=
∫ P+ε

ε

(ω3 −
dx
x
)

=

(
ln

F(z− z0)

F(z)℘(z)
+ J1(z0)z

)∣∣∣∣z0+ε

ε

=∗ ln
F(ε)F(ε)℘(ε)

F(z0 + ε)℘(z0 + ε)F(ε − z0)
+ J1(z0)z0

=∗ ln
(2π)2

F(z0)℘(z0)F(−z0)
+ J1(z0)z0

=∗

∫
δ0

(
−d ·d

(
x−a

x

)
− c

dx
y

)
− ln(a).
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where =∗ means modulo 2πiZ. Here, we take limε→0. We have used the fact that
℘(z) = z−2+ · · · and F(z) = (−2π)z+ · · · and F(−z) =−F(z). For the other equal-
ities we will use

F(z+1,τ) = −F(z,τ)

F(z+ τ,τ) = −e−πi(τ+2z)F(z,τ)

These implies for g(z) := F(z−z0)
F(z) we have

g(z+1) = g(z), g(z+ τ) = e2πiz0g(z).

We take ε near to zero, between the vectors −1 and −τ . Moreover, we take −z0
in the parallelogram formed by 1 and τ For the equalities below see Figure 12.6:∫

δ2

α3 =
∫

δ2

1
2

y+b
x−a

dx
y
+ c

dx
y

=
∫ 1+ε

ε

d
(

ln
F(z− z0)

F(z)

)
=
∫ 1+ε

ε

(J1(z− z0)− J1(z))dz =
∫ 1+ε−z0

ε−z0

J1(z)dz−
∫ 1+ε

ε

J1(z)dz

=
∫ a+1

a
J1(z)dz−

∫ 1+ε

ε

J1(z)dz =−2πiResi(J1(z),z = 0)

= −2πi (12.27)

We have used J1(z+1) = J1(z). Next we compute:∫
δ1

α3 =
∫

δ2

1
2

y+b
x−a

dx
y
+ c

dx
y

=
∫

τ+ε

ε

d
(

ln
F(z− z0)

F(z)

)
=
∫

τ+ε

ε

(J1(z− z0)− J1(z))dz =
∫

τ+ε−z0

ε−z0

J1(z)dz−
∫

τ+ε

ε

J1(z)dz

=
∫ a+τ

a
J1(z)dz+2πi(ε − z0 −a)−

∫
τ+ε

ε

J1(z)dz (12.28)

= 2πi(ε − z0 −a)−2πi(a− ε)+2πiResi(J1(z),z = 0)
= 2πi(−z0 +1) (12.29)

We have used J1(z+τ) = J1(τ)−2πi. The residue of J1 at z = 0 after the integration
on the parallelograms in Figure 12.6.

Remark 12.3 We could also compute the integrals (12.27) and (12.29) by Mathe-
matica, see the latex file of the present text. Let θ̌i(z,q), i = 1,2,3,4 be the theta
sereis in Mathematica. These are related to our notation by

θ̌1(πz,e2πiτ)=−θ 1
2 ,

1
2
, θ̌2(πz,e2πiτ)= θ 1

2 ,0
, θ̌3(πz,e2πiτ)= θ0,0, θ̌4(πz,e2πiτ)= θ0, 1

2

Note that F =
θ 1

2 , 1
2

η3 .
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Fig. 12.6 Integration of α3

Remark 12.4 The 2πin, n ∈ Z in the (4,1) entry of the period matrix can be ab-
sorbed in d :=−2ln(kF) and so we can assume that this entry is zero provided that
in Proposition 12.10 we say that there is a branch of ln such that the period matrix
is of the desired format.

12.13 Quasi-Jacobi forms

Remark 12.5 In [Lib11] and [Obe18], both of the authors propose a definition of
quasi-Jacobi forms. A quasi-Jacobi form is one of the follwoing equivalent defini-
tions:

1. Any polynomial in F with coefficients in C[a,b,c, t1, t2] which is holomorphic at
z = 0.

2. Any FmP(a,b,c, t1, t2) hololorphic at z = 0.

Note that if P is a homogeneous polynomial of degree m then FmP(a,b,c, t1, t2) is
automatically a quasi-Jacobi form.



Chapter 13
Modular curves and differential equations

The applications of modular curves and modular functions to number theory are
especially exciting: you use GL2 to study GL1, so to speak! There is clearly a lot
more to come from that direction ... may be even a proof of the Riemann Hypothesis
some day!, (J. P. Serre in an interview by [CTC01]).

13.1 Introduction

A classical model for modular curves is given as a curve in the affine variety A2

which is the zero set of the polynomial relation between j(τ) and j(dτ). This is
highy singular and in order to have less singular models we need more functions
and modular forms. In this chapters we are interested in those models which are so-
lutions of ordinary differential equations, or in a more geometric language, they are
leaves of holomorphic foliations. The main example of this returns back to [Pic89,
pages 298-299] in the case of X1(d). We mainly follow a new treatment of this in
[Mov22b] which is based on a moduli space interpretation of the ambient space. We
also give models for X0(d) for which we first describe its three dimensional version
embedded in the double copy T×T of the moduli T of enhance elliptic curves dis-
cussed in Chapter 9. We take a quotient of this six dimensional space and get a four
dimensional weighted projective space containing a singular model of all modular
curves X0(d) defined over Q. All these curves are the only algebraic leaves of a
vector field which is constructed from a double copy of the Ramanujan vector field.
Recall the Dedekind ψ function:

ψ(d) := d ∏
p|d

(1+
1
p
)

where p runs through primes p dividing d. The first singular model of the modular
curve X0(d) is given by the following:

217
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Exercise 13.1 For any d ∈N, there is a polynomial Pd(x,y)∈Q[x,y] of degree ψ(d)
in both variables x,y and symmetric in x,y, that is Pd(x,y) = Pd(y,x), such that

Pd( j(τ), j(dτ)) = 0,

where j(τ) is the j-function. Hint: We may try to deduce this statement from the
assertion of Theorem 13.1 for E4.E6, as if E4(dτ) and E6(dτ) are algebraic over the
field C(E4(τ),E6(τ)) then any rational function of them is also algebraic over the
same field. One has to then discuss the degree of algebraicity as it is announced in
Exercise 13.1. We may also directly generalize Proposition 8.4 to weakly holomor-
phic modular forms. The treatment of the polynomial Pd is old, and for instance, we
can find it in [Fri22, page 348] [Fri11, page 136].

Exercise 13.2 Show that the affine curve Pd(x,y) = 0 is not smooth. Can you char-
acterize a singular point of this curve interms of the isogeny of the underlying ellip-
tic curves.

13.2 A consequence of Hecke operators

Recall the following rescaling of Eisenstein series:

gi(τ) = aiE2i(q) := ai

(
1+bi

∞

∑
n=1

(
∑
d|n

d2i−1

)
qn

)
, (13.1)

i = 1,2,3, q = e2πiτ , Im(τ)> 0

with

(b1,b2,b3) = (−24,240,−504), (a1,a2,a3) = (2πi,(2πi)2,(2πi)3).

Theorem 13.1 For i= 1,2,3 and d ∈N, there is a unique homogeneous polynomial
Id,i of degree i ·ψ(d), where ψ(d) := d ∏p(1+

1
p ) is the Dedekind ψ function and

p runs through primes p dividing d, in the weighted ring

Q[ti,s1,s2,s3], weight(ti) = i, weight(s j) = j, j = 1,2,3 (13.2)

and monic in the variable ti such that ti(τ) := d2i ·gi(d · τ),s1(τ) := g1(τ),s2(τ) :=
g2(τ),s3(τ) := g3(τ) satisfy the algebraic relation:

Id,i(ti,s1,s2,s3) = 0.

Moreover, for i = 2,3 the polynomial Id,i does not depend on s1.
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Proof. For the statement for g2 and g3 we only need the theory of Hecke operators
for modular forms. We apply Proposition 8.4 to f (τ) := gk(τ), k = 2,3 and find
modular forms gψ(N)−i(τ) of weight 2k ·(ψ(N)−i) such that ∑

ψ(N)
i=0 gψ(N)−i(τ) f (Nτ)i =

0. The reader must be care that the letter g is used for two different purposes. Next,
we use Theorem 2.5 in order to write gψ(N)−i as polynomials in g2,g3. For g1 we
have to use the theory of Hecke operators for quasi-modular forms. The statement
follows from Theorem 9.2 and ??.

13.3 A model of modular curve in dimension four

Recall Proposition 8.2 and Proposition 8.3. Despite the fact that we have not con-
structed a basis of modular forms for Γ0(d), they give us an interesting model for
X0(d). In the following we denote the coordinate system in the weighted projective
space P4,6,4,6,2 by [x2 : x3 : y2 : y3 : y1].

Proposition 13.1 The map given by

X0(d)→ P4,6,4,6,2\{27x2
3 − x3

2 = 0}∪{27y2
3 − y3

2 = 0}, (13.3)
τ 7→

[
g2(τ) : g3(τ) : d2g2(dτ) : d3g3(dτ) : dg1(dτ)−g1(τ)

]
.

is a biholomorphism between X0(d) and its image S0(d). Moreover, S0(d) is a sm-
moth complete intersection curve in P4,6,4,6,2\{27x2

3 − x3
2 = 0}∪ {27y2

3 − y3
2 = 0}

defined over Q.

Proof. The image of the map (13.3) is an algebraic curve in P4,6,4,6,2 over Q and
outside the discriminant locus {27x2

3 − x3
2 = 0} ∪ {27y2

3 − y3
2 = 0} it is a com-

plete intersection Qd,1 = Qd,2 = Qd,3 = 0, where Qd,1(y1,x2,x3), Qd,2(y2,x2,x3),
Qd,3(y3,x2,x3) are homogeneous polynomials of degrees respectively ψ(d),2ψ(d), 3ψ(d)
in the ring Q[x2,x3,y1,y2,y3], deg(xi) = deg(yi) := i such that

Qd,1(d ·g1(d · τ)−g1(τ),g2(τ),g3(τ)) = 0, (13.4)

Qd,2(d2 ·g2(d · τ),g2(τ),g3(τ)) = 0, (13.5)

Qd,3(d3 ·g3(d · τ),g2(τ),g3(τ)) = 0. (13.6)

This follows from Theorem 8.2 and the fact that Γ0(d) has index ψ(d) in SL(2,Z).
Now, we prove that the complete intersection

P{Qd,1 = Qd,2 = Qd,3 = 0} ⊂ P4,6,4,6,2\{27x2
3 − x3

2 = 0}∪{27y2
3 − y3

2 = 0}

is the image of the image of the map (13.3). details

We consider the affine chart C4 ⊂ P2,3,2,3,1 given y1 = 1. The map 13.3 in this affine
chart is given by
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τ 7→
(

g2(τ)

(g1(τ)−d ·g1(d · τ))2 ,
g3(τ)

(g1(τ)−d ·g1(d · τ))3 , (13.7)

d2 ·g2(d · τ)
(d ·g1(d · τ)−g1(τ))2 ,

d3 ·g3(d · τ)
(d ·g1(d · τ)−g1(τ))3

)
.

We consider the following vector field in (x2,x3,y2,y3) ∈ C4:

v :=
(

2x2 −6x3 +
1
6
(x2 − y2)x2

)
∂

∂x2
+

(
3x3 −

1
3

x2
2 +

1
4
(x2 − y2)x3

)
∂

∂x3
(13.8)

−
(

2y2 −6y3 +
1
6
(y2 − x2)y2

)
∂

∂y2
−
(

3y3 −
1
3

y2
2 +

1
4
(y2 − x2)y3

)
∂

∂y3
.

It is obtained through the proposition.

Proposition 13.2 Let (x2,x3,y2,y3) be the coordinates of the map (13.7). We have

∂x2

∂τ
= (g1(τ)−d ·g1(d · τ))

(
2x2 −6x3 +

1
6
(x2 − y2)x2

)
∂x3

∂τ
= (g1(τ)−d ·g1(d · τ))

(
3x3 −

1
3

x2
2 +

1
4
(x2 − y2)x3

)
∂y2

∂τ
= (g1(τ)−d ·g1(d · τ))

(
−2y2 +6y3 −

1
6
(y2 − x2)y2

)
∂y3

∂τ
= (g1(τ)−d ·g1(d · τ))

(
−3y3 +

1
3

y2
2 −

1
4
(y2 − x2)y3

)
Proof. The proof is a mere computation.

As a corollary we get:

Proposition 13.3 The curve S0(d) in the affine chart y1 = 1 is smooth.

Proof. The singular set of the foliation the vector field v in the weighted projective
space P2,3,2,3,1 consists of an isolated point and a rational curve:

{[0 : 0 : 0 : 0 : 1]}∪
{

27x2
3 − x3

2 = 27y2
3 − y3

2 = x
1
3
3 + y

1
3
3 −2y1 = 0

}
. (13.9)

Exercise 13.3 Show that the vector field v in the homogeneous coordinates [x2 : x3 :
y2 : y3 : y1] is given by

2x2y1 −6x3

y1

∂

∂x2
+

3x3y1 − 1
3 x2

2

y1

∂

∂x3
+ (13.10)

2y2y1 −6y3

y1

∂

∂y2
+

3y3y1 − 1
3 y2

2

y1

∂

∂y3
+

1
12

y2 − x2

y1

∂

∂y1

In particular, Sing(v) intersects the projective space P2,3,2,3 at infinity at the point
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[3 : −1 : 3 : 1 : 0].

13.4 Moduli space I

In this section we give a moduli space interpretation for the weighted projective
space P2,3,2,3,1 used in Section 13.3.

Theorem 13.2 Let us consider the moduli space of triples (E1,E2, f ), where E1
and E2 are two elliptic curves and f : H1

dR(E1)
∼→ H1

dR(E2) is an isomorphism which
sends F1H1

dR(E1) to F1H1
dR(E2) and it respects the intersection form in H1

dR(Ei), i=
1,2. This as a coarse moduli space exists and it is

P2,3,2,3,1\
(
{27x2

3 − x3
2 = 0}∪{27y2

3 − y3
2 = 0}

)
, (13.11)

where we have considered the projective coordinates [x2 : x3 : y2 : y3 : y1]∈ P4,6,4,6,2.

Proof. For a triple (E1,E2, f ) as above we write both elliptic curves E1 and E2 in
the Weierstrass format and so it becomes of the format (Ex2,x3 ,Ey2,y3 , f ). We also
write f in the Weierstrass basis αi, ωi of H1

dR(Ei), i = 1,2:

[ f (α1), f (ω1)] = [α2, ω2]g f , g f ∈ G,

where G is the algebraic group (9.6). Let us take a different choise of the Weierstrass
format (Ek−4x2,k−6x3

,Ek̃−4y2,k̃−6y3
, f̌ ) isomorphic to (Ex2,x3 ,Ey2,y3 , f ). We have

α : Ek−4x2,k−6x3
∼= Ex2,x3 ,α

∗
ω1 = kω1

which uses similar computation as in the proof of Proposition 9.8. This together
with the same statement for (y2,y3) implies that

g f̌ =

[
k̃−1 0
0 k̃

]
g f

[
k 0
0 k−1

]
,

By the action of k ∈ Gm or k̃ ∈ Gm we can assume that the (1,1) and (2,2) entries
of g f and g f̌ . The above equality is equivalent to k = k̃ and

the (1,2) entry of g f̌ = k2 · the (1,2) entry of g f .

If we denote by y1 the (1,2) entry of g f and identify f with g f we get

(Ek−4x2,k−6x3
,Ek̃−4y2,k̃−6y3

,

[
1 k−2y1
0 1

]
)∼= (Ex2,x3 ,Ey2,y3 ,

[
1 y1
0 1

]
)

and so, we get a unique point in P4,6,4,6,2 minus {27x2
3 −x3

2 = 0}∪{27y2
3 −y3

2 = 0}.
Conversely, for a point in (13.11) we consider the triple (Ex2,x3 ,Ey2,y3 , f ), where f
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is uniquely determined by

[ f (α1), f (ω1)] = [α1, ω2]

[
1 y1
0 1

]
.

From the proof of Theorem 13.2 we know that over the affine chart y1 ̸= 0 of
the moduli space (13.11) we have the universal family of triples (E1,E2, f ): For
(x2,x3,y2,y3) ∈ C4 we have (Ex2,x3 ,Ey2,y3 , f ) and f is uniquely determined by

f (α1) = α2, f (ω1) = ω2 +α2. (13.12)

Over this affine chart we have the two dimensional cohomology bundles H1
dR(Ex2,x3)

and H1
dR(Ey2,y3), and hence, the four dimensional bundle H given by

Hx2,x3,y2,y3 := H1
dR(Ex2,x3)

∨⊗C H1
dR(Ey2,y3)

which has a global section given by f . Recall that for two vector spaces A,B we
have

A∨⊗B ∼= Hom(A,B), ∑a∨i ⊗bi 7→ (a 7→ ∑a∨i (a)bi).

The cohomology bundle in (x2,x3) has global sections represented by the Weier-
strass basis α1,ω1 for H1

dR(Ex2,x3). The dual bundle has also global sections α∨
1 :=

⟨α1, ·⟩ and ω∨
1 := ⟨ω1, ·⟩, where ⟨·, ·⟩ is the intersection bilinear form in H1

dR(Ex2,x3).
The conclusion is that f is represented by the following global section of H:

α
∨
1 ⊗α2 +α

∨
1 ⊗ω2 −ω

∨
1 ⊗α2 +0ω

∨
1 ⊗ω2.

However, this is not the section which we need in Equation (13.8). We will need the
section

f (α1) =−α2, f (ω1) = ω2 +α2. (13.13)

or equivalently α∨
1 ⊗α2+α∨

1 ⊗ω2+ω∨
1 ⊗α2. The Gauss-Manin connection matrix

∇ can be transported to H in a natural way.

Theorem 13.3 There is a unique vector field v in T such that

∇v(α
∨
1 ⊗α2 +α

∨
1 ⊗ω2 +ω

∨
1 ⊗α2) = 0,

∇v(α
∨
1 ⊗α2) =

y2 − x2

12
α
∨
1 ⊗α2 +α

∨
1 ⊗ω2 −ω

∨
1 ⊗α2.

This is is given by (13.8).

Proof. The proof is purely computational. Let A1 and A2 be the Gauss-Manin con-
nection matrices (3.23) in the coordinates system (x2,x3) and (y2,y3) instead of
(t2, t3). For a connection ∇ : H → Ω 1

T ⊗H on a vector bundle H on T, the dual
connection ∇∨ : H∨ → Ω 1

T⊗H∨ is defined through the equality:

∇
∨(a)(b) =−a(∇(b))
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for sections a and b of H and H∨ respectively. The minus sign is necessary in order
to make the dual connection intgerable. Note that the evaluation of a in a section
of Ω 1

T⊗H is Ω 1
T-linear. The dual Gauss-Manin connection matrix in the dual basis

[α∨,ω∨]tr is given by [
−(A1)22 (A1)12
(A1)21 −(A1)11

]
= A1,

The last equality follows from the fact that the sum of the (1,1) and (2,2) entries
of the Gauss-Manin connection matrix (3.23) is zero. Therefore, the Gauss-Manin
connection matrix in the bundle H and the basis

[α∨
1 ⊗α2,α

∨
1 ⊗ω2,ω

∨
1 ⊗α2,ω

∨
1 ⊗ω2]

tr (13.14)

is given by

A=


(A1)11 0 (A1)12 0

0 (A1)11 0 (A1)12
(A1)21 0 (A1)22 0

0 (A1)21 0 (A1)22

+

(A2)11 (A2)12 0 0
(A2)21 (A2)22 0 0

0 0 (A2)11 (A2)12
0 0 (A2)21 (A2)22

 .
We have

Av :=


− x2−y2

12 1 −1 0
− y2

12 −1 0 −1
x2
12 0 1 1
0 x2

12 − y2
12

x2−y2
12


and so the result follwos.

Remark 13.1 The global section f in (13.12) written in the basis (13.14) has the
coefficients C = [1,1,−1,0], that is, f is C times the matrix (13.14). However, in
Equation (13.8) we have used C = [1,1,1,0].

13.5 Proof of Theorem 13.5

13.6 Dynamics

We consider the foliation in C4 given by the vector field v. The reader is not sup-
posed to know the theory of holomorphic foliations and we only want to trans-
mit a feeling of this concept using the vector field v. Roughly speaking, by this
foliation we mean the images of all solutions of v, that is all holomorphic maps
a : (C,0) → C4 such that a′(t) = v(a(t)), t ∈ (C,0). It can be points or one
dimensional transcendental or algebraic curves. The singular set Sing(v) of v is
the set of points p such that v(p) = 0. This is the zero set of the coefficients of
∂

∂a , a = x2,x3,y2,y3 in v. The singular set of the foliation F(v) in the weighted pro-
jective space Pw := P2,3,2,3,1 with the coordinate system [x2 : x3 : y2 : y3 : y1] consists
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of an isolated point and a rational curve:

Sing(v) = {0}∪
{

27x2
3 − x3

2 = 27y2
3 − y3

2 = x
1
3
3 + y

1
3
3 −2y1 = 0

}
. (13.15)

The call the second component of Sing(v) the curve singularity and parametrize it
by

g : P1 → Pw, [t : s] 7→
[

3t2 : t3 : 3s2 : s3 :
1
2
(s+ t)

]
. (13.16)

It can be easily checked that

Exercise 13.4 The following union of two hypersurfaces

∆ := ∆1 ∪∆2, (13.17)

∆1 := {27x2
3 − x3

2 = 0}, ∆2 := {27y2
3 − y3

2 = 0} (13.18)

is tangent to v, that is, d∆i
∆i

(v) ∈ C[x2,x3,y2,y3].

Theorem 13.4 ([Mov22b], Theorem 1) The algebraic curves S0(d) ⊂ Pw,d ∈ N
are not contained in ∆ and they are tangent to the vector field v in (13.8). They are
the only algebraic curves in Pw\∆ with this property. The curve S0(d) intersects ∆

only at the points g([a : −b]), d = ab, a,b ∈ N in the curve singularity of v.

13.7 Picard’s curious example

In this section we give a new moduli space interpretation of E. Picard’s “équation
différentielle curieuse” in [Pic89, pages 298-299], see also article [Maz01]. Our
presentation follows [Mov22b, Section 10].

Definition 13.1 Let T be the moduli space of triples (E,P,ω), where E is an elliptic
curve over k and by definition it comes together with a point O, P ∈ E(k), P ̸= O is
another point and ω is a meromorphic differential 1-form in E with poles only at O
and P and with the order of pole equal to one at both points. Moreover, the residue
of ω at P and O is respectively +1 and −1. We call T the Picard moduli space.

As it is the case with many other moduli spaces in this text, T turns out to be affine
and there is a universal family over a Zariski open subset of T.

Proposition 13.4 We have

T≃ P1,2,3,4
k \{[s : a : b : c] ∈ P1,2,3,4

k

∣∣∆ = 0}, (13.19)

where ∆ := 27(−b2+4a3−ca)2−c3, and the family over T is given by the following
family of elliptic curves written in the affine coordinates (x,y) ∈ A2

k:
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E = Ea,b,c : y2 = 4x3 − cx+b2 −4a3 + ca, (13.20)

ω = ωs,a,b :=
1
2

y+b
x−a

dx
y
+ s

dx
y
, P = (a,b).

Note that we do not have universal family over T. We have such a universal family
over the open subset {s ̸= 0} of T.

Proof. Let (E,ω,P) be an element of the moduli space T. We choose Weierstrass
coordinates x,y on E. These are rational functions on E with pole of order 2 and 3
at O, respectively. In this way we can write E in the Weierstrass format Ec,č : y2 =
4x3 − cx− č with ∆ := 27č2 − c3 ̸= 0. In these coordinates we write P = (a,b) and
therefore b2 = 4a3−cx− č. From this we compute č and repalce it in the expression
of the elliptic curve Ec,č and we get Ea,b,c. The differential form 1

2
y+b
x−a

dx
y has the

same properties as ω , therefore, their difference is a holomorphic 1-form in Ea,b,c

and hence it is s dx
y for some s ∈ k. It follows that any triple of the moduli space T is

isomorphic to a triple in (13.20) for some (s,a,b,c)∈ k4. Note that č= 4a3−ca−b2

and so it can be discarded. For k ∈ k∗ we have

f : Ek−4c,k−6 č ≃ Ec,č,

f (x,y) = (k2x,k3y),

f∗ωk−1s,k−2a,k−3b = ωs,a,b.

and so (s,a,b,c) and (k−1s,k−2a,k−3b,k−4c) represents the same point in T. Any
isomorphism of elliptic curves in the Weierstrass format comes from the k∗ action
above, and so, any two points in the right hand side of (13.19) are not isomorphic.

Let us consider the affine chart s = 1 for the moduli space T. We are going to
talk about integration of differential forms and so we have to work over complex
numbers, that is, k = C. Let δ ∈ H1(Ea,b,c,Z) be a continuous family of cycles. A
more algebro-geometric version of the statement bellow similar to the Gauss-Manin
connection of families of elliptic curves, see Proposition 3.4, might be necessary.

Proposition 13.5 We have

d
∫

δ

(
1
2

y+b
x−a

dx
y
+

dx
y

)
=

α1

∆
·
∫

δ

xdx
y

+
α2

∆
·
∫

δ

dx
y
, (13.21)

where d is the differential of holomorphic functions in (a,b,c) ∈ C3, αi = α1ida+
α2idb+α3idc, i = 1,2 and αi j’s are given in

α :=


3c2 −36ca2 +45cab−108a3b+27b3 − 1

2

(
9c2a+3c2b−144ca3 +54ca2b+9cb2 +432a5 −216a4b−108a2b2 +54ab3

)
(2c2 −30ca2 +6cb+72a4 −18ab2) −(2c2a−30ca3 +9cab+3cb2 +72a5 −36a3b−18a2b2 +9b3)

− 1
2

(
3ca+3cb−36a3 +9b2

)
1
4

(
c2 −18ca2 +9cab+72a4 −36a3b−18ab2 +9b3

)
 .

Proof. We know already that derivation of the integrant in the left hand side of
(13.21) has no more residues around O and P, therefore, it must be an element
of H1

dR(Ea,b,c), and hence, it must be a linear combination of xidx
y , i = 0,1 with



226 13 Modular curves and differential equations

coefficients which we are now going to compute. This is a simple, but long, calculus
computation.

Proposition 13.6 The loci of points in T such that the integral
∫

δ

(
1
2

y+b
x−a

dx
y + dx

y

)
is constant for all choices of δ ∈ H1(Ea,b,c,Z) are the solutions of the vector field

v := (2c−24a2 +6ab+6b)
∂

∂a
− (3c−36a2 +36ab−9b2)

∂

∂b
(13.22)

+(12ca+12cb−144a3 +36b2)
∂

∂c

Proof. Such a loci is given by α1 = 0,α2 = 0. The matrix α has rank two and the
vector field v is in the kernel of α1 and α2 and generates it. This implies that along
the solutions of the vector field v in T, the integral in the left hand side of (13.21) is
constant for all continuous family of cycles.

Theorem 13.5 The foliation induced by v in T has infinite number of algebraic
leaves S1(N),N = 2,3, · · · . The leaf S1(N) parameterizes the triples (E, 1

N
d fN
fN

,P),
where P is a torsion point of order N and fN is a rational function in E with
div( fN) = N · (P−O). It is given by the image of the holomorphic map

Γ1(N)\H∗ → P1,2,3,4, τ 7→
[

FN(τ) :℘

(
1
N
,τ

)
:℘

′
(

1
N
,τ

)
: 60G4(τ)

]
. (13.23)

It is quite natural to give a purely complex analysis proof to the fact that the image
of the map (13.23) is tangent to the vector field v (similar to the case in Proposi-
tion 13.2). This has been formulated in Exercise 8.6.

Proof. We write the triple (E, 1
N

d fN
fN

,P) in the Weierstrass coordinates (x,y) and by
Proposition 13.4, we get a unique point [s : a : b : c] ∈ T. In this way, fN is a rational
function in x,y with coefficients in k and

1
N

d fN

fN
−
(

1
2

y+b
x−a

+ s
)

dx
y

(13.24)

restricted to Ea,b,c is identically zero. The periods
∫

δ

d fN
N , δ ∈ H1(Ea,b,c −{O,P})

are all in 2πiZ, and hence, they are constants independent of a,b,c. By Proposi-
tion 13.6 this implies that the curve S1(N) is tangent to v.

Next, we describe a parametrization of S1(N) by modular forms. We consider the
complex torus E := C

Zτ+Z and its embedding in P2 using z 7→ [℘(z,τ) :℘′(z,τ) : 1],
where ℘(z,τ) is the Weierstrass ℘ function and its derivation means with respect to
z. We also consider the torsion point P = 1

N in E. The following function

FN(τ) :=
1
N

f ′N
fN

− 1
2

℘′(z,τ)+℘′( 1
N ,τ)

℘(z,τ)−℘( 1
N ,τ)

 http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2018-10-PicardCuriousDifferentialEquation.txt 
 http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2018-10-PicardCuriousDifferentialEquation.txt 
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is holomorphic on the torus and hence it is independent of z. Here, fN(z) is a double
periodic function in z with period 1 and τ and it has a zero (resp. pole) of order N
at z = 1

N (resp. z = 0) and ′ means derivation with respect to z. The compactification
of the curve S1(N) in P1,2,3,4 is birational to the modular curve X1(N) :=Γ1(N)\H∗,
where

Γ1(N) :=

{[
a1 a2
a3 a4

]
∈ SL2Z

∣∣∣∣∣a3 ≡ 0 a1 ≡ a4 ≡ 1, (mod N)

}
.

Such a birational map is given by

Γ1(N)\H∗ → P1,2,3,4, τ 7→
[

FN(τ) :℘

(
1
N
,τ

)
:℘

′
(

1
N
,τ

)
: 60G4(τ)

]
.

The four functions involved in the above parameterization are modular forms for
Γ1(N). The precise comparision of our Picard’s differential equation given by v in
(13.22) and the Picard’s differential equation in [Pic89] pages 298-299 is left to the
reader. For the line bundle L := O(P−O) on E = Ea,b,c with its global meromor-
phic section s such that div(s) = P−O, we can associate the holomorphic connec-
tion ∇ : L → ΩE ⊗L, s 7→ ωs,a,b ⊗ s. Isomonodromic deformations of (E,∇) is the
same as deformations with constant integrals in the left hand side of (13.21). This
and [Lor16] Corollary 2 and 3 have been the starting point of our reformulation of
Picard’s example.
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Chapter 14
Calabi-Yau threefolds

Honestly speaking, the main goal of writing the present book has been to gener-
alize the whole theory of elliptic curves (Calabi-Yau varieties of dimension one)
and elliptic modular forms to the framework of Calabi-Yau threefolds. The author’s
attempts to do this has been successful in some directions which are explained in
[Mov11, Mov15a, Mov17, AMSY16, Mov22a] and has failed in many other direc-
tions. As the history of modular forms and elliptic curves is almost two centuries of
mathematical research, the development of similar topics for Calabi-Yau varieties
might take even more time. In this chapter I would like to report on what tiny things
are already done and the tremendous amount of work which must be done in the
future.

For a smooth projective variety X over C we assume that the reader is familiar
with the algebraic de Rham cohomology, see [Mov21], and singular homology, see
[] and the references therein.

14.1 Hypersurfaces with a finite group action

The parameter space of smooth hypersurfaces of degree d and dimension n in Pn+1

is of large dimension and it is desirable to have families of hypersurfaces with some
symmetry and depending on few parameters. In this section we try to elaborate
this idea and justify the definition of mirror quintic from a purely mathematical
perspective. This section is a further elaboration of [Mov22a, Section 12.7].

We take a finite group G acting on Pn+1
k . In practice, this will be a subgroup of

the automorphism group of the classical Fermat variety

X0 = Xd
n : P{xd

0 + xd
1 + · · ·+ xd

n+1 = 0} ⊂ Pn+1
k

of dimension n and degree d. The group Sn+2 of all permutations in n+2 elements
{0,1, . . . ,n+1} acts on Xd

n in a natural way. An element in b ∈ Sn+2 acts on Xd
n by

permuting the coordinates:

231
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(x0,x1, . . . ,xn+1) 7→ (xb0 ,xb1 , . . . ,xbn+1).

Multiplication of the coordinates by d-th roots of unity provides other automor-
phisms of the Fermat variety. Let

µ
n+2
d /µd := µd ×µd ×·· ·×µd︸ ︷︷ ︸

(n+2)− times

/diag(µd), (14.1)

where
µd := {1,ζd , . . . ,ζ

d−1
d } (14.2)

is the group of d-th roots of unity and diag(µd) is the image of the diagonal map

µd → µ
n+2
d , ζ 7→ (ζ ,ζ , · · · ,ζ ).

The group µ
n+2
d /µd acts on Xd

n by multiplication of coordinates:

(ζ0,ζ1, . . . ,ζn+1),(x0,x1, . . . ,xn+1) 7→ (ζ0x0,ζ1x1, . . . ,ζn+1xn+1). (14.3)

Let us define the free product group

Gd
n :=

(
µ

n+2
d /µd

)
∗Sn+2, (14.4)

which is a subgroup of the automorphism group of the Fermat variety Xd
n .

Exercise 14.1 Is the automorphism group of the Fermat variety either as a complex
manifold or an algebraic variety over C is equal to Gd

n?

Let G ⊂ Gd
n be any finite subgroup. The group G acts on the space V d

n of smooth
hypersurfaces in a canonical way and we define

VG :=
{

t ∈V d
n

∣∣∣g · t = t,
}

(14.5)

that is, VG parametrizes hypersurfaces X with G ⊂ Aut(X). By definition the Fermat
point 0 ∈V d

n is in VG. Our main examples for G are

Example 14.1 Let

G :=
{

ζ ∈ µ
n+2
d /µd

∣∣∣ ζ0ζ1 . . .ζn+1 = 1
}
, (14.6)

for the case d = n+2. The corresponding family of hypersurfaces is give by

Xt : t0xn+2
0 + t1xn+2

1 + . . .+ tn+1xn+2
n+1 − (n+2)tn+2x0x1 . . .xn = 0, (14.7)

which is called the Dwork family. It is smooth if and only if

∆ := t0t1 · · · tn+1(tn+2
n+2 − t0t1 · · · tn+1) ̸= 0.
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For ∆ = 0 and ti’s different from zero, Xt has only isolated singularities. This might
help to discribe the homology of Xt as explicit as possible using vanishing cycles.

Example 14.2 For the permutation group G= Sn+2 we will consider the case d = 3.
The corresponding family of hypersurfaces is given by

Xt : t0(x3
0 + · · ·)+ t1(x2

0x1 + · · ·)+ t3(x0x1x2 + · · ·) = 0, (14.8)

where · · · means the sum of all possible monomials obtained from the leading mono-
mial by permuting the variables. We call Xt the Deligne’s family, as working with
hypersurfaces with large automorphism group is proposed by P. Deligne, (personal
communication, February 20, 2016).

Definition 14.1 An automorphism of a smooth projective variety leaves the Hodge
filtration invariant and hence it is natural to consider the invariant part of Hn

dR(X)

Hn
dR(X)G :=

{
ω ∈ Hn

dR(X)
∣∣∣ σ

∗
ω = ω ∀σ ∈ G

}
(14.9)

and the induced Hodge filtration. This is also called the invariant cohomology of X .
In a similar way, we define the invariant holology:

Hn(X ,Z)G :=
{

δ ∈ Hn(X ,Z)
∣∣∣ σ∗δ = δ ∀σ ∈ G

}
.

The fact the invariant homology is dual to invariant cohomology follows from the
same statement for usual (co)homologies.

Exercise 14.2 Let VC be a C-vector space and VZ be a free Z-module with a bilinear
map VZ×VC →C, (δ ,ω) 7→

∫
δ

ω which makes VZ dual VC, that is, the natural map
VZ →V∨

C , δ 7→ (ω 7→
∫

δ
ω) is injective and VZ×ZC∼=V∨

C . Let G be a finite group
acting on both VZ and VC such that

∫
δ

gω =
∫

gδ
ω for all g ∈ G, ω ∈ VC, δ ∈ VZ.

Show that V G
C is dual to V G

Z .

Proposition 14.1 A basis of Hn
dR(X)G for a member X = Xt of the Dwork and

Deligne families and for t in a neighborhood of the Fermat point are given by

(x0x1 · · ·xn+1)
k−1Ω

f k , k = 1,2, . . . ,n+1,

(x0x1 · · ·x3k−n−2 + · · ·)Ω
f k , k = 1,2, . . . ,n+1,

respectively, where · · · means the sum of all possible monomials obtained from the
leading monimial by permuting the variables. It is compatible with the Hodge filtra-
tion. For the Dwork family dim(Hn

dR(X)G) = n+1 and the Hodge numbers are

1,1,1, . . . ,1︸ ︷︷ ︸
n+1− times

,
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and for Deligne family dim(Hn
dR(X)G) = n+ 1− 2

[ n+1
3

]
and the Hodge numbers

are
0,0, · · · ,0︸ ︷︷ ︸

[ n+1
3 ]− times

, 1,1, · · · ,1︸ ︷︷ ︸
n+1−2[ n+1

3 ]− times

, 0,0, · · · ,0︸ ︷︷ ︸
[ n+1

3 ]− times

.

Proof. This follows from Griffiths theorem on the cohomology of hypersurfaces in
[Gri69], see also [MV21].

Note that using Exercise 14.2 and Proposition 14.1 we can cobclude that for Dwork
family Hn(X ,Z)G is free of rank n+ 1 and for Deligne family it is free of rank
n+1−2

[ n+1
3

]
.

14.2 Eisenstein series

Despite being natural, I did not find in the literature the way of writing Eisenstein
series and Weierstrass ℘ function as in Proposition 3.3 and Remark 3.1. The main
goal is to see whether in this way we can generalize these convergent series to
other periods, and in particular, periods of Calabi-Yau threefolds. One can formulate
similar formal power series, however, in general the main obstacle is whether they
are convergent.

Exercise 14.3 Let X be a Calabi-Yau n-fold and δ1 ∈ Hn(X ,Z) be a primitive ele-
ment, that is, it is not divisable by an integer. Is the following sum convergent

∑
δ a monodromy of δ1

(∫
δ

ω
n,0
)−k

, k ∈ N, (14.10)

where the sum runs in all monodromies δ ∈ Hn(X ,Z) of δ1. Note that in the case of
elliptic curves n = 1, if we find δ2 such that δ1,δ2 form a basis of Hn(X ,Z) then the
action of monodromy produces cδ1 + dδ2 for all coprime integers c and d and the
above sum is the Eisenstein series Ek (up to multiplication by a constant). If we use
the Eisenstein summation as in Section 2.18 then the above series is even convergent
even for k= 1,2. It might be useful that in the case of mirror quintic to write a precise
description of all 4-tuples (a1,a2,a3,a4)∈Z4 such that a1δ1+ · · ·+a4δ4 is obtained
by the mondromy of a fixed δ1, see Exercise 2.6. We might first to ellaborate the
case n = 2, in which the moduli space of Calabi-Yau two folds (K3 surfaces) is a
Hermitian symmetric domain and we have a well developed theory of automorphic
functions in this case. For this we may take the Dwork family [MN21] or lattice
polarized K3 surfaces [CD12].

My feeling is that in some way one has to use periods of forms over the homology
path between rational curves inside Calabi-Yau threefolds. For instance,
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∑

(∫ P1

P1
0

ω
3,0

)−k

which does not seem to be convergent. Here, P1
0 is a fixed rational curve of degree

one, P1 is a rational curve of degree d such that dP1
0 is homologous to P1, and the

sum runs through all P1’s and such homology paths. Before going to Calabi-Yau
threefols, one intermediate challenge may help us. This is namely defining Eisen-
stein series for differential Siegel modular forms develped in [Mov22a, Chapter 11]
and [CMY21].
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Wei52. André Weil. Number-theory and algebraic geometry. Proc. Internat. Congr. Math.

(Cambridge, Mass., Aug. 30-Sept. 6, 1950) 2, 90-100 (1952)., 1952.
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Automorphy factor, 41

Bernoulli numbers, 24, 165
Birch Swinnerton-Dyer conjecture, 185
BSD conjecture, 185

Canonical height, 104
Chern class, 92
Classical fundamental domain, 15
CM, complex multiplication, 112
compactification, 78
Complex multiplication, 112
Conductor, 185
Congrunet number, 186
cusp form, 28
Cuspidal reduction, 183

Darboux-Halphen differential equation, 45
Darboux-Halphen vector field, 64
De Rham cohomology, 135, 139
Dedekind eta function, 4, 31
Deligne’s family, 233
Descent theorem, 100
differential, 134
differential i-forms, 135
Discriminant idela, 84
distinguished set of paths, 50
divisor, 91
Dual isogeny, 110
Dwork family, 111, 232

Eigenform, 120
Eisenstein summation, 43
Elliptic curve, 49
Elliptic function, 14
Elliptic integral, 47
Enhanced elliptic curve, 108, 143
Euler’s product formula, 160, 172
Euler’s reflection formula, 163

Fendamental domain, 15
Fermat curve, 78
Fibonacci sequence, 1
Finite field, 179
Fourier expansion, 23
Fourire transform, 42

Gamma function, 162
Gauss hypergemetric function, 67

Gauss multiplication relation, 163
Gauss-Manin connection, 60
Generlized period domain, 150
Golden ration/number, 2
Good reduction, 183

Heat equation, 40
Hecke operator, 116
Hecke’s L-function, 168
Height function, 100
Holomorhic modular form, 22
Holomorphic at infinity, 22

Intersection form, 51
Invariant cohomology, 233
Invariant homology, 233
inversion formulas, 71
Isogeny, 110

Jacobi family, 65, 66
Jacobi’s identity, 40
Jacobi’s theta function, 36

Lattice, 11
Lattice of elliptic integrals, 52
Lefschetz principle, 108
Legendre relations between elliptic integrals,

61

Mellin inversion theorem, 174
Mellin transform, 164
mermorphic modular form, 23
Modular form, 14, 22
Modular function, 23, 32
Modular group, 12
Monodromy, 53
Monodromy action, 52
Monodromy group, 53
Mordell-Weil theorem, 99
Multiplicative group, 182

Neron-Tate height, 104
Nodal reduction, 183
Non-complete L-function, 184
Non-complete zeta function, 184
Nonsplit multiplicative reduction, 183
Normalized eigenform, 120

Period domain, 57
Period map, 57
Period matrix, 60
Picard group, 41, 92
Picard moduli space, 224
Picard-Fuchs equation, 65
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Picard-Lefschetz theory, 52
Poincaré series, 41
Point at infinity, 49
Poisson summation formula, 42
Projective space, 78
Projective space at infinity, 78

Quasi-modular form, 148

Ramanujan relations between eisenstein series,
29

Ramanujan vector field, 64
Ramanujan’s τ function, 30
Rank of an elliptic curve, 99
Riemann’s zeta function, 24, 160

Schwarz map, 69
Schwarzian derivative, 33
Serre derivative, 29
Singular point, 81
Singularity, 81
Slash operator, 115

Split multiplicative reduction, 183

Theta function, 36
Torsion point, 108
Torus, 12
Trivial automorphy factor, 41
Twisted multiplicative group, 182

upper half plane, 15

Vanishing cycle, 53

Weak BSD conjecture, 186
Weakly holomorphic modular form, 23
Weierstrass ℘ function, 18
Weierstrass coordinates, 94
Weierstrass form, 49
Weierstrass format, 52
Weierstrass sigma function, 20
Weierstrass uniformization theorem, 55
Weierstrass zeta function, 20
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