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A poem by Jalal al-Din Muhammad Balkhi. Calligraphy: nastaliqonline.ir.

The names I gave him-wine, sometimes the cup.
At times he was raw silver, gold, refined.
A tiny seed, at times my prey, my trap-
All this because I could not say his name.

(Translation by Zara Houshmand in MOON & SUN: Rumi’s rubaiyat).

Sometimes I called it wine and sometimes its glass,
I called it gold and then just usual brass.
Sometimes I called it seed, some other time prey or even trap,
why this and that? So that I do not tell you its name.

(Author’s translation).



To my wife Sara Ochoa and my mother
Rogayeh Mollayipour





Preface

The guiding principle in this monograph is to develop a new theory of modular
forms which encompasses most of the available theory of modular forms in the
literature, such as those for congruence groups, Siegel and Hilbert modular forms,
many types of automorphic forms on Hermitian symmetric domains, Calabi-Yau
modular forms, with its examples such as Yukawa couplings and topological string
partition functions, and even go beyond all these cases. Its main ingredient is the so-
called ‘Gauss-Manin connection in disguise’. In the previous works, the emphasis
was on examples and their applications, ranging from classical modular form theory
to String Theory in Physics. The starting articles [Mov08b, Mov12b] were dedicated
to the case of elliptic curves and modular forms. The case of Calabi-Yau threefolds is
the topic of the joint article [AMSY16] and more details of this in the case of mirror
quintic Calabi-Yau threefolds has been extensively elaborated in the monograph
[Mov17b]. The article [Mov17c] mainly emphasizes the case of hypersurfaces with
geometric questions in mind, such as Noether-Lefschetz and Hodge loci. Now, I feel
that one has to develop the general theory of modular and automorphic forms, for
the sake of its beauty and for the sake of completeness, even though in the moment it
does not claim to solve any established conjecture in mathematics, and it is not clear
how such a general theory might be related to some deep applications of modular
forms, such as in the proof of Fermat’s last theorem, or how it might enter into
Langlands program. The text is written with the feeling that such a job must be
done to pave the road for future investigations and applications. For this I would
express myself with the following quotation from A. Weil’s book [Wei99], “Where
the road will lead remains in large part to be seen, but indications are not lacking
that fertile country lies ahead.” The present text is independent of these previous
works, however, many of our motivations are spread among them. We have in mind
an audience with a basic knowledge of Algebraic Geometry and Hodge Theory.
Some basic knowledge in Complex Analysis, Algebraic Topology and Differential
Equations would be useful for a smooth reading of the text.

Hossein Movasati
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Chapter 1
Introduction

“When kings are building”, says the German poet, “carters have work to do”. Kro-
necker quoted this, in his letter to Cantor of September 1891, only to add, thinking
of himself no doubt, that each mathematician has to be king and carter at the same
time, (A. Weil in his book [Wei99]).

The present book is the tale of a vast generalization of the differential equation
q ∂E2

∂q = 1
12 (E

2
2 −E4)

q ∂E4
∂q = 1

3 (E2E4−E6)

q ∂E6
∂q = 1

2 (E2E6−E2
4 )

, (1.1)

where Ei’s are the Eisenstein series:

E2i(q) := 1+bi

∞

∑
n=1

(
∑
d|n

d2i−1

)
qn, i = 1,2,3 (1.2)

and (b1,b2,b3) = (−24,240,−504). It was discovered by Ramanujan in [Ram16]
and it is mainly known as Ramanujan’s relations between Eisenstein series. He was
a master of formal power series and had a very limited access to the modern mathe-
matics of his time. In particular, he and many people in number theory didn’t know
that the differential equation (9.11) had been already studied by Halphen in his book
[Hal86] page 331, thirty years before S. Ramanujan and another equivalent version
of the differential equation was derived by Darboux in [Dar78b]. Since then this
differential equation has been rediscovered over and over, and it seems that the tale
of its rediscovery will not end, and mathematicians of the future will have the joy
of rediscovering it again. For a collections of such rediscoveries see [CMN+18] and
for one of the most celebrated applications of (1.1) in transcendental number theory
see Appendix A.
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1.1 Gauss-Manin connection in disguise

My rediscovery of the Ramanujan’s differential equation was through the computa-
tion of the Gauss-Manin connection for families of elliptic curves. In 2003 I started
to think about Griffiths project [Gri70] in which he wanted to build a satisfactory
theory of automorphic forms for the moduli of polarized Hodge structures, also
called Griffiths period domain, see also [Mov08a]. However, as we read in [GS69,
page 254] “for some domains arising quite naturally in algebraic geometry, there is
no theory of automorphic forms.” It was not clear how the Griffiths’ replacement for
this under the name automorphic cohomology group, would play the role of classi-
cal automorphic forms. I started to think about its reformulation in a similar style
as in K. Saito’s article [Sai01], that is, inverting functions formed by integrals and
obtaining automorphic forms. The role of multiple integrals with an arbitrary inte-
grand was mainly missing in the literature, and I realized that even in the elliptic
curve case, inserting elliptic integrals of the second kind in period maps, one gets
new functions similar to modular forms. In [Mov08b, Mov08c] I computed an or-
dinary differential equation in three dimensions and I knew that a solution of this
ODE involves the Eisenstein series E4 and E6. But what was the missing function?
After few weeks of searching the literature I understood that I have rediscovered
the Eisenstein series E2 together with the Ramanujan’s differential equation. This
rediscovery was worth as I started to introduce a new moduli space T and a new
period domain, and interpret the Ramanujan’s differential equation as a vector field
on both spaces.

The relation between modular forms in one hand and elliptic integrals and Picard-
Fuchs equations on the other hand is as old as the modern mathematics, however,
the first appearance of the relation between modular forms and the geometric incar-
nation of Picard-Fuchs equations under the name Gauss-Manin connection is in N.
Katz’s article [Kat73]. The q variable of modular forms under the name canonical
coordinate has produced the theory of ordinary crystals with fruitful applications in
the arithmetic of elliptic curves, see Deligne’s article [Del81] and the references
therein, see also this article for a generalization in the case of K3 surfaces and
Abelian varieties and [Yu13] for an attempt to use this in the case of Calabi-Yau va-
rieties. What is missing in all these heavily arithmetic oriented topics, is the moduli
space T. Soon I realized Darboux and Halphen’s work on the topic, and in partic-
ular, Halphen’s generalization using Gauss Hypergeometric function. Before going
beyond elliptic curves, in [Mov12a] I reproduced Halphen’s differential equation in
a geometric context. What I called differential modular forms in the mentioned arti-
cles, were called quasi-modular forms in [KZ95]. The lecture notes [Mov12b] were
supposed to be a complete exposition of the topic. P. Deligne in a personal commu-
nication (December 5, 2008) and in response to one of the early drafts of [Mov12b],
called the Ramanujan’s differential equation between Eisenstein series, the Gauss-
Manin connection in disguise. This became the title of a series of articles mainly in
the case of Calabi-Yau varieties, [Mov17b, AMSY16, Mov17c, MN18, HMY17].

After my works in the case of elliptic curves and quasi-modular forms I di-
rectly started to think about modular form theories for non-rigid Calabi-Yau vari-

http://w3.impa.br/~hossein/myarticles/deligne6-12-2008.pdf
http://w3.impa.br/~hossein/myarticles/deligne6-12-2008.pdf
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eties, skipping the case of K3 surfaces. The main reason was that the correspond-
ing period domains are not Hermitian symmetric, and so, the Griffiths project was
not working in these cases. However, for the surprise of many mathematicians,
physicists were producing many q-expansions attached to Calabi-Yau varieties and
with rich enumerative properties. D. Zagier in few personal communications ex-
pressed his long wish to relate such q-expansions to modular forms, but it was
not clear how this can be done. In 2014 I did a sabbatical year at Harvard and
this gave origin to my collaborations [AMSY16, HMY17] with Shing-Tung Yau,
Murad Alim, Emanuel Scheidegger and Babak Haghighat with whome I learnt a
lot and this gave me the guideline in order to write the present book. I under-
stood that the special geometry used in Topological String Theory, see for instance
[CdlO91, CDLOGP91a, Str90, CDF+97, Ali13a] is exactly the way physicist work
with moduli spaces and generalizations of Ramanujan’s vector field. Once again
it was clear that when physicists do not find what they need in mathematics, they
produce their own, even though it might not be in a polished format from a math-
ematician’s point of view. All these together with my earlier works gave me the
sufficient ingredients to formulate the new theory of modular forms attached to a
very particular class of Calabi-Yau threefolds, see [Mov15a, Mov17b]. The present
book has the ambition of even going further and contruct modular form theories
attached to arbitrary families of projective varieties.

1.2 Prerequisites

For definitions and preliminaries in Hodge theory needed for the purpose of the
present text, the reader is referred to the first sections of Deligne’s lecture notes
in [DMOS82], Voisin’s books [Voi02, Voi03] or the author’s book [Mov19]. The
reader who wants to follow this book with examples is recommended to have a look
in the case of elliptic curves developed in [Mov12b] and the case of mirror quintic
Calabi-Yau threefolds in [Mov17b].

The present text is not written linearly, and so, it is not recommended to read it
linearly. The reader is recommended to start reading a chapter of his interest and then
use a back and forth strategy to decipher objects and find the missing definitions.

1.3 A tale of love and madness

The present text is the tale of a kind of mathematics that I loved so much to write
it, and in the same time I had a feeling of madness: why should I invest so much
time on a topic whose fruitful applications, most probably, I will not see in my own
lifetime, a kind of mathematics that apparently only for me revealed itself beautiful,
a mathematics which looks like abstract nonsense. It seemed like a new land hidden
behind the ocean, I will have only the joy of its discovery and not its hidden golds.
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An editor of one of the author’s articles related to the present book, which was
previously rejected by many other editors, had to confess that after many and many
attemepts to find a referee, he was not able to find one. As usual something which I
enjoyed so much seemed to be not worthy of publication for others. It might be a tale
of love for useless beauty and so, it might sound a tale of madness. It is the failure of
my Grothendieck’s moment in which the desire for writting in the most abstract and
general context was high, but I felt the lack of capacity, time and motivation to do
so. On the one hand I believed that the generalization of automorphic forms, just for
the sake of generalization, is alone enough to justify this book. On the other hand I
was completely stuck with the huge literature on automorphic forms and I was not
able to pick a specific topic or conjecture and justify my text upon it. After studying
the history of the theory of modular forms, which is more than hundred and fifty
years of research, I came to the conclusion that it might not be possible to see the
arithmetic applications of the generalized modular forms in my lifetime. Instead, I
tried to push this text for applications in geometric objects like Noether-Lefschetz
and Hodge loci, which will be hopefully useful for a better understanding of the
Hodge conjecture. With all these contradictory feelings I took the job of writing this
text, elaborating only few boxes in the main goals of the present book sketched in
page x, and I hope that at some point in the future it will be useful. At least I hope
that some other people will have the same joy of exploring as I had during writing
the present text.

During the preparation of the present text it happend that I made trivial and obvi-
ous mistakes, and they continued for years in the first drafts. This made me feel that
I am not the right person to undertake the job of writing it. For instance, at some

point I realized that for two functions A
f→ B

g→ C, I have used f ◦ g because of
its pictorial simimilarity between two notations, and this has not produced a single
contradiction in my thinking as the applications of this has been done with correct
order of f and g. At some point I tought I am doing mathematical nonsense, but then
I thought it does not matter, the joy of a mad man is more important for him than
the outside world.

In 2019 when the text was more than 200 pages, I asked the opinion of Prof. P.
Deligne about it, and he pointed out that I do not have a convincing proof for the
fundamental proposition (Proposition 2.4) of the present text. For a moment I was
perplexed, I felt that the whole theory might be an abstract nonsense, however, I
went through it, and even though the proof of the fundamental proposition lacked
rigor, something beautiful was there, and I was not supposed to judge the whole
theory based on this. P. Deligne offered a proof based on some apparently well-
known facts in SGA3 Vol. II, however, understanding the details was beyond my
mathematical training.
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1.4 Tupi words

There are many new mathematical objects in the present book which have not ap-
peared in the literature, except for few of them in the author’s previous works, and
so they might deserve a proper name. For this I started to collect names in Tupi. This
is an extinct language which was spoken mainly by natives of south and southeast
Brazil. At some point I gave up this linguistic project, as it needed time, effort and
an expert’s advice. Below, the reader finds a suggestion of tupi words for few math-
ematical objects in this book that I was able to gather. They are not used in the main
body, however, they might be used in the future developement of the mathematics
of the present work.

Aupaba [Homeland, origin], the domain V of a family Y → V of
smooth projective varieties, §3.6.

Ibicatu [Good land], the parameter space T of an enhanced family
X/T in §3.4.

Ibiporanga [Pretty land], the moduli space T in §3.11.
Ibicuı́ [Sand], the moduli space S in §3.11.
Ibipiranga [Red land], Moduli of Hodge decompositions, §3.12.
Ybacoby [Blue sky], Generalized period domain U and Π, §8.3.
Itaquerejuguá [Precious stone], the marked variety, §3.2.
Itacuatiara [Written or painted stone], Enhanced smooth projective va-

riety/scheme, §3.4.
Itapiranga [Red stone], A variety with Hodge decomposition defined

over a field, §3.10.
Itaoby [Blue stone], varieties introduced in §2.17 using infinitesi-

mal variation of Hodge structures. These are also called R-
varierieties and are natural generalizations of Calabi-Yau
varieties.

Nhauumboca, Ocuera [House made of clay, House in the past], a family Y → V
of smooth projective varieties, §3.6.

Itaoca [House made of stone], Enhanced family X→ T, §3.4.
Amanoca [House of rain], Full enhanced family X→ T, §3.4.
Amanocuera [House of rain in the past], Weakly enhanced varieties,§3.5
Jatapy [To make fire], Enhanced family with an action of a reduc-

tive group, §3.7.
Ocatu [Good house], Enhanced family with constant Gauss-Manin

connection, §6.13.
Ocuama [Future house], The universal family X→ T, §3.11.
Atauúba [Fire arrow], Modular vector fields in the moduli space T,

§6.11.
Amana [Rain], The algebraic group G, §3.3.
Amandy [Rain’s water], The orbits of the algebraic group G, §3.3.
Atá [Fire], Reductive group G, §2.11.
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I wished to find better names for the following objects and I failed. Scheme theoretic
leaf in §5.4. Smooth and reduced leaf in §5.5. N-Smooth leaf in §5.8. Modular
foliations F (C) in §6.3. Trivial modular foliation in §6.4. Modular foliation with
trivial character in §6.5. Space of leaves L (C) in §6.6. Foliation F (2) in §6.9
and §6.10. Constant foliation in §6.12. Gauss-Manin connection matrix in §3.8.
Generalizations of Yukawa couplings Y in §6.11. Constant vector fields in §6.12.
Monodromy group ΓZ in §4.3. Monodromy covering H in §4.3. Generalized period
map P in §4.4. τ-map in §8.5. t-map in §8.5. Constant period vector C in §6.3.



Chapter 2
Preliminaries in algebraic geometry

Modern algebraic geometry has deservedly been considered for a long time as an
exceedingly complex part of mathematics, drawing practically on every other part
to build up its concepts and methods and increasingly becoming an indispensable
tool in many seemingly remote theories, (J. Dieudonné in [Die72], page 827).

2.1 Introduction

Research in modern algebraic geometry requires a hard training in its grandiose
foundation, gathered in the texts EGA, SGA and FGA, by Dieudonné, Grothendieck
and Serre among many other contributers. And once this is done, the new mathe-
matics to be created is hardly free of references to it. There are few practical rea-
sons to undergo this training. This includes the unification of Diophantine equations
(schemes over Spec(Z)) with complex analytic spaces, the need for spaces with
nilpotent functions, and to be able to talk about varieties and families of varieties
with a single notation. In the present text all these reasons are relevant, however,
we would like to avoid the unnecessary introduction of general machineries and
objects, and so, we highlight the basic concepts related to schemes needed for the
purpose of the present text. The strategy is to formulate definitions and propositions
in a scheme theoretic style, and once this becomes cumbersome, the language of
varieties over algebraically closed fields, and then of complex analytic varieties is
adopted and used.

2.2 The base ring and field

We consider a commutative ring R with multiplicative identity element 1 6= 0. We
also consider projective varieties defined over R. This uses a finite number of ele-
ments of R, therefore, in practice we can assume that the ring R is finitely generated,

7
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and so

R :=
Z[t1, t2, · · · , tr]

I
, where I ⊂ Z[t1, t2, · · · , tr], is an ideal.

We assume that R is an integral domain. In other words, it is without zero divisors,
i.e. if for some a,b ∈ R, ab = 0 then a = 0 or b = 0. In particular, it is reduced, that
is, it has not nilpotent elements. The characteristic of R is the smallest p ∈ N such
that the sum of 1 ∈ R, p-times, is zero. It is either a prime number or zero. In the
first case we can write R =

Fp[t1,t2,··· ,tr ]
I , where I is now an ideal in Fp[t1, t2, · · · , tr].

In the second case, we have Z ⊂ R, and we define N to be the greatest positive

integer which is invertible in R and we have R =
Z[ 1

N ,t1,t2,··· ,tr ]
I . The primes dividing

the number N are called the bad primes of the ring R. By our assumptions R is
Noetherian, that is, every ideal of R is finitely generated. We denote by k the field
obtained by the localization of R over R\{0} and by k̄ the algebraic closure of k.

Proposition 2.1 Let R be a finitely generated, commutative ring with multiplicative
identity element 1 6= 0, of characteristic zero and without zero divisors. There exists
an embedding R ↪→ C which makes R a subring of C.

Proof. We take the quotient field k of R and construct an embedding of fields k ↪→C.
Since we have a canonical injective morphism R ↪→ k of rings this would prove the
proposition. Let k be generated by a1,a2, . . . ,ar over Q. The proof is by induction
on the number r. The case r = 0 is trivial as we have a unique embedding Q ↪→ C.
Let us assume the proposition for r−1. We define k̃ to be the subfield of k generated
by a1,a2, . . . ,ar−1. By the hypothesis of induction we have an embedding k̃ ↪→ C.
Let

A := {P ∈ k̃[x] | P(ar) = 0}.

If A = {0} then we choose a transcendental number b over k̃ and we construct
k ↪→ C by sending ar to b. If not then A is an ideal of k̃[x]. This ideal is generated
by a unique monic polynomial P(x). We take a number b ∈C such that the minimal
polynomial of b over k̃ is P(x) and send ar to b. ut

When we choose a transcendental number a then we have an infinite number of op-
tions, whereas when we choose an algebraic number over k̃ we have a finite number.
For this reason, the number of embeddings R ↪→ C is infinite if the transcendendtal
degree of the quotient field k of R is strictly bigger than zero. The main motivation
behind Proposition 2.1 is the following version of Lefschetz principal. For a prop-
erty P talking about schemes (and foliations on them) defined over a ring R, we may
assume that R ⊂ C and it has finite transcendence degree over rational numbers.
Therefore, in order to prove P, we can use all the possible transcendental methods.

Later in §3.2 we will need to fix a subring R ⊂ R. In most of the cases this is
going to be

R= Z[
1
N
], or R := Fp.

The quotient field of R is denoted by k. The most famous rings in the present text
are the following
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R := Z
[

t1, t2, t3,
1

6(27t2
3 − t3

2 )

]
, R := Z

[
1
6

]
. (2.1)

This appears in the study of elliptic curves in Chapter 9.

2.3 Schemes over integers

A basic knowledge of algebraic geometry of schemes would be enough for our pur-
poses, see for instance the first chapters of Hartshorne’s book [Har77] or Eisenbud
and Harris’s book [EH00].

We will need schemes T over R which are covered with a finite number of affine
schemes of type Spec(Ri), i = 1,2, . . ., where Ri is the ring in §2.2. In most of the
cases T := Spec(R). For our purpose, we make the following definition.

Definition 2.1 A parameter scheme T over R satisfies the following properties:

1. The morphism of schemes T→ Spec(R) is of finite type. This means that there
is a covering of T by open affine subsets Ti := Spec(Ri) such that Ri is a finitely
generated R-algebra.

2. T is irreducible, that is, the underlying topological space does not contain two
proper disjoint nonempty open sets. In particular, T is connected, that is, it cannot
be written as a disjoint union of two nonempty open sets.

3. T is reduced, that is, T is covered by open sets Ti := Spec(Ri) such that Ri is
reduced.

Note that by definition an integral scheme is reduced and irreducible, and so, a pa-
rameter scheme T is integral. The ring (resp. field) of regular (resp. rational) func-
tions on T is denoted by k[T] (resp. k(T)). The most general example of a parameter
scheme of the present text will be introduced in §3.6.

Definition 2.2 Let T be a parameter scheme over R. A point t ∈ T is a prime ideal
p of Ri, where Spec(Ri) is some open subset of T. It is called a closed point if
p is maximal, and hence, the quotient Ri/p is a field. This is called the residue
field. An R-valued point comes further with an isomorphism of rings Ri/p∼=R, or
equivalently, a surjective morphism of rings a : Ri → R, for which the kernel of a
is the prime ideal used in the earlier definition. The set of R-values points of T is
denoted by T(R).

2.4 Differential forms on schemes

We will need the sheaf of differential 1-forms in T. It is enough to define it for the
case of affine schemes T := Spec(R). In this case for the definition of ΩR/R = Ω 1

T

and also Ω i
T see Section 10.3 of [Mov19].
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Definition 2.3 The dimension of the parameter scheme T is the smallest number
a such that Ω

a+1
T is the torsion sheaf and Ω a

T is not. The sheaf Ω a
T is called the

canonical sheaf of T.

Recall that a sheaf on T is called a torsion sheaf if any section s of this sheaf is
anihilated by some non-zero section of OT in the same open set as of s. In practice,
we take smooth parameter schemes of dimension a, and hence, Ω

a+1
T is the zero

sheaf. For singular T, Ω
a+1
T might be non-zero and it is well-known as Milnor or

Tjurina module in singularity theory, see for instance [Mov19] Chapter 10.
The canonical sheaf of T is an invertible sheaf, that is, in local charts it is free

of rank 1. Therefore, it comes from a Cartier divisor in T, see Hartshorne’s book
[Har77], Propsition 6.13, page 144. When R = k is an algebraically closed field
then the dimension of T is the maximum dimension among irreducible components
of T. The following definition will be mainly used in Chapter 5.

Definition 2.4 Let T be a parameter scheme of dimension n and let Ω be a sub-
module of the OT-module Ω m

T for some m≥ 1. We have

Ω
∧

Ω
n−m
T ⊂Ω

n
T. (2.2)

and so we have an ideal sheaf ZI(Ω)⊂OT, which we call it the zero ideal, such that
the left hand side of (2.2) is equal to ZI(Ω) ·Ω n

T. The zero scheme of Ω is defined
to be

ZS(Ω) := Spec(OT/ZI(Ω)).

2.5 Vector fields

Definition 2.5 Let T be a parameter scheme. The sheaf of vector fields is

ΘT := (Ω 1
T)
∨

An element in ΘT(U) for some open set U ⊂ T, is by definition an OT(U)-linear
map Ω 1

T(U)→ OT(U) and it is called a vector field in U .

If T is a smooth variety over an algebraically closed field k, a vector field can be
also interpreted as a section of the tangent bundle of T. The OT-module of vector
fields ΘT is isomorphic to the sheaf of derivations.

Definition 2.6 A map v : OT → OT is called a derivation if it is R-linear and it
satisfies the Leibniz rule

v( f g) = f v(g)+v( f )g, f ,g ∈ OT.

We denote by Der(OT) the OT-module of derivations.
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Proposition 2.2 We have an isomorphism of OT-modules

ΘT
∼= Der(OT),

v 7→ ( f 7→ v(d f )).

Proof. This isomorphism maps the vector field v to the corresponding derivation v̌
obtained by

v̌( f ) = v(d f ). (2.3)

Since in local charts Ω 1
T is genereted as OT-module by dOT, the equality (2.3) also

defines its inverse v̌ 7→ v. ut

In Der(OT) we have the Lie bracket [v2,v2], v1,v2 ∈ Der(OT) defined by

[v1,v2] := v1 ◦ v2−v2 ◦ v1.

We have to show that [v1,v2] is a derivation. It is R-linear becuase v1 and v2 are.
The Leibniz rule

[v1,v2]( f g) = f [v1,v2](g)+g[v1,v2]( f )

is left as an exercise to the reader.

Definition 2.7 Let f : T1 → T2 be morphism of R-schemes and vi, i = 1,2 be
vector fields on Ti, i = 1,2. We say that f maps v1 to v2 if the following diagram
commutes:

Ω 1
T2
→ Ω 1

T1
↓ ↓

OT2 → OT1

, (2.4)

where the down arrows are respectively v2 and v1.

Note that for f as above we have the induced map in the sheaf of differential 1-
forms, however, we do not have a morphism ΘT1 →ΘT2 .

Definition 2.8 Let T1,T2 be two R-schemes and v be a vector field in T1. A parallel
extension of v in T1×T2 is a vector field v̌ in T1×T2 such that under the first
projection T1×T2→T1 it maps to v and under the second projection T1×T2→T2
it maps to the zero vector field, see Figure 2.1.

Proposition 2.3 The parallel extension of a vector field exists and it is unique.

Proof. By definition OT1×T2 = OT1 ⊗R OT2 and hence

Ω
1
T1×T2

= ΩT1 ⊗R OT2 +OT1 ⊗R Ω
1
T2
. (2.5)

For a OT1 -linear map v : Ω 1
T1
→ OT1 , its parallel extension Ω 1

T1×T2
→ OT1×T2

evaluated at the first piece (resp. second piece) in (2.5) is v⊗ Id (resp. zero). ut
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Fig. 2.1 Parallel extension

There are some other differential geometric objects that will be useful later. The
definition of Lie derivative is taken from Cartan’s formula

Lv : Ω
i
T→Ω

i
T, Lv := d ◦ iv + iv ◦d (2.6)

where iv is the contraction of differential forms with the vector field v. We have the
identities

L[v1,v2] = [Lv1 ,Lv2 ], (2.7)
i[v1,v2] = [Lv1 , iv2 ]=[ iv1 ,Lv2 ]. (2.8)

2.6 Projective schemes over a ring

In the present text we will need another class of schemes which are usually pro-
jective. For simplicity, we first explain this for schemes over the ring R defined
in §2.2. We work with finite schemes X over R and we write X/R or say that X
is an R-scheme. This means that X is covered with a finite number of open sets
Ui, i = 1,2, . . . ,s such that Ui := Spec(Ai) and each Ai is a finitely generated R-
algebra. In practice, we will only encounter projective schemes

X ⊂ PN
R := PN

Z ×Z Spec(R)

which is automatically closed. This can be thought as
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X := Proj(R[x0,x1, · · · ,xN ]/I),

where I is a homogeneous ideal of the graded ring R[x0,x1, · · · ,xN ] with usual
weights deg(xi) := 1. Later, we will also consider arbitrary weights. We denote by

Xk := X×R k

the variety over the quotient field k of R. This is also called the generic fiber of X .
In a similar way

Xk̄ := X×R k̄

is the variety over the algebraic closure k̄ of k. For a prime ideal p of R, we denote
by

Xp := X×R R/p

the fiber of X over p ∈ Spec(R). This is an scheme over the residue ring R/p. It
is also called X modulo the prime ideal p. For any other ring R ⊂ R̃ we also define
XR̃ := X ×R R̃ which is an scheme over R̃. An R-scheme X is called smooth if Xk̄ is
smooth. We denote by X(R) and X(k) := Xk(k) the set of R- and k-rational points
of X . For two R-schemes X1,X2 we will consider morphisms, isomorphism and
birational maps of R-schemes X1→ X2.

We introduce the above notation for families of projective schemes. A scheme
over R gives us a morphism of schemes X → T, where T := Spec(R). In general,
we will take T a parameter scheme described in §2.3. A point t ∈T is a prime ideal p
of Ri, where Spec(Ri) is some open subset of T. This gives us the projective scheme
Xt over R/p. In this way, we can talk about the family of projective schemes with
fibers Xt , t ∈ T. We will also use the follwing equivalent notations

{Xt}t∈T, X/T, X ⊂ PN
T, X → T.

Note that if p is a maximal prime ideal then R/p is the residue field. If R is a finitely
generated k-algebra and k is algebraically closed then all the residue fields are iso-
morphic to k and X can be identified with the set X(k) of its closed points.

Definition 2.9 Let X be a projective scheme over T and let π : X → T be the corre-
sponding morphism of algebraic varieties over the field k. A point t0 ∈T(k̄) is called
a regular value of π if the derivative of π at any point x0 ∈ X(k̄) with π(x0) = t0
is surjective. It is called critical otherwise. The corresponding fiber Xt0 is called re-
spectively a regular and critical fiber. The morphism π is called smooth if it has
only regular values.

For a more general definition of a smooth morphism of schemes see [Har77], Chap-
ter 3, Section 10.
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2.7 Algebraic de Rham cohomology and Hodge filtration

Let X be a smooth projective variety over the ring R. We are going to use the al-
gebraic de Rham cohomology H∗dR(X) of X and its Hodge filtration, both defined
over R. The main references on this topic are the original article of Grothendieck
[Gro66], Hartshorne’s work [Har75] and Deligne’s lecture notes in [DMOS82]. In
all these articles it is assumed that R is a field of characteristic zero, however, for
our purpose we need to relax this condition and work over a ring. This forces us to
assume that the ring R is the function ring of a smooth affine variety T := Spec(R)
over a field k of characteristic zero. Moreover, the morphism X → T is smooth, see
Definition 2.9. For families of affine varieties one actually needs that the field k to
be of characteristic zero, see [Mov12b]§2.4 for the discussion of de Rham cohomol-
ogy of compact and punctured elliptic curves. In a personal communication with P.
Deligne (December, 13, 2010) he writes:“ For affine varieties, dR cohomology is
indeed bad in char. p: usually infinite dimensional (H0 contains all p-th powers of
functions). The projective case is better, and for an abelian variety of dimension g,
one gets the expected exterior algebra over H1, which is of dimension 2g, extension
of H1 of O by H0 of Ω 1, both of dimension g. ” Using Brieskorn modules for tame
polynomials which is a finer version of algebraic de Rham cohomology one can
also work with a general Cohen-Macaulay ring R and the family X → T might have
isolated singular fibers, see [Mov19]. We believe that we can relax the conditions
over k in a great amount and even we could work over a ring R instead of k. How-
ever, for the lack of references in the literature we will limit ourselves to a field k
of characteristic 0. Further discussions of this type are being collected in the book
[Mov20a].

Definition 2.10 For a smooth projective scheme X of dimension n over the ring R
the algebraic de Rham cohomologies

Hm
dR(X) := Im

(
Hm(X ,Ω ∗X/R)→Hm(X ,Ω ∗X/k)

)
, m = 0,1,2, . . . ,2n,

are R-modules in a natural way, where k is the quotient field of R.

For other m’s by definition we have Hm
dR(X) = {0}. Further, we have the cup product

which is a R-bilinear map

Hm1
dR (X)×Hm2

dR (X)→ Hm1+m2
dR (X), (α,β ) 7→ α ∪β . (2.9)

In each Hm
dR(X) we have the Hodge filtration

0 = Fm+1 ⊂ Fm ⊂ ·· · ⊂ F1 ⊂ F0 = Hm
dR(X)

which is defined by

Fq = FqHm
dR(X) = Im

(
Hm(X ,Ω •≥q

X/R)→Hm(X ,Ω •X/k)
)
.
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Each Fq is also an R-module. The cup product and the Hodge filtration satisfy the
relations

F iHm1
dR (X)∪F jHm2

dR (X)⊂ F i+ jHm1+m2
dR (X). (2.10)

The embedding X ↪→ PN
R gives us an element

θ ∈ F1H2
dR(X) (2.11)

which we call it the polarization. For m even number we write

θ
m
2 := θ ∪θ ∪·· ·∪θ︸ ︷︷ ︸

m
2 − times

∈ Hm
dR(X).

In particular, for m = 2n we get the element θ n in the top cohomology H2n
dR(X). The

trace map
Tr : H2n

dR(X)→ R

is an R-linear map. Let

Li : H∗dR(X)→ H∗dR(X), α 7→ α ∪θ
i.

The m-th primitive cohomology is defined to be

Hm
dR(X)0 := ker

(
Ln−m+1 : Hm

dR(X)→ H2n−m+2
dR (X)

)
.

The cup product composed with the trace map gives us the bilinear maps

〈·, ·〉 : Hm
dR(X)×H2n−m

dR (X)→ R, (α,β ) 7→ Tr(α ∪β ) (2.12)

and

〈·, ·〉 : Hm
dR(X)×Hm

dR(X)→ R, (α,β ) 7→ Tr(α ∪β ∪θ
n−m). (2.13)

Note that the second bilinear map depends on the polarization.

Definition 2.11 By abuse of classical notations we define

H j,m− j(X) := F jHm
dR(X)/F j+1Hm

dR(X)∼= Hm− j(X ,Ω j
X ). (2.14)

We say that α ∈Hm
dR(X) is of type ( j,m− j) if α ∈F jHm

dR(X) and α 6∈F j+1Hm
dR(X).

We write
Type(α) := ( j,m− j).

The Hodge numbers are

hi, j := dim H i(X ,Ω j
X ), 0≤ i+ j ≤ 2n.

The Betti numbers are

bm := hm,0 +hm−1,1 + · · ·+h0,m. (2.15)
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The dimensions of the Hodge filtration of the de Rham cohomologies of X are

hi
m := hm,0 +hm−1,1 + · · ·+hi,m−i. (2.16)

We use subscript m to denote objects attached to the m-th cohomology. When we do
not use other cohomologies we usually drop this subscript. For instance, we write
b = bm to denote the m-th Betti number. The following statements are well-known.

1. The number Tr(θ n) is the degree of the projective scheme X ⊂ PN
R .

2. The top cohomology is a R-module of rank one and the trace map is an isomor-
phism of R-modules.

3. The bilinear maps 2.12 and (2.13) are non-degenerate.
4. Hard Lefschetz theorem: the map Ln−m : Hm

dR(X)→H2n−m
dR (X) is an isomorphism

of R-modules.
5. Lefschetz decomposition: we have

⊕qHm−2q
dR (X)0 ∼= Hm

dR(X)

which is given by ⊕qLq.

In the complex context, R = C the trace map is just

Tr(α) :=
1

(2πi)n

∫
X(C)

α. (2.17)

The appearance of powers of 2πi-factors in period manipulations is also formulated
in terms of the so called Tate twist, see Deligne’s Lecture notes [DMOS82]. For the
purpose of the present text, it is more convenient to write these factors explicitly and
not to use the Tate twist notation. For a projective variety X over a field k of charac-
teristic zero, there is no canonical inclusion of H i,m−i(X) inside Hm

dR(X). Therefore,
there is no canonical isomorphism between Hm

dR(X) and ⊕m
i=0H i,m−i(X). For k= C,

such a canonical inclusion and isomorphism exist and are given by harmonic forms,
see for instance [Voi02].

Proposition 2.4 Let Xt , t ∈T be a family of smooth projective varieties and let X ,X0
be two regular fibers of this family. We have an isomorphism

(H∗dR(X),F∗,∪,θ) α' (H∗dR(X0),F∗0 ,∪,θ0) (2.18)

Proof. It suffices to consider families over the field of complex numbers. Further, it
is enough to prove the isomorphism (2.18) for X =Xt with t in a small neighborhood
U = (T,0) of 0 ∈ T for which we have used the usual/analytic topology of T. We
can take sections αm,i of the cohomology bundle Hm

dR(X/T) in U such that θ i’s
are included in this basis, and moreover, it is compatible with the Hodge filtration.
However, we need that the cup product to be constant (independent of t) in this
basis which is not clear why this must be the case. The following proof is due to P.
Deligne (personal communication May 12, 2019).
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Let G be the linear algebraic group of automorphisms of (H∗dR(X0),∪,θ). By
Ehresmann’s fibration theorem we have C∞ isomorphisms Xt ∼= X0, t ∈ U which
gives us unique isomorphisms i : (H∗dR(Xt),∪,θ) ∼= (H∗dR(X0),∪,θ). Note that the
uniqueness follows from the fact that U is simply connected. The Hodge decomposi-
tion in H∗dR(Xt) is given by the action of the multiplicative group Gm = (C−{0}, ·):
multiplication by zp−q on H p,q. This composed with i gives us a holomorphic fam-
ily of algebraic group morphisms it : Gm → G for all t ∈ U . We need to prove
that it ’s are conjugate, that is, there is a holomorphic map g : U → G such that
it(z) = g(t)−1i0(z)g(t). In order to prove this we use SGA3 Vol. II, see [DG70]. “IX
3 uses cohomology to obtain infinitesimal statements. XI 4 proves representability
of the functor M of subgroupschemes of multiplicative type. XI 5 puts it all together
to prove that for an affine smooth groupscheme G/S, and M the scheme parametriz-
ing subgroupscheme of multiplicative type, M is smooth over S and the action by
conjugation of G on M gives a smooth morphism (action, IdM) : G×M→M×M”,
(P. Deligne, personal communication, August 14, 2019). ut

A very important fact is that there is no canonical way to choose the isomorphism
(2.18). This is the driving philosophy behind the present text and it is the main
starting observation for the creation of new theories of modular forms.

2.8 Block matrix notations

In many occasions we fix a number 0≤ m≤ 2n and work only with the m-th coho-
mology of varieties. In this case, we usually omit the subscript m, for instance we
write bm = b. We will usually use b×b matrices. For a b×b matrix M we denote
by Mi j, i, j = 0,1,2, . . . ,m the hm−i,i×hm− j, j sub matrix of M corresponding to the
decomposition (2.15):

M = [Mi j] =


M00 M01 M02 · · · M0m

M10 M11 M12 · · · M1m

M20 M21 M22 · · · M2m

...
...

...
. . .

...
Mm0 Mm1 Mm2 · · · Mmm

 .

We call Mi j, i, j = 0,1,2 . . . ,m the (i, j)-th Hodge block of M. For a b×1 matrix M
we denote by Mi, i = 0,1,2, . . . ,m the hm−i,i×1 sub matrix of M corresponding to
the decomposition (2.15):

M =


M0

M1

M2

...
Mm

 .
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For any property ”P” of matrices we say that the property ”block P” or ”Hodge
block P” is valid if the property P is valid with respect to the Hodge blocks. For
instance, we say that a matrix M is block upper triangular if Mi j = 0, i > j. In many
occasions, writing the general matrix might be confusing and so we reproduce the
matrices for m = 3,4 or 5. The general format of the matrix can be easily guessed
and reproduced from this case.

2.9 Moduli space

Let k = k be an algebraically closed field and let X ⊂ PN be a smooth projective
variety over k. We want to talk about all possible deformations of X , and the moduli
space of X . However, the contruction of moduli spaces in Algebraic Geometry is
usually a hard task, and it needs mastering of many techniques such as Geometric
Invariant Theory, see [MFK94]. In this section we briefly describe what we need to
know about moduli spaces in a more intuitional language. Further discussion of this
topic will be done in §3.11.

Definition 2.12 By an algebraic deformation of a projective variety X ⊂ PN
k over

k we mean any fiber of a smooth proper family {Xt}t∈T, Xt ⊂ PN
k of projective

varieties over k with T smooth and connected. This is obtained by taking a closed
subvariety of PN

k ×T and projecting it to T. If necessary, we might replace T with
an open subset of T.

Let M be a moduli of projective varieties X over k. By this we mean a set of alge-
braic varieties such that

1. For any two variety X1,X2 ∈ M, there is a proper family {Xt}t∈T, Xt ⊂ PN of
algebraic varieties over k such that X1 and X2 are two regular fibers of the family,
that is, for some t1, t2 ∈ T(k) we have X1 = Xt1 , X2 = Xt2 .

2. Any algebraic deformation of X ∈M in PN and over k is in M.

For k ⊂ C it follows from Ehresmann’s theorem (and its generalization to singular
varieties) that all the varieties in M are diffeomorphic and so from the topological
point of view there is no difference between them. The algebraic structure distin-
guishes the elements of M. Hodge numbers do not depend on the particular choice
of X ∈M because they are topological invariants. “To say that “Hodge numbers are
topological” is abusive. In a family, hp,q is (locally) constant because it is upper
semi-continuous (as the dimension of a coherent cohomology group), while their
sum for p+q = n is constant, being topological by degenerescence of Hodge to de
Rham”, (P. Deligne, personal communication, May 12, 2019).
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2.10 Flatness condition

Let X be a projective scheme over a parameter scheme T. It seems that in our way we
will need to assume that X is flat. The geometric notation X→T is more convinient
for this puropose.

Definition 2.13 Let π : X → T be a morphism of schemes. It is called flat if for all
x ∈ X with t := π(x), OX ,x is a flat OT,t -module, that is, for any finitely generated
ideal I ⊂OT,t the map I⊗OX ,x→ OX ,x is injective.

For more details on flat morphisms see Hartshorne’s book [Har77], page 253. The
first important property of flat morphisms is that the dimension of fibers does not
change, see [Har77] Proposition 9.5 page 256. In our study of foliations in Chapter
5 we will consider fibrations that might have fibers of different dimensions and
hence they do not enjoy flatness. The following theorem is the main reason for us
to assume the flatness condition throughout the present text. We will discuss Hilbert
schemes in §2.11.

Theorem 2.5 A projective scheme X ⊂ PN
T over a reduced and connected scheme

T is flat if and only if all the fibers of X → T have the same Hilbert polynomial.

See for instance [EH00], Proposition III-56, and the references therein.

2.11 Hilbert schemes

In this section we gather some well-konwn facts concerning Hilbert schemes. Our
main references are Eisenbud and Harris’s book [EH00] and Mumford, Fogarty and
Kirwan’s book [MFK94]. Let k be a field and X ⊂ PN

k be a projective scheme. By
definition X is given by a homogeneous ideal

I ⊂ k[x] := k[x0,x1, . . . ,xN ].

Definition 2.14 The Hilbert function of X is

HF(·) = HF(X , ·) : N→ N, HF(X ,ν) := dimk(k[x]/I)ν .

The Hilbert series is

HS(t) = HS(X , t) := ∑
ν

HF(X ,ν)tν .

Theorem 2.6 (Hilbert) There is a unique polynomial HP(X ,ν) in ν such that
HF(X ,ν) = HP(X ,ν) for all sufficiently large ν .
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The polynomial in the above theorem is called Hilbert polynomial. For a proof see
[EH00], Theorem III-35, page 125. The following examples are useful to carry in
mind:

1. For the projective space X = PN
k we have

HS(t) :=
1

(1− t)N+1 , HF(ν) = HP(ν) =
(

ν +N
N

)
.

2. For a complete intersection X of type (d1,d2, · · · ,ds) we have

HS(t) :=
(1− td1)(1− td2) · · ·(1− tds)

(1− t)N+1 .

3. For a hypersurface X of degree d in PN :

HS(t) :=
1− td

(1− t)N+1 , HF(ν) = HP(ν) =
(

ν +N
N

)
−
(

ν−d +N
N

)
. (2.19)

We consider the set of all projective varieties X ⊂ PN
k with a given Hilbert poly-

nomial P. In fact, we have the Hilbert scheme HilbP(PN) whose k-rational closed
points will be a good substitute for M introduced in §2.9.

Let P be a fixed Hilbert polynomial. Let us consider the following functor:

h : { schemes}→ {sets}

where for a scheme T, h(T) is the set of schemes X ⊂ PN
T flat over T whose fibers

over points of T have the Hilbert polynomial P. The functor h is representable and
a more precise result is given below.

Theorem 2.7 There is a projective scheme HilbP(PN
Z) ⊂ PM

Z over Z and a closed
subscheme

W ⊂ PN
Z ×HilbP(PN

Z)

which is universal, that is, for any closed subscheme X ⊂ PN
Z×T flat over T whose

fibers over points of T have the Hilbert polynomial P , there is a unique morphism
f : T→ HilbP(PN

Z) such that X is the pull-back of W under the map

Id× f : PN
Z ×T→ PN

Z ×HilbP(PN
Z).

For more details and further references on Hilbert schemes see the book [MFK94]
Chapter 0, Section 5, see also [EH00] page 263. An important feature of this theo-
rem is that HilbP(PN

Z) is projective and so there is a homogeneous ideal I ⊂ Z[t] =
Z[t0, t1, · · · , tM] such that

HilbP(PN
Z) = Proj(Z[t]/I).

The reductive group
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G := GL(N +1) = Aut(PN
Z)

acts from the left on PN
Z and hence it induces an action on the Hilbert scheme:

G×Z HilbP(PN
Z)→ HilbP(PN

Z), (g, t) 7→ g·t.

This follows from the universal property of the Hilbert scheme.

2.12 Group schemes and their action

In this section we recall some basic definitions related to group schemes and their
actions. As usuall all schemes are over R. For missing definitions see [MFK94].

Definition 2.15 A group scheme G acts from the left on π : X→ T (or simply
on X/T) if it acts from the left on both X and T and its action commutes with the
morphism X→ T, that is,

G×X → X
↓ ↓

G×T→ T
(2.20)

commutes, where the first down arrow is Id×π . In geometric terms, this means that

π(g·x) = g·π(x), x ∈ X, g ∈G.

It follows that the action of g∈G on X induces an isomorphism Xt →Xg·t , x 7→ g·x
for any t ∈ T.

In a similar way we define a right action. In Chapter 3 we will to consider the action
of two groups in the same time.

Definition 2.16 Let G and G be two group schemes acting on an scheme X from
the left and right, respectively. We say that the actions of G and G are independent
from each other if the canonical compositions

(G×X)×G→ X×G→ X,

G× (X×G)→G×X→ X,

are the same. In geometric words

g·(t •g) = (g·t)•g, g ∈G, t ∈ X, g ∈ G. (2.21)
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2.13 Stable points

For the preparation of this section we have used Newstead’s book [New78], see also
his lecture notes in Guanajuato. Let X ⊂ PN

R be a projective scheme over R. We
consider a group scheme G which acts linearly from the left on X , that is, we have
a representation G→ GL(N +1), G acts on PN

R through this representation, and X
is invariant under this action. It turns out that G acts on the space of polynomials
R[X0,X1, · · · ,XN ]. For a homogeneous G-invariant polynomial f , let

X f :=
{

x ∈ X
∣∣∣ f (x) 6= 0

}
(2.22)

which is a G-invariant affine open subset of X .

Definition 2.17 A point x ∈ X is called semistable for the action of G if there exists
a G-invariant polynomial f such that x∈X f . It is called stable if it has finite stablizer
(or equivalently dim(G · x) = dim(G)) and there is an f as above such that G acts
on X f and all the orbits of G in X f are closed.

Definition 2.18 Let X and G as before. A morphism of R-schemes φ : X → Y is
called a good quotient of X by G if

1. φ is an affine and surjective morphism. Recall that φ is affine if the inverse image
of every affine Zariski open set in Y is affine.

2. φ is constant on orbits.
3. For U a Zariski open subset of Y , the induced homomorphism φ ∗ : OY (U)→

OX (φ
−1(U))G is an isomorphism. Here, OX (φ

−1(U))G is the ring of G-invariant
functions.

4. If W is a Zariski-closed G-invariant subset of X , then φ(W ) is also closed in Y .
5. If W1 and W2 are Zariski closed G-invariant subsets of X and W1∩W2 = /0, then

φ(W1)∩φ(W2) = /0.

In this case we write Y = G\\X . It is called a geometric quotient if it is a good
quotient, and an orbit space, that is, we have a bijection between the set of orbits
{G · x, x ∈ X} and Y which maps G · x to φ(G · x). In this case we write Y = G\X .

Let X ss and X s be the set of semistable and stable points of X , respectively.

Theorem 2.8 Let G be a reductive group acting linearly on a projective variety X.
Then

1. There exists a good quotient φ : X ss→ Y and Y is projective.
2. The image Y s of the morphism φ restricted to X s is a Zariski open subset of Y

and Y s = G\X s is a geometric quotient of X s.
3. For x1,x2 ∈ X ss,φ(x1) 6= φ(x2) if and only if

G · x1 ∩ G · x2 ∩ X ss = /0.

4. For x ∈ X ss, x is stable if and only if x has finite stabiliser and G · x is closed in
X ss.

http://www.cimat.mx/Eventos/c_vectorbundles/newstead_notes.pdf
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The fact that Y is projective implies that we have a natural compactification of the
orbit space X s. As a corollary of Theorem 2.8 we have

Proposition 2.9 Let f : X1→ X2 be a morphism of R-schemes, and consider an ac-
tion of the reductive group G from the left on f (see Definition 2.15) and two points
x1 ∈ X1, x2 ∈ X2. Assume that f is a finite morphism, that is, there is a covering of
X2 by open affine subsets Ui = Spec(Ri) such that f−1(Ui) = Spec(Ři) is affine and
Ři is a finitely generated Ri-algebra. If x2 is stable (resp. semistable) for the action
of G then x1 is also stable (resp. semistable) for the action of G.

This, for instance, will be used in Theorem 3.5. Note that families of projective
varieties over a Hilbert scheme is not finite, and so this observation cannot be applied
in this case. For this reason many times, coarse moduli spaces exist, however the
universal familes do not.

2.14 Group actions and constant vector fields

Let G be an algebraic group scheme over R and let v be a vector field in G. We are
going to consider the parallel extension of v in G×G. For this we have to consider
v a vector field in the first or second factor of the product G×G. This will not be
important for the definition below:

Definition 2.19 The Lie algebra of G is

Lie(G) :=
{

v ∈ H0(G,ΘG) | the parallel transport of v

in G×G is mapped to v under the multiplication morphim G×G→ G } .

In the rest of this section we will work with an algebraic group G over an alge-
braically closed field k. The reader might try to formulate and prove the scheme
theoretic version of what follows.

Proposition 2.10 If G is an algebraic group over an algebraically closed field k and
1 is its identity element then the evaluation at 1 ∈ G map

Lie(G) 7→T1G, (2.23)

induces an ismorphism of k-vector fields, where T1G is the tangent space of G at 1.

Proof. The inverse of the map (2.23) is obtained in the following way. Any element
g ∈ G induces an isomorphism ig : G→ G, x 7→ x ·g. For a vector v1 ∈ T1G we can
consider an element v∈Lie(G) such that vg ∈TgG at the point g is the push-forward
of v1 under the isomorphisn

D1ig : T1G→TgG.

The vector field v is characterised by the fact that it is invariant under ig for all g.
The last part of the proof has inspired the definition of Lie(G). ut
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Let us consider Lie(G) as a constant sheaf with values in Lie(G) defined in (2.19).
For simplicity we do not produce new notations. We have a canonical inclusion of
sheaves

Lie(G)⊂ΘG

In a similar way, we have also a canonical inclusion of sheaves

Lie(G)∨ ⊂Ω
1
G.

Proposition 2.11 We have

ΘG = Lie(G)⊗k OG,

Ω
1
G = Lie(G)∨⊗k OG.

Proof. This follows from the fact that at each point g of G the elements of Lie(G)
evaluated at g form a basis of TgG. ut

Definition 2.20 An element of the Lie algebra Lie(G) is denoted by g. Later, we
will also use another (reductive) group G and an element of Lie(G) is also denoted
by g.

Proposition 2.12 Let G be an algebraic group acting from the right on a variety T
non-trivially, all defined over an algebraically closed field k. There is a canonical
homomorphism of Lie algebras

i : Lie(G)→ H0(T,ΘT), g 7→ vg (2.24)

which is uniquely characterized by the following property: for g ∈ Lie(G) viewed
as a vector field in G, its parallel transport in T×G is mapped to vg under the
morphism of group action T×G→ T .

Note that the proposition can be also stated for group schemes.

Proof. Let g∈ Lie(G) and consider its parallel transport ǧ in T×G. The vector field
vg as an element of (Ω 1

T)
∨ is the following. It sends the differential form α ∈Ω 1

T to
the pull-back of α under the action morphism T×G→ T and then evaluated at ǧ.
After this evaluation one gets a regular function in T×G and one has to check that
it is a pull-back of some regular function in T by the projection map T×G→ T in
the first coordinate. ut

One might be interested in cases, where the map i is an injection. For this one might
impose conditions on the the action of the algebraic group G, for instance, the action
is not trivial in the sense that the action morphism G×T→ T is not constant (its
image is not a point). It is well-kown that if the action is free then i is injective, see
[Ham17, Proposition 3.4.3].
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Definition 2.21 Following [LM87, Chapter IV], see also [Ham17, §3.4] we call vg
the fundamental vector field corresponding to g ∈ Lie(G). We also call i in (2.24)
the fundamental vector field map.

One can also describe vg in a more geometric fashion. For t ∈ T let

j : G→ T, j(g) = t •g. (2.25)

Let us identify Lie(G) with the tangent space of G at 1 ∈ G. For g ∈ Lie(G) we have
to define vg,t , t ∈ T which must be a vector in the tangent space of T at t. The
vector vg,t is defined to be the image of g under the derivation of j. Note that under
the derivation of the action morphism T×G→ T over the point (t,1), the vector
(w,g) maps to w+vg,t .

Proposition 2.13 For a regular function f ∈ OT we have

d( f ◦ j)(g) = d f (vg), ∀g ∈ Lie(G),

where the first d refers to the differential operator in G and the second d refers to
the differential operator in T .

Proof. This follows from the fact that under j the vector field g ∈ΘG is mapped to
the vector field vg ∈ΘT. ut

Later in §5.10 we will use the foliation F (G) induced by the image of the map
(2.24). This is one of our main examples of foliations with leaves of different codi-
mensions.

2.15 Gauss-Manin connection

The Gauss-Manin connection from a topological point of view is simple to describe,
however, it becomes computationally complicated from an algebraic point of view.
The topological description is as follows.

Let X→ T be a family of smooth projective varieties over C. By Ehresmann’s
fibration theorem, this is a locally trivial C∞ bundle over T, and hence, it gives us
the cohomology bundle

H := ∪t∈THm(Xt ,C)

over T whose fiber at t ∈ T is the m-th cohomology of the fiber Xt , for more details
see [Mov19] Chapter 6. This bundle has sepecial holomorphic sections s such that
for all t ∈ T we have s(t) ∈ Hm(Xt ,Q). These are called flat sections. In a small
neighborhood Uof t ∈ T we can find flat sections s1,s2, . . . ,sb such that any other
holomorphic section in U can be written as s=∑

b
i=1 fisi, where fi’s are holomorphic

functions in U . The Gauss-Manin connection on H is the unique connection on H
with the prescribed flat sections:
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Fig. 2.2 Gauss-Manin connection

∇ : H→ΩT⊗OT
H, ∇

(
b

∑
i=1

fisi

)
=

b

∑
i=1

d fi⊗ si,

see Figure 2.2 for a pictorial description of Gauss-Manin connection. The alge-
braic description of the Gauss-Manin connection is done by N. Katz and T. Oda
in [KO68], see also Deligne’s Bourbaki seminar [Del69]. Its computation usually
produces huge polynomials and the available algorithms work only for families
of lower dimensional varieties with few parameters. For more on this topic see
[Mov11b, Mov12b]. In this text we will only need the following information about
the algebraic Gauss-Manin connection.

Let X→ T be a family of smooth projective varieties over a field k of character-
istic 0 as in §2.6. For a fixed 1 ≤ m ≤ 2n, the m-th de Rham cohomology bundle
Hm(X/T), which one must look at it as a free sheaf on T, enjoys a canonical con-
nection

∇ : Hm
dR(X/T)→Ω

1
T⊗OT

Hm
dR(X/T), m = 0,1, . . . ,2n

which is called the Gauss-Manin connection of the family X→ T. It satisfies the
following properties:

1. The polarization θ ∈ H2
dR(X/T) is a flat section, that is,

∇(θ) = 0, (2.26)

2. For α ∈ Hm1
dR (X/T) and β ∈ Hm2

dR (X/T) we have

∇(α ∪β ) = ∇(α)∪β +α ∪∇(β ). (2.27)

3. We have
∇(F iHm

dR(X/T))⊂ F i−1Hm
dR(X/T), i = 1,2, . . . (2.28)



2.16 Infinitesimal variation of Hodge structures 27

which is called the Griffiths transversality.
4. ∇ sends the primitive cohomology Hm(X/T)0 to itself, and hence, it respects the

Lefschetz decomposition. This follows from item 1 and 2.

The Gauss-Manin connection induces maps

∇i : Ω
i
T⊗OT

Hm
dR(X/T)→Ω

i+1
T ⊗OT

Hm
dR(X/T), (2.29)

∇i(α⊗ω) = dα⊗ω +(−1)i
α ∧∇ω, α ∈Ω

i
T, ω ∈ Hm

dR(X/T),

for i = 0,1,2, . . ., and it is an integrable connection, that is,

∇i+1 ◦∇i = 0, i = 0,1,2, . . . . (2.30)

2.16 Infinitesimal variation of Hodge structures

The infinitesimal variation of Hodge structures, IVHS for short, is a partial data of
the Gauss-Manin connection and cup product for families of projective varieties. It
is also a computable part of it by means of closed formulas, at least for hypersur-
faces. It was developed by Griffiths and his coauthors in a series of papers [CG80]
[CGGH83], and it produced many applications such as Torelli problem for hyper-
surfaces, see also Harris’ expository article [Har85] on this topic. In this section we
introduce a slightly more general version of IVHS by considering the whole coho-
mology ring, whereas in the literature one defines it in a fixed cohomology. There is
a close relation between our IVHS and the theory of modular vector fields developed
in Chapter 6. This relation has been partially discussed in [Mov17c].

Let Y/V be a family of smooth projective varieties. By Griffiths transversality
theorem, the Gauss-Manin connection of Y/V induces maps

∇k : ∪t∈V Hk(Yt ,Ω
m−k
Yt

)→Ω
1
V ⊗OV ∪t∈V Hk+1(Yt ,Ω

m−k−1
Yt

), k = 0,1, . . . ,m.
(2.31)

Here, we have used the canonical identification in (2.14). From now on we use the
notation

Hm−k,k
t := Hk(Yt ,Ω

m−k
Yt

).

One usually compose ∇k with vector fields in V and arrives at the blinear map in the
first entry of

δ = δm,k = δk : TtV → Hom
(

Hm−k,k
t ,Hm−k−1,k+1

t

)
, (2.32)

Hm−k,k
t ×Hm′−k′,k′

t → Hm+m′−k−k′,k+k′
t , (α,β ) 7→ α ∪β , (2.33)

θ ∈ H1,1
t , Tr : Hn,n

t
∼= k, Tr(α) :=

α

θ n . (2.34)

The second entry is induced from the cup product (2.13) in the de Rham cohomol-
ogy of fibers of Y/V and for simplicity we have also denoted it by ∪. The element
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θ ∈ H1,1
t is induced by polarization and Tr is induced by the trace map in de Rham

cohomology. We will drop the sub indices of δ ; being clear in the context where it
acts. In the literature instead of (2.33) one mainly finds

Q = Qm,k = Qk : Hm−k,k
t ×Hk,m−k

t → k, k = 0,1, . . . ,m, (2.35)
Q(α,β ) := Tr(α ∪β ∪θ

n−m).

It is a non-degenerate bilinear map.

Proposition 2.14 We have the following equalities

δ (w)◦δ (v) = δ (v)◦δ (w), ∀v,w ∈TtV, (2.36)
δ (v)(α ∪β ) = δ (v)(α)∪β +α ∪δ (v)(β ), (2.37)

∀α ∈ Hm′−k′,k′
t , β ∈ Hm′−k′,k′

t , v ∈TtV,

δ (v)(θ) = 0, v ∈TtV. (2.38)

Note that for Q the equality (2.37) becomes:

Qk+1(δk(v)(α),β )+Qk(α,δm−k−1(v)(β )) = 0,

∀α ∈ Hm−k,k
t , β ∈ Hk+1,m−k−1

t , v ∈TtV.

Proof. The proposition follows from similar equalities for the Gauss-Manin con-
nection and cup product in cohomology, see (2.30), (2.27) and (2.26).

The equalities (2.36) and (2.37) in our context of enhanced families is given in (6.30)
and (3.22), respectively.

Definition 2.22 The collection of data (2.32), (2.33) and (2.34) with (2.36), (2.37)
and (2.38) is called the infinitesimal variation of Hodge structures at the point t ∈V .

For now we do not need the integral cohomology Hm(Yt ,Z) ⊂ Hm
dR(Yt) and so we

have omitted it from the above definition. One may use a theorem of Griffiths which
says that δk is the composition of the Kodaira-Spencer map

TtV → H1(Yt ,ΘYt ) (2.39)

with

δ = δm,k = δk : H1(Yt ,ΘYt )→ Hom
(

Hk(Yt ,Ω
m−k
Yt

), Hk+1(Yt ,Ω
m−k−1
Yt

)
)

(2.40)

δm,k(v)(ω) = ivω,

where iv is the contraction of differential forms along vector fields. For the definition
of Kodaira-Spencer map see [Voi02], 9.12 or [Mov20a]. Sometimes in the literature,
for the definition of IVHS, δ in (2.32) is replaced with δ in (2.40).
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We will need the version of IVHS for primitive cohomologies. For this we will
need to define the part of H1(Yt ,ΘYt ) responsible for deformations of Yt inside a
projective space. Note that we have

δ2,1 : H1(Yt ,ΘYt )→ Hom
(
H1(Yt ,Ω

1
Yt ), H2(Yt ,OYt )

)
(2.41)

and the polarization θ ∈ H1(Yt ,Ω
1
Yt
).

Definition 2.23 The primitive part of the deformation space of Yt is defined in the
following way

H1(Yt ,ΘYt )0 :=
{

v ∈ H1(Yt ,ΘYt )
∣∣∣δ2,1(v)(θ) = 0

}
. (2.42)

This is a natural definition because the polarization as a global section of H2
dR(Y/V )

is flat for the Gauss-Manin connection. Note that the image of the Kodaira-Spencer
map is in H1(Yt ,ΘYt )0, and so, we can also consider the Kodaira-Spencer map as

TtV → H1(Yt ,ΘYt )0. (2.43)

We may also define the primitive cohomologies

Hk(Y,Ω m−k
Yt

)0 :=
{

ω ∈ Hk(Y,Ω m−k
Yt

)
∣∣∣ω ∪θ

s = 0
}
, (2.44)

where s = n−m+1 for m≤ n and s = 1 for m≥ n, and it is easy to see that δ sends
primitive pieces to each other.

2.17 R-varieties

This section is the continuation of §2.16. We define the notion of an R-variety which
is the generalization of many classical varieties in the literature, such as abelian and
Calabi-Yau varieties. For simplicity we use the notation X = Yt . Let us consider the
direct sum

IVHS :=⊕H∗(X ,Ω ∗X ), (2.45)

equipped with the cup product ∪ and polarization θ ∈ H1(X ,Ω 1
X ) and call it an

IVHS ring.

Definition 2.24 A linear map δ̌ : IVHS→ IVHS is called an IVHS map if it satisfies
all the properties of δ as before, that is, it sends the graded pieces of IVHS as in
(2.32) and it satisfies (2.37) and (2.38).

We denote by ∆ the set of all such δ̌ ’s. Note that ∆ is not a group and composition
of two δ̌ ’s is no more an IVHS map. By definition we have a linear map

H1(X ,ΘX )0→ ∆, v 7→ δ (v). (2.46)
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The property (2.36) means that the two IVHS maps δ (v) and δ (w) commute and it
does not appear in the above definition. We have canonical projections

∆→ Hom
(

Hk(X ,Ω m−k
X )0, Hk+1(X ,Ω m−k−1

X )0

)
, (2.47)

and denote its image by ∆m,k.

Definition 2.25 A smooth projective variety X of dimension n over k is called
an R-variety if there is 0 ≤ m ≤ 2n and 0 ≤ k ≤ m such that the composition
H1(X ,ΘX )0→ ∆→ ∆m,k is an isomorphism of k-vector spaces. An R-family Y →V
is a family whose fibers are all R-varieties.

We could also consider direct sum of many ∆m,k in which case we get an even more
general definition. For lack of examples, we content ourselves with Definition 2.25.
In general, the map (2.47) is not surjective and so the following is a weaker version
of the above definition.

Definition 2.26 A smooth projective variety X of dimension n over k is called an R-
variety if there is 0≤m≤ 2n and 0≤ k≤m such that the folowing is an isomorphism
of k-vector spaces

H1(X ,ΘX )0→ Hom
(

Hk(X ,Ω m−k
X )0, Hk+1(X ,Ω m−k−1

X )0

)
. (2.48)

The class of R-varieties includes Calabi-Yau varities in §13.2, Abelian varieties in
§11.3 and smooth hypersurfaces of degree d and dimension n with d|(n + 2) in
§12.4.

2.18 Full Hilbert schemes

Let V ⊂ HilbP(PN
k ) be a Zariski open subset of a Hilbert scheme parametrizing

deformations of smooth projetive varieties Y0 ⊂ PN
k and and let Y →V be the corre-

sponding family of smooth projective varieties. Recall from §2.11 that the reductive
group G acts from the left on V and its Lie algebra can be interpreted as a k-vector
space of vector fields vg in V . The following property seems to be valid in many
interesting cases such as hypersurfaces.

Definition 2.27 A Hilbert scheme HilbP(PN
k ) is called full if the Kodaira-Spencer

map
TtV → H1(Yt ,ΘYt )0 (2.49)

is surjective for all t ∈V and its kernel is given by vector fields vg,t , g ∈ Lie(G).

The surjectivity means that we capture all deformations of Yt within the Hilbert
scheme. The assertion about the kernel is also natural becuase it says that via the
Kodaira-spencer map H1(Yt ,ΘYt )0 is identified as a tangent space of the moduli
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space G\V at t. Our main example for full Hilbert schemes are parameter spaces of
hypersurfaces, see Chapter 12.





Chapter 3
Enhanced schemes

In one of the seminar programs that we had with the physicists at IAS, my wish was
not to have to rely on Ed Witten but instead to be able to make conjectures myself.
I failed! I did not understand enough of their picture to be able to do that, so I still
have to rely on Witten to tell me what should be interesting, (P. Deligne in [RS14]
page 185).

3.1 Introduction

In this chapter we introduce projective varieties enhanced with elements in their
algebraic de Rham cohomologies. Later, in §3.11 we will discuss the construction of
the moduli of such objects. Before doing this we have to anlayze enhanced varieties
in families and this is one of the main reasons why in this chapter we elaborate
the concept of an enhanced projective scheme. One can even do it in the context of
stacks, however, for the lack of motivation we avoid this. For a history and the main
references in the literature on this topic see the introduction of §3.11. Our main
examples are the case of elliptic curves, which is originally treated in the author’s
lecture notes [Mov12b], and the case of mirror quintic treated in the book [Mov17b].

3.2 A marked projective variety

Recall our terminology of algebraic de Rham cohomology in §2.7. For the definition
of enhanced schemes we need to fix a field k ⊂ R which in most of the cases is
going to be Q. For arithmetic purposes it would be essential to proceed with the
ring Z[ 1

N ] for some natural number N, and not the field of rational numbers. In
general, we will consider parameter schemes T over k for which T := Spec(R) is
going to be a particular case, see §2.3. We also fix a projective scheme X0 over k.
From a geometric point of view, see §2.9, we fix a point X0 in the moduli space M.

33
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Frequently, we will need to fix a basis

αm,i, m = 0,1,2, . . . ,2n, i = 1,2, . . . ,bm

of the free k-module Hm
dR(X0). Let us write

αm :=


αm,1
αm,2
αm,3

...
αm,bm

 .

This basis has the following properties

1. It is compatible with the Hodge filtration of H∗dR(X0).
2. It is compatible with the Lefschetz decomposition of H∗dR(X0). In particular,

α2n−m = αm∪θ n−m, m≤ n and α2n = θ n.

For many examples such as elliptic curves, we will take α2n =
1
d θ n, where d is the

degree of X0. In the complex context this is equivalent to say that the integration of
α2n over X0 is one.

We write the bilinear form (2.13) in this basis αm,i and define

Φm := [〈αm,α
tr
m 〉] = [〈αm,i,αm, j〉], m = 0,1, . . . ,n. (3.1)

In general, we define the bm1 × bm2 matrices Φm1,m2,i with entries in k through the
equality

[αm1 ∪α
tr
m2
] =

bm1+m2

∑
i=1

Φm1,m2,iαm1+m2,i. (3.2)

Note that using Hodge blocks, the matrix Φm1,m2,i has many zero blocks. For in-
stance, Φm,2n−m,1 is block upper anti-triangular, that is, it has the format

Φm =


0 0 0 0 ∗
0 0 0 ∗ ∗
0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


(a sample for m = n = 5). It is quite reasonable to take a basis of the de Rham coho-
mology of the marked point X0 such that the matrix Φm has the simplest form, that
is, with many zero entries. This will be done case by case. Sometime our notations
such as Hm

dR(X0)0, carry a subindex 0 which referes to primitive cohomology. We
sometimes omit this subindex, being clear in the context with which cohomology
we are working with, primitive or usual de Rham cohomology.



3.3 An algebraic group 35

3.3 An algebraic group

Recall that we have fixed an algebraic scheme X0 over the field k. The algebraic
group

G := Aut(H∗dR(X0),F∗0 ,∪,θ0)

is a group scheme over k and plays an important role throughout the present text.
By definition, for m = 0,1,2, . . . ,2n we have a bm-dimensional representation of
G. Using Hard Lefschetz theorem and by our choice of the basis of H∗dR(X0), bm
and b2n−m dimensional representations are the same. We sometimes fix a basis αm
of Hm

dR(X0) and write the representation of g as a bm× bm block upper triangular
matrix:

gm =


∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗


(a sample for m = 4). The matrix gm is defined through the equality

g(αtr
m ) = α

tr
m ·gm. (3.3)

It satisfies the following equalities

gtr
mΦmgm = Φm. (3.4)

We have the usual left action of G on H∗dR(X0), however, we transform it into the
right action by taking dual of k-vector spaces:

H∗dR(X0)
∨×G→ H∗dR(X0)

∨, (ω,g) 7→ ω •g, (3.5)

where ω • g ∈ H∗dR(X0)
∨ maps a ∈ H∗dR(X0) to ω(g(a)). We can also see this right

action in the equality (3.3). The following proposition will be useful later in the
discussion of Hodge cycles. Recall the Hodge block notation of matrices in §2.8.

Proposition 3.1 For m an even number, the map (2.13) induces a well-defined non-
degenerate bilinear map

H
m
2 ,

m
2 (X0)×H

m
2 ,

m
2 (X0)→ k

and so
(g

m
2 ,

m
2

m )tr
Φ

m
2 ,

m
2

m g
m
2 ,

m
2

m = Φ
m
2 ,

m
2

m . (3.6)

Proof. The proof follows from (2.10) and (2.11). It is non-degenerate because (2.13)
is so. ut

When m is fixed in the context, we sometimes omit the subscript m and, for instance,
identify g with gm. The Lie algebra of G is given by
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Lie(G) ={
g ∈ End(H∗dR(X0),F∗0 ,θ0)

∣∣∣gα ∪β +α ∪gβ = 0, ∀α,β ∈ H∗dR(X0)
}
. (3.7)

For more information on algebraic groups the reader is referred to [Bor91, Bor01,
Spr98]. See also [Mur05] for a fast overview of the main results for algebraic groups.
In many interesting cases such as elliptic curves and mirror quintic Calabi-Yau
threefolds, the algebraic group G is a Borel subgroup of GL(N).

3.4 Enhanced varieties

Recall our notations in §2.3, §2.6 of projective schemes over parameter scheme T,
which in turn, is a scheme over the field k.

Definition 3.1 An enhanced scheme is a pair (X/T,α), where X is a smooth pro-
jective scheme over T and α is an isomorphism

(H∗dR(X/T),F∗,∪,θ) α' (H∗dR(X0),F∗0 ,∪,θ0)⊗k OT. (3.8)

By (3.8) we mean the following. For each m there is an isomorphism of sheaves
α : Hm

dR(X/T)→ Hm
dR(X0)⊗k OT such that

1. It respects the Hodge filtration, that is, for all p

α(F pHm
dR(X/T)) = F pHm

dR(X0)⊗k OT.

2. It respects the cup product, that is,

α(ω1∪ω2) = α(ω1)∪α(ω2)

for all ωi ∈ Hmi
dR(X/T), i = 1,2.

3. It sends θ ∈ H2
dR(X/T) to θ0⊗1 ∈ H2

dR(X0)⊗k OT.

Note that (3.8) induces isomorphisms in the level of fibers:

(H∗dR(Xt), F∗t , ∪, θt)
αt∼= (H∗dR(X0),F∗0 ,∪,θ0). (3.9)

One usually take X0 a fiber of X → T over 0 ∈ T and in this way the notation X0 for
a marked projective variety is justified.

One could generalize Definition 3.1 by adding more structure to X , such as
torsion point structure in the case of elliptic curves, fixed algebraic cycles in X ,
morphisms from a fixed variety to X and so on. We will introduce such enhanced
schemes case by case. For instance see Chapter 10 for the case in which X is a
product of two elliptic curves.

Let us discuss Definition 3.1 in the geometric context, that is, to define enhanced
families. The cohomology bundle H∗dR(X/T) and its Hodge filtration bundle be-
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comes trivial via the map α . Further, we have a global section θ ∈H2
dR(X/T). From

now on, when we talk about an enhanced scheme or family (X ,α), we simply write

H∗dR(X/T)
α∼= H∗dR(X0)⊗k OT

instead of (3.8), keeping in mind that α preserves the Hodge filtration, cup product
and the polarization.

Definition 3.2 An enhanced projective scheme (X/T,α) is full if we have an action
of the algebraic group G from the right on both X and T such that it commutes with
the morphism X→ T, and it is compatible with the isomorphism (3.8), that is, the
induced left action of G on H∗dR(X/T)

G×H∗dR(X/T)→ H∗dR(X/T),

(g • s)(t) := s(t •g)•g−1, g ∈ G, s ∈ H∗dR(X/T), t ∈ T

under the isomorphism α is the canonical left action of G on H∗dR(X0)×OT:

G× (H∗dR(X0)×OT)→ (H∗dR(X0)×OT) , g • (ω, f ) := (g(ω),g • f ).

Note that G acts from the right on T and from the left on the space of functions on
T and also the sheaf of sections of the cohomology bundle H∗dR(X/T). In terms of
fibers of X → T, Definition 3.2 says that we have an isomorphism

ft : Xt•g ∼= Xt , x 7→ x•g−1, (3.10)

and the following diagram commutes:

H∗dR(Xt)
f ∗t→ H∗dR(Xt•g)

αt↓ ↓αt•g
H∗dR(X0)

g→ H∗dR(X0)

.

Therefore, we have an isomorphism of enhanced schemes over k

(Xt•g,αt•g)∼= (Xt ,g ◦αt), t ∈ T, g ∈ G, (3.11)

where ◦ is the usual composition of functions.

Example 3.1 Our main example of full enhanced schemes is the following three
parameter family of elliptic curves. This is the main ingredient of the theory of
quasi-modular forms in [Mov12b]:

X : y2−4(x− t1)3 + t2(x− t1)+ t3 = 0,

T := Spec
(
k

[
t1, t2, t3,

1
27t2

3 − t3
2

])
.

Note that X is written in the affine coordinate (x,y). The algebraic group G is
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G =

{[
k k′

0 k−1

]∣∣∣∣∣ k′ ∈ k,k ∈ k−{0}

}
(3.12)

and its action on X is given by

(x,y, t1, t2, t3)•g := (k2x− k′k, k3y, t1k−2 + k′k−1, t2k−4, t3k−6),

for more details see [Mov12b] Proposition 6.1 and Chapter 9.

Definition 3.3 A morphism (X1/T1,α)→ (X2/T2,β ) of two enhanced projective
schemes is a commutative diagram

X1 → X2
↓ ↓

T1 → T2

such that
H∗dR(X2/T2) → H∗dR(X1/T1)

↓ ↓
H∗dR(X0)⊗k OT2 → H∗dR(X0)⊗k OT1

is also commutative.

Remark 3.1 The most similar concept to our enhanced varieties is the notion of
frame bundle used in topology, see [Ham17, §4.4]. The compatiblity of αm,i’s with
the Hodge filtration and the constancy of the cup product make our notion much
finer than the notion of frame bundle. Moreover, note that due to the automorphisms
of projective varieties the projection T→ T/G is not necessarily a fiber bundle.

3.5 Weakly enhanced varieties

In this section, we introduce the content of §3.3 and §3.4 removing the cup prod-
uct structure. The main reason for this is that many geometric problems related to
Hodge loci do not need the cup product structure of de Rham cohomologies. How-
ever, for the introduction of geometric automorphic forms and topological string
partition functions the cup product structure becomes an essential ingredient. The
new notations reproduced in this section are obtained by putting tilde on the old
notations.

Definition 3.4 We define the algebraic group

G̃ := Aut(H∗dR(X0),F∗0 ,θ0)

and in a canonical way we have bm-dimensional representations of G̃ given by (3.3).
A weakly enhanced scheme (X̃/T̃,α) is given by
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(H∗dR(X̃/T̃),F∗,θ)
α' (H∗dR(X0),F∗0 ,θ0)⊗k OT̃. (3.13)

In a similar way as in Definition 3.2 we can define full weakly enhanced schemes.

We have many functions on the space T̃ that can be constructed as follows. Similar
to the case of enhanced varieties, we fix a basis of H∗dR(X0) as in §3.2. The pull-
back of this basis by the isomorphism α gives us global sections of H∗dR(X̃/T̃). We
denote it again by αm,i. The cup product in H∗dR(X̃/T̃) is no more constant. We write
the equalities (3.2) and we get matrices Φm1,m2,i whose entries are functions on the
space T̃. Let

f : T̃→ As
k (3.14)

be the map given by all such functions. Let us assume that we have a point p0 ∈ T̃
such that the fiber of X̃/T̃ over p0 is X0 and α in (3.13) indueces the identity map
in (H∗dR(X0),F∗0 ,θ0).

Proposition 3.2 Let T := f−1( f (p0)). We have a canonical enhanced family X/T
such that the following diagram commutes:

T ↪→ T̃
↑ ↑
X ↪→ X̃

Moreover, if X̃/T̃ is full then X/T is also full.

Proof. We define X := π−1(T) and X/T is the desired enhanced family. ut

The map (3.14) is a morphism of algebraic schemes over k whose fibers are either
empty or enhanced families of projective schemes (with possibly different marked
varieties X0). If there is no danger of confusion, we will drop tilde sign from our
notations above; being clear which we mean: enhanced or weakly enhanced case.
In particular, the algebraic group G will be either G̃ (weakly enhanced case) or G in
§3.3.

3.6 Constructing enhanced schemes

Let π : Y → V be a family of smooth projective varieties defined over k. In this
section we construct a family X̃→ T̃ of (weakly) enhanced projective schemes using
π . This is done by adding additional parameters apart from those in V . Our main
example for π : Y → V comes from an irreducible component of a Hilbert scheme
and the corresponding family of projective varieties. We have to remove singular
fibers in order to get Y → V . We would like to construct the total space T̃ of all
the basis of the de Rham cohomology bundles H∗dR(Yt), t ∈ V compatible with
the Hodge filtration. Once the variety T̃ over k and the canonical projection T̃→
V is constructed, X̃ is the fiber product of Y → V and T̃→ V . We give explicit
construction of affine charts for T̃ and X̃.
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Around any point of V we can find a Zariski open neighborhood V k and global
sections ωk

m = [ωk
m,1,ω

k
m,2, . . . ,ω

k
m,bm

]tr of the relative de Rham cohomology sheaf
of Y/V such that ωk

m at each fiber H∗dR(Yt), t ∈V k form a basis compatible with the
Hodge filtration. Let Sk

m = [Sk
m,i j] be a Hodge block lower triangular bm×bm matrix

with unknown coefficients Sk
m,i j. We consider Sk

m,i j as variables and define

Uk := Spec
(
k

[
Sk

m,i j,
1

det(Sk
m)

, m = 0,1,2, . . . ,2n, i, j = 1,2, . . . ,bm

])
.

The variety Uk is a Zariski open subset of AN
k , where

N =
2n

∑
m=0

1
2
(b2

m +∑
i
(hm−i,i)2).

We consider the morphism of schemes X̃k→ T̃k over k, where

X̃k := π
−1(V k)×kUk,

T̃k := V k×kUk

= Spec
(

OV (V k)

[
Sk

m,i j,
1

det(Sk
m)

, m = 0,1,2, . . . ,2n, i, j = 1,2, . . . ,bm

])
.

It is obtained from π : Y → V and the identity map Uk→Uk. We also define αk =
{αk

m, m = 0,1, . . . ,2n} by

α
k
m := Sk

m ·ωk
m, m = 0,1, . . . ,2n (3.15)

and we get a full family X̃k/T̃k of weakly enhanced projective varieties with αk as
global sections of the de Rham cohomology bundle of X̃k→ T̃k.

Now, the next step is to cover V with local charts V k, k ∈ I and get local charts
T̃k, k ∈ I for T̃, and X̃k, k ∈ I for X̃, respectively. For each fixed k ∈ I, we have a
collection of global sections αk, k ∈ I of H∗dR(X̃

k/T̃k). The gluing of T̃k’s and X̃k

in V k and π−1(V k) factors is just the usual one coming from the family Y → V . In
other factors it is done by assuming that the global sections αk in their common
domains are equals. More precisely, if in V k1 and V k2 we have taken global sections
ωk1 and ωk2 then in V k1 ∩V k2 we have ω

k1
m = Bk1k2 j

m ω
k2
m and the gluing in Uk1 and

Uk2 factors is done by
Sk1

m Bk1k2
m = Sk2

m

which amounts to say that αk1 = αk2 . The morphisms X̃k→ T̃k and global sections
αk glue to each other to give us X̃→ T̃ and global sections α of H∗dR(X̃/T̃).

The construction of an enhanced family X→ T from π : Y →V is similar and it
is as follows. In this case V k×kUk must be replaced with
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Spec

 OV (V k)
[
Sk

m,i j,
1

det(Sk
m)
, m = 0,1,2, . . . ,2n, i, j = 1,2, . . . ,bm

]
〈
[αk

m1
∪ (αk

m2
)tr] = ∑

bm1+m2
i=1 Φm1,m2,iα

k
m1+m2,i

, m1,m2 = 0,1,2, . . . ,2n
〉
 .

The ideal in the denominator is given by comparing the coefficients of ωi’s in both
sides of the equalities written between 〈 and 〉. These equalities come from (3.2). In
other words, there are many algebraic relations between the entries of Sk

m’s and with
coefficients in OV (V k) and we have to work modulo these relations. The following
theorem is the outcome of the above construction.

Theorem 3.3 Let π : Y → V be a morphism of projective schemes as in §2.6. We
have a commutative diagram

X → T
↓ ↓
Y → V

(3.16)

of projective schemes defined over k such that

1. X is the fiber produt of T→V and Y →V .
2. X→ T is a full family of enhanced projective varieties, and hence, there is an

action of G on both X and T which commutes with X→ T.
3. The universal geometric quotients X/G̃ and T/G exists as schemes over k and we

have ismorphisms X/G = Y and T/G =V such that

X/G → T/G
‖ ‖
Y → V

(3.17)

commutes, that is, the induced map X/G→ T/G is just Y →V .
4. The action of G on T and X is free and its orbits are given by the fibers of T→V

and X→ Y , respectively.

The same is true replacing T with T̃ and enhanced with weakly enhanced.

Remark 3.2 Sometimes it is more convenient to redefine the matrix Sk
m to be its in-

verse, and hence, αk
m in (3.15) is given by αk

m = (Sk
m)
−1ωm. In this way, the equality

[〈αk
m,i,α

k
m, j〉] = Φm turns out to be

Sk
mΦm(Sk

m)
tr = [〈ωk

m,i,ω
k
m, j〉].

The entries of the left hand side are quadratic polynomials in the entries of Sk
m and

the entries of the right hand side are in OV (V k).

3.7 Enhanced families with an action of a reductive group

For constructing moduli spaces we need to add a new ingredient to the discussion
in §3.6. That is, we let an algebraic group G (mainly reductive) act on V from the
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left so that G\V is a classical moduli of projective varieties X . In this section we
do this and we add more data to Theorem 3.3. A typical example in our mind is
the family of hypersurfaces of degree d in Pn+1 and the corresponding action of
G := GL(n+1) induced by the linear action of G in Pn+1. This will be discussed in
more details in Chapter 12.

Definition 3.5 An enhanced (or weakly enhanced) family (X/T,α) is equipped
with a left action of a (reductive) group G if

1. The group G acts on the morphism X→ T of k-schemes, see Definition 2.15.
2. The action of G and G on both X and T are independent from each other, see

Definition 2.16.
3. The induced action of G on H∗dR(X/T) under the isomorphism α in (3.8) is the

identity in H∗dR(X0) times the action of G on T. In geometric terms, this means
that for all t ∈ T and g ∈G, the following diagram commutes:

H∗dR(Xt)

↘αt

g∗↑ H∗dR(X0)

↗αg·t
H∗dR(Xg·t)

, (3.18)

where we have the isomorphism Xt → Xg·t , x 7→ g · x and g∗ is the induced map in
de Rham cohomologies.

The following is the continuation of Theorem 3.3.

Theorem 3.4 Let π : Y →V be a family of smooth projective schemes defined over
k and let G be a group scheme which acts on Y/V from the left. Let also X→ T be
as in Theorem 3.3. We have a left action of G on (X/T,α) in the sense of Definition
3.5. Moreover, the action of G commutes with the four maps in (3.16). The same is
also true for the weakly enhanced family X̃→ T̃ in Theorem 3.3.

Proof. The proof is the continuation of the proof of Theorem 3.3. Let g : Yt → Yg·t
be the isomorphism induced by the action of g ∈G and

g∗ : H∗dR(Yg·t)→ H∗dR(Yt) (3.19)

be the induced map in de Rham cohomologies. A point of T is given by (t,α), where
t ∈V and α is a basis of H∗dR(Yt). The action of G on T̃ is given by

g·(t,α) := (g·t,(g∗)−1
α),

see Figure 3.1. Since X̃ is the fiber product of Y → V and T→ V and the action
of G commutes with both maps, we have the action of G in X̃ in a canonical way.
By definition, the pairs (Xt ,αt) and (Xg·t ,αg·t) are isomorphic. Note that (g∗)−1 =
(g−1)∗ is a linear map and so it commutes with the action of G on α and hence we
have (2.21).
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Fig. 3.1 An identification

It is useful to describe the action of G in local charts. Recall the local chart V k

and sections ωk
m used in the proof of Theorem 3.3. We write

g∗ωk
m = Bm,gω

k
m,

where g∗ is the map in (3.19) and Bm,g is a bm×bm matrix with entries in OV,t . For
simplicity, we have assumed that t, g ·t are in the same chart V k. The action of g∈G
in X̃k := π−1(V k)×Uk and T̃k :=V k×Uk is given by

g·(x,S) = (g·x,Sk
mB−1

m,g),

where x is either in V k or π−1(V k). This does not depend on the chosen charts T̃k

and X̃k. ut

For the construction of the moduli of enhanced schemes the following will play
a crucial role.

Theorem 3.5 Let π : Y →V be a family of smooth projective schemes defined over
k and let G be a group scheme which acts on Y/V from the left. Let also X→ T be
as in Theorem 3.3. If a point t ∈ V is semistable (resp. stable) for the action of G,
then all the points in the fiber of T→V over t are also semistable (resp. stable) for
the action of G.

Proof. By construction π : T→ V is a finite morphism of k-schemes, that is, there
is a covering of V by open affine subsets V k = Spec(Rk), such that π−1(V k) =
Spec(Řk) is affine and Řk is a finitely generated Rk-algebra. The theorem follows
from Proposition 2.9. ut

The scheme T might have points which are not mapped to any stable or semistable
point of V , and it is highly recommended to study such points in T without referring
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to available results in V . We will use Theorem 3.5 in order to construct the moduli
of enhanced varieties in cases where the classical moduli spaces are constructed.

3.8 Gauss-Manin connection

Recall the definition of Gauss-Manin connection in §2.15. Let us consider an
enhanced family X → T of smooth projective varieties. In this section we fix
1 ≤ m ≤ 2n and work with the m-th de Rham cohomology Hm(X/T). We denote
by

∇ : Hm
dR(X/T)→Ω

1
T⊗OT

Hm
dR(X/T), m = 0,1, . . . ,2n

the algebraic Gauss-Manin connection of the family X→ T. By our definition of
enhanced varieties we have automatically global sections αm,i, i = 1,2, . . . ,bm of
the the free OT-module sheaf Hm

dR(X/T) such that for any closed point t ∈ T they
form a basis of Hm(Xt). Let

αm := [αm,1, αm,1, · · · ,αm,bm ]
tr,

Definition 3.6 We can write the Gauss-Manin connection in the basis αm:

∇(αm) = Am⊗αm.

Here, Am is a bm×bm matrix with entries which are global sections of Ω 1
T. We call

it the m-th Gauss-Manin connection matrix.

By Griffiths transversality we have

Ai, j
m = 0, j ≥ i+2 (3.20)

that is, it is of the form

Am =


∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


(a sample for m = 4), where we have used Hodge blocks notation for a matrix, see
§2.8. Recall ∇i’s in (2.29). We have

∇1 ◦∇0(αm) = ∇1(Amαm) = dAm⊗αm−Am∧∇αm = (dAm−Am∧Am)⊗αm.

Since the Gauss-Manin connection is integrable, we have ∇1 ◦∇0 = 0, and so

dAm = Am∧Am. (3.21)
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Proposition 3.6 Let g be an element of G. We have

g∗Am = gtr
m ·Am ·g−tr

m .

that is, the pull-back of the Gauss-Manin connection matrix Am under the isomor-
phism g : T→ T, t 7→ t •g is gtr

m ·Am ·g−tr
m .

Proof. Since g is considered to be constant , we have

∇(gtr
mαm) = gtr

m∇αm = (gtr
mAmg−tr

m )(gtr
mαm).

From another side the pair (Xt•g,αm) is, by definition, isomorphic to (Xt ,g
tr
mαm),

see (3.11). ut

The Gauss-Manin connection and cup product satisfy the following equalities

∇(α1∪α2) = ∇(α1)∪α2 +α1∪∇(α2), α ∈ Hmi
dR(X/T), i = 1,2.

The polarization θ ∈ H2
dR(X/T) is flat in the sense that ∇θ = 0 and hence

∇(θ m) = 0, 0≤ m≤ n.

Recall the constant matrix Φm in (3.1). There are some natural k-linear relations
between the entries of Am that we introduce them below.

Proposition 3.7 The Gauss-Manin connection matrix Am satisfy

AmΦm +ΦmAtr
m = 0. (3.22)

Proof. The proposition follows after taking ∇ from the equality Φm = [〈αm,α
tr
m 〉].

ut

Note that by our choice of the basis α , we have A2n−m = Am. The whole discussion
of this section, except Proposition 3.22, can be done for weakly enhanced families.

Let us describe the Gauss-Manin connection matrix in the local chart T̃k of the
variety T̃ constructed in Theorem 3.3. For simplicity, we remove the upper undex k
from our notations.

Proposition 3.8 The m-th Gauss-Manin connection matrix of X̃/T̃ in a local chart
T̃k constructed in Theorem 3.3 is given by

Ãm = dSm ·S−1
m +Sm ·Bm ·S−1

m ,

where Bm is the Gauss-Manin connection matrix in the basis ωm.

Proof. This follows from the construction of the global sections α in (3.15) and the
Leibniz rule. ut
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3.9 Gauss-Manin connection and reductive group

Recall our notations of an action of a reductive group G on the domain and image
of the morphism X→ T introduced in §3.7.

Proposition 3.9 Let g be an element of G. The pull-back of the Gauss-Manin con-
nection matrix Am under the isomorphism T→ T, t 7→ g·t is Am itself, that is, the
entries of Am are invariant under the action of G. In particular, for any g ∈ Lie(G)
we have Avg = 0.

Proof. This follows from the equality ∇αm = Amαm and the fact that for the en-
hanced family X→ T, the global sections α are G-invariant. ut

As a corollary of Proposition (3.8) we get:

Proposition 3.10 If the geometric quotient Ť := G\T exisits then we have matrices
Ǎm whose entries are global differential 1-forms in Ť, and such that the pull-back
of Ǎm under the canonical map T→ Ť is Am.

We also call Ǎm’s the Gauss-Manin connection matrices of G\X→G\T, however,
note that we do not claim that G\X as a scheme over k exists. In general, universal
moduli spaces are rare, and most of the time we have only coarse moduli spaces.
However, in our context of enhanced varieties, it seems that the existence of Ť im-
plies the existence of the corresponding family over Ť.

3.10 Marked projective scheme

One of the great, and in the same time simple, discoveries in Hodge theory due to A.
Grothendieck and P. Deligne in the sixties was that the Hodge decomposition can-
not be defined in the framework of Algebraic Geometry over an arbitrary field, see
[Gro66, Del71a, Del74]. However, the Hodge filtration can be defined. In the pas-
sage from Hodge decomposition to Hodge filtrations one loses harmonic forms for
the sake of defining objects by polynomials. This motivated many other cohomol-
ogy theories, such as étale and crystalline cohomologies, in Algebraic Geometry. It
turns out that for some special varieties the Hodge decomposition is also defined
over a base field. These varieties have usually so many automorphisms such that all
their periods up to a power of 2πi factor are algebraic numbers. In this section we
explain this idea. Later, we will give an application of this topic in the codimension
of modular foliations.

Definition 3.7 Let X be a projective variety defined over a field k of characteristic
zero. We say that X has the Hodge decomposition defined over k̄ if its algebraic de
Rham cohomologies over k̄ can be written as directs sums

Hm
dR(X/k̄) = Hm,0⊕Hm−1,1⊕·· ·⊕H0,m
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for all m = 0,1,2, . . . ,2n such that for any embedding k̄ ↪→ C of fields it becomes
the Hodge decomposition of the de Rham cohomologies of XC := X×k̄C.

If X is defined over k and enjoys the above property, its Hodge decomposition might
be defined over an extension of k. This is why we have to consider k̄ in the decom-
position. Note that the complex conjugation in de Rham cohomologies which maps
H p,q to Hq,p depends on the embedding k̄ ⊂ C and we do not (or cannot) insert it
inside the above definition.

Recall our convention of Hilbert schemes in §2.11. For the purpose of the present
text we need the following property:

Property 3.1 Any irreducible component of a Hilbert scheme of projective varieties
has a point X0 with Hodge decompositions defined over k̄.

In the above property we are only considering components of Hilbert schemes
whose generic point parametrizes smooth projective varieties. We know that Fer-
mat varieties have the Hodge decomposition defined over k̄, see Proposition 12.1.
The same is expected to be true for CM principally polarized abelian varieties, see
11.3.

Proposition 3.11 If Property 3.1 is valid then we can choose the matrices Φm1,m2,i
in (3.2) such that the only possibly non-zero Hodge blocks of Φm1,m2,i are

(Φm1,m2,i)
i1,i2 , (m1 +m2− i1− i2, i1 + i2) = Type(αm1,m2,i).

These are matrices with one line of possibly non-zero blocks parallel to the anti-
diagonal. In particular, Φm is anti-diagonal with respect to the Hodge blocks, that
is

Φm =


0 0 · · · 0 Φ

0,m
m

0 0 · · · Φ
1,m−1
m 0

...
...

...
...

...
0 Φ

m−1,1
m 0 0 0

Φ
m,0
m 0 0 0 0

 (3.23)

with Φ
m−i,i
m = (−1)mΦ

i,m−i
m .

Proof. The marked point X0 is going to be the one with the Hodge decomposition
defined over k̄. We replace k with its finite extension such that this property holds.
Now, we take a basis of H∗dR(X0) compatible with the Hodge decomposition. This
basis is automatically compatible with the Hodge filtration. The cup product in this
basis gives us the desired format of matrices. ut

In practice, we will take the following matrices



48 3 Enhanced schemes

Φm =


0 0 · · · 0 I
0 0 · · · I 0
...

...
...

...
...

0 I 0 0 0
I 0 0 0 0

 , Φm =


0 0 · · · 0 I
0 0 · · · I 0
...

...
...

...
...

0 −I 0 0 0
−I 0 0 0 0

 (3.24)

for m an even and odd number, respectively, where I is the identity matrix of size
compatible with our Hodge blocks notations.

Let us consider an enhanced scheme (X/T,α), where α is the isomorphism in
(3.8). We further assume that there is a point 0 ∈ T such that the fiber X0 of X→ T
over 0 has Hodge decomposition defined over k̄.

Definition 3.8 If Property 3.1 is valid then we define

Treal := {(X ,α) ∈ T(C) | α is an isomorphism between Hodge decompositions}

The set Treal lives in the complex manifold T(C) and it is neither algebraic nor
complex analytic subset of T(C). It is a real analytic subset of T(C).

Proposition 3.12 For any t ∈ T(C) there is an element g ∈ G(C) such that t • g ∈
Treal.

Proof. This follows from the fact that any two enhanced varieties (Xi,αi), i = 1,2
with X1 = X2 are transformed to each other by an action of G. In our proposition one
of the enhanced varieties is defined over C (due to the usage of Hodge decomposi-
tion) and so the statement make sense over complex numbers. ut

Finally, when X0 has the Hodge decomosition defined over k̄ it is natural to define
the following algebraic subgroup of G:

Ǧ := Aut(H∗dR(X0),H∗,∗,∪,θ0)⊂ G. (3.25)

3.11 Moduli spaces of enhanced varieties

One of the main motivations for us to introduce Hilbert schemes and the action of
reductive groups on such spaces, and developing our main topics with the presence
of a reductive group action is that, we wanted to avoid the construction of moduli
spaces. The theory developed in the present text will be best seen in the moduli T of
projective varieties enhanced with elements in their algebraic de Rham cohomolo-
gies as we presented in §3.4. The main reason for this comes from the fact that both
classical automorphic functions and topological string partition functions can be re-
alized as regular functions on such moduli spaces. The author is not aware of any
literature in mathematics discussing the moduli space T except in his earlier works.
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A smaller moduli space S in the case of elliptic curves is essentially derived from
the two parameter Weierstrass form, however, the moduli T itself appears in the
works [Mov08b, Mov12b]. Computations on such moduli space in the case of ellip-
tic curves are done by Katz in the appendix of [Kat76], however he does not define
the moduli explicitly. A general definition of such a moduli space for smooth pro-
jective verietis has been done in [Mov13] in both contexts of algebraic varieties and
Hodge structures. In the case of Calabi-Yau threefolds, explicit computations on T,
without definining or constructing it, are done by string theorist in the framework of
special geometry, see for instance [CdlO91, CDLOGP91a, Str90, CDF+97, Ali13a].
Its definition in this case is done in [AMSY16]. The special case of mirror quintic
goes back to the author’s work [Mov17b]. The present section is a continuation
of the algebraic geometry part of our previous work [Mov13]. We slightly modify
our approach in [Mov13] by considering the whole cohomology ring of a variety,
whereas in the mentioned article we have basically considered the middle primitive
cohomology of a variety.

The priority in the present text has been to work with projective varieties over a
field k of characteristic zero. In this way, we have emphasized more geometric ques-
tions rather than arithmetic ones. P. Deligne in a personal communication (Novem-
ber 23, 2010) has emphasized that in the case of elliptic curves, the moduli space
T is an algebraic stack, and for 2 invertible, it is actually an algebraic scheme over
Spec(Z[1/2]). This point of view in the case of elliptic curves and abelian varieties
is worked out in [Fon21]. A possible applications of this general context might be
obtained from a combination of the results in [Ser97] for modular curves and gen-
eralizations of these in the framework of our moduli spaces, see [Mov15b].

We first develope the intuitional approach to the moduli space of enhanced pro-
jective varieties. Recall the set theoretical description of the moduli space M in §2.9.
In this section we explain in geometric terms a bigger moduli space that we would
like to construct. For the purpose of this section we consider projective varieties X
over an algebraically closed field k. Recall that we have fixed a smooth projective
variety X0 over k.

Definition 3.9 The moduli space T is the set of all enhanced projective varieties
(X ,α), where X is a smooth projective variety over k and α is an isomorphism

(H∗dR(X),F∗,∪,θ) α' (H∗dR(X0),F∗0 ,∪,θ0). (3.26)

Two such pairs (Xi,αi), i = 1,2 are equivalent if we have an ismorphism

(H∗dR(X1),F∗1 ,∪,θ1)
β

' (H∗dR(X2),F∗2 ,∪,θ2) (3.27)

such that α1 = α2 ◦β .

This definition introduces T as a set. The algebraic group G acts on T from the left
in a canonical way

T×G→ T, ((X ,α), g) 7→ (X ,g ◦α), (3.28)
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where α ◦ g is the composition of two maps. We transform it into the right action
by taking dual of k-vector spaces as in (3.5) and we denote it by t •g for t ∈ T and
g ∈ G. We have the isomorphism of sets

T/G'M, (X ,α) 7→ X

obtained by throwing away the structure α . From now on we denote an element of
T by t := (X ,α) and we make the convention Xt := X and αt := α . Therefore,

t = (Xt ,αt).

Most of the times, we omit the subscript t as it is clear from the context which X
and α we are talking about.

Remark 3.3 There is an alternative way to describe the moduli space T. We fix a
basis of H∗dR(X0) as in §3.2. The pull-back of this basis by the isomorphism α gives
us a basis of H∗dR(X). We denote it again by αm,i. If there is no danger of confusion,
we use the notation α both for the isomorphism (3.8) and the set of differential
forms αm,i. The basis α satisfies the same properties as in §3.2 and moreover the
cup product in H∗dR(X) is constant, that is, if we write (3.2) in this basis the matrices
Φm1,m2,i has constant entries and do not depend on the particular choice of t ∈ T.

Remark 3.4 Let π : H→M be the de Rham cohomology bundle over M. The mod-
uli T is not the total space of all choices of basis for the fibers of π with the property
1 and 2 in §3.2. Let αm,i be a basis of H∗dR(X) as above and let f ∈ Aut(X). By
definition the pair (X ,α) is equivalent to (X , f ∗α) and so they represent the same
point in T.

We now present the categorical approach to the construction of moduli space
of enhanced varieties. We would like to know whether T introduced earlier has a
structure of a variety, scheme etc. In the best possible scenario, T might be the
underlying scheme of a full family of enhanced varieties. The following property or
conjecture has been originally appeared in [Mov13]. Many examples that we discuss
in the present text satisfy this property.

Property 3.2 There is a scheme T over k, an action of G from the right on T and
a full family X/T of enhanced projective varieties over k which is universal in the
following sense:

1. For any family of enhanced projective varieties Y/S over k we have a morphism
Y/S→ X/T of enhanced varieties.

2. Any two such morphisms are related to each other by an automorphism of Y/S,
that is, there is a : Y/S→ Y/S such that

Y/S
↘

↓ X/T
↗

Y/S
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commutes.
3. If Y/S is full then Y/S→ X/T respects the action of G.

The main focus of the present text is not to verify the Property 3.2 in general, as
we are mainly interested in particular examples for which we can verify it by con-
structing explicit coordinates for T. This includes elliptic curves, curves of arbi-
trary genus, hypersurfaces, complete intersections, Abelian varieties, K3 surfaces
and many types of Calabi-Yau varieties. In all our examples there is a fibration
X̄→ T̄, where T̄ contains T in Property 3.2 as an open set. Using this family we
know how enhanced varieties degenerate. For many examples T and T̄ are schemes
over Z[ 1

N ]. However, similar to Shimura varieties and many other moduli problems,
it is reasonable to think that they are in fact defined over other rings.

The k-algebra OT of regular functions on the moduli T for many different projec-
tive varieties, are vast generalizations of algebras of automorphic forms, topological
string partition functions and more. In the case of elliptic curves OT is isomorphic
to the algebra of quasi-modular forms, see [Mov12b], and for mirror quintic Calabi-
Yau threefolds OT contains elements which encode the Gromov-Witten invariants
of a generic quintic, see [Mov17b]. In general, for projective varieties whose pe-
riod domain is Hermitian symmetric, OT is expected to be an algebra of differential
automorphic forms and for non-rigid compact Calabi-Yau threefolds, topological
partition functions are elements in OT, see [AMSY16]. Beyond these cases such
algebras are not studied at all.

Mumford’s geometric invariant theory may be applied in order to find moduli
spaces for which Property 3.2 is valid, see [MFK94]. In fact Mumford’s article
[Mum77] on stability of projective varieties is much more related to Property 3.2.
The set of all Chow stable projective varieties X ⊂ PN

k̄
has a canonical action of

SL(N+1, k̄) and the quotinet is the moduli of of projective varieties, let us denote it
by M. We throw away singularities of M and those points X in M with an automor-
phism which acts non-trivially on H∗dR(X), and call it again M. The vector bundles
arising from de Rham cohomologies, Hodge filtrations and ∪ product on them, are
defined over k̄. From this we can easily construct an open subset of T which corre-
sponds to enhanced varieties with X ∈M, and importantly, it is an algebraic variety.
We may also use the Hilbert scheme of projective varieties and an action of a re-
ductive group, see [Vie95]. Mukai’s book [Muk03] is more accessible for a general
audience.

Apart from the above classical approach for constructing moduli spaces, there is
a completely new idea in order to approach Property 3.2. As we will see in §6.11,
we can identify many natural vector fields and regular functions in T. In Chapter
13 we will construct such objects in the case of Calabi-Yau varieties. If we take at
least one regular function on T then we can differentiate it along vector fields and
get more functions. All these new functions on T might give us an embedding of T
in some affine variety. For more details of this approach see Chapter 13.

We might add some other data to X such that the set of its automorphisms be-
comes finite. For instance, in the case of abelian varieties over k, we have to fix a
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point p ∈ X(k̄). In general, the verification of the following would be useful for the
study of local properties of T.

Property 3.3 Let X ⊂ PN be a smooth polarized projective variety over k̄ and let
G be the group of automorphisms of X ⊂ PN (it preserves the polarization) which
induces identity in the de Rahm cohomology H∗dR(X). Then G is a subgroup of the
group of automorphisms of all the elements in the moduli M of X.

For abelian varieties the above property follows from classical facts, see for instance
Lange-Birkenhake’s book [LB92]. In this case G is generated by x 7→ x+ a, a ∈
X and x 7→ −x. For Calabi-Yau varieties it is proved in Theorem 12 page 694 of
Todorov’s article [Tod03]. In this case G turns out to be finite. From the above
property one may conclude that the moduli T is smooth.

We do not want to get stuck in construction of moduli of enhanced varieties be-
cause, first, this may distract us from our main objective, which is the properties
of modular vector fields and foliations and second, this can be done case by case
without using any machinery of moduli spaces, see for instance [Mov12b] for the
case of elliptic curves and [Mov17b] for the case of mirror quintic Calabi-Yau three-
folds. For this reason, from now on by X→ T we mean a full family of enhanced
projective varieties. At the best case, when property 3.2 is valid, it is the universal
family of enhanced varieties.

3.12 Other moduli spaces

There are other moduli spaces of enhanced projective varieties, and in this paragraph
we want to discuss this. Apart from the moduli spaces T used earlier, we have also
the followings:

1. The moduli T1 of the smooth projective varieties X/k equipped with a decompo-
sition

Hm
dR(X) = Hm,0⊕Hm−1,1⊕·· ·⊕H1,m−1⊕H0,m

for all m = 0,1, · · · ,2n such that it gives us the Hodge filtration on Hm
dR(X), that

is,

Fm = Hm,0,

Fm−1 = Hm−1,0⊕Hm−1,1,

...
...

F1 = Hm,0⊕Hm−1,1⊕·· ·⊕H1,m−1,

F0 = Hm
dR(X).

Further,
〈H i j,H i′ j′〉= 0, i+ i′ 6= m or j+ j′ 6= m
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Note that the Hodge decomposition is intrinsically defined, however, the above
decomposition is not intrinsic. The actual Hodge decomposition using harmonic
forms gives a point in T1. We call T1 the moduli of Hodge decompositions.

2. The moduli T2 of the smooth projective varieties X equipped with a decomposi-
tion

Hm
dR(X) = F

m+1
2 ⊕W.

for all odd m. I do not see any canonical way to insert 〈·, ·〉 in the definition of
T2.

3. Let us fix an element C0 ∈ H∗dR(X0) (it can be also a one dimensional subspace
of H∗dR(X0)) and define

GC0 := Aut(H∗dR(X0),F∗0 ,∪,θ0,C0), (3.29)

which is a subgroup of G. In Chapter 6 we will consider the quotient

T3 := T/GC0

which can be interpreted as a moduli space in the following way. It is the moduli
of triples (X ,α,C), where C ∈ H∗dR(X) and α is an isomorphism as in (3.8) such
that it sends C to C0. Two such triples (Xi,Ci,αi), i= 1,2 are equivalent if there is
β as in (3.27) (which does not necessarily send C1 to C2) such that g◦α1 =α2◦β

for some g ∈ GC0 .

We have canonical surjective maps T→ T1→ T2, T→ T3.

3.13 Compactifications

Once the moduli space T is constructed, it would be necessary to look for its par-
tial compactifications which describes the degenerations of the projective variety X
when it becomes singular. In this direction the following property is valid in many
examples.

Property 3.4 There exists a variety T̄ over k̄ such that

1. T is an open subset of T̄,
2. the action of G on T extends to T̄,
3. and the quotient T̄/G is a projective variety (and hence compact).

Note that we do not claim that that there is a compactification of T itself. Apart from
T we will consider other moduli spaces such that the problem of full compactifica-
tion is a reasonable task. One of them is the moduli of Hodge decompositions which
is introduced in (3.12). In the case of elliptic curves such a compactification turns
out to be the weighted projective space P1,2,3, see §9.8. Another moduli space for
which the full compactification seems to be plausible is the moduli space T3. In the
case of elliptic curves and C0 ∈ H1

dR(X0) with C0 6∈ F1H1
dR(X0), T3 = T1.





Chapter 4
Topology and periods

M. Picard a donné à ces integrales le nom de périodes; je ne saurais l’en blâmer
puisque cette dénomination lui a permis d’exprimer dans un langage plus concis
les intéressants résultats auxquels il est parvenu. Mais je crois qu’il serait fâcheux
qu’elle s’introduisit définitivement dans la science et qu’elle serait propre à engen-
drer de nombreuses confusions, (H. Poincaré’s remarks on the name period used for
integrals, see [Poi87] page 323).

4.1 Introduction

Singular homologies and cohomologies for algebraic varieties over complex num-
bers cannot be defined in the framework of algebraic geometry because they do not
behave canonically under the automorphisms of the field of complex numbers. As
a result, the comparision of the algebraic de Rham cohomology and the singular
cohomology leads us to the notion of period, which is again out of the domain of
Algebraic Geometry.

In this chapter X ⊂ PN denotes a smooth projective variety of dimension n over
C. There is a canonical isomorphism between algebraic de Rham cohomology of X
and the usual de Rham cohomology of X defined by C∞ forms. Therefore, it makes
sense to talk about an integrals∫

δ

α ∈ C, δ ∈ Hm(X ,Z), α ∈ Hm
dR(X).

We denote by δ pd ∈ H2n−m
dR (X), the Poincaré dual of δ ∈ Hm(X ,Z) defined by the

equality ∫
δ

α = (2πi)n ·Tr(α ∪δ
pd) :=

∫
X

α ∪δ
pd, ∀α ∈ Hm

dR(X).

55



56 4 Topology and periods

4.2 Intersections in homologies

We consider H∗(X ,Z) as a Z-algebra with the product · of topological cycles

Hm1(X ,Z)×Hm2(X ,Z)→ Hm1+m2−2n(X ,Z)

(δ1,δ2) 7→ δ1 ·δ2.

Recall that by definition, the homologies we consider are defined modulo torsions
and hence are free. Usually we take a basis δm,i of the Z-algebra H∗(X ,Z). Here,
for fixed m, δm,i’s form a basis of Hm(X ,Z). We further assume that the intersection
forms have a fixed matrix format, that is, if we write

δm1,i1 ·δm2,i2 = ∑
i

cm1,m2,i1,i2,iδm1+m2−2n,i (4.1)

then the coefficients cm1,m2,i1,i2,i are fixed. We write (4.1) in the form

[δm1 ·δ
tr
m2
] =

bm1+bm2

∑
i=1

Ψm1,m2,iδm1+m2−2n,i, (4.2)

where Ψm1,m2,i are constant bm1 ×bm2 matrices and

δm :=


δm,1
δm,2

...
δm,bm

 . (4.3)

For m1 =m and m2 = 2n−m, the intersection of cycles composed with the canonical
map H0(X ,Z)∼= Z, gives us an intersection form

〈·, ·〉 : Hm(X ,Z)×H2n−m(X ,Z)→ Z

which is non-degenerate. We define

Ψm := [〈δm,i,δ2n−m, j〉]. (4.4)

The polarization of X gives a homology class [Y ] = [PN−1∩X ]∈H2n−2(X ,Z) which
is Poincaré dual to the topological polarization u := 1

2πi θ :

θ = (2πi) · [Y ]pd.

Recall that θ belongs to the algebraic de Rham cohomology H2
dR(X). The self inter-

sections of [Y ] gives us
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[Y ]m := [Y ] · [Y ] · · · · · [Y ]︸ ︷︷ ︸
(n−m

2 )− times

∈ Hm(X ,Z)

for m an even number. In particular, for m = 0 the element [Y ]0 ∈ H0(X ,Z) is
deg(X)-times the generator of H0(X ,Z) induced by a point. There is another in-
tersection form which we are going to use:

Hm(X ,Z)×Hm(X ,Z)→ Z, (δ1,δ2) 7→ δ1 ·δ2 · [Y ]2m, m = n,n+1, . . . ,2n. (4.5)

The corresponding intersection matrix is denoted by

Ψ̃m := [〈δm,i,δm, j〉]. (4.6)

By our definition of 〈·, ·〉 in de Rham cohomologies we have

〈δ1,δ2〉= (2πi)n〈δ pd
1 ,δ pd

2 〉, ∀δ1 ∈ Hm(X ,Z), δ2 ∈ H2n−m(X ,Z), (4.7)

〈δ1,δ2〉= (2πi)2n−m〈δ pd
1 ,δ pd

2 〉, ∀δ1,δ2 ∈ Hm(X ,Z). (4.8)

Remark 4.1 By hard Lefschetz theorem the map H2n−m(X ,Z)→ Hm(X ,Z), δ 7→
δ · [Y ]2m is injective, however, it may not be surjective. It becomes an isomorphism
only after tensoring with Q. Therefore, we may not be able to take the basis δm,i in
such a way that the matrices Ψm, Ψ̃m are equal. This is only valid for m = n. Over
rational numbers we can take δm = δ2n−m · [Y ]2m, m = n,n+ 1, · · · ,2n and hence
Ψm = Ψ̃m.

4.3 Monodromy group and covering

Let X→T be a family of smooth projective varieties over the complex numbers and
let X0 be a fiber of this at b = 0 ∈ T (marked projective variety). We define

ΓZ := Aut(H∗(X0,Z), ·, [Y0] ) (4.9)

=
{

A : H∗(X0,Z)→ H∗(X0,Z)
∣∣∣ Z-linear, respects the homology grading,

∀x,y ∈ H∗(X0,Z), Ax ·Ay = A(x · y), A([Y0]) = [Y0]}.

It acts on δm, j’s as a change of basis.

Definition 4.1 We have the monodromy map

π1(T,0)→ ΓZ

which is a homomorphism from the fundamental group π1(T,0) of T based at 0 to
ΓZ. Its image Γ̌Z is usually called the monodromy group.
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We usually write ΓZ in a basis δm,i, i = 1,2, . . . ,bm and denote its elements by col-
lection of bm× bm-matrices with entries in Z. We also use ΓZ for the monodromy
group Γ̌Z; being clear in the context which we mean.

Recall the moduli space M of projective varieties introduced in §2.9.

Definition 4.2 Let H̃ be the moduli of (X ,δ , [Y ]), where X ∈M is a projective va-
riety, [Y ] ∈ H2n−2(X ,Z) is the homology class induced by a hyperplane section and

δ : (H∗(X ,Z), ·, [Y ])∼= (H∗(X0,Z), ·, [Y0])

is an isomorphism of the homology rings sending [Y ] to [Y0]. Two such triples
(Xi,δi, [Yi]), i = 1,2 are equivalent if we have an ismorphism

(H∗(X1,Z), ·, [Y1])
β

' (H∗(X2,Z), ·, [Y2]) (4.10)

such that δ1 = δ2 ◦β . We denote by H a connected component of H̃ which contains
the triple (X0,δ0, [Y0]), where δ0 is the identity map, and call it the monodromy
covering.

Similar to the case of enhanced varieties, one can replace δ with a basis of H∗(X ,Z)
with fixed intersection matrices Φm1,m2,i in §4.2. The group ΓZ acts on H̃ from the
left in a natural way and

ΓZ\H∼= M, (X ,δ ) 7→ X .

Let us assume that M is an analytic variety, possibly singular. The set H̃ has also
a canonical structure of an analytic variety, not necessarily connected, and ΓZ acts
also on the space of connected components of H̃. It turns out that the monodromy
group Γ̌Z ⊂ ΓZ is the stablizer of the point H in the space of connected components
of H̃. All connected components of H̃ are obtained by Hα := α(H), α ∈ ΓZ/Γ̌Z:

H̃ := ∪
α∈ΓZ/Γ̌Z

Hα .

The pull-back of holomorphic functions in M by H→ M gives us the first class
of holomorphic functions on H. Apart from this, we have also other holomorphic
functions on H constructed from periods. This is as follows.

Let us take holomorphic sections ω1,ω2, . . . ,ωa of the Hodge bundle F pHm
dR(X), X ∈

M such that in an open subset of M they form a basis of F pHm
dR(X), or any other sub-

bundle of the cohomology bundle Hm
dR over M. The following meromorphic function

is trivially independent of the choice of ωi’s:

τ : H 99K C, (4.11)

τ(X ,δ ) :=
det
[∫

δm,ki
ω j

]
det
[∫

δm,li
ω j

] (4.12)

where we have chosen two subsets δm,ki , i = 1,2, . . . ,a and δm,li , i = 1,2, . . . ,a of
the basis δm,i, i = 1,2, . . . ,bm of Hm(X ,Z), and hence, τ depends on these choices.
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Note that we regard δ as a choice of a basis for H∗(X ,Z). In case X is a Calabi-
Yau variety of dimension n and a := hn,0 = 1, τ is the mirror map used in Physics

literature. In the case of elliptic curves we have τ :=
∫

δ1
ω∫

δ2
ω

, where ω is a holomorphic

1-form in X and δ1,δ2 is a basis of H1(X ,Z) with δ1 ·δ2 =−1. In this case it turns
out that τ a bihololomorphism between H and the upper half plane in C which is the
origin of our notation. One can also get the Poincaré metric on the upper half plane
in a canonical way, see [Mov17b] Appendix B. For further discussion on H in the
case of mirror quintic see [Mov17b], §4.6.

4.4 Period map

Let (X/T,α) be an enhanced family of smooth projective varieties defined over
k ⊂ C. We are going to define the period matrix for each 0 ≤ m ≤ 2n. Let δm be as
in (4.3). Each δm,i is a continuous family of cycles depending on t. For simplicity,
in our notations we have omitted the dependence on t.

Definition 4.3 We integrate αtr
m over δm and get the period matrix

Pm = Pm(t) := (2πi)−
m
2 ·
∫

δm

α
tr
m := (2πi)−

m
2 ·
[∫

δm, j

αm,i

]
.

The entries of Pm are called periods defined over k. Note that by definition X/T, and
hence all αm,i’s, are defined over k.

Recall the constant matrix Φm in (3.1) and Ψm,Ψ̃m in (4.4) and (4.6).

Proposition 4.1 For 0≤ m≤ n we have

Φm = Ptr
mΨ
−1

2n−mΨ̃2n−mΨ
−tr

2n−mPm.

In particular, for m = n we have

Φn = Ptr
n Ψ
−tr

n Pn. (4.13)

Proof. For simplicity we write the equalities up to 2πi-factors. In order to take care
of such factors one has to use (4.7) and (4.8). We have

Pm =

[∫
δm

α
tr
m

]
= [〈αtr

m ,δ pd
m 〉].

Let us write αm in terms of δ
pd
2n−m and let qm be the bm×bm change of basis matrix,

that is
αm = qmδ

pd
2n−m (4.14)

This qm is the inverse of q in [Mov13]. We obtain the equality
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Pm = 〈(δ pd
2n−m)

tr,δ pd
m 〉]qtr

m = [〈δ tr
2n−m,δm〉]qtr

m =Ψ
tr

2n−mqtr
m.

Combining both equalities we get

αm = Ptr
mΨ
−1

2n−mδ
pd
2n−m. (4.15)

We have used the fact that the cup product in cohomology is Poincaré dual to inter-
section of cycles in homology. From another side we use

Φm = [〈αm,α
tr
m 〉]

= Ptr
mΨ
−1

2n−m[〈δ
pd
2n−m,δ

pd,tr
2n−m〉]Ψ

−tr
2n−mPm

= Ptr
mΨ
−1

2n−mΨ̃2n−mΨ
−tr

2n−mPm.

Note that we have used (2.17). For m = n we have automatically Ψ̃n =Ψn. ut

Proposition 4.2 We have
dPm = Pm ·Atr

m (4.16)

and
Pm(t •g) = Pm(t) ·gm, t ∈ T, g ∈ G. (4.17)

Proof. This follows after taking ∇ of (4.15) and using ∇δ
pd
2n−m = 0. The second

equality follows from the definition of period matrix. ut

Remark 4.2 A full set of polynomial relations between the entries of all period
matrices Pm is obtained in the following way. For 0 ≤ m1,m2 ≤ 2n, we write the
equality (3.2) in the following format. We define Φm1,m2 to be the 1×bm1+m2 matrix
with the entries Φm1,m2,i, which are matrices, and for simplicity write

[αm1 ∪α
tr
m2
] = Φm1,m2αm1+m2 .

We use (4.15) and we get

Ptr
m1

Ψ
−1

2n−m1
[δ2n−m1 ·δ

tr
2n−m2

]Ψ−tr
2n−m2

Pm2 = Φm1,m2

(
Ptr

m1+m2
Ψ
−1

2n−(m1+m2)
δ2n−m1−m2

)
(4.18)

We have used the fact that the cup product in cohomology is Poincaré dual to in-
tersection of cycles in homology. These are not all polynomial relations between
periods. For instance, if all the members of the moduli space M have a Hodge cycle
varying continuously, then we will get more relations between periods. In general,
any algebro-geometric phenomena which occures for all the members of M might
produce algebraic relations between periods.

Remark 4.3 The period map is a local embedding at a point t ∈ T if there is no
vector v in the tangent space of T at t such that Am(v) = 0 for all m. This follows
from (4.16). Once the Gauss-Manin connection matrices Am are computed, this can
be verified computationally. For a concrete example see §9.2.



Chapter 5
Foliations on schemes

It was a sequence of examples, examples and examples, until you feel that there
exists a common feature between all these examples, and then the theorem popped
up. At the beginning we had just the announcement but not the proof, (C. Camacho,
on the invention of Camacho-Sad index theorem in an interview).

5.1 Introduction

In this chapter, we collect all necessary material to deal with (holomorphic) folia-
tions on schemes. We will be mainly concerend with parameter schemes defined in
§2.3 or a neighborhood of a point in Cn. A foliation in our context is identified with
its module of differential 1-forms and so it is not just the underlying geometric ob-
ject. This is similar to the passage from a variety to a scheme. This distinguishes our
study from the available material in the literature which is mainly concentrated on
foliations of dimension or codimension one on complex manifolds. Therefore, most
of the material in this chapter cannot be found elsewhere. The Jouanolou’s lecture
notes [Jou79] may be a good start, however, it does include only codimension one
foliations. For an introduction to one dimensional holomorphic foliations, mainly
in the local context, the reader is referred to Camacho and Sad’s book [CS87] or
Loray’s book [Lor06]. Lins Neto and Scárdua’s book [LNS] and Lins Neto’s mono-
graph [Net07] give a nice account of foliations in the projective spaces. Local study
of foliations of arbitrary codimension is partially discussed in Medeiros’ articles
[dM77, dM00] and [CL16]. For a more arithmetically oriented text the reader is
referred to Loray, Pereira and Touzet’s article [LPT11, LPT13] and Bost’s article
[Bos01] and references therein. In the C∞ context, Camacho and Lins Neto’s book
[CL85] and Godbillons’ book [God91] contain many geometric statements on fo-
liations, and depending on applications, one might try to find the corresponding
scheme theoretic counterparts.
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https://www.youtube.com/watch?time_continue=38&v=ZCfcqnEAM8c
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5.2 Foliations

First, let us recall the notion of a (holomoprhic) foliation. The adjective holomorphic
is just because of historical reasons and it does not mean that we are working over
complex numbers. We may also call them algebraic foliations as they are given by
algebraic expressions with coefficients in a ring. Recall our definition of a parameter
scheme T in §2.3. In order to keep the intuitional and local aspects of foliations, we
will also consider the case T = (Cn,0), that is, T is a small open neighborhood of 0
in Cn. For simplicity we start with the affine case.

Definition 5.1 Let T be an affine parameter scheme over k. A holomorphic folia-
tion F in T is given by an OT-module Ω ⊂Ω 1

T with the integrability condition (or
sometimes it is called Frobenius condition). We say that Ω is geometrically inte-
grable if for all ω ∈Ω there is f ∈ OT, f 6= 0 (depending on ω) such that

f ·dω ∈Ω
1
T∧Ω . (5.1)

We say that Ω is algebraically integrable if dΩ ⊂Ω 1
T∧Ω , that is, in (5.1) we have

always f = 1.

In a geometric context, Ω induces a foliation F (Ω) in T. The OT-module Ω may
not be free and we consider a set of generators ωi ∈Ω 1

T, i = 1,2, . . . ,a for Ω . The
following notations are also common:

F (ω1,ω2, . . . ,ωa), or F : ω1 = 0, ω2 = 0, · · · , ωa = 0.

The geometric integrability condition is equivalent to the following. For all i =
1,2, . . . ,a there are ωi, j ∈Ω 1

T, j = 1,2, . . . ,a and fi ∈ OT, fi 6= 0 such that

fi ·dωi =
a

∑
j=1

ωi, j ∧ω j.

For algebraic integrability put all fi equal to 1.

Remark 5.1 In the literature, see for instance [LPT11, LPT13], one mainly assume
that Ω is saturated, that is, the inclusion Ω ⊂ Ω 1

T has non-torsion cokernel. This
means that if for some 0 6= f ∈OT and ω ∈Ω 1

T we have f ω ∈Ω then ω ∈Ω . As far
as one deals with the geometric aspects of holomorphic foliations, this assumption
is quite reasonable. However, our main examples of foliations in Chapter 6 do not
satisfy this condition. For a foliation F (Ω) one can define another foliation F (Ω̌)

Ω̌ :=
{

ω ∈Ω
1
T

∣∣∣∃ f ∈ OT, f 6= 0, f ω ∈Ω

}
with the above mentioned property. Note that by our definition of parameter scheme
in §2.3, OT has no zero divisors and the integrability of Ω̌ follows from the integra-
bility of Ω .
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Remark 5.2 The most general definition of a foliation must be done using submod-
ules of k-forms, see for instance [dM77, dM00, CL16]. We are interested only on
foliations given by 1-forms as our main examples in Chapter 6 are of this form.

Let k(T) be the quotient field of OT (the function field of T). We take s elements
out of ωi, i = 1,2, . . . ,a such that ω1,ω2, . . . ,ωs form a basis of the k(T)-vector
space

Ω̃ := Ω ⊗OT
k(T). (5.2)

The integrability condition implies that

dωi∧ω1∧ω2∧·· ·∧ωs = 0, i = 1,2, . . . ,a.

Finally, let us make the definition of a foliation in an arbitrary parameter scheme:

Definition 5.2 Let T be a parameter scheme as in §2.3. An integrable system in T
is given by a subsheaf Ω ⊂ Ω 1

T of OT-modules such there is a covering of T by
affine charts such that Ω is integrable in each affine chart.

One can easily verify that the integrability of Ω does not depend on the covering.
As before the notation F (Ω) is reserved to denote the foliation induced by Ω .

Definition 5.3 We say that two foliations F (Ω1) and F (Ω2) are (algebraically)
equal if the corresponding OT-modules Ω1 and Ω2 are equal. We say that they are
geometrically equal if

Ω1⊗OT
k(T) = Ω2⊗OT

k(T).

5.3 Rational first integrals

The first example of foliations are those with a first integral.

Definition 5.4 A foliation F (Ω) in T has the rational first integral f ⊂ k(T) (resp.
regular first integral f ⊂ k[T] ) if the k(T)-vector space Ω ⊗k k(T) (resp. the OT-
module Ω ) is generated by d f .

Note that f is just a set with no sheaf or vector space structure. First integrals have
usually poles, that is why we work with both k(T) and k[T]. Moreover, for an OT-
module Ω with a first integral the integrability condition is automatic. In algebraic
geometry the main source of foliations are fibrations.

Definition 5.5 Let f : T→V be a morphism of finite type of schemes, that is, there
exists a covering of V by open affine subsets Vi, such that f−1(Vi) is covered by a
finite number of open affine open sets Ti j and k[Ti j] is a finitely generated k[Vi]-
algebra. The foliation attached to f is F (Ω), where

Ω(Ti j) := The k[Ti j]-module generated by d(g◦ f ), g ∈ k[Vi]. (5.3)
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A foliation with a regular first integral f ⊂ k[T], where f = { f1, f2, . . . , fn} is the
foliation attached to the morphism T→An

k given by ( f1, f2, . . . , fn). Another useful
source of foliations comes from group actions discussed in §2.12. We will discuss
these foliations in §5.10.

5.4 Leaves

Let T be either a parameter scheme or (Cn,0).

Definition 5.6 Let L be a subscheme of T (not necessarily closed) and I be its
sheaf of ideals. Let also F = F (Ω) be a foliation in T. We say that L is a (scheme
theoretic) leaf of F if Ω and OT · dI projected to Ω 1

T/I Ω 1
T and regarded as

OT/I -modules are equal. In other words, Ω and OTdI are equal modulo I Ω 1
T.

The following concept seems to be fundamental and non-trivial for singular leaves.

Definition 5.7 For the ideal I as above we define its integral to be

Int(I ) :=
{

f ∈ OT

∣∣∣ d f ∈I ·Ω 1
T

}
.

It can be checked that Int(I ) is an algebra and it is not necessarily an ideal. The
definition of Int(I ) is motivated by the following proposition.

Proposition 5.1 Let L be a subscheme of T and I be its sheaf of ideals. For any
subset S⊂ Int(I ) we have a leaf Ľ whose sheaf of ideals is generated by I and S.

Proof. This follows immediately from the definition of a leaf and the integral of an
ideal. ut
We can repeat the construction in Proposition 5.1 and get more leaves. This phe-
nomena is present for modular foliations, see §6.10.

By our definition a leaf might be reducible. Therefore, it makes sense to talk
about irreducible leaves. Moreover, it might be also reduced. It is useful to write
Definition 5.6 in terms of generators. Let Ω = 〈ω1,ω2, . . . ,ωa〉 and I = 〈 f1, f2, . . . , fs〉.
Then L is a leaf of F if there are Pi j, P̌i j ∈ OT and αi j, α̌i j ∈Ω 1

T such that
ω1
ω2
...

ωa

=


P11 P12 · · · P1s
P21 P22 · · · P2s

...
...

. . .
...

Pa1 Pa2 · · · Pas




d f1
d f2

...
d fs

+


α11 α12 · · · α1s
α21 α22 · · · α2s

...
...

. . .
...

αa1 αa2 · · · αas




f1
f2
...
fs

 , (5.4)


d f1
d f2

...
d fs

=


P̌11 P̌12 · · · P̌1a
P̌21 P̌22 · · · P̌2a

...
...

. . .
...

P̌s1 P̌s2 · · · P̌sa




ω1
ω2
...

ωa

+


α̌11 α̌12 · · · α̌1s
α̌21 α̌22 · · · α̌2s

...
...

. . .
...

α̌s1 α̌s2 · · · α̌ss




f1
f2
...
fs

 (5.5)



5.5 Smooth and reduced algebraic leaves 65

The OT-module Ω is not necessarily free and L is not necessarily a local complete
intersection, therefore, combining the above equalities we only get linear relations
between ωi, d fi and fi’s. In the following by abuse of notation we will also say that
{ f1 = f2 = · · ·= fs = 0} or Zero( f1, f2, · · · , fs) is a leaf of F .

Example 5.1 For a foliation F := F (d f1,d f2, . . . ,d fk) with a first integral f1,
f2, · · · , fk ⊂ k[T] and c1,c2, · · · ,ck ∈ k, the subscheme L := Zero( f1 − c1, f2 −
c2, · · · , fk− ck)⊂ T is a leaf of F . In geometric terms, fi restricted to L is the con-
stant ci. In general, the fibers of a fibration T→ V are leaves of the corresponding
foliation. The following question arises in a natural way: Is any leaf of F necessar-
ily of the above format?

Example 5.2 Let us assume that F is given by a single holomorphic 1-form ω in
T := (Cn,0). For f ∈ OT with f (0) = 0, { f = 0} is a leaf of F if and only if

ω = P ·d f + f α, for some P ∈ OT, α ∈Ω
1
T, P(0) 6= 0.

Therefore, if 0 is a singularity of F then f = 0 must be necessarily singular at 0.
We do not have a similar description of the case in which I is generated by more
elements.

Proposition 5.2 Let T = (Cn,0) and consider two subschemes Li, i = 1,2 of T.
Assume that L1∪L2 is a leaf of F . Then L1\L2 and L2\L1 are leaves of F .

Note that if Ii, i = 1,2 is the sheaf of ideals of Li then by definition I1 ·I2 is the
sheaf of ideals of L1∪L2. Moreover, L1\L2 is a subscheme of T\L2.

Proof. By our hypothesis Ω and OTd(I1I2) projected to Ω 1
T/I1I2Ω 1

T are equal.
This implies that Ω and I2d(I1) projected to Ω 1

T/I1Ω 1
T are equal. For a closed

point p 6∈ L2 the stalk of I2 and OT over p are the same and we conclude the desired
statement. ut

The following questions arise in a natural way.

1. Are there two distinct leaves of a foliation F in (Cn,0) passing through 0? Note
that ‘distinct’ means that the corresponding ideals I1 and I2 are distinct. Even
with the stronger condition I1 ⊂I2 the question does not seem to be trivial.

2. For a leaf L of the foliation F , are irreducible components of L also leaves of
F ? In general, we may write the primary decomposition of the ideal sheaf of L
and we may ask whether its primary ideals give new leaves of F .

5.5 Smooth and reduced algebraic leaves

In this section we consider foliations in T := (Cn,0). Let L ⊂ T be a germ of an
analytic scheme given by the ideal I ⊂ OT.
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Definition 5.8 We say that L is smooth and reduced (of codimension s) if I =
〈 f1, f2, . . . , fs〉, and the linear part of fi’s are linearly independent. By holomorphic
implicit function theorem this is equivalent to say that in some holomorphic coordi-
nate system (z1,z2, . . . ,zn) in (Cn,0) we have I = 〈z1,z2, . . . ,zs〉.

Another reformulation of the above definition is to say that L is a smooth local com-
plete intersection. Let F (ω1,ω2, . . . ,ωa) be a foliation in T := (Cn,0) and let L be a
germ of a smooth and reduced leaf of F of codimension s. By a holomorphic change
of coordinates, we can assume that L is given by the ideal I = 〈z1,z2, . . . ,zs〉. In the
equalities (5.4) and (5.5) we can assume that the matrices P and P̌ depend only on
zs+1, · · · ,zn. Let

x := (z1,z2, . . . ,zs), y = (zs+1, · · · ,zn), z = (x,y).

Replacing (5.4) in (5.5) we get d f − P̌ ·Pd f ∈I Ω 1
T which implies that

P̌s×a(y) ·Pa×s(y) = Is×s. (5.6)

Evaluating this at (zs+1, · · · ,zn) = 0 we conclude that s≤ a.

Proposition 5.3 The variety L : x = 0 is a leaf of F (Ω) if and only if s≤ a, that is,
the codimension of L is less than or equal to the minimum number of generators of
Ω , and

ωa×1 = P(y)a×sdxs×1 +α(x,y)a×sxs×1, (5.7)

where we have a matrix P̌s×a(y) with (5.6). In particular, if F is given by one dif-
ferential 1-form then smooth and reduced leaves are of codimension 1.

It is natural to ask whether a leaf of F through a point (if exists) is unique (even
in the scheme theoretic sense). We can answer this question only in the case when
the leaf is smooth and reduced.

Proposition 5.4 Let F be a foliation in T := (Cn,0) with a smooth and reduced
leaf L passing through 0. Any other leaf of F passing through 0 is equal to L.

Proof. Let us assume that there are two leaves Li, i = 1,2 of F passing through
0 and L1 is smooth and reduced. By a holomoprhic change of coordinates, we can
assume that L1 is given by the ideal I1 = 〈z1,z2, . . . ,zr〉. Let I2 be the ideal of L2.

We first prove that I2 ⊂I1. By definition of a leaf we have

dI2 ⊂I2Ω
1
T +I1Ω

1
T +OTdI1.

We restrict the ideal I2 to z1 = z2 = · · ·= zr = 0 and we get an ideal Ǐ 2 in OCn−m,0
with the coordinate system (zr+1, · · · ,zn) whose zero set contains 0 ∈Cn−m and it is
closed under derivations with respect to variables zr+1, · · · ,zn. By Proposition 5.5,
we have Ǐ 2 = 0 and so I2 ⊂I1.

Now, let us prove that I1 ⊂I2. By definition of a leaf and I2 ⊂I1 we have

dzi ∈I1Ω
1
T +OTdI2, i = 1,2, . . . ,r.
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Let I2 = 〈 f1, f2, . . . , fs〉. This implies that the C-vector space of linear parts of
f1, f2, . . . , fs contains z1,z2, . . . ,zr. After rearranging and taking linear combinations
of fi’s we can assume that the linear parts of f1, f2, . . . , fr is respectively z1,z2, . . . ,zr.
We claim that

〈 f1, f2, . . . , fr〉= 〈z1,z2, . . . ,zr〉. (5.8)

This together with I2 ⊂I1 implies that I1 = I2. The equality (5.8) follows from
the fact that the varieties given by both sides are smooth and of codimension r
and one is inside the other one. However, the following argument is better from a
computational point of view.

In order to prove (5.8) we use the inverse function theorem for F : (Cr,0)→
(Cr,0), F = ( f1, f2, . . . , fr) and regard zr+1, · · · ,zn as parameters or constants. The
containment ⊂ was already proved in the first paragraph and ⊃ follows from taking
the inverse of F . Note that F(0) = 0 is independent of the value of zr+1, · · · ,zn and
the derivative of F at 0 is the identity matrix. ut

Proposition 5.5 Let I ⊂ O(Cn,0) be an ideal such that

∀ f ∈I , i = 1, · · · ,n, ∂ f
∂ zi
∈I . (5.9)

Then either I = 0 or I = O(Cn,0).

Proof. Assume I 6= 0 and so we have a non-zero element f ∈ I whose leading
term in its Taylor series is a0zm1

1 zm2
2 · · ·azmn

n with a0 6= 0. After making the deriva-
tions ∂

m1

∂ z
m1
1

∂
m2

∂ z
m2
1
· · · ∂ mn

∂ zmn
1

we get an invertible element in I . ut

Proposition 5.6 Let F (Ω) be a foliation in T := (Cn,0) and let L be a germ of a
leaf of F (see Definition 5.6). Then, L is smooth and reduced of codimension s if
and only if

1. we have

ZI

(
s+1∧

Ω

)
⊂I ( or equivalently ) L⊂ ZS

(
s+1∧

Ω

)
,

where ZI and ZS are the zero ideal and zero scheme defined in Definition 2.2,
and

2. we have
ZI(∧s

Ω) = OT ( or equivalently ) ZS(∧s
Ω) = /0.

In other words, there are ω1,ω2, . . . ,ωs ∈Ω such that

ZI(ω1∧ω2∧·· ·∧ωs) = OT.

In geometric terms, the first item means that the wedge product of Ω , (s+1)-times,
vanishes at any point of L and the second item means that ω1 ∧ω2 ∧ ·· · ∧ωs does
not vanish at 0 ∈ L, and hence, at any point of a neighborhood of 0 in L. However,
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note that the first geometric statement is weaker than the scheme theoretic statement
used in the proposition.

Proof. Let us prove ⇒. The first statement follows from the definition of a leaf.
Modulo I Ω 1

T, Ω is equal to the OT-module generated by dI and we know that
the s+1-times wedge product of the latter is zero. In order to prove the second part
we use again the definition of a leaf and we have d fi = gi +ωi, i = 1,2, . . . ,s, gi ∈
I Ω 1

T, ωi ∈Ω . Therefore,

d f1∧d f2∧·· ·∧d fs−ω1∧ω2∧·· ·∧ωs ∈I Ω
s
T

and we get the second statement.
Now, we prove ⇐. For ωi, i = 1,2, . . . ,s given in the second item of hypoth-

esis we find fi ∈ I and gi ∈ OT such that ωi − gid fi ∈ I Ω 1
T. We claim that

I = 〈 f1, f2, . . . , fs〉 and it is smooth and reduced using fi’s. Our hypothesis on ωi
implies that gi ∈ O∗T and at any point of L the linear part of fi’s are linearly inde-
pendent. Therefore, it only remains to prove that I is generated by fi’s. We can
make a change of coordinate system in (Cn,0) such that fi = zi, i = 1,2, . . . ,s,
where z = (z1,z2, · · · ,zn) is the coordinate system of (Cn,0). By our hypothesis the
OT-modules Ω and OT ·dI are equal modulo I Ω 1

T. For any f ∈I , we have

dz1∧dz2 · · ·∧dzs∧d f =
n

∑
i=s+1

∂ f
∂ zi

dz1∧dz2 · · ·∧dzs∧dzi

and by our hypothesis ∂ f
∂ zi
∈I . This statement is stronger than to say that ∂ f

∂ zi
van-

ishes at any point of L. This will be a crucial point in which we use the scheme theo-
retic language. Let Ǐ be the ideal of O(Cn−s,0) obtained by setting (z1,z2, . . . ,zs) = 0
in all elements of I and let Ľ = Zero(Ǐ ). Our assertion follows from Proposition
5.5 replacing I of the proposition with Ǐ . ut

The “if” part of Proposition 5.6 might be false if we do not use the scheme theo-
retic notation and it would be interesting to find an example for this. Inspired by
Proposition 5.6 we make the following definition:

Definition 5.9 Let T be a parameter scheme over k and F = F (Ω) be a foliation
of codimension s in T. We consider the inclusions

/0⊂ ZS(Ω)⊂ ·· · ⊂ ZS(∧i
Ω)⊂ ZS(∧i+1

Ω)⊂ ·· · . (5.10)

The underlying reduced scheme of two schemes in (5.10) might be equal. Neglect-
ing equalities we get

/0 = Tk+1(C)( Tk(C)( · · ·( T1(C)( T0(C) = T(C) (5.11)

Any consecutive inclusion Ti ( Ti+1 with Ti as in (5.11) has the property that for
some si, which only depends on i, Ti = ZS(∧si+1Ω) and Ti+1 = ZS(∧siΩ). We call
(5.11) the flag singular locus of F (Ω).
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Proposition 5.7 Any smooth and reduced leaf L of F lies inside Ti(C)\Ti+1(C)
for some i.

Proof. This follows from Proposition 5.6. ut

Remark 5.3 Something which does not seem to be true is the following. If a leaf
L of F contains a point p ∈ Ti(C)\Ti+1(C) then it must be entirely inside it. By
Proposition 5.7 this is true if L is smooth and reduced, but in general it might be
false, see Figure 5.1. This motivates us to define the notion of an essential singularity
in Definition 5.12.

5.6 Singular scheme of a foliation

In the literature when one says a foliation, then it is usually non-singular, and so, one
has reserved the term singular foliation for those with singularities. In the present
text a foliation might have singularities.

Definition 5.10 The codimension of a foliation F (Ω) is the smallest integer c such
that ∧c+1Ω ⊂Ω

c+1
T is a torsion sheaf but ∧cΩ is not.

Note that T = (Cn,0) has no torsions and so the above definition in this case be-
comes ∧c+1Ω = 0 and ∧cΩ 6= 0.

Definition 5.11 Let T be a parameter scheme and F (Ω) be a foliation in T of
codimension c. We define

Sing(F (Ω)) := ZS(∧c
Ω),

where the zero scheme ZS is defined in Definition 2.4, see Figure 5.1.

It is left to the reader to describe the singular scheme of a foliation attached to
a fibration and an action of a group. Inspired by Proposition (5.4) we make the
folowing definition.

Definition 5.12 For a foliation F on a smooth parameter scheme T, the set of its
essential singularities is defined to be

ESing(F ) :=
{

p ∈ T(C)
∣∣∣ there is no smooth and reduced leaf of F through p

}
.

Remark 5.4 The set ESing(F ) does not seem to be an analytic subset of T(C). It
would be natural to find a foliation with non-empty ESing(F ). In the framework
of modular foliations in Chapter 6 the most simple example of a foliation for this
purpose seems to be modular foliations attached to either a rank 17 family of K3
surfaces described in [CD12], see also [DMWH16], or principally polarized abelian
surfaces, see Chapter 13.
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5.7 Classical or general leaves

We might develope the theory of algebraic foliations on schemes, however, a folia-
tion in a geometric context makes sense when we are talking about its leaves, and
these live only in the complex manifolds. Therefore, in this section we consider the
complex and local context T = (Cn,0). The first fundamental theorem in the theory
of holomorphic foliations is the following:

Theorem 5.8 (Frobenius theorem) Let F (Ω) be a foliation in T = (Cn,0) and
assume that Ω is freely generated by r differntial 1-forms and 0 is not a singular
point of F . There is a coordinate system (z1,z2, . . . ,zn) in T such that Ω is freely
generated as OT-module by dz1,dz2, · · · ,dzr. In particular,

L : z1 = const1, z2 = const2, · · · ,zr = constr

is a smooth and reduced leaf of F .

Proof. The proof in Camacho and Lins Neto’s book [CL85], Appendix 2, can be
reproduced easily in the holomorphic context. ut

The Frobenius theorem is no more true for points t ∈ Sing(F ). For a study of fo-
liations in (C2,0) with an isolated singularity at 0 the reader might consult [CS87]
and [Lor06].

Definition 5.13 By a geometric local leaf of a foliation we mean any irreducible
component of the underlying analytic variety of the scheme theoretic leaf L in Def-
inition 5.6. The analytic variety L in (5.8) is called a general geometric local leaf of
F .

Fig. 5.1 Singular set of a foliation
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Let us now consider a parameter scheme T over C, a foliation F (Ω) in T and a
leaf L ⊂ T which might be inside Sing(F ). In general, the local analytic variety
L is not an open set of an algebraic subvariety of T and its analytic continuation
may result in complicated dynamics in the ambient space T (it can become dense
in the whole space). We usually remove the adjectives “geometric” and “scheme
theoretic”; being clear in the context which leaf we mean.

Definition 5.14 A global leaf Lt of F passing through t ∈ T\Sing(F ) is the union
of all local leaves Ľ which are analytic continuation of the local leaf L passing
through t, that is, there is a finite sequence of local leaves L = L0,L1, · · · ,Ls = Ľ
with Li∩Li+1 6= /0. We will use Lt for both local leaf through t and the global leaf as
defined above, being clear from the text which we mean.

Chow theorem, which is a part of Serre’s GAGA principle [Ser56], says that closed
analytic subvarieties of projective varieties are algebraic. This statement is no more
true for subvarieties of non-projective varieties and in particular affine varieties.
Leaves of modular foliations give us a good class of counterexamples. A leaf of a
modular foliation in T may be closed, however, it may have a complicated behavior
near the complement of T in its projectivization.

5.8 N-smooth leaves

Let us consider a foliation in T := (Cn,0) and let L ⊂ T be a germ of an analytic
scheme given by the ideal I ⊂OT. If both F and L are given by explicit equations
then the property of L to be smooth and reduced boils down to many equalities of

Fig. 5.2 Local charts of a foliation
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formal power series, see for instance [Mov19] §18.5, and we might check these
equalities up to a finite order. This motivates us to define the following concept.

Definition 5.15 For a natural number N ∈ N, we say that L is N-smooth (and re-
duced of codimension s) if there are f1, f2, . . . , fs ∈ I such that the linear part of
fi’s are linearly independent and

I ⊂ 〈 f1, f2, . . . , fs〉+M N+1
Cn,0 ,

where MCn,0 is the maximal ideal of OCn,0. In other words, I = 〈 f1, f2, . . . , fs〉
modulo power series which vanish at 0 of order ≥ N +1.

Note that for k ≤ N we have M k+1
Cn,0 ⊃M N+1

Cn,0 and so N-smoothness implies k-
smoothness for all k ≤ N.

In Proposition 5.10 we will need the following theorem in commutative algebra:

Theorem 5.9 (Krull intersection theorem) Let I be an ideal in a Noetherian ring
R. Suppose either R is a domain and I is a proper ideal; or I is contained in the
intersection of all maximal ideals of R (Jacobson radical of R). Then ∩∞

n=1In = {0}.

For a proof see for instance [Cla], [Mila].

Proposition 5.10 Let I ⊂OCn,0 be an ideal and d ∈N be a natural number. There
is a natural number N ∈N, depending only on I and d with the following property:
For any polynomial P ∈ C[z1,z2, . . . ,zn] with deg(P) ≤ d, if P ∈ I +M N+1

Cn,0 then
P ∈ I , that is, if P ∈ I modulo power series which vanish at 0 of order ≥ N + 1
then P ∈I .

Proof. The ring R :=OCn,0/I is Noetherian and so by Krull’s intersection theorem,
see Theorem 5.9, for any proper ideal I ⊂ R we have ∩∞

k=1Ik = {0}. We use this for
the maximal ideal I of R which is is the image of MCn,0 in R. From another side, the
vector space of polynomials of degree ≤ d is finite dimensional, and its projection
V in R is also finite dimensional. Since Ik’s are also (infinite dimensional) vector
spaces, there exisits N such that IN ∩V = {0}. ut.

In the case I is a prime ideal, there is another proof of Proposition 5.10 using
Noether’s normalization theorem, see [GP07], Theorem 6.2.16, see also [Mov17a].
The advantage of this proof is that it gives also an algorithm how to compute the
number N. The author knew of Krull’s intersection theorem after a web search by
keywords “local ring”, “ideal is closed”, “Groebner basis for formal power series”.

Theorem 5.11 Let T be a smooth parameter scheme over C and let F be an al-
gebraic foliation in T. There is an integer N, depending on T and F such that for
all point p ∈ T and a leaf L of F through p, if L is N-smooth then L is smooth and
reduced.

Proof. Let F = F (Ω) and I = 〈 f1, f2, . . . , fk〉 be the ideal of the leaf L. By
definition of a leaf, the OT,p-modules Ω and 〈d f1,d f2, . . . ,d fk〉 are equal modulo
I ·Ω 1

T,p. Let us assume that L is N-smooth of codimension s≤ k and the linear part
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of f1, f2, . . . , fs are linearly independent. It turns out that the OT,p-modules ∧s+1Ω

and 〈
d fi1 ∧d fi2 ∧·· ·∧d fis+1 | {i1, i2, . . . , is+1} ⊂ {1,2, . . . ,k}

〉
(5.12)

are equal modulo I ·Ω s+1
T,0 . The OT,p-module (5.12) is 0 modulo M N+1

T,0 ·Ω
s+1
T,0 ,

therefore,
∧s+1

Ω = 0, modulo I ·Ω s+1
T,0 +M N+1

T,0 ·Ω
s+1
T,0 .

The OT,p-module ∧s+1Ω is generated by algebraic differential forms whose in-
grediends are polynomials. Therefore, for N big enough depending on Ω , we can
use Proposition 5.10 and conclude that (5.12) is in I ·Ω s+1

T,0 . The rest of the proof
is similar to the last part in the proof of Proposition 5.6. Without lose of gen-
erality, we can assume that f1 = z1, · · · , fs = zs are parts of a coordinate system
in (T, p). For any other f ∈ I we have ∂ f

∂ zi
∈ I , i = s + 1, · · · ,n. After re-

stricting to z1 = z2 = · · · = zs = 0 and applying Proposition 5.5, we conclude that
I = 〈z1,z2, . . . ,zs〉. ut

It would be extremely interesting to give a formula for N in the case of modular foli-
ations attached to families of hypersurfaces. This number seems to be readable from
the corresponding Gauss-Manin connection matrix. It would result in the discovery
of new components of Hodge loci, for which we might expect that the corresponding
Hodge cycles are not algebraic, see [Mov19] Chapter 18.

5.9 Foliations and vector fields

A holomorphic foliation can be also described in terms of vector fields. Recall the
preliminaries of vector fields on schemes in §2.4. Let T be a parameter scheme as
in §2.3 and consider a finitely generated OT-module Ω ⊂ Ω 1

T and define the OT-
module

Θ :=
{

v ∈ΘT

∣∣∣ivΩ = 0
}
.

Proposition 5.12 The OT-module Ω is geometrically integrable if and only if Θ is
closed under the Lie bracket.

Proof. Recall that Ω is geometrically integrable if Ω ⊗OT
k(T) is integrable. In the

following we take ω ∈Ω and v1,v2 ∈Θ . First we prove⇒. We have

i[v1,v2]ω = iv1 ◦Lv2ω = iv1 ◦ iv2dω (5.13)

for which we have used (2.8). The integrability condition implies that the right hand
side of this is zero.

We now prove⇐. It is enough to prove it for T an affine parameter scheme. Let
ω1,ω2, . . . ,ωa ∈ Ω 1

T form a basis of the k(T)-vector space Ω 1
T⊗OT

k(T) and for
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s ≤ a, ω1,ω2, . . . ,ωs form a basis of Ω ⊗OT
k(T). For ω ∈ Ω let us write dω :=

∑i< j fi jωi∧ω j for some fi j ∈ k(T). It is enough to show that for s < i < j we have
fi j = 0. By our hypothesis, the left hand side of (5.13) is zero and hence the right
hand side is zero too. We have

0 = iv1 ◦ iv2dω = iv1 ◦ iv2

(
∑

s<i< j
fi jωi∧ω j

)
.

Taking vector fields v1 and v2 dual to ωi and ω j we get fi j = 0 and hence the
integrability condition is satisfied. ut

A holomorphic foliation in T is also given by a sub Lie Algebra Θ of ΘT in which
case we denote it by F (Θ). This will give us the notion of an algebraically inte-
grable foliation given by vector fields. We may also define geometrically integrable
F (Θ) in which Θ ⊗OT

k(T) is closed under the Lie bracket. In both cases, the cor-
responding set of differential forms is given by

Ω =
{

ω ∈Ω
1
T

∣∣∣ ivω = 0, ∀v ∈Θ

}
.

The definition of a leaf of F (Θ) is done using this Ω , however, it might be useful to
formulate such a definition without passing through differential forms. For instance,
a geometric intuition suggests that

Definition 5.16 A subscheme L of T is a leaf of F (Θ) if the Zariski tangent space
of L at any point t ∈ L is equal to Θt .

It is left to the reader to compare this definition with Definition 5.6. Finally, note that
two distinct submodules Ω and Ω̌ of Ω 1

T might have the same OT-modules of vector
fields, that is, Θ = Θ̌ , and vice versa. For instance, in the affine line T := Spec(k[t])
and trivial foliations Ω = 〈p(t)dt〉 and Ω̌ = 〈p̌(t)dt〉, we have Θ = Θ̌ = {0}. In a
similar way, for Θ = 〈p(t) ∂

∂ t 〉, Θ̌ = 〈p̌(t) ∂

∂ t 〉 we have Ω = Ω̌ = {0}.

5.10 Algebraic groups and foliations

Let T be a parameter scheme and G be an algebraic group acting on T from the
right, all defined over an algebraically closed field k. Recall our notations in §2.14
and notice that we have to adapt our notations to the right action of groups.

Definition 5.17 We define

i(Lie(G)) :=
{

vg

∣∣∣g ∈ Lie(G)
}
⊂ H0(T,ΘT). (5.14)

which is the image of the map i in (2.24). It is equipped with the Lie bracket of
vector fields. We denote by F (G) the foliation in T induced by i(Lie(G)) in T and
call it the foliation induced by the action of G on T.
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Note that [vg1 ,vg2 ] = v[g1,g2] for g1,g2 ∈ Lie(G) and so i(Lie(G)) is closed under
the Lie bracket. The following problems arise in a natural way:

1. Describe the leaves of F (i(Lie(G))) in terms of the action of G. In particular,
describe smooth and reduced leaves. Recall that we have made a purely algebraic
definition of a leaf, see Definition 5.6, and the geometric intution might not be
enough for this purpose.

2. What is the singular locus Sing(F (i(Lie(G))))?
3. Are all the points in T\Sing(F (i(Lie(G)))) stable in the sense of geometric

invariant theory?
4. What is the flag singular locus of the foliation F (i(Lie(G))) defined in (5.11)?

Answering these questions would require an intensive study of geometric invariant
theory, see [MFK94]. For t ∈ T the orbit t •G seems to be an algebraic leaf of
F (i(Lie(G))) in the sense of Definition 5.16. This is true at least in the smooth part
of the orbit t •G, because all the vector field vg ∈ i(Lie(G)) are tangent to a smooth
point of t •G and they generate the tangent space of t •G at that point.

Definition 5.18 A holomorphic foliation F (Ω) in T is algebraically invariant un-
der the action of G if the induced action in Ω 1

T sends Ω to itself. It is called geomet-
rically invariant if the induced action on Ω 1

T sends Ω to some submodule Ω1 ⊂Ω 1
T

such that the foliations F (Ω) and F (Ω1) are geometrically equal (see Definition
5.3).

The geometry behind the above definition is as below:

Proposition 5.13 For k = C, a foliation F is geometrically invariant under the
action of G if and only if for all g ∈ G, the action map ig : T→ T, t 7→ t •g sends a
general local leaf of F to another general local leaf.

Proof. By definition ig sends the tangent space of F at t ∈T to the tangent space of
T at t •g. The result follows from the uniqueness of a leaf passing through a regular
point. ut

In other words, G acts on the space of leaves of F . For a leaf L of F , we may expect
that L•G’s are leaves of another foliation. This is in fact the case.

Proposition 5.14 Let F be a foliation in T given by the OT-module R ⊂ ΘT

and let us assume that F is geometrically invariant under the action of G. Then
(R+ i(Lie(G)))⊗OT

k(T) is closed under the Lie bracket and hence induces a holo-
morphic foliation F̃ in T. Further, for k= C we have

1. All the leaves of F are inside the leaves of F̃ .
2. For any point t ∈ T, we have

L̃t := Lt •G, (5.15)

where Lt , resp. L̃t , is the leaf of F , resp. F̃ , through t.
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Proof. Only the first part is non-trivial. For this we do not have a purely algebraic
argument. Therefore, we use Lefschetz principle and assume that k = C. In fact, it
seems that R+ i(Lie(G)) itself is closed under the Lie bracket, however, our tran-
scendental proof below does provide this statement if R is a free OT-module. It is
enough to prove the statement locally around a point t ∈T which is not a singularity
of F . There is a holomorphic coordinate system (z1,z2) ∈ (Cn−r×Cr,0) around t
such that F in these coordinates is given by z2 =constant. Therefore, the space of
leaves of F is given by z2 ∈ (Cr,0), and by our assumption, a neighborhood of the
identity in G, say it (G,1), acts on z2 coordinate. By further holomorphic coordinate
change we can replace the z2-coordinate with (z2,z3) ∈ Cr−a×Ca such that the in-
duced foliation by the action of (G,1) in the space (z2,z3) of leaves of F is given
by z3 =constant. Now, a leaf of the foliation F̃ is given by z3 =constant. ut

As an immediate corollary of the above proposition we have:

Proposition 5.15 If a leaf of F through t is algebraic then the leaf of F̃ through t
is also algebraic.

Proof. This follows from the equality (5.15). ut

5.11 F -invariant schemes

For a foliation F in T the notion of F -invariant subschemes of T are as natural as
algebraic leaves of F .

Definition 5.19 Let us consider the sheaf of ideals I ⊂OT defining the subscheme
V :=Zero(I ) and a foliation F (Ω). We say that V is algebraically F (Ω)-invariant
if for all f ∈I , d f is in the OT-module generated by Ω and I ·Ω 1

T:

dI ⊂I ·Ω 1
T +Ω . (5.16)

If in a local chart we take generators I = 〈 f1, f2, . . . , fs〉, Ω = 〈ω1,ω2, . . . ,ωa〉 for
both OT-modules I and Ω , then our definition is equivalent to the equality (5.5).
Note that a subscheme V of T is a leaf of F if it is algebraically F -invariant and
Ω ⊂I ·Ω 1

T +OT ·dI .

Proposition 5.16 Let F (Ω) be of codimension c. If V is algebraically F (Ω)-
invariant then

dI ∧Ω ∧Ω ∧·· ·∧Ω︸ ︷︷ ︸
c times

⊂I Ω
c+1
T . (5.17)

Proof. This follows from the definition of the codimension of a foliation in Defini-
tion (5.10) and (5.16). ut

It is desirable to find a definiton of F -invariant subscheme V of T which corre-
sponds to a geometric concept. For instance, we may ask that in (5.5) one has to
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multiply d fi with some gi 6∈I . The correct definition must be done depending on
applications and we content ourselves to the following:

Definition 5.20 We say that V is geometrically F -invariant if we have (5.17).

5.12 Transcendental numbers vs. variables

One of the basic ideas in Deligne’s proof of absolute Hodge cycles for abelian vari-
eties is the interchange between a transcendental number and a variable. Foliations
give us a convenient machinery to determine the situations in which a transcenden-
tal number is replaced with a variable and the variable, in turn, is replaced by any
number. In Hodge theory such transcendental numbers are periods of algebraic va-
rieties defined over Q̄. Since the integration is not an algebraic operation, the above
philosophy cannot be applied directly. For this purpose we use foliations. In this
section we explain a theorem which does this job for us.

Let k̃ = k(z1,z2, . . . ,zn) ⊂ C be an algebraically closed field of finite transcen-
dence degree over k.

Definition 5.21 The Zariski closure Z of (z1,z2, . . . ,zn) ∈ Cn over k̄ is the zero set
(or the spectrum) of the ideal{

P ∈ k̄[x1,x2, . . . ,xn]|P(z1,z2, . . . ,zn) = 0
}
.

It is easy to see that Z is an irreducible variety over k̄. The following is a classical
statement.

Proposition 5.17 Let Z be the zariski closure of (z1,z2, . . . ,zn) ∈ Cn over k̄. The
dimension of Z is the transcendence degree of k̃ over k̄.

See for instance Lemma 1.7 in Deligne’s lecture notes in [DMOS82]. The following
theorem enables us to regard a transcendental number as a variable. A basic idea is
that if in the middle of an algebraic structure, where only polynomials are used, if
you find a transcendental number like π or e then you can replace it with a variable
and hence by any other number in the base field.

Theorem 5.18 Let k̃ be an algebraically closed field extension of k̄. Let V be variety
over k̄ and let F be an algebraic foliation on Vk̃ := V ⊗k̄ k̃ defined over k̃. Let also
Y ⊂ Vk̃ be an algebraic leaf of F defined over k̃. There are a variety Z, a foliation
F̃ on V ×Z and an algebraic subset Ỹ of V ×Z, all of them defined over k̄, and a
point a ∈ Z(k̃) such that

1. The fibers of the projection π : V ×Z→ Z are F̃ -invariant.
2. Ỹ is F̃ -invariant and the leaves of F̃ in Ỹ are fibers of π|Ỹ .
3. The triple (V ×{a},F̃ |V×{a},Ỹ ∩ (V ×{a})) is isomorphic over k̃ to (Vk̃,F ,Y ).
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Moreover, if F is defined over k̄ then all the pairs (V ×{b},F̃ |V×{b}), b ∈ Z(k̃)
are isomorphic to (Vk̃,F ) under the map V ×{b}→V induced by the identity.

Proof. First note that in the definition of F and Y we have used a finite number of
coefficients and so we can assume that the field k̃ is of finite transcendence degree
over k̄, that is, k̃= k(z1,z2, . . . ,zn). Let Z be the affine variety as in Proposition 5.17.
In a local chart U of V , the foliation F is given by differential 1-forms ωi, i =
1,2, . . . ,a. We can regard ωi as a differential form on U ×Z. Looking in this way
they may not give a foliation in U ×Z, as the integrability may fail. However, the
set

{ωi, i = 1,2, . . . ,a, d f , f ∈ OZ(Z)} (5.18)

satisfies the integrability condition. The foliation F̃ in the local chart U×Z of V×Z
is given by the differential forms (5.18). The algebraic set Y can be regarded as an
algebraic set Ỹ in V × Z in a canonical way. The first statement follows from the
fact that the defining differential forms of F̃ contain all d f , f ∈OZ(Z). The second
statement is a direct consequence of the fact that Y is F -invariant. The point a in
the third statement is the point (z1,z2, . . . ,zn) ∈ Z(k̃). ut

Fig. 5.3 Leaves and transcendental numbers



Chapter 6
Modular foliations

I have found a friend in you who views my labours sympathetically. ... I am already a
half starving man. To preserve my brains I want food and this is my first considera-
tion. Any sympathetic letter from you will be helpful to me here to get a scholarship
either from the university or from the government, (S. Ramanujan in his letter to
G.H. Hardy, see [OR16]).

6.1 Introduction

In this chapter we introduce the notion of a modular foliation in the parameter space
T of an enhanced family of projective varieties. In order to motivate the reader
we will start considering foliations over the field of complex numbers, that is, k =
C, and hence, we will freely use periods. However, as far as we are not talking
about non-algebraic leaves we can work with foliations on a variety over a field k
of characteristic zero or even schemes. A very fascinating and simple fact about
foliations is that many statements about them, which are apparently talking about
transcendental aspects, can be translated into purely algebraic statements. Since we
are going to work with a fixed (co)homology, we sometimes drop the sub index m
from our notations. Our main example in this chapter has been the case of elliptic
curves and their product, and so, it is strongly recommended that the reader read
this chapter together with Chapter 9 and Chapter 10 simultaneously. For the case of
Abelian varieties (resp. hypersurfaces) the reader is recommended to read Chapter
11 (resp. Chapter 12) simultaneously. In this chapter δ denotes a continuous family
of cycles as in §6.3 and so it must not be confused with a basis δ = δm of a homology
as in Chapter 4.

79
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6.2 A connection matrix

What we need in this chapter is the Gauss-Manin connection matrix A in §3.8. The
reader who is not familar with the concept of Gauss-Manin connections is recom-
mended to follow the content of this chapter for an arbitrary connection matrix as
follows. We will only borrow the terminolgy used in Chapter 3.

Let T be a parameter scheme over the field k as in §2.3. Let also b,hm,0,hm−1,1,
· · · , h1,m−1, h0,m be natural numbers such that hi, j = h j,i and b= hm,0+hm−1,1+ · · ·+
h1,m−1 +h0,m. We consider a b×b matrix A whose entries are (global) differential
1-forms (with no pole) in T and it is of the form

A = [Ai j] =


A00 A01 0 0 · · · 0
A10 A11 A12 0 · · · 0
A20 A21 A22 A23 · · · 0

...
...

...
. . .

...
...

Am0 Am1 Am2 Am3 · · · Amm

 ,

where we have used the Hodge block notation for matrices introduced in §2.8. We
further assume the following:

dA = A∧A (6.1)

and for some constant (−1)m-symmetric matrix Φ

AΦ +ΦAtr = 0. (6.2)

We can imitate further the Gauss-Manin connection matrix, putting more structures
in this abstract context, such as the action of two algebraic groups G and G, etc.
Note that it would be also reasonable to consider the collection of matrices Am, m =
0,1, . . . ,2n instead of a single one. For a small open set U (in the usual topology)
of the underlying analytic variety T(C), we can find a b× b matrix P with entries
which are holomorphic functions in U and

dP = P ·Atr. (6.3)

The rows of P form a basis of the vector space of holomorphic solutions of dY =
Y ·Atr with Y as 1×b matrix. We will use the notation of a period matrix for P as
in Chapter 4, however, note that there is no family X/T.

6.3 The loci of constant periods

For a moment assume that k=C and let us consider an enhanced family X/T and a
continuous family of cycles

δ = {δt}t∈(T,t0), δt ∈ Hm(Xt ,C).
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We consider such a family with coefficients in C but later we will work with coeffi-
cients in Q and Z. Let

C =


C0

C1

...
Cm


be a b×1 constant matrix. We call it a (constant) period vector. We are interested
in the locus

Lδ :=

{
t ∈ (T, t0)

∣∣∣∣∣
∫

δ

α = C

}
, (6.4)

where the entries of α = [α1,α2, . . . ,αb]
tr are global sections of Hm

dR(X/T) coming
automatically from the definition of an enhanced family. We consider Lδ as an an-
alytic scheme. Its defining ideal is generated by b holomorphic functions which are
the entries of

∫
δ

α−C.

Proposition 6.1 The OT-module generated by the differential forms in the entries of
A ·C is algebraically integrable in the sense of Definition 5.1, and hence, it induces
a holomorphic foliation F (C) in T. The analytic scheme Lδ in (6.4) is a local leaf
of F (C) in the sense of Definition 5.6.

Proof. Note that Lδ might be singular and for different δ ’s it might have different
codimensions. We have

d(A ·C) = dA ·C = A∧ (A ·C),

which proves that the entries of A ·C gives us an algebraically integrable submodule
of differential forms in T. Let

f :=
∫

δ

α−C. (6.5)

We have
d f = A ·C+A · f , (6.6)

which follows from

d f =
∫

δ

∇α = A ·
∫

δ

α = A ·C+A · f .

This implies the last statement. ut

Definition 6.1 We denote by F (C) the holomorphic foliation given by the entries
of A ·C and call it a modular foliation (associate to the period vector C and the
enhanced family X/T).

For the definition of a modular foliation we do not need the assumption k = C.
Therefore, we can talk about a modular foliation F (C) in T which is defined over
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k under the condition that the enhanced family X→ T and the constant vector C are
defined over k. Recall the period map from §4.4.

Proposition 6.2 The local leaves of the modular foliation F (C) are given by

LC̃ : PtrC̃ = C, (6.7)

for a constant vector C̃ ∈Cb. In other words, the local holomorphic first integral of
F (C) is given by the set of entries of P−trC.

Proof. Let δm be as in (4.3). We just write δ = δ tr
m · C̃, where C̃ is a constant b×

1-matrix with coefficients in C and δ is given in (4.3), and integrate α over this
equality. The second statement follows from the first one or from the equalities

dP−tr =−P−tr ·dPtr ·P−tr =−P−tr ·A ·Ptr ·P−tr =−P−tr ·A,

multiplied with C from the right. ut

Hopefully, the three different notations Lt , the leaf of F (C) passing through t,
Lδ defined in (6.4) and LC̃ as above, will not produce any confusion. We have used
(6.7) and we have introduced the notion of a modular foliation in a generalized
period domain in the sense of the reference [Mov13].

The notion of a modular foliation in the present text is slightly different from the
same notion introduced in [Mov11b]. In the context of the present text, the modular
foliation of [Mov11b] is defined in the following way.

Definition 6.2 Let C be a period vector with entries in k. The modular foliation
F̃ (C) is given by the differential forms ω1,ω2, . . . ,ωb, where

∇
(
α

trC
)
=

b

∑
i=1

ωi⊗αi.

The leaves of F̃ (C) are given by the constant loci of the periods of

α
trC =

b

∑
i=1

Ci ·αi,

that is, the constant loci of the entries of P ·C. Note that Ci’s are the entries of C,
whereas Ci’s are Hodge blocks of C. The two notions of modular foliations F̃ (C)
and F (C) are the same if we interchange the role of the Gauss-Manin connection
by its dual, that is, what is a modular foliation in the first sense and derived from
the Gauss-Manin connection matrix A is modular in the second sense and derived
from the dual Atr of the Gauss-Manin connection matrix and vice versa. Note that
the dual of the Gauss-Manin connection does not satisfy the Griffiths transversality.

The modular foliation F (C) may have singularities in T, that is, points t0 where
the wedge of all the entries of A ·C vanishes. For curiosity, one may try to charac-
terize such a t0 in terms of a property of the projective variety Xt0 . Throughout the
present text we will avoid Sing(F (C)).
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Remark 6.1 The reader who does not like taking basis of vector spaces and like a
more intrinsic presentation of objects, may identify C with a k-linear map

C : Hm(X0/k)→ k.

This maps αm,i to the i-th entry of Ci. In this way, C is interpreted as an element
in the m-th homology of X/k. Let δ̌t ∈ Hm(Xt ,C) be obtained after taking Poincaré
dual of δt and then taking its pull-back by the isomorphism Ln−m : Hm(Xt ,C)→
H2n−m(Xt ,C) in the Hard Lefschetz theorem. For simplicity we use δ instead of δ̌ .
A leaf Lδ of F (C) is the loci of parameters t ∈ T such that

1. δ is a holomorphic flat section of Hm(X/T) and
2. the image of δ under the composition

H∗dR(X/T)
α∼= H∗dR(X0)⊗k OT

C⊗Id∼= OT (6.8)

maps to k⊂OT, that is, its derivation with respect to any vector field in T is zero.

Finally, the following definition seems to be useful in many instances.

Definition 6.3 A leaf L of the modular foliation F (C) is homologically defined
over Q if the corresponding family of continuous cycles δ = δt , t ∈ (T, t0) with
L = Lδ is in Hm(Xt ,Q), that is, it lives in homologies with rational coefficients.
It is weak homologically defined over Q if c · δt , for some constant c ∈ C, is in
Hm(Xt ,Q).

Note that in the above definition L might be a transcendental leaf. In case, L is an
algebraic leaf, we have also the field of definition of L which a priori has nothing to
do with the above definition. Moreover, for a period vector C, the modular foliation
F (C) might not have any leaf defined over Q. We do not know any example of such
a foliation. The notion of a weak homologically defined leaf over Q, is inspired by
the notion of a weak absolute Hodge cycle introduced in Chapter 7.

6.4 Algebraic groups and modular foliations

Let X/T be a full family of enhanced smooth projective varieties. In this section
we describe the relation between the algebraic group G which acts on T and the
modular foliation F (C) which lives in T.

Proposition 6.3 For an element g of the algebraic group G, the isomorphism T→
T, t 7→ t • g maps F (g−trC) to F (C). In the complex context, this means that it
maps a leaf of F (g−trC) to a leaf of F (C).

Proof. Using Proposition 3.6 we know that the pull-back of AC is gtrAg−trC. We
know also that foliations induced by gtrAg−trC and Ag−trC are the same. Therefore,
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the pull-back of F (C) is F (g−trC). For k= C the leaves of F (C) are described in
Proposition 6.1. Using (3.11) we have∫

δt•g
α =

∫
δt

gtr
α = gtr

∫
δt

α = gtr(g−trC) = C, (6.9)

which implies the desired statement. Note that the action of g ∈ G in X induces an
ismorphism Xt ∼= Xt•g and δt•g is the push-forward of δt by this isomorphism. ut

Let
Stab(G,C) := {g ∈ G | gtrC = C} (6.10)

be the stabilizer of C and let Stab(G,C)0 be the identity component, that is, the
connected component of Stab(G,C) that contains the identity element.

Proposition 6.4 For a point t ∈ T, the set t •Stab(G,C)0 is contained in the leaf of
F (C) through t.

Proof. For k= C, this follows from (6.9). ut

Definition 6.4 A modular foliation F =F (C) is called trivial if the leaves of F in
T are all of the form t •Stab(G,C)0, t ∈ T, and hence, all the leaves are algebraic.

A strategy to prove that a foliation is trivial is by showing that it induces a zero
dimensional foliation restricted to the leaves of F (2). The foliation F (2) will be
introduced in §6.10. For a period vector of Hodge type, we may try to prove that
the differential forms in the matrix A

n
2−1, n

2 C
n
2 restricted to the leaves of F (2) are

linearly independent.
Let us now consider a full enhanced family X/T with an action of a reductive

group as in §3.7. By Proposition 3.9 the entries of the Gauss-Manin connection
matrix A are invariant under the action of G. This implies that the modular foliation
F (C) is invariant under G and the orbits of G are inside the leaves of F (C). In this
case we might modify Definition 6.4 as follows:

Definition 6.5 A modular foliation F = F (C) attached to a full enhanced family
with an action of a reductive group is called trivial if the leaves of F in T are all of
the form

G · t •Stab(G,C)0, t ∈ T.

Note that by our assumption, the reductive group G is irreducible. It might happen
that a modular foliation F is trivial in T\Sing(F ) but not in T and it would be
interesting to construct an explicit example for this. For a period vector of Hodge
type C, trivial modular foliations are related to isolated Hodge cycles that we will
discuss them in §7.4.
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6.5 A character

In our study of modular foliations, it turns out that the algebraic group Stab(G,C)
defined in §6.4 can be replaced with

GC :=
{

g ∈ G | gtrC = λ (g)C, for some λ (g) ∈ k∗
}

(6.11)

which turns out to be more useful. It follows from the definition that GC is a sub-
group of G and

λ : GC→Gm

is a character of GC. Here, Gm = (k∗, ·) is the multiplicative group of k. We will also
use Ga = (k,+) for the additive group of k. The kernel of λ is the algebraic group
defined in (6.10).

Proposition 6.5 The algebraic group GC maps F (C) to itself. Moreover, it maps
the leaf L

λ (g)C̃ to LC̃.

Proof. It follows from the equalities

(Pg)−trC = λ (g)−1P−trC

for g ∈ GC. ut

Definition 6.6 We say that a modular foliation F (C) has a non-trivial character if
λ is non-trivial, that is, its image is not a finite subgroup of Gm.

The universal family of enhanced elliptic curves and the corresponding modular fo-
liation given by Ramanujan vector field has a non-trivial character, see Chapter 9.
However, in the case of product of two elliptic curves, the modular foliation has a
trivial character, see Chapter 10. This simple fact, will affect the way we study the
dynamics of modular foliations. We use Proposition 5.14 with the group action GC

and conclude that, the foliation F (C) is inside another foliation of bigger dimen-
sion.

Definition 6.7 We define F (C,λ ) to be the foliation F̃ in Proposition 5.14 con-
structed from F (C) and the action of GC in T.

Note that if the modular foliation F (C) has trivial character then

F (C,λ ) = F (C).

The property of a modular foliation having a trivial or non-trivial character is re-
flected directly in its dynamics. In fact, this is the main reason behind the definition
of such a property.
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6.6 Space of leaves

In this section we only deal with the notion of a geometric leaf as in Definition 5.13.
Therefore, we discard first the scheme structure of L and then we replace it with one
of its irreducible components. In particular, the local leaves of the modular foliation
F (C) are irreducible components of LC̃ given in (6.7) and this format is obtained
after fixing a basis

δm,i ∈ Hm(Xt ,Z), i = 1,2, . . . ,b, t ∈ (T, t0).

Recall that the discrete group ΓZ in §4.2 acts on the basis δm,i of Hm(X ,Z) as an
operation of basis change. The foliation F (C) may have singularities in T, and if
t0 is not a singularity of F (C) then LC̃ is smooth and hence it is a local leaf in the
sense which is explained at the beginning of this section.

Proposition 6.6 Let L1 ⊂ LC̃1
⊂ (T, t1) and L2 ⊂ LC̃2

⊂ (T, t2) be two local leaves.
If they lie in a global leaf L of F (C) (see Definition 5.14) then there is A ∈ ΓZ such
that AC̃1 = C̃2.

Proof. If L1 = L2 then P−trC evaluated on this set gives us both C̃1 and C̃2 and
hence these are equal. Otherwise, we take a path from t1 to t2 in L and consider
the analytic continuation of P−trC along this path. Note that both LC̃1

and LC̃2
are

defined fixing the same basis δm,i. ut

There is no any reason why the converse of Proposition 6.6 must be true, that is,
two analytic sets LC̃ and LAC̃ ⊂ (T, t0) for some A ∈ ΓZ, might not have any com-
mon connected component. Moreover, we might have two local leaves in different
open subsets of T and with the same C̃ such that they do not lie in a global leaf of
F (C). Even in the local context LC̃ might have many irreducible components with
different codimensions. For elliptic curves (see §9.10) we will actually show that the
converse of Proposition 6.6 is true, however, this is a very particular case. In gen-
eral, we expect that the set ∪A∈ΓZLAC̃ consists of finitely many leaves of F (C). This
is actually the case when the generalized period map is a biholomorphism (global
Torelli in our context). We will show this property for elliptic curves, K3 surfaces,
cubic fourfolds and abelian varieties, see §8.12.

Definition 6.8 Let us define

L (C) :=
{

C̃ ∈ Cb | LC̃ 6= /0, for some t0 ∈ T and a choice of basis δm,i

}
.

(6.12)
This is invariant under ΓZ-action from the left. The quotient ΓZ\L (C) is called the
space of leaves of F (C).

The set L (C) is the image of the multi-valued function P−trC from T to Cb. This
multivalued function may be a disjoint union of infinitely many multivalued func-
tions. This is due to the fact that the monodromy group inside ΓZ may have infinite
index. In L (C) we consider the topology induced by the usual topology of Cb. For
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some examples such as elliptic curves, the set L (C) is an open set in Cb. However,
the space of leaves may not have any kind of good topology. For instance, we cannot
talk about a global leaf being near to another one, because locally one leaf may be
near to another one, however, their analytic continuation may result in dense subsets
of the ambient space. We use Theorem 6.6 and find that for the modular foliation
F (C) with a non-trivial character λ , the space of leaves of the foliation F (C,λ ) is
given by

ΓZ\L (C)/Gm.

The advantage of F (C,λ ) is that L (C)/Gm ⊂ Pb−1 and Pb−1 is compact. For
the following proposition, we need to mention that we are working with the m-th
(co)homology, and so, we write the (co)homology subscripts if they are different
from m. Recall the matrices Φm and Ψm in (3.1) and (4.4).

Proposition 6.7 Let F (C) be a modular foliation. We have

L (C)⊂
{

C̃ ∈ Cb | C̃tr
Ψ

tr
2n−mΨ̃

−1
2n−mΨ2n−mC̃ = Ctr

Φ
−1
m C

}
. (6.13)

In particular, if the number CtrΦ−1
m C is not zero then the modular foliation F (C)

has a trivial character and L (C) is not invariant under Gm-action on Cb given by
(a, C̃) 7→ aC̃ for a ∈Gm and C̃ ∈ Cb.

Proof. The affirmation (6.13) follows from PtrC̃ = C and Proposition 4.1. If F (C)
has a non-trivial character then by Proposition 6.5, L (C) is closed under the Gm
action on Cb. This is in contradiction with (6.13) and CtrΦ−1

m C 6= 0. ut

Remark 6.2 For δ as in the beginning of §6.3, the equality (6.13) is equivalent to

〈δt ,δt〉= Ctr
Φ
−1
m C,

where 〈·, ·〉 is defined in (4.5).

6.7 Moduli of modular foliations

For a constant a ∈ k, a 6= 0 the foliation induced by F (C) and F (aC) are the same.
We use Proposition 6.3 and we know that the foliations F (gtrC) for all g ∈ G are
isomorphic. Therefore,

Definition 6.9 We define
MFm := G\Pb−1,

to be the moduli of modular foliations in m-th cohomologies. Here, the action is
defined by

(g,C) 7→ gtrC, g ∈ G, C ∈ Pb−1.

For the study of Hodge cycles we also need the vector
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C =



0
...
0

C
m
2

...
Cm


∈ kbm . (6.14)

or

C =



0
...
0

C
m
2

0
...
0


∈ kbm (6.15)

We call it a period vector of Hodge type. The following property in many examples
turns out to be true.

Property 6.1 For any C of the form (6.14) there is g ∈ G such that gtrC is of the
form (6.15), that is only the middle Hodge block might be non-zero.

It seems that Property 6.1 has some relation with Property 3.1 and it might be verfied

using Proposition 3.12. We identify Ah
m
2 , m

2
k ⊂ Abm

k by the space of vectors (6.15).

Let Stab(G,Ah
m
2 , m

2
k ) be the stabilizer group of the set Ah

m
2 , m

2
k .

Definition 6.10 We call the quotient

Stab(G,Ah
m
2 , m

2
k )\Ph

m
2 , m

2 −1
k

the moduli of modular foliations of Hodge type.

This moduli space in many interesting cases such as hypersurfaces turns out to have
just one point. For an example see Chapter 10.

For a modular foliation F (C) attached to an enhanced family X/T and a constant
period vector C, we expect that an F (C)-invariant algebraic subset V of T has a
geometric meaning in the sense that the fibers Xt , t ∈V enjoy a particular algebraic
structure, such as the existence of an algebraic cycle, such that those t outside V do
not enjoy such a structure. At this point it might be too early to formulate a precise
conjectural statement. In order to develop this idea further we have worked out two
examples, the case of elliptic curves and the case of product of two elliptic curves,
see Chapter 9 and Chapter 10. In the first case we prove that any algebraic invariant
set for the modular foliation given by the Ramanujan vector field is necessarily
contained in the discriminant locus. In the second case, we construct a modular
foliation and we prove that the only algebraic leaves outside the discriminant locus,
are those derived from modular curves.
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6.8 Modular foliations and the Lefschetz decomposition

Let C be as in §6.3. Since αm is also compatible with the Lefschetz decomposition
of Hm

dR(Xt), we may rearrange the entries of αm and write

αm =

[
α

0
m,α

1
m−2, · · · ,α

[m
2 ]

m−2[m
2 ]

]tr

, (6.16)

where α
q
m−2q is a basis of Hm−2q(Xt)0 or its image in Hm(Xt) under the cup product

with θ q; being clear in the text which we mean. For instance, in the above equality
we have used the second interpretation. In a similar way we write

C =


C0

m
C1

m−2
...

C
[m

2 ]
m−2[m

2 ]

=


C0

m
0
...
0

+


0

C1
m−2
...
0

+ · · ·+


0
0
...

C
[m

2 ]
m−2[m

2 ]


and call it the decomposition of C into primitive pieces. By abuse of notation we
also write

C = C0
m +C1

m−2 + · · ·+C
[m

2 ]
m−2[m

2 ]
.

The vectors Cq
m−2q are called primitive (constant) period vectors.

Proposition 6.8 We have

F (C) :=
[m

2 ]⋂
q=0

F (Cq
m−2q).

Proof. In the algebraic context the proof is as follows. The Gauss-Manin connection
respects the Lefschetz decomposition, and so, the Gauss-Manin connection matrix
in the basis (6.16), is a block diagonal A = diag(Am,Am−2, · · ·). This implies that
the set of entries of A ·C is a disjoint union of Am−2qCm−2q, q = 0,1, . . . , [m

2 ]. By
definition this is exactly the desired statement.

In the geometric context the proof is as follows. Let us take a contiunous family
of cycles δt ∈ Hm(Xt ,C) and write its Lefschetz decomposition

δt =
[m

2 ]

∑
q=0

δt,m−2q,

where δt,m−2q ∈ Hm−2q(Xt ,C) is a continuous family of primitive cycles. We have
the following identity of local leaves:
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L =

[m
2 ]⋂

q=0

Lδt,m−2q (6.17)

which follows from ∫
δt,q

αm−2p = 0, if p 6= q.

ut

6.9 Some other foliations

The integrability of the Gauss-Manin connection gives us other interesting foliations
in T. The equality dA = A∧A breaks into

dAi, j = Ai,0∧A0, j +Ai,1∧A1, j + · · ·+Ai∧Am, j

and so

Definition 6.11 For a = 1,2, . . . the entries of the following matrices form an inte-
grable OT-module

Ai, j, j− i < a−1.

We denote by F(a) the corresponding holomorphic foliation in T. For a= 0,−1,−2, . . .
we denote by F(a) the foliation induced by the entries of

Ai, j, j− i > a,

For any vector field v2 in T tangent to F(2) we have

Av2 =


0 ∗ 0 0 0 0
0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗
0 0 0 0 0 0

 (6.18)

where Av2 is the contraction of the entries of A along the vector field v2, and for any
vector field v1 in T tangent to F(1) we have
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Av1 =


∗ ∗ 0 0 0 0
0 ∗ ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗

 (6.19)

(samples for m = 5). Any vector field va tangent to the leaves of F(a), a =
0,−1,−2,−3,−4 satisfies

Av0 =


∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

 , Av−1 =


0 0 0 0 0
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

 , Av−2 =


0 0 0 0 0
0 0 0 0 0
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0

 ,

Av−3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
∗ 0 0 0 0
∗ ∗ 0 0 0

 , Av−4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
∗ 0 0 0 0

 .

(samples for m = 4). Note that the foliation F(0) is given by the entries of

Ai,i+1, i = 0,1,2, . . . ,m−1. (6.20)

Proposition 6.9 We have

F(a) = F(b), a,b≥ 3

and along the leaves of this foliation the period matrix P is constant.

Proof. By Griffiths transversality we have Ai, j = 0, j− i ≥ 2 and so for a ≥ 3 the
foliation F (a) is induced by all the entries of A. ut

So far, we worked with a fixed m and so we removed the subscript m from our
notations. For the following definition we need m to be back, and so we write Am =
A, Fm(a) = F (a) etc. Note that for m = 0,2n, Am is the 1× 1 zero matrix and
hence the corresponding objects are trivial.

Definition 6.12 We define

F (a) = ∩2n
m=0Fm(a), a ∈ Z. (6.21)

Since in the generalized period domain the Griffiths transversality is not necessarily
integrable, the foliations F (a) in that context are non-trivial even for a ≥ 3, see
Chapter 8. Let F (G) be the holomorphic foliation attached to the action of G on T.
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Proposition 6.10 We have
F (G)⊂F (0)

In geometric terms, this means that the leaves of the foliation F (G) are contained in
the leaves of F(0), that is, for any vector field v tangent to F (G), v is also tangent
to all F(0).

We will prove this proposition later in Propostion 6.21. From Proposition 3.6, the
fact that gtr is block lower triangular and Griffiths transversality data in (3.20), it
follows that the OT-module generated by (6.20) is invariant under the action of G.
However, this does not imply Proposition 6.10. We may suspect that the leaves of
F (G) are given by the intersection of the leaves of F(0)’s, that is,

Conjecture 6.1 We have
F (G) = F (0).

The foliation F (3) has to do with repeated elements in X/T. Let us consider a leaf
L of this foliation. The Gauss-Manin connection matrix Am restricted to L is identi-
cally zero for all m, and so all the period matrices Pm restricted to L are constants,
see Proposition 6.9. In particular, for any two points t1, t2 ∈ T the varieties Xt1 and
Xt2 have the same Hodge structures. We get the following proposition:

Proposition 6.11 Let X/T be an enhanced family and assume that the foliation
F (3) has a non-zero dimensional leaf L. Then all (Xt ,αt), t ∈ L have the same
period matrix, and consequentely, their Hodge structures are isomorphic.

It might be of interest to see whether (Xt ,αt), t ∈ L are all isomorphic to each other.
If not, this would give a counterexample to the local Torelli theorem.

Property 6.2 Let X/T be a universal enhanced family. Then all the leaves of F (3)
are zero dimensionals, that is, they are points.

Proposition 6.12 Let X/T be an enhanced family with the action of a reductive
group from the left described in §3.7. We have

F (G)⊂F (3)

Proof. This follows from the fact that the Gauss-Manin connection matrix A is in-
variant under the action of G, see Proposition 3.6. ut

6.10 The foliation F (2)

The foliation F (2) plays an important role throught the present text. In the case of
elliptic curves it turns out to be given by the Ramanujan differential equation. Just
in this case we have verified the following property:

Property 6.3 For a universal family of enhanced projective varieties X/T (if it ex-
ists) the foliation F (2) has no algebraic leaf.
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We give a plausible argument for the above property using Deligne’s global invarian
cycle theorem. If F (2) has an algebraic leaf then we have a proper smooth family
of projective varieties Y → V with global sections αm,i, ı = 1,2, . . ., of Hm

dR(Y/V )
which form a basis and further the Gauss-Manin connection written in this basis
has the format (6.18), that is, if we write αm := [α0,α1, · · · ,αm], where α i’s are the
Hodge blocks of αm, then

∇(α i) = Ai,i+1
α

i+1, i = 0,1, · · · ,m

for hm−i,i× hm−i−1,i+1 matrices Ai,i+1 with entries in ΩV (V ). In particular, for i =
m we have ∇(α i) = 0 and so all the entries of αm are flat sections. Let Ȳ → V̄
be any smooth projective compactification of Y → V . Deligne’s global invariant
cycle theorem (see [Del71a], Theorem 4.1.1, ”théorèm de la partie fixe”, [Del68],
[Voi07, Voi13] and [Mov19] Chapter 6) implies that the restriction map

fQ : Hm(Ȳ ,Q)→ Hm(Y0,Q)

is a morphism of Hodge structures and its image is equal to the set of monodromy
invariant cycles, therefore, the entries of αm lies in its image. This implies that H0,m

and hence Hm,0 is in the image of fC. It seems to me that fQ is surjective and hence
all the elements of Hm(Y0,Q) are invariant under monodromy. We conclude that all
the Hodge structures Hm(Yb,Q), b ∈ V are isomorphic, and hence, if we assume
the local Torelli for X/T we get a contradiction.

It must be remarked that a natural place to define the foliation F (2) is the moduli
of Hodge decompositions defined in §3.12. In this space a vector field tangent to
F (2) has the property that when it is composed with the Gauss-Manin connection,
it sends the H p,q to H p−1,q+1. For the description of F (2) in the case of elliptic
curves see §9.7.

Let (L,0)∼= (CN ,0) be a local leaf of F (2) and let F (C) be a modular foliation
with C a period vector of Hodge type as in (6.15). Let also

f :=
(∫

δ

α−C

)∣∣∣∣∣
L

=


f 0

f 1

...
f m

 ,

which is introduced in §6.3. We assume that f (0) = 0 and so the loci of constant
periods crosses 0 ∈ L. The differential equation (6.6) restricted to L breaks into
pieces:
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d f 0 = A01 f 1

d f 1 = A12 f 2

· · ·
d f

m
2 −1 = A

m
2 −1,m

2 f
m
2 +A

m
2 −1,m

2 C
m
2 .

· · ·
d f m−1 = Am−1,m f m

d f m = 0

(6.22)

Note that the Hodge blocks Ai,i+1 of the Gauss-Manin connection matrix in the
above equalities must be restricted to L.

Proposition 6.13 We have the equality

A
m
2 −1,m

2 C
m
2

∣∣∣
L
= d f

m
2 −1 (6.23)

and this gives us the foliation F (C) restricted to L.

Proof. The only non-zero block for A ·C is the left hand side of (6.23). This im-
plies the last statement. The proof of the equality (6.23) is as follows. The loci of
constant periods is given by f 0 = 0, f 1 = 0, · · · , f m = 0. This and the last equality
in (6.22) imply that f m is identically zero. Using other equations we conclude that
f m, f m−1, · · · , f

m
2 are all identically zero. Therefore, the last m

2 equalities in (6.22)
are trivial equalities 0 = 0. The m

2 -th equation becomes (6.23). ut

Proposition 6.14 The Zariski tangent space of L is the zero set of the linear part of
f

m
2 −1.

Proof. The first m
2 equalities

d f i = Ai,i+1 f i+1, i = 0,1, . . . ,
m
2
−1

imply that the linear part of f i, i = 0,1, . . . , m
2 −1 at 0 is zero. ut

The derivatives of f i’s with respect to z j’s are in the ideal generated by f i+1, how-
ever, this does not imply the entries of f i are in the ideal generated by the entries of
f i+1 (this has inspired us to write down Definition 5.7). We can conclude this if, for
instance, there is a holomorphic vector field vi in L such that

d f i(vi) = Bi f i, Bi ∈Mat(hn−i,i×hn−i,i,OL,0), det(Bi) 6= 0, at 0.

and hence, L is given by f
m
2 −1 = 0. This seems to be related to a class of singu-

larities called generalized quasi-homogeneous singularities. Let g be a holomorphic
function in (CN ,0). The germ of the singularity {g = 0} is called a generalized
quasi-homogeneous singularity if there is a holomorphic vector field in (CN ,0) such
that dg(v) = g, in other words, g is in its Jacobian ideal. For instance, for a weighted
homogeneous polynomial g, the singularty {g = 0} has such a property.
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6.11 Modular vector fields

Explicit computations of Gauss-Manin connection produce huge polynomial ex-
pressions with big coefficients and this makes difficult to study modular foliations
using explicit expressions, see for instance [Mov11b, Mov19] and the author’s web-
page for samples of such computations. However, there are vector fields in the pa-
rameter space T of enhanced families which helps us to understand the dynamics
and arithmetic of modular foliations and they have rather simple expressions. Ex-
amples of such vector fields are due to Darboux, Halphen and Ramanujan. We call
them modular vector fields. The main reason for this naming is that they live in the
moduli of enhanced projective varieties, and in many interesting cases such as ellip-
tic curves, abelian and Calabi-Yau varieties, the pull-back of such vector fields by
the special map transforms them into derivations with respect to parameters of the
underlying moduli space.

Let X/T be an enhanced family and v ∈ΘT. We denote by Am,v the composition
of the entries of Am with v. The entries of Am,v are regular functions in T.

Proposition 6.15 A vector field v in T is tangent to the modular foliation Fm(C) if

Am,v ·C = 0

Proof. This follows from the fact that a modular foliation is given by the entries of
Am ·C. ut

The Gauss-Manin connection matrix Am is usually huge, however, we can describe
many vector fields v in T such that Am,v is simple and in many cases it is a constant
matrix.

Definition 6.13 We define Mm(X/T) to be the set of vector fields v ∈ΘT such that
the Gauss-Manin connection matrix of X/T on the m-th cohomology is of the form

Ym,v := Am,v =


0 Y01

m,v 0 · · · 0
0 0 Y12

m,v · · · 0
...

...
...

. . .
...

0 0 0 · · · Ym−1,m
m,v

0 0 0 · · · 0

 , (6.24)

where Yi−1,i
m,v is a hm−i+1,i−1× hm−i,i matrix with entries in OT. These are called

Yukawa couplings. This is equivalent to say that

∇vα
i
m = Yi,i+1

m,v α
i+1
m , i = 0,1,2, . . . ,m. (6.25)

An element of Mm(X/T) is called a modular vector field.

The OT-module Mm(X/T) is finitely generated and the maps

Yi−1,i
m,· : Mm(X/T)→Mat(hm−i+1,i−1×hm−i,i,OT) (6.26)
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are OT-linear. Modular vector fields are algebraic incarnation of derivations with
respect to quotients of periods. The main motivation for the matrix format (6.24)
in the definition of a modular vector field comes from various sources. The case of
elliptic curves and corresponding Ramanujan vector field was observed in [Mov08b,
Mov12b]. In fact a similar observation for the Halphen differential equation is still
true, see [Mov12a]. In the case of mirror quintic [Mov17b], one gets for the first
time a matrix (6.24) with non-constant entries. Such a matrix format appears in
topological string theory and in particular in the context of special geometry, see for
instance [CdlOGP91b, GMP95, CDF+93, Ali13b].

Proposition 6.16 The matrices Yi−1,i
m,v satisfy the equalities

Yi−1,i
m,v Φ

i,m−i
m +Φ

i−1,m−i+1
m

(
Ym−i,m+1−i

m,v

)tr
= 0, i = 1,2, . . . ,m. (6.27)

Proof. The proof follows from the equality (3.22) for the Gauss-Manin connection
matrix. Recall that Φ i,m−i is a hm−i,i×hi,m−i matrix. ut

Note that (Φ i,m−i
m )tr = (−1)mΦ

m−i,i
m and so (6.27) can be written as

Yi−1,i
m,v Φ

i,m−i
m = (−1)m−1 (Ym−i,m+1−i

m,v Φ
m−i+1,i−1
m

)tr
. (6.28)

In particular, for an odd number m and i = m+1
2 , the matrix Φ

m+1
2 ,m−1

2
m is antisym-

metric, and

Y
m−1

2 ,m+1
2

m,v Φ
m+1

2 ,m−1
2

m is symmetric. (6.29)

Proposition 6.17 For v1,v2 ∈ΘT we have

Am,[v1,v2] = [Am,v2 ,Am,v1 ]+v1(Am,v2)−v2(Am,v1). (6.30)

Proof. For two vector fields v1,v2 ∈ΘT with the Gauss-Manin connection matrices
A1 and A2 we have

∇[v1,v2]αm = ∇v1 ◦∇v2αm−∇v2 ◦∇v1αm

= ∇v1 A2αm−∇v2 A1αm

= ([A2,A1]+v1(A2)−v2(A1))αm.

ut

Proposition 6.18 The OT-module Mm(X/T) is closed under the Lie bracket and
for v1,v2 ∈Mm(X/T) we have

Yi−1,i
m,[v1,v2]

= v1(Y
i−1,i
m,v2

)−v2(Y
i−1,i
m,v1

) (6.31)

Yi−1,i
m,v1

Yi,i+1
m,v2

= Yi−1,i
m,v2

Yi,i+1
m,v1

. (6.32)

Proof. This follows from (6.30). ut
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When two modular vector fields v1,v2 ∈Mm(X/T) commutes, that is, [v1,v2] = 0
then we have

v1(Y
i−1,i
m,v2

) = v2(Y
i−1,i
m,v1

). (6.33)

One may think that there is a matrix Yi−1,i
m independent of the vector field v1 and v2

such that
Yi−1,i

m,v j
= v j(Y

i−1,i
m ), j = 1,2.

This can be done in the context of enhanced varieties over complex numbers, where
Yi−1,i

m have holomorphic entries. This discussion is inspired from the case of Calabi-
Yau threefolds in [AMSY16] and more details will be given in Chapter 13 and Chap-
ter 8. Let us define

M(X/T) := ∩2n−1
m=1 Mm(X/T). (6.34)

Recall the definition of foliations F (a) in §6.9.

Proposition 6.19 We have

Fm(2) = F (Mm(X/T)),

and hence
F (2) = F (M(X/T)).

that is, the foliation F (2) is given by modular vector fields.

Proof. This follows from the definition of a modular vector field and F (2). ut

The OT-module M(X/T) is finitely generated and we would like to find a particular
basis of this OT-module. Recall that M = T/G is the classical moduli space.

Property 6.4 Let X/T be a universal enhanced family. The OT-module M(X/T) is
free and it has a basis

vi, i = 0,1,2, . . . ,dim(T/G)

with [vi,v j] = 0 for all i, j.

We will verify this property in the case of principally polarized abelian varieties, K3
surfaces and many other particular cases. If all the Hodge numbers of the middle
cohomology are equal to one, then the OT-module is of rank at most one and this
property is valid, see [Nik15, MN18]. Modular vector fields are not enough in order
to generate the OT-module ΘT. In the next section we are going to discuss the
missing vector fields.

Recall the fundamental vector field map in Definition 2.21 and the k-vector space
i(Lie(G)) ⊂ΘT obtained by the action of G on T and defined in (5.14). For many
examples, including elliptic curves and their products, principally polarized abelian
varieties, the following property is valid.

Property 6.5 Let X/T be a universal enhanced family. We have

ΘT =M(X/T) ⊕ i(Lie(G))⊗k OT
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that is, any vector field in T is a OT-linear combination of modular vector fields
and vector fields coming from the action of G.

The fact that in the above equality we have a direct sum follows from the format of
the Gauss-Manin connection composed with the elements of M(X/T) and i(Lie(G))
and our hypothesis on the enhanced family X/T in Property 6.2. However, it is not
clear why any vector field in T must be an OT-linear combination of the elements
in M(X/T) and i(Lie(G)).

Let us consider the action of a reductive group G for the enhanced family X/T as
in §3.7. By proposition 3.9 we know that i(Lie(G)) ⊂M(X/T) and Yi−1,i

m,vg = 0 for
all g ∈ Lie(G), where i is the fundamental vector field map. Moreover, the action of
G on ΘT, (g,v) 7→ g∗v, induces an action on M(X/T).

Proposition 6.20 For a modular vector field v ∈M(X/T) which is invariant under
the action of G, that is, g∗v = v for all g ∈G, we have

[v,vg] = 0, ∀g ∈ Lie(G), (6.35)

and the entries of Yi−1,i
m,v are constant along the orbits of G in T.

Proof. The proof of the first statement is as follows. Let A : T→ T, A(t) = g·t.
The equality g∗v = v implies that for any differential 1-form ω ∈ Ω 1

T we have
ω(v)(g·t) =A∗(ω(v)) = (A∗ω)(v). For ω = d f , where f ∈OT is a regular function,
we get

d f (v)(g·t) = d( f (g·t))(v),

where both d’s are derivations in T. Now, we take the derivation of this equality
with respect to g, evaluate it over the vector field g ∈ΘG and use Proposition 2.13
to get the result. By (6.31) we get vg(Y

i−1,i
m,v ) = 0 for all g ∈ Lie(G) which implies

the second statement. ut

Proposition 6.20 tells us that the entries of Yi−1,i
m,v give us functions on the quotient

space G\T. These functions might be used in order to construct moduli spaces. For
further discussion in this direction see Chapter 13.

6.12 Constant vector fields

Based on the study of many particular examples, we find another class of important
vector fields in the parameter space T of a full enhanced family X→ T. In the
following the elements of k are called constants.

Definition 6.14 We define

C (X/T) := {v ∈ΘT | Am,v is constant for all m = 1,2, . . . ,2n−1}.

and we call an element v ∈ΘT a constant vector field in T (relative to the Gauss-
Manin connection of the enhanced family X/T).
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Proposition 6.21 Let X/T be a full family of enhanced varieties. The vector fields
vg, g ∈ Lie(G) defined in (2.24) are constant and so i(Lie(G)) ⊂ C (X/T), where
i(Lie(G)) is defined in (5.14). Further, the m-th Gauss-Manin connection matrix
composed with vg satisfies:

Am,vg = gtr
m,

and hence it is block lower triangular matrix.

Proof. We have a proof of the above proposition in the complex context and using
periods. It follows from (4.16) and (4.17). We take the differential of (4.17) with
respect to g, evaluate it at g ∈ Lie(G), and use Proposition 2.13 in the holomorphic
context and get the equality:

dPm(t)(vg) = Pm ·gm.

Now we substitute the above equality in (4.16) and get the desired result. ut

The set C (X/T) of constant vector fields is a k-vector space and not an OT-module.

Proposition 6.22 The constant vector fields C (X/T) is closed under the Lie bracket.
The leaves of the corresponding foliation contains the orbits of the action of G on
T.

Proof. This is a consequence of Proposition 6.17. ut

Definition 6.15 We call F (C (X/T)) the constant foliation.

For elliptic curves, abelian varieties and in general for varieties such that their mod-
uli in a natural way is isomorphic to a quotient of a Hermitian symmetric domain by
a discrete group, the space of vector fields in T has a basis of constant vector fields
and hence, the constant foliation has only one leaf which is the whole space. There-
fore, a constant foliation measures how far classical moduli of projective varieties
are from the mentioned property. For further discussion see §6.13.

6.13 Constant Gauss-Manin connection

The following class of varieties provide many interesting modular vector fields and
foliations.

Definition 6.16 Let X/T be a full family of enhanced varieties. We say that X/T
has a constant Gauss-Manin connection if the OT-module ΘT has a basis vi, i =
0,1,2, . . . ,n with constant vector fields. In other words, we have

ΘT = C (X/T)⊗k OT.
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In Chapter 11 we will prove that the full family of principally polarized Abelian
varieties has a constant Gauss-Manin connection. The same statement for the family
of quartics in P3 (K3 surfaces) will be proved in Chapter 13. Particular examples of
elliptic curves and product of elliptic curves are the origin of the above definition.
Motivated by all these examples we further claim:

Conjecture 6.2 If the moduli of enhanced varieties of a fixed topological type X
has a constant Gauss-Manin connection then the classical moduli space M of X is
biholomorphic in a natural way to some ΓZ\D, where D is a Hermitian symmetric
domain and ΓZ is a discrete group acting on D.

Of course, we have to define rigorously what means “in a natural way”. The con-
verse of this conjecture seems to be wrong and the case of Calabi-Yau threefolds
is a candidate for this claim, see §13.10. For Abelian variaties and K3 surfaces D
is the Griffith period domain parametrizing polarized Hodge structures in a fixed
Hm(X ,Z)0, see for instance [Gri70]. Note that in Griffiths’ formulation we fix a
(primitive cohomology), whereas in our formulation in Chapter 8 we work with all
cohomologies H∗(X ,Z), and so our version of the Griffiths period domain is finer.
One may expect that D in Conjecture 6.2 is always the Griffiths period domain,
however, this does not seem to be the case. The reader is referred to [Hel01, Milb]
for preliminaries on Hermitian symmetric domains.

6.14 Constructing modular vector fields

Recall the construction of the full enhanced family X/T in §3.6 and the notations
used there. We have the OT-module M(X/T) and we will also consider it as an
OV -module. For this we take the pull-back of functions in V under T→V and then
we perform the usual multiplication of functions and vector fields in T.

Theorem 6.23 There is an isomorphism

f : ΘV →M(X/T) (6.36)

of OV -modules such that the following holds.

1. Under the canonical map T→V f (v) in T is mapped to v in V .
2. For v1,v2 ∈ΘV we have [ f (v1), f (v2)] = f ([v1,v2]).
3. The OT-module M(X/T) is free of rank dim(V ).

Proof. The main idea of the proof is taken from [MN18, Mov17b]. For simplicity,
we will drop the sub-index m (cohomology grading) and the upper index k (chart
index) from our notations. We first define M(X̃/T̃) in a similar way as we did it for
M(X/T) in Definition 6.13, and prove that this OT̃-module is free. We are looking
for vector fields v ∈M(X̃/T̃). Since the Gauss-Manin connection matrix Ã in a
local chart is of the form in Proposition 3.8, we conclude that
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Ṡ = Yv ·S−S ·Bv, (6.37)

where dot over a quantity means its derivation along v. In Hodge block notation and
for m = 4 this is of the format:


Ṡ00 0 0 0 0
Ṡ10 Ṡ11 0 0 0
Ṡ20 Ṡ21 Ṡ22 0 0
Ṡ30 Ṡ31 Ṡ32 Ṡ33 0
Ṡ40 Ṡ41 Ṡ42 Ṡ43 Ṡ44

=


0 Y01

v 0 0 0
0 0 Y12

v 0 0
0 0 0 Y23

v 0
0 0 0 0 Y34

v
0 0 0 0 0




S00 0 0 0 0
S10 S11 0 0 0
S20 S21 S22 0 0
S30 S31 S32 S33 0
S40 S41 S42 S43 S44

−


S00 0 0 0 0
S10 S11 0 0 0
S20 S21 S22 0 0
S30 S31 S32 S33 0
S40 S41 S42 S43 S44




B00

v B01
v 0 0 0

B10
v B11

v B12
v 0 0

B20
v B21

v B22
v B23

v 0
B30

v B31
v B32

v B33
v B34

v
B40

v B41
v B42

v B43
v B44

v



The equalities in (6.37) for Hodge blocks Mi j, i ≤ j can be regarded as the defi-
nition of the vector field v for the variable Si j which is the (i, j)-th entry of S. We
define vi j to be the quantity in the (i, j)-th entry of the right hand side of (6.37), and
so, the (i, j)-entry of this equation is Ṡi j = vi j. The equalities in (6.37) for Hodge
blocks Mi j, j ≥ i+ 2 are just 0 = 0. For Hodge blocks Mi,i+1 we get the following
equalities:

0 = Yi,i+1
v Si+1,i+1−Si,iBi,i+1

v ,

or equivalently
Yi,i+1

v = Si,iBi,i+1
v

(
Si+1,i+1)−1

. (6.38)

This means that we can define v for variables in V an arbitrary quantity and (6.38)
can be regarded as the definition of Yv. From now on we discard the usage of v as
a vector field in T and use it as a fixed vector field v in V . We substitutes Yi,i+1

v ’s in
vi j in order to get expressions of vi j in terms of Si j and regular functions in V . The
conclusion is that M(X̃/T̃) in a local chart is generated by

f (v) := v+ v̌, where v̌ = ∑
i, j

vi j
∂

∂Si j
, (6.39)

and Si j runs through all (i, j) entries of S with i ≥ j. Note that v̌ depends on v. If
we take a basis vk, k = 1,2,3, . . . of sections of ΘV in a local chart (if necessary, we
take such a local chart smaller) then we have a basis f (vk) of M(X̃/T̃).

Now, we prove that M(X/T) itself is free of rank dim(V ). Recall the func-
tion f : T̃→ As

k defined in (3.14) and the fact that T is a fiber of f . It is enough
to prove that any v ∈ M(X̃/T̃) is tangent to the fibers of f . The morphism f
is made of many pieces. It is more instructive to first consider the pieces as in
f = (g1,g2, . . . ,g2n−1, · · ·), where gm = [〈αi,α j〉] and 〈·, ·〉 is defined in (2.13).

We drop the sub-index of gm and write g = gm. Let Ω := [〈ωi,ω j〉] and hence
f (t) = SΩStr. Below, the dot over a quantity means derivation along v.

.︷ ︸︸ ︷
[〈αi,α j〉] =

.︷ ︸︸ ︷
(SΩStr)

= ṠΩStr +SΩ̇Str +SΩ Ṡtr

= (YvS−SB)ΩStr +S(BΩ +ΩBtr)Str +SΩ(StrYtr
v −BtrStr)

= YvΦ +ΦYtr
v

?
= 0.
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The only non-trivial equality is the last one. It is equivalent to

Yi,i+1
v Φ

i+1,m−i−1 +Φ
i,m−i(Ym−i−1,m−i

v )tr = 0, (6.40)

which means that we have to prove Proposition 6.16 for v. In order to prove this
equality we write the equality SΩStr = Φ in the format SΩ = ΦS−tr and we get

Si,i
Ω

i,m−i = Φ
i,m−i(Sm−i,m−i)−tr, (6.41)

or equivalentely

Sm−i,m−i = (Φ i,m−i)tr(Si,i)−tr(Ω i,m−i)−tr. (6.42)

We substitute Yi,i+1
v ’s defined in (6.38) in the left hand side of (6.40) and then sub-

stitute Sm−i,m−i’s from (6.42). Now the equality (6.40) follows from

0 = Bi,i+1
Ω

i+1,m−i−1 +Ω
i,m−i(Bm−i−1,m−i)tr,

which is the equality corresponding to the Hodge block Mi,m−i−1 in dΩ = B ·Ω +
Ω ·Btr.

In general, we have to do the following computation. We write the lower index
m of cohomologies, however, we drop the upper index k of charts. Let Ω := [ωm1 ∪
ωtr

m2
] which has entries in Hm1+m2

dR (Y/V ).

.︷ ︸︸ ︷
[αm1 ∪α

tr
m2
] =

.︷ ︸︸ ︷
(Sm1 [ωm1 ∪ω

tr
m2
]Str

m2
)

= Ṡm1ΩStr
m2

+Sm1Ω̇Str
m2

+Sm1Ω Ṡtr
m2

= (Ym1,vSm1 −Sm1Bm1)ΩStr
m2

+Sm1(Bm1Ω +ΩBtr
m2
)Str

m2

+Sm1Ω(Str
m2

Ytr
m2,v
−Btr

m2
Str

m2
)

= Ym1,vSm1ΩStr
m2

+Sm1ΩStr
m2

Ytr
m2,v

= Ym1,v[αm1 ∪α
tr
m2
]+ [αm1 ∪α

tr
m2
]Ytr

m2,v

=

bm1+m2

∑
i=1

(
Ym1,vΦm1,m2,i +Φm1,m2,iY

tr
m2,v

)
αm1+m2,i = 0

and in a similar way we argue the last equality. ut

As an immediate corollary of Theorem 6.23 we have the following:

Proposition 6.24 The foliation F (2) is of dimension dim(V ) and has no singular-
ities in T.

Proof. This is because F (2) is given by M(X/T). ut
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6.15 Modular vector fields and IVHS

Let us consider the infinitesimal variation of Hodge structures in §2.16 for an
enhanced family X/T. The advantage with enhanced families is that all k-vector
spaces in IVHS comes with a basis, except for TtT, for which we also take a ba-
sis ∂

∂ ti
, i = 1,2, . . . ,r. Note that these are not yet vector fields in T and we do

not take a coordinate system (t1, t2, . . . , tr) around the point t ∈ T. We denote by
dt1,dt2, · · · ,dtr ∈ (Ω 1

T)t := (TtT)
∨ the dual elements, that is, dti( ∂

∂ t j
) = 1 if i = j

and = 0 otherwise. Recall the Gauss-Manin connection matrix A = Am of X/T and
its Hodge block format A = [Ai j].

Proposition 6.25 If we write the Gauss-Manin connection matrix at the point t ∈T

Ai,i−1
t =

r̃

∑
j=1

Bi,i−1
j dt j (6.43)

then Bi,i−1
j is the hm−i,i×hm−i−1,i+1 matrix of δi(

∂

∂ t j
) written in the standard basis.

Proof. This follows from the construction of IVHS from the Gauss-Manin connec-
tion. ut

As a corollary we have

Proposition 6.26 Let v ∈M(X/T) be a modular vector field. The matrices Yi,i+1
m,v

are the data of infinitesimal variation of Hodge structures δm,k in (2.32) written in
the standard basis.

For the first examples of modular vector fields, we have a uniqueness property which
is due to further constrains on regular functions in the entries of Yi,i+1

v ’s. This has
also to do with choosing a natural basis of the OT-module M(X/T). We were not
able to formulate a general procedure leading to such a basis. Just in the case of
Abelian and Calabi-Yau varieties we were able to find natural generalizations of
Ramanujan and Darboux-Halphen vector fields.





Chapter 7
Hodge cycles and loci

One may ask whether imposing a certain Hodge class upon a generic member of an
algebraic family of polarized algebraic varieties amounts to an algebraic condition
upon the parameters, A. Weil in [Wei77].

7.1 Introduction

In this chapter we are going to relate modular foliations to Hodge loci and weak
absolute Hodge cycles. We introduce a holomorphic foliation F (C) in a larger pa-
rameter space T attached to families of enhanced projective varieties. Irreducible
components of the Hodge locus in T are algebraic leaves of the foliation F (C).
Under the hypothesis that these are all the algebraic leaves, we get the fact that such
algebraic leaves are defined over the algebraic closure of the base field and that
Hodge classes are weak absolute in the sense of Voisin. These are also two con-
sequences of the Hodge conjecture. We study such foliations using modular vector
fields which are natural generalizations of the vector fields due to Darboux, Halphen
and Ramanujan. For an expository account on Hodge loci the reader is referred to
[Voi13, CS11] and the references therein. The reader who wants to see the content
of this chapter in a concrete example is invited to read Chapter 10 and the article
[Mov18]. Throughout the chapter, all varieties and enhanced families are defined
over a subfield k of C. The algebraic closure of k is denoted by k̄ and k̃ is a field
extension of k̄ by some transcendental numbers.

7.2 Cattani-Deligne-Kaplan theorem

A Hodge locus in our context turns out to be an algebraic leaf of a modular folia-
tion and this is the main motivations for the present chapter. After Lefschetz (1,1)-

105
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theorem, without doubt, the theorem of Cattani, Deligne and Kaplan in [CDK95] is
the strongest evidence to the Hodge conjecture.

Definition 7.1 Let Y be a smooth projective variety. A Hodge class is any element in
the intersection of the rational cohomology Hm(Y,Q)⊂Hm

dR(Y ) and F
m
2 ⊂Hm

dR(Y ),
where F

m
2 = F

m
2 Hm

dR(Y ) is the m
2 -th piece of the Hodge filtration of Hm

dR(Y ).

Therefore, the Q-vector space of Hodge classes is simply the intersection Hm(Y,Q)∩
H

m
2 ,

m
2 = Hm(Y,Q)∩F

m
2 . Now, let Y →V be a family of smooth complex projective

varieties (Y ⊂ PN ×V and Y → V is obtained by projection on the second coordi-
nate).

Definition 7.2 Let F
m
2 Hm

dR(Y/V ) be the vector bundle of F
m
2 pieces of the Hodge

filtration of Hm
dR(Yt), t ∈V . The locus of Hodge classes is the subset of F

m
2 Hm

dR(Y/V )
containing all Hodge classes.

Note that F
m
2 Hm

dR(Y/V ) is an algebraic bundle, however, the locus of Hodge classes
is a union of local analytic varieties. Now, we define the Hodge locus in V itself.

Definition 7.3 The projection of the locus of Hodge classes under F
m
2 Hm

dR(Y/V )→
V is called the Hodge locus in V . An irreducible component H of the Hodge locus
in a (usual) neighborhood of a point t0 ∈ V is characterized in the following way.
It is an irreducible closed analytic subvariety of (V, t0) with a continuous family of
Hodge classes δt ∈ Hm(Yt ,Q)∩H

m
2 ,

m
2 in varieties Yt , t ∈ H such that for points t in

a dense open subset of H, the monodromy of δt to a point in a neighborhood (in the
usual topology of V ) of t and outside H is no more a Hodge class.

One of the main goals of the present text is to develop the theory of modular
foliations as much as possible and at the end to give a systematic proof (or a coun-
terexample) for the following consequence of the Hodge conjecture:

Conjecture 7.1 Let Y → V be a family of smooth projective varieties defined over
a field k ⊂ C. All the irreducible components of the locus of Hodge classes are
algebraic subsets of F

m
2 Hm

dR(Y/V ) defined over the algebraic closure of k.

In particular, the components of the Hodge locus in V are also algebraic. The alge-
braicity statement has been proved by Cattani, Deligne and Kaplan.

Theorem 7.1 (Cattani-Deligne-Kaplan, [CDK95]) The irreducible components of
the locus of Hodge classes in F

m
2 Hm

dR(Y/V ) are algebraic sets.

The main ingredient of their proof is Schmid’s nilpotent orbit theorem in [Sch73]
together with some results in [CKS86]. All these are purely transcendental methods
in algebraic geometry, and hence, their proof does not give any light into the second
part of the Conjecture 7.1, that is, any component of the locus of Hodge classes is
defined over the algebraic closure of the base field k.

The algebraicity statement for the locus of Hodge classes is slightly stronger than
the same statement for the Hodge locus. Let us explain this. We take an irreducible
component H of the Hodge locus. Above each point t ∈ H we have a Hodge class
β and the above theorem implies that the action of the monodromy representation
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π1(H, t)→Aut(Hm(Yt ,Q)) on β produces a finite number of cohomological classes
(which are again Hodge classes). This topological fact does not follow just from
the algebraicity of H. This will be used in Theorem 7.2 which is the adaptation
of Theorem 7.1 to our context of modular foliations. We are working with Hodge
cycles which lives in homologies in comparison with Hodge classes which live in
cohomologies. Both notions are related to each other by Poincaré duality.

7.3 Hodge cycles and enhanced families

Consider an enhanced family X → T. For a given family of projective varieties
Y →V we can use the methods introduced in §3.6 and construct an enhanced family.

Definition 7.4 A cycle δ0 ∈ Hm(X0,Z) is called Hodge if∫
δ0

αm,i = 0, i = 1,2, . . . ,h
m
2 +1,

where h
m
2 +1 := hm,0 + hm−1,1 + · · ·+ h

m
2 +1,m

2 −1. Recall that the differential forms
αm,i, i = 1,2, . . . ,h

m
2 +1 form a basis F

m
2 +1Hm

dR(Xt) for all t ∈ T.

Using Poincaré duality a Hodge cycle is mapped to Hodge class in Definition 7.1. It
follows that the period vector of a Hodge cycle, that is

C :=
∫

δt

αm,

is of the format (6.14). We have called C a period vector of Hodge type. If the
Hodge decomposition of X0 is defined over k̄ and αm is compatible with the Hodge
decomposition of X0 then C is actually of the format (6.15).

Definition 7.5 Let δ = {δt}t∈(T,0), δt ∈ Hm(Xt ,Q) be a continuous family of cy-
cles. We call

Lδ :=

{
t ∈ T

∣∣∣∣∣
∫

δt

αm = C, δt is obtained by a monodromy of δ0

}
(7.1)

the (global) locus of Hodge cycles with constant periods. It is sometimes useful to
replace T with a neighborhood of 0 in T, and call it the local locus of Hodge cycles
with constant periods.

From now on by Hodge locus in the parameter space T of an enhanced family X/T,
we mean the locus of Hodge cycles with constant periods.

Remark 7.1 Let X/T be an enhanced family constructed from Y/V as in §3.6. A
Hodge locus with constant periods in T is projected to a Hodge locus in V under the
canonical projection T→V , and the resulting map is not necessarily surjective.



108 7 Hodge cycles and loci

The following theorem is a consequence of Theorem 7.1 and the regularity of the
Gauss-Manin connection.

Theorem 7.2 The set Lδ ⊂ T is algebraic, and hence, it has finitely many compo-
nents.

Proof. Let α̃m be the submatrix of αm containing the first m
2 Hodge blocks (cor-

responding to zero blocks in (6.14)). The Cattani-Deligne-Kaplan theorem implies
that the local irreducible components of

∫
δt

α̃m = 0 are in fact algebraic. Let us take
one component of this locus, say H ⊂T. We prove that restricted to H the entries of∫

δt
αm are algebraic over the field of rational functions of H. This would be enough

to prove that the locus
∫

δt
αm = C is algebraic. We use again Theorem 7.1, and in

particular the algebraicity statement in the Hodge bundle F
m
2 Hm

dR(X/T), and con-
clude that the monodromy of δt results in finitely many cycles at each fiber. This
implies that the entries of

∫
δt

αm take finite number of values. In particular, they
satisfy polynomial equations with coefficients which are holomorphic (one valued)
functions in H. The regularity of the Gauss-Manin connection, see for instance Grif-
fiths expository article [Gri70] page 237, implies that such one valued functions are
in fact regular functions on H. ut

Note that the locus (7.1) with t near to 0 and δt obtained by a monodromy in a neigh-
borhood of 0, is an analytic subset of (T,0) and so it has finitely many components.
In particular, Theorem 7.2 implies that they are parts of finitely many algebraic
sets in T. Apparently such an algebraic set is of codimension h

m
2 +1, however, its

codimension is less than or equal h
m
2 +1,m

2 −1, see for instance Voisin’s book [Voi03]
Proposition 5.14 or [Mov19] Theorem 16.2. Recall that Lδ ’s are leaves of the fo-
liation F (C) defined in §6.3. Recall also the definition of Lδ = LC̃ in (6.4) and
(6.7).

Theorem 7.3 If C̃ ∈ Pb−1(Q) (equivalently if δt up to multiplication by a constant
is in Hm(Xt ,Q)) then all the components of the leaf LC̃ = Lδ of F (C) are algebraic
subsets of T.

Proof. From Proposition 6.2 we know that F (C) has the local holomorphic first
integral f := P−trC, and LC̃ is the inverse image of C̃ under f . In this way, this
theorem is just Theorem 7.2 in different words. ut

Next, we note that not all period vectors of the form (6.14) arise from Hodge
cycles. The following proposition is inspired after reading [Voi07] Remark 1.2.

Proposition 7.4 Let (X ,α) be an enhanced variety. For m an even number and for
a period vector

C :=
1

(2πi)
m
2

∫
δ

αm

arising from a primitive Hodge cycle δ ∈ Hm(X ,Q)0, we have

〈δ ,δ 〉= Ctr
Φ
−tr
m C > 0, (7.2)
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where Φm is the matrix in (3.1). In particular, if X is a fiber of an enhanced family
then the corresponding modular foliation F (C) has a trivial character in the sense
of Definition 6.6.

Proof. We prove the first statement. We take the Poincaré dual of δ and use the hard
Lefschetz theorem to obtain δ̃ pd ∈ Hm(X ,Q)0, that is, δ̃ pd ∪ un−m = δ pd. Here,
u ∈ H2(X ,Z) is the cohomology class of a hyperplane section of X (topological
polarization). We write δ̃ pd = αtr

m B and get

C =
1

(2πi)
m
2

∫
δ

αm

=
1

(2πi)
m
2

(∫
X

αm∪α
tr
m ∪un−m

)
B

= (2πi)
m
2 ·Φm ·B.

Note that θ = 2πi ·u is the algebraic polarization. Therefore,

〈δ ,δ 〉=
∫

X
δ̃

pd∧ δ̃
pd∧un−m = (2πi)m〈δ̃ pd, δ̃ pd〉

= (2πi)mBtr〈αm,α
tr
m 〉B

= (2πi)mBtr
ΦmB = Ctr

Φ
−tr
m C.

Now, for m even and δ a primitive Hodge cycle we know that δ̃ pd ∈ H
m
2 ,

m
2

0 and the
affirmation follows from the second Hodge-Riemann bilinear relations, see [Voi02]
Theorem 6.32, page 152.

Now, we prove the second statement. Let λ : G→ Gm be a group morphism
such that for all g ∈ G we have gtr

mC = λ (g)C. From another side we know that
gtr

mΦmgm = Φm. Combining these equalities and the fact that CtrΦ−tr
m C is non-zero

we get λ (g)2 =±1. ut

The argument used in the proof of Proposition 7.4 fails for non-primitive Hodge
cycles. Let us write the Lefschetz decomposition of δ̃ pd:

δ̃
pd = δ̃m + δ̃m−2 + · · · , δ̃m−2q ∈ Hm−2q(X ,Q)0,

where each piece δ̃m−2q is a primitive Hodge class and they are orthogonal to each
other, and so,

〈δ̃ , δ̃ 〉= 〈δ̃m, δ̃m〉+ 〈δ̃m−2, δ̃m−2〉+ · · · .

By the second Hodge-Riemann bilinear relations 〈δ̃m−2q, δ̃m−2q〉 is non-zero, how-
ever, its sign is (−1)

m
2 −q, which at the end may result in 〈δ̃ , δ̃ 〉= 0. This means that

the corresponding modular foliation F (C) might have non-trivial character.
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7.4 Isolated Hodge cycles

Let V ⊂ HilbP(PN
k ) be a Zariski open subset of a Hilbert scheme parameterizing

deformations of a smooth projective variety Y0 ⊂ PN
k and and let Y → V be the

corresponding family of smooth projective varieties. Recall from §2.11 that the re-
ductive group G acts from the left on V . We have mainly in our mind the case in
which G\V is the moduli of the projective variety Y0, however, we do not assume
this for the discussion below. Since for t ∈V and g ∈G the varieties Yt and Yg•t are
isomorphic, the Hodge locus in V is invariant under the action of G.

Definition 7.6 A Hodge cycle δ0 ∈ Hm(Y0,Z), 0 ∈ V is called isolated if the local
Hodge locus through 0 is a neighborhood of the orbit of G passing through 0. In
other words, the Hodge locus in G\V crossing 0 is the isolated point 0 itself.

We could also formulate a weaker version of the above definition without talking
about Hilbert schemes and action of reductive groups, in the following way. Let Y →
V be a family of smooth projective varieties. A Hodge cycle δ0 ∈ Hm(Y0,Z), 0 ∈V
is called isolated if for all s in the Hodge locus corresponding to δ0, we have an
isomorphism Ys ∼= Y0 of projective varieties over C. Note that we do not claim that
such an isomorphism is given by some automorphism of the ambient projective
space. Recall the notation in §6.4 and in particular Proposition 6.4 which says that
the orbits of Stab(G,C)0 are contained in the leaves of the modular foliation F (C).

Definition 7.7 Let X/T be a full enhanced family. A Hodge cycle δ0 ∈ Hm(X0,Z),
0 ∈ T is called isolated with constant periods C if the local Hodge locus Lδ with
constant periods C through 0 is a neighborhood of 0 in the orbit of Stab(G,C)0
through 0. In case X/T is equipped with an action of a reductive group G as in
§2.11, we say that δ0 is isolated with constant periods C if Lδ is a neighborhood of
G ·0•Stab(G,C)0.

Note that 0•Stab(G,C)0 and G ·0•Stab(G,C)0 in both cases above are contained in
the global Hodge locus Lδ and in the above definition we say that near to 0, Lδ does
not contain more points. The following proposition tells us that modular foliations
arising from isolated Hodge cycles might not be so interesting.

Proposition 7.5 Let X/T be a full family of enhanced projective varieties, δ0 ∈
Hm(X0,Z) be an isolated Hodge cycle with the period vector C and F = F (C) be
the corresponding modular foliation. Further, assume that the stabilizer of all points
in T with respect to the action of G are finite. Then F is trivial in some Zariski open
subset of T in the sense of Definition 6.4.

Proof. By our hypothesis the fiber of the local first integral f = P−trC : (T,0)→Cb

of F over C̃ is just the orbit of Stab(G,C)0 passing 0. Since the function of dimen-
sion of fibers is upper semi-continuous, we conclude that the fiber of f over points
near to C̃ is either empty or the orbit of Stab(G,C)0. However, by our hypothesis
the dimension of t •Stab(G,C)0 is the same as the dimension of 0•Stab(G,C)0. All
these together imply that the foliation F (C) in a neighborhood (usual topology) of
0 is the same as the foliation F (Stab(G,C)0) given by the action of Stab(G,C)0.
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Since both foliations are given by algebraic differential forms, we have the same
statement in a Zariski open neighborhood. ut

The theory of modular foliations developed in this book is mainly for non-isolated
Hodge cycles. This is the case for instance for all Hodge cycles of abelian varieties,
see P. Deligne’s lecture notes in [DMOS82]. More strongly, he proves that a Hodge
cycle of an Abelian variety can be deformed into a Hodge cycle of a CM Abelian
variety.

In [MN18] we have constructed the universal family X/T of enhanced mirror
quintic Calabi-Yau n-folds, and for n even, modular foliations are trivial in the sense
of Definition 6.4, and hence, Hodge cycles are expected to be isolated. More gener-
ally, it is reasonable to expect that a general Hodge cycle in the middle cohomology
of a projective Calabi-Yau variety of even dimension is isolated. As an example, we
can take a smooth hypersurface of degree 6 in the five dimensional projective space.
Its fourth cohomology has the Hodge numbers 1,426,1751,426,1. For many exam-
ples of (n,d) one can prove that a Fermat hypersurface of degree d and dimension
n has isolated Hodge cycles, see [Mov12b] Chapter 16.

Let X1 and X2 be two mirror quintic Calabi-Yau threefolds, see [Mov17b], or any
two Calabi-Yau threefolds which appear in the list of Almkvist-Enckevort-Straten-
Zudilin in [AvEvSZ10]. We take the tensor H3

dR(X1)⊗C H3
dR(X2) which has the

Hodge numbers 1,2,3,4,3,2,1. A leaf L of F (2) in this case is two dimensional
and restricted to L, a modular foliation F (C) with C a period vector of Hodge type,
is given by three 1-forms which we might expect that they are linearly indepen-
dent, and hence, F (C) is trivial. A similar procedure in the case of elliptic curves
produces non-isolated Hodge cycles, see Chapter 10.

In order to construct trivial foliations we might first construct isolated Hodge
cycles without using the parameter space T of an enhanced family. One example
is as follows. We take the n-dimensional Dwork family with n even, see §12.7 and
[MN18]. A zero of multiplicity n

2 of the holomorphic solution of the corresponding
Picard-Fuchs equation is a a Hodge cycle. Let us take n = 4 and so we have a
four dimensional projective variety Xz with Hodge numbers 1,1,1,1,1. The Picard-
Fuchs equation L of the holomorphic 4-form in Xz is well-known and we can take
three solutions xi1 =

∫
δi

η , δi ∈ H4(Xz,Z) i = 1,2,3 of L represented with explicit
formulas. We also define xi j = (z ∂

∂ z )
j−1xi1. We are looking for a Hodge cycle δ =

a1δ1 +a2δ2−δ3, a1,a2 ∈Q. This is equivalent to say

a1x11 +a2x21− x31 = 0, a1x12 +a2x22− x32 = 0.

We get
x22x31− x21x32

x11x22− x12x21
∈Q,

−x12x31 + x11x32

x11x22− x12x21
∈Q

Similar to computations in [Mov17b], we may take the inverse of one of the above
functions and substitute in the other one, let us call it f . We are looking for a rational
point in its domain such that its image is also rational.
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7.5 The converse of Cattani-Deligne-Kaplan theorem

We are interested to see whether the converse of the Cattani-Deligne-Kaplan theo-
rem is true. We have formulated this in the following statement. For the definition
of a period vector of Hodge type see (6.14).

Property 7.1 For an enhanced family X→ T of projective varieties and a period
vector C of Hodge type, all defined over C, the irreducible components of the Hodge
locus in T are the only algebraic leaves of F (C).

Property 7.1 can be considered as the converse of Cattani-Deligne-Kaplan theorem
in the following way. If a locus of Hodge cycles with arbitrary coefficients is alge-
braic then such coefficients, up to multiplication by a constant, must be necessarily
rational numbers. This is the same as to say that if the set Lδ in (7.1) is algebraic for
a continuous family of cycles δt ∈Hm(Xt ,C) then up to multiplication by a constant
δt ∈ Hm(Xt ,Q).

Property 7.1 implies that the modular foliation F (C) is not trivial in the sense of
Definition 6.4 in §6.4. For a particular format of C this is essentially the same as to
consider non-isolated Hodge classes, that is, Hodge classes that can be transported
along a one dimensional analytic curve inside the moduli space of the underlying va-
riety. It is natural to expect that Property 7.1 is satisfied in many cases such as abelian
varieties, as P. Deligne in [DMOS82] has proved that Hodge classes for principally
polarized abelian varieties are non-isolated, and isolated Hodge classes may give
us counterexamples to the Hodge conjecture. For all consequences of Property 7.1
we need that C̃ belongs to a subset U of Pb−1(C) without any local, non-discrete
analytic subset inside. In particular, a non-constant holomorphic map from some
analytic variety to Pb−1(C) has its image in U if and only if it is constant.

Property 7.1 must be considered as a variant to Voisin’s hypothesis on the non-
existence of a constant sub-variation of Hodge structures in Theorem 0.6 in [Voi07].
This is as follows. Let V ⊂T be an algebraic leaf of F (C) and hence by definition it
is irreducible. We have a holomorphic flat section δ of Hm

dR(X/T) in a neighborhood
of V such that restricted to V , δ is a linear combination of αm,i’s with constant
coefficients (see Remark 6.1). Let B be the smooth part of V and Y be any smooth
projective compactification of the inverse image of B under X→T. For a fixed point
0 ∈ B we have the monodromy representation

ρ : π1(B,0)→ Aut(Hm(X0,Q)). (7.3)

The cycle δ0 ∈ Hm(X0,C) is invariant under the monodromy. This implies that we
have a subspace H ⊂ Hm(X0,Q) whose elements are invariant under ρ(π1(B,0))
and δ ∈ H ⊗Q C. From another side, Deligne’s global invariant cycle theorem or
”théorèm de la partie fixe”, see [Del71a], Theorem 4.1.1 or [Del68], tells us that the
space of invariant cycles

Hm(X0,Q)ρ := {δ ∈ Hm(X0,Q) | ρ(γ)(δ ) = δ , ∀γ ∈ π1(B,0)}
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is equal to the image of the restriction map i∗ : Hm(Y,Q)→ Hm(X0,Q), where i :
X0 ↪→ Y is the inclusion map. Moreover, this is a morphism of Hodge structures.
Therefore, H lies in the image of i∗. If we assume that dimQi∗(Hm(Y,Q)) = 1 then
dimQ(H) = 1 and so δ0 up to multiplication with a constant is in Hm(X0,Q) which
is the affirmation of Property 7.1. It is also reasonable to make a weaker assumption
that the Hodge structure of Hm(Y,C) (or actually its image under i∗) is trivial, that is
it has only the middle piece H

m
2 ,

m
2 . Then all the cycles in Hm(Y,Q) are Hodge. This

implies that δ0 is a C-linear combination of Hodge cycles in Hm(X0,Q) all of them
invariant under ρ(π1(B,0)). Let us write this δt = ∑

k
i=1 ciδi,t , t ∈ V . The function

Ci(t) := 〈αm, δi,t〉, t ∈ V is regular in V and C = ∑
k
i=1 ciCi(t) is a constant vector.

It turns out that the foliation F (Ci(0)) restricted to V (a leaf of F (C)) has only
algebraic leaves. We do not get the affirmation in Property 7.1.

7.6 Weak absolute cycles

The notion of an absolute Hodge class is introduced by Deligne in [DMOS82].
Voisin in [Voi07] introduced the notion of a weak absolute Hodge class and observed
that this notion is more natural when one studies the Hodge locus. In this section,
we translate both notions into homological cycles and describe a consequence of
Property 7.1.

Let k̄ ⊂ C be an algebraically closed field and let X a smooth projective variety
over k̄. For σ ∈ Gal(k̄/Q), we denote by Xσ the underlying complex manifold after
the action of σ on the defining coefficients of X . We have also the map induced in
algebraic de Rham cohomologies:

σ : Hm
dR(X/k̄)→ Hm

dR(X/k̄), ω 7→ ωσ .

Definition 7.8 Let X be a smooth projective variety defined over k̄ ⊂ C. The com-
plex numbers

P(ω,δ ) := (2πi)−
m
2

∫
δ

ω, ω ∈ Hm
dR(X/k̄).

are called the periods of δ ∈ Hm(X ,Q). Such a cycle δ is called weak absolute if
it has periods in k̄ and for any σ ∈ Gal(k̄/Q), there is a cycle δσ ∈ Hm(Xσ ,Q) and
aσ ∈ C such that

σ (P(ω,δ )) = aσ ·P(ωσ ,δσ ), ∀ω ∈ Hm
dR(X/k̃).

It is called absolute if moreover for all σ , aσ = 1.

Note that in general if X is defined over k̄ and δ ∈ Hm(X ,Q) then the periods of δ

are defined in an extension k̃ of k̄ with transcendental numbers. Hodge conjecture
implies the following.
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Conjecture 7.2 Let X be a smooth projective variety defined over k̄ ⊂ C and δ ∈
Hm(X ,Q) be a Hodge cycle. We have

1. The periods of δ are in k̄.
2. The cycle δ is absolute.
3. If k̃ ⊂ C is a field extension of k̄ and δ as a cycle for X/k̃ is absolute then it is

also absolute for X/k̄.

For algebraic cycles Conjecture 7.2 is trivially true, see [DMOS82] Proposition 1.5.
Note that the third item is a consequence of the first and second items. We have
reproduced it because for absolute cycles which are not Hodge it seems to be a
highly non-trivial statement. The first item can be used in order to study special
values of many functions which can be written as periods, see for instance [MR06].
An interesting observation due to Voisin is the following:

Proposition 7.6 (Voisin [Voi07] page 948) For a weak absolute Hodge cycle we
have

a2
σ ∈Q>0,

Proof. It is easier to present the proof in cohomologies rather than homologies and
using integrals. Let δ̃ ∈ Hm(X ,Q) be a weak absolute Hodge class. The Lefschetz
(or primitive) decomposition of δ̃ in both Hm(X ,Q) and Hm

dR(X/k) is unique. We
conclude that the primitive pieces of δ̃ are weak absolute with the same aσ as of
δ̃ . Now the affirmation follows from the second Hodge-Riemann bilinear relations.
ut

We might expect that some isolated Hodge cycles are not absolute. This statement
must be easier to prove than the statement on the existence of algebraic cycles. For
this, we would need only to prove that a bunch of integrals are zero and at least one
integral with a proper factor of 2πi is a transcendental number.

7.7 Consequences of Property 7.1

In this section we combine Property 7.1 and Theorem 5.18 and we prove the fol-
lowing theorem. It says that Property 7.1 and Hodge conjecture have few common
consequences.

Theorem 7.7 Let X/T be an enhanced family defined over the field k ⊂ C and as-
sume that Property 7.1 is true for all modular foliation F (C) attached to X/T and
all period vector C of Hodge type and defined over k̄. Consider a modular foliation
F (C) attached to X/T and with a period vector C of Hodge type and with an alge-
braic leaf L, both C and L defined over C. If L is homologically defined over Q (see
Definition 6.3) and it contain a k̄-rational point t0 of T then primitive parts of C, up
to multiplication with a constant, and L are defined over k̄.
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Proof. The leaf L is homologically defined over Q, and so, we have a continuous
family of cycles δ = {δt}t∈U ,δt ∈ Hm(Xt ,Q) such that L = Lδ and δt for t ∈ L is
a Hodge cycle. Here U = (T, t0) is a small neighborhood of t0 in T. Let us assume
that the theorem with δ primitive and C a primitive period vector of Hodge type, is
true. This implies the theorem for arbitrary δ as follows.

We use Proposition 6.8, and the notations used in its proof. Let

C = Cm +Cm−2 + · · ·+Cm−2q + · · · , δt = δt,m +δt,m−2 + · · ·+δt,m−2q + · · ·

be the primitive decomposition of C and δt , respectively. The foliation F (Cm−2q)
has the leaf Lδt,m−2q and each δt,m−2q is a Hodge cycle. By Cattani-Deligne-Kaplan
theorem Lδt,m−2q is algebraic. We also know that it contains t0 ∈ T(k̄). We apply the
theorem in the case of primitive cycles and conclude that for all q, Lδt,m−2q and Cm−2q

up to multiplication with a constant cm−2q ∈ C are defined over k̄. This implies the
theorem for arbitrary δt . Note that we do not claim that cm−2q’s are the same for
all q. From now on assume that δ is primitive and C is a primitive period vector of
Hodge type.

Next, we prove that if C is defined over k̄, and the algebraic leaf L of F (C) is
weakly homologically defined over Q, see Definition 6.3, then L is defined over k̄.
Assume that this is not the case. By our assumption L is given by c ·

∫
δ

αm = C for
some constant c ∈ C. By the second part of Theorem 5.18, we have varieties Z and
L̃⊂T×Z and the projection π : L̃→ Z, all defined over k̄ such that Lx = π−1(x), x∈
Z is an algebraic leaf of F (C). This means that we have families of algebraic leaves
for F (C). Further, for some a∈ Z, La = L is the original leaf. From now on we only
work with Lx∩U with x ∈ (Z,a).

Recall from Proposition 6.2 that F (C) has the local first integral f := P−trC :
U → C such that for the leaf f−1(C̃) of F (C) the corresponding continuous family
of cycles has coefficients in Q if and only if C̃ has rational entries. Since Lx ∩U
is a leaf of F (C) in the sense of Definition 5.6, the restriction of f to Lx ∩U is
constant, and hence, we have finitely many constant vectors C̃x,i, i = 1,2, . . . such
that f restricted to connected components Lx,i, i = 1,2, . . . of Lx∩U is C̃x,i. For this
affirmation we may take U smaller such that all the irreducible components of La∩U
crosses 0∈T, however, for x∈ (Z,a) and x 6= a, Lx∩U might have still finitely many
connected components. The conclusion is that the vector C̃x is a holomorphic multi-
valued function in x ∈ (Z,a) and according to Property 7.1, up to multiplication
with a constant it has rational entries. This means that C̃x = cxC̃1, where C̃1 is a
constant vector with rational entries and cx is a multi-valued holomorphic function
in x ∈ (Z,a). We conclude that Lx is given by cx ·

∫
δ

αm = C We use the fact that δt
is primitive and so by Proposition 7.4

δt ·δt = c−2
x Ctr

Φ
−tr
m C > 0

and so cx must be a non-zero constant in C. This implies that Z consists of just the
point a, and hence, L is defined over k̄.
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Let k̃ be the algebraically closed field over k̄ generated by the entries of C and the
definition field of L (which may contain some transcendental numbers over k̄). We
use the first part of Theorem 5.18 for the triple (T,F (C),L) and obtain an affine
variety Z and a triple (T× Z, F̃ , L̃). Since the Gauss-Manin connection matrix
is defined over k, in the definition of a modular foliation the only transcendental
numbers over k̄ may occur in C. We can regard C as a vector with entries which are
rational functions on Z. In particular, we can evaluate over a Zariski open subset Z̃
of Z. From now on we replace Z with Z̃. Let Cx be the evaluation of C over the point
x ∈ Z. We have

F̃ |T×{x}= F (Cx), x ∈ Z.

Now we use Property 7.1 for the foliation F (Cx) and its algebraic leaf Lx := π−1(x)
and conclude that there is a continuous family if cycles δt ∈Hm(Xt ,Q) and a multi-
valued holomorphic function cx in an open subset of (Z,a) such that the algebraic
leaf Lx of F (Cx) in U is given by

cx ·
∫

δt

αm = Cx.

Since Hm(Xt ,Q) does not contain any analytic subset of Hm(Xt ,C), the continuous
family of cycles δ is the same for all x. This follows again by considering holomor-
phic family of local first integrals fx := P−trCx : U → C, x ∈ (Z,a). We conclude
that the entries of cx

∫
δt

αm −Cx, which are multi-valued holomorphic functions,
vanishes on the algebraic variety L̃.

Let Π : L̃→ T be the projection map in T coordinate. The pull-back of the holo-
morphic function

∫
δt

αm by the projection Π is c−1
x Cx, whose quotient of entries are

rational function on L̃. We conclude that a quotient g of entries of
∫

δt
αm restricted

to the image of Π are algebraic functions, all of them defined over k̄, see Proposi-
tion 7.8. But by our hypothesis the image of Π contains the k̄-rational point 0 ∈ T.
Therefore, all such g’s evaluated at t0 are in k̄. Performing pull-back by Π , we get
the fact that Ca = c · Č with c ∈ C and Č ∈ k̄b. This reduces the problem to the case
in which C is defined over k̄ and L is weakly homologically defined over Q. ut

In the last step of the proof of Theorem 7.1 we have used the following simple
proposition.

Proposition 7.8 Let f : X→Y be a surjective morphism of algebraic varieties over
an algebraically closed field k̄⊂ C. If g is a holomorphic function in an small open
set U of Y such that g◦ f is a restriction of a regular function of X/k̄ to f−1(U) then
g is also a restriction of a regular function of Y/k̄ to U.

Let us consider an enhanced family X/T over the field k⊂ C and a Hodge cycle
δ0 ∈ Hm(X0,Q) and define

C :=
∫

δ0

αm (7.4)
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and consider the modular foliation F (C). One of the consequences of the Hodge
conjecture is that if X0 is defined over k, that is, if 0 is a k-rational point of T, then
C ∈ (2πi)

m
2 k̄b, see the first item in Conjecture 7.2.

Proposition 7.9 Property 7.1 implies that the period vector C of a Hodge cycle of
X/k up to multiplication by a constant is defined over k̄, that is C ∈ Pb−1(k̄).

Proof. We consider the modular foliation F (C) and apply Theorem 7.7. ut

Note that the Hodge conjecture implies that the transcendental factor of C is (2πi)
m
2 .

This does not follow from Property 7.1. Note that in the proof of Theorem 7.7 we
strongly use the fact that 〈αm,i,αm, j〉’s are constant. This forces us to work with the
finer parameter space T and indicates that a similar statement for a weakly enhanced
family as in §3.5 might be false.

Theorem 7.10 Assume that Property 7.1 is true for all modular foliation F (C)
attached to X/T and all period vector C of Hodge type and defined over C. A Hodge
cycle of any variety Xt , t ∈ T(C) is weak absolute.

Proof. Let δt ∈ Hm(Xt ,Q) be a Hodge cycle and C :=
∫

δt
αm. Let Lδ be the leaf

of F (C) crossing the point t ∈ T. Theorem 7.2 implies that Lδ is algebraic. Let k̃
be the algebraically closed subfield of C generated by the coordinates of t and C.
For σ ∈ Gal(k̃/Q), we have the foliation F (Cσ ) tangent to the algebraic variety
σ(Lδ ). We take a local analytic irreducible branch L of σ(Lδ ) crossing the point
σ(t) and we have a continuous family of cycles δ̃s ∈Hm(Xs,C), s ∈ (T,σ(t)) such
that L⊂ L

δ̃
. By Property 7.1, up to some constant cσ , δ̃s is in Hm(Xs,Q) and so

σ(
∫

δt

αm) = σ(C) = cσ

∫
δσ(t)

αm.

ut

Let us be given a family of smooth projective varieties Y/V over k. We can use the
recipe in §3.6 and construct an enhanced family X/T. If Property 7.1 is valid for all
constant period vector C of Hodge type then Theorem 7.7 and Theorem 7.10 imply
that the Hodge loci in V are defined over k̄, Hodge cycles of the fibers of Y/V are
weak absolute and they have periods in the algebraic closure of the field of definition
of the fiber. However, Property 7.1 seems to be stronger than these consequences
together. For instance, consider an example of F (C) which is trivial in the sense of
Definition 6.4. All the leaves of F (C) in T\Sing(F (C)) are algebraic, and they are
the orbits of GC. Note that the notion of a trivial foliation is related to the notion of
an isolated Hodge cycle.





Chapter 8
Generalized period domain

You forget, he said, that all your curses are of limited duration; one hundred and
fifty years from today, their force will be spent, A. Weil in “Mathematische Werke,
by Gotthold Eisenstein”, [Wei79] page 398.

8.1 Introduction

We introduce the generalized period domain U which is the target space of period
maps from the parameter space of enhanced families. We also study modular folia-
tions, vector fields and the loci of Hodge cycles in U. Some of the material presented
in this chapter are taken from [Mov13]. In the previous chapters we have explained
that the moduli of enhanced varieties is a nice object in which modular vector fields
and foliations live, whereas classical moduli of varieties do not carry such rich struc-
tures. Going to the Hodge structure or periods of varieties, Griffiths introduced a
period domain which is mainly responsible for the variation of Hodge structures
on classical moduli spaces and hence it is not adapted to our case. The general-
ized period domain U is responsible for the variation of Hodge structures arising
from enhanced varieties. We have slightly modified the same notion in [Mov13] by
considering the whole cohomology ring of a variety. The main reason for this is
inspired from the case of abelian varieties. In order to study Hodge classes in the
middle cohomology of an abelian variety one considers the period domain of the
first cohomology (which generates the whole cohomology ring) and not the period
domain attached to the middle cohomology. Therefore, we will reproduce many ar-
guments of [Mov13] and in particular, we will explain our approach in comparison
to Griffiths period domain, see for instance [Gri70, Mov08a]. Another advantage of
U is that it does contain the full data of periods of a variety, whereas Griffiths period
domain contains the data of certain quotient of periods. In simple words, the space
U is the transcendental incarnation of the moduli space T of enhanced varieties in-
troduced in §3.11.

119
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Something which would perfectly fit into this chapter is the construction of a
similar period domain U starting from a Hermitian symmetric domain and an ac-
tion of an arithmetic group. This would give the differential equations of the corre-
sponding automorphic forms in a geometric context. We have not done this and the
interested reader may think on this starting from Deligne’s description of Hermitian
symmetric domains as the parameter space for certain special Hodge structures, see
[DMOS82, Del79, Milb].

8.2 Polarized Hodge structures

Recall from §2.7 and §3.2 that for a projective variety X0/C of dimension n we have
the following algebraic data. The algebraic de Rham cohomology Hm

dR(X0), m =
0,2, . . . ,2n its Hodge filtration F∗H∗dR(X0), cup product ∪, polarization θ0 and the
trace map Tr. All these satisfy many properties, such as Lefschetz decomposition,
Hard Lefschetz theorem and so on. Now consider an embedding k⊂C. From this we
get two additional structures. First, we get the complex conjugation in the de Rham
cohomology. This together with Hodge filtration give us the Hodge decomposition.
It satisfies the so called Hodge-Riemann bilinear relations, see for instance [Voi02,
Mov19]. Second, we can look at X0 as a complex manifold and hence we have the
embedding

Hm(X0,Z) ↪→ Hm
dR(X0)

∨, δ 7→
∫

δ

,

which is an isomorphism after tensoring with C.

Definition 8.1 We call all these data a polarized Hodge structure.

Note that the same notion in the literature usually refers to a part of the above data
with fixed m.

8.3 Generalized period domain

Recall the projective variety X0/C which we have fixed in §3.10. We consider it as
a complex manifold and we define V0 to be the de Rham cohomology ring of X0
equipped with cup product, Hodge filtration and polarization:

V0 := (H∗dR(X0), F∗0 ,∪,θ0).

We also define V0,Z to be the ring of homology groups of X0 together with the
intersection of cycles and the ploarization element [Y0] ∈ H2n−2(X0,Z):

V0,Z := (H∗(X0,Z), · , [Y0]).

Let us be given an arbitrary embedding
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u : V0,Z ↪→V∨0 (8.1)

which sends Hm(X0,Z) to Hm
dR(X0)

∨. We define the abstract integral sign through
the equality

u(δ )(ω) =
∫

δ

ω, ω ∈ Hm
dR(X0), δ ∈ Hm(X0,Z).

Note that this is just the definition of
∫

and no integration is taking place. The
Poincaré dual δ pd ∈ Hm

dR(X0) of δ ∈ Hm(X0,Z) is defined uniquely through the
equality ∫

δ

ω = (2πi)n ·Tr(ω ∪δ
pd), ∀ω ∈ Hm

dR(X0).

Definition 8.2 The generalized period domain Π, respectvely U, is the set of all
embeddings (8.1), respectively image of such embeddings, such that

1. the intersection of cycles in V0,Z is Poincaré dual to cup product in de Rham
cohomology, that is,

δ
pd
1 ∪δ

pd
2 = (δ1 ·δ2)

pd, δ1,δ2 ∈ H∗(X0,Z).

2. we get a polarized Hodge structure in the sense of Definition 8.1.

Clearly we have at least one element of U obtained by the fact that both V0,Z and V0
comes from the homologies and cohomologies of the fixed variety X0.

From now on we also denote an element of U by u. Attached to u we have a
pair (Xu,αu). Here, Xu is some ghost projective variety (which does not exists),
however, we define its algebraic de Rham cohomology, Hodge filtration etc. to be
the same as of X0 and so we define αu to be the identity map

α : (H∗dR(Xu), F,∪,θ)→V0.

We also define H∗(Xu,Z) to be the image of the embedding (8.1). Note that there
is no variety Xu and we have introduced it in order to produce the same notation
as in the algebraic context. We are just imitating the algebraic context in the level
of periods. We may call Xu a motif. In this way the generalized period domain is
the moduli of enhanced motives, and we can treat U as it was the moduli T of en-
hanced projective varieties. For the moment we do not feel the necessity of using
classical theory of motives in our context. Therefore, we will avoid the motive ter-
minology. The algebraic group G and the discrete group ΓZ acts from the right and
left, respectively, on Π:

ΓZ y Π x G.

The action of ΓZ in Π is given by

A(u) := u◦A−1, A ∈ ΓZ, u ∈ Π,

and the action of G on Π is given by
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(u,g) 7→ u•g := u◦ (g∨)−1, u ∈ Π, g ∈ G.

By our construction we have

Proposition 8.1 The actions of G and ΓZ on Π commutes and are free.

By definition we have
U = ΓZ\Π

and we also use • for the action of G on U. We might have A ∈ ΓZ, u ∈ Π and the
non-identity element g ∈ G such that

A(u) = u•g

This means that the action of G on U might not be free. This is the case for instance
for elliptic curves, see §9.2. However, it is expected that the stablizer of a generic
point of U is the trivial identity group.

Definition 8.3 The moduli of polarized Hodge structures is defined to be

ΓZ\Π/G.

Definition 8.4 The Griffiths period domain is defined to be

D := Π/G.

This is a slight modification of Griffiths period domain. For varieties such that the
cohomology algebra is generated by the elements of a fixed cohomology, our notion
of period domain and Griffiths period domain are the same. However, for other cases
our period domain is finer. We will still call D the Griffiths period domain. The set
ΓZ\D is the moduli of polarized Hodge structures of fixed topological type and it
has a canonical structure of a complex analytic space.

8.4 Period maps

Let X/T be an enhanced family of projective varieties with X0 as a fiber over 0 ∈ T.

Definition 8.5 We have the generalized period map

P : T 7→ U

which is defined in the following way. By definition a fiber X of X/T comes with an
isomorphism α : H∗dR(X)→ H∗dR(X0). The inverse of the dual of this isomorphism,
call it (α∨)−1 sends H∗(X ,Z) to a lattice in H∗dR(X0)

∨ and this gives a unique point
of U.
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Note that this definition is in a complete harmony with our ghost notation (Xu,αu).
Moreover, note that if P(X1,α1) = P(X2,α2) then (α∨2 ) ◦ (α∨1 )−1 : H∗dR(X1)

∨ →
H∗dR(X2)

∨ maps H∗(X1,Z) isomorphically to H∗(X2,Z) , and hence, it is an ismor-
phism of Hodge structures. The following definition will be needed in Proposition
8.4.

Definition 8.6 For m ∈ N∪ {0} we say that the generalized period map P is m-
injective if all the components of{

(t1, t2) ∈ T×T
∣∣∣P(t1) = P(t2)

}
except for the diagonal, are of dimension < m.

Let T̃ be the monodromy covering of T, that is, T̃ consists of (t,δ ), where t ∈ T
and δ : (H∗(X ,Z), ·, [Y ])∼= (H∗(X0,Z), ·, [Y0]) as in §4.3 for X := Xt .

Definition 8.7 The generalized period map

P : T̃ 7→ U,

is defined in the following way: for t̃ =(t,δ )∈ T̃, X :=Xt with δ : (H∗(X ,Z), ·, [Y ])∼=
(H∗(X0,Z), ·, [Y0]) as in Definition 4.2, and α : (H∗dR(X),F∗,∪,θ)∼=(H∗dR(X0),F∗0 ,∪,θ0)
which comes from the definition of the enhanced family X/T. We get the the fol-
lowing diagram which is not necessarily commutative:

H∗(X ,Z) δ→ H∗(X0,Z)
iX↓ ↓iX0

H∗dR(X)∨
α∨← H∗dR(X0)

∨
, (8.2)

where iX and iX0 are usual integration maps. The image P(t̃) of t̃ ∈ T̃ under P is
(α∨)−1iX ◦δ−1.

Recall the monodromy covering H in §4.3.

Definition 8.8 The classical period map

P : H→ D

is defined in the following way: for w = (X ,δ ) ∈ H with δ : (H∗(X ,Z), ·, [Y ]) ∼=
(H∗(X0,Z), ·, [Y0]) as in Definition 4.2, we first consider an arbitrary enhancement
(X ,α) with α : (H∗dR(X),F∗,∪,θ) ∼= (H∗dR(X0),F∗0 ,∪,θ0). We get the diagram 8.2
which is not necessarily commutative. The image P(w) of w under the classical
period map is (α∨)−1iX ◦δ−1. The choices of different enhancements α will result
in the orbit of G in Π, and hence, a well-defined element P(w) in D.

Note that if T is the universal family of smooth enhanced varieties then H = T/G
and the classical period map is induced by the generalized period map after taking
quotient by G.
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8.5 τ and t maps

The generalizations of automorphic forms in the present text are done in both al-
gebraic and holomorphic context. The discussion in this section provides a precise
translation from one to another. It gives us a bridge between the algebraic and holo-
morphic worlds.

Definition 8.9 A meromorphic map

τ : D 99K Π (8.3)

such that the composition D 99K Π→ Π/G = D is the identity map, and it is an
embedding outside the set of its indeterminacy points, is called the τ map and its
image is called the τ loci.

There is no general recipe to define the τ map. It has been constructed in the case
of abelian varieties, see 11.11, mirror quintic Calabi-Yau threefolds, see [Mov17b,
Chapter 4]. The discussion in §13.9 gives us the description of such a map for ar-
bitrary Calabi-Yau threefolds. The following proposition is a direct consequence of
the above definition.

Proposition 8.2 For any u ∈ Π there is a unique g ∈ G such that

τ(x) = u•g,

where x is the projection of u in D = Π/G.

Proof. Since τ(x) and u induce the same element in D, there is a unique element
g ∈ G such that τ(x) = u•g holds. ut

Let us consider a τ map and recall the monodromy covering H in §4.3. Let also T
be the moduli of enhanced varieties as in §3.11.

Proposition 8.3 For any τ-map, there is a meromorphic map

t : H 99K T,

which is characterized by the fact that the following diagram is commutative:

H t
99K T
↓ ↓
D τ→ U

,

and the composition H 99K T→ T/G = M is the canonial map (X ,δ ) 7→ X. Here,
the down arrows are respectively the classical and generalized period maps.

Proof. Let T̃ be the moduli of (X ,δ ,α). It is enough to construct the map t̃ : H→ T̃
such that
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H t̃
99K T̃
↓ ↓
D τ→ Π

,

commutes and the composition H 99K T̃→ T̃/G = H is the identity map. This is
because T := ΓZ\T̃ and U = ΓZ\Π. For a point w = (X ,δ ) ∈ H we first choose an
arbitrary enhancement (X ,α). By Proposition 8.2, there is a unique element g ∈ G
and x ∈ D such that τ(x) = P(X ,δ ,α) • g. The point x is just the projection of
P(X ,δ ,α) under Π→ D, and so, x = P(w). We replace (X ,α) with (X ,α) • g and
get τ(P(w)) = P(X ,δ ,α). Therefore, we must define t̃(w) := (X ,δ ,α) and with
this definition the above diagram is commutative. ut

Definition 8.10 The map t in Proposition 8.3 is called the t map.

Remark 8.1 Since the action of G on Π is free the map t̃ : H→ T̃ is unique. If
we have two such maps t̃i, i = 1,2 then P(t̃1(w)) = P(t̃2(w)), ∀w ∈ H. We have
a unique g ∈ G such that t̃2(w) = t̃1(w) • g and so P(t̃1(w)) = P(t̃1(w)) • g, and
so, g = 1. If the action of G on Π is generically free then we might have a similar
statement for t.

Remark 8.2 Note that if the τ map is holomorphic then the t map is holomorphic
too. This is the case, for instance, for abelian varieties. For mirror quintic both τ and
t maps are meromorphic, see [Mov17b, Chapter 4].

In §4.3 we have introduced few meromorphic functions in H. These might be used
in order to give a local coordinate system in H. The map t : H 99K T with such a
coordinate system in H gives us solutions to modular vector fields in T. Moreover,
the image of t is going to be a leaf of the foliation F (2) in §6.10.

8.6 Action of the monodromy group

The monodromy group ΓZ acts on H from the left by composition of maps and it
is natural to ask for the functional equation of the t map with respect to this action.
Recall that dim(M) = dim(H) is the dimension of the classical moduli of X0.

Proposition 8.4 Let m be the dimension of the classical moduli of X0. If the gener-
alized period map P : T→ U is m-injective ( see Definition 8.6) then

t(w) = t(A(w))•g(A,w), ∀A ∈ ΓZ, w ∈H,

where g(A,w) ∈ G is defined using the equality

A(τ̃(w)) = τ̃(A(w))•g(A,w) (8.4)

obtained from Proposition 8.2, τ̃ = τ ◦P : H→ Π and and P is the classical period
map.
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Proof. Let w = (X ,δ ) ∈ H and t(w) = (X ,α). Since the action of ΓZ and G on Π
commutes, we can re write (8.4) as

A
(
τ̃(w)•g(A,w)−1)= τ̃(A(w)),

which is τ̃(w) • g(A,w)−1 = τ̃(A(w)) in U. Since the diagram in Proposition 8.3
commutes we have P(t(w))•g(A,w)−1 = P(t(A(w)). Now, we use the m-injectivity
of the period map and we get t(w)•g(A,w)−1 = t(A(w)). ut

8.7 Period matrix

Let α be a C-basis of V0 and δ a basis V0,Z as in Chapter 4. Let u∈Π. Since u comes
with an embedding in (8.1) and αu is the identity map, we have automatically a basis
of H∗(Xu,Z) and H∗dR(Xu) which we denote it again by δ and α , respectively. We
define the m-th period matrix of u in the following way:

Pm(u) := (2πi)−
m
2 ·
∫

δm

α
tr
m = (2πi)−

m
2


∫

δm,1
αm,1

∫
δm,1

αm,2 · · ·
∫

δm,1
αm,bm∫

δm,2
αm,1

∫
δm,2

αm,2 · · ·
∫

δm,2
αm,bm

...
...

...
...∫

δm,bm
α1,m

∫
δm,bm

α2,m · · ·
∫

δm,bm
αm,bm

 .

If we have an enhanced family then we can replace t with u and the integrations in
the above matrix are the usual ones. Instead of the period matrix it is useful to use
the matrix qm defined by

αm = qmδ
pd
2n−m.

Then we have
Pm =Ψ

tr
2n−m ·qtr

m.

Combining these two equalities we have

αm = Ptr
mΨ
−1

2n−mδ
pd
2n−m. (8.5)

Remark 8.3 The entries of period matrices Pm, m = 0,1,2, . . . ,2n satisfy many
polynomial equations which have been described in Proposition 4.1. Considering
such entries as variables, this gives us an affine variety V ⊂ ∏

2n
m=0 Mat(bm,C) de-

fined over Q. The generalized period domain Π can be considered as an open subset
of V (using the usual topology of V ).
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8.8 Griffiths period domain as a quotient of real Lie groups

In this section we first recall from [Del71b, CK78] some classical construction re-
lated to Griffiths period domain and then reformulate them in terms of the general-
ized period domain. Let

Γk := Aut(H∗(X0,K), ·, [Y0]), K= R,C,

which is defined in a similar way as with ΓZ in (4.9). The group ΓR acts from the left
on Π, U and D in a canonical way. Let

Lie(ΓR) :=
{
g ∈ EndR(H∗(X0,R))

∣∣∣ (8.6)

R-linear, respects the homology grading,

∀x,y ∈ H∗(X0,R), gx · y+ x ·gy = g(x · y), g([Y0]) = 0
}
.

Note that for a fixed m this is just

Lie(ΓR) :=
{
g ∈ EndR(Hm(X0,R))

∣∣∣∀x,y ∈ Hm(X0,R), gx · y+ x ·gy = 0
}
. (8.7)

For any point α ∈ D, there is a natural filtration in Lie(ΓC)

F iLie(ΓC) = {g ∈ Lie(ΓC) | gpd(F p)⊂ F p+i, ∀p ∈ Z}, i = 0,−1,−2, . . . ,

where F• is the Hodge filtration associated to α and gpd is the Poincaré dual of the
linear map g. We get a natural filtration of the tangent bundle of D at α:

T h
α D :=

F−1(Lie(ΓC))
F0(Lie(ΓC))

⊂ F−2(Lie(ΓC))
F0(Lie(ΓC))

⊂ ·· · ⊂ Lie(ΓC)
F0(Lie(ΓC))

= Tα D.

One usually calls T h
α D the horizontal tangent bundle.

Recall that the marked projective variety X0 gives us a point in D. By abuse of
notation we also denote it by X0. We define

Stab(ΓR,X0) :=
{

A ∈ ΓR

∣∣∣A ·X0 = X0

}
,

where we have considered X0 ∈ D.

Proposition 8.5 We have

Lie(G) = F0(Lie(ΓC)) = Lie(Stab(ΓC,X0)) ,

where G is the algebraic group introduced in §3.3.

Proof. The first equality is just the definition of G via Poincaré duality. The second
equality follows from the definition of the Lie algebra of a Lie group. ut
Proposition 8.6 The subgroup Stab(ΓR,X0) of ΓR is compact.
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Proof. See [Del71b, CK78] or [Mov08a] Proposition 2. ut

The map
α : ΓR/Stab(ΓR,X0)→ D, α(A) = A ·X0 (8.8)

is an isomorphism and so we may identify D with the left hand side of (8.8). In
general, Stab(ΓR,X0) may not be maximal. It is connected and is contained in a
unique maximal compact subgroup K of ΓR. When K 6= Stab(ΓR,X0), then there
is a fibration of D = ΓR/Stab(ΓR,X0)→ ΓR/K with compact fibers isomorphic to
K/Stab(ΓR,X0) which are complex subvarieties of D. In this case we have Tα(D) =
T h

α (D)⊕T v
α(D), where T v(D) restricted to a fibre of π coincides with the tangent

bundle of that fiber.

Example 8.1 For mirror quintic Calabi-Yau threefols discussed in [Mov17b] the
period domain D is of dimension four. In this case Lie(G) (resp. F−1Lie(ΓC)) is of
dimension 6 (resp. 8) generated by the matrices:

A1 :=


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 , A2 =


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , A3 =


0 0 0 0
−1 0 0 0
0 0 0 0
0 0 1 0



A4 =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , A5 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , A6 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


(resp. those above and

A7 =


0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

 , A8 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .
) In this example dimTh

α D = 2, whereas the dimension of the moduli of mirror
quintics is 1. Note that F−1Lie(ΓC) is not a sub Lie algebra of Lie(ΓC) as [A7,A8] is
not inside Lie(ΓC).

8.9 Gauss-Manin connection matrix

We consider the trivial bundle H = U×V0 on U and call it the ghost cohomology
bundle. On H we have a well-defined integrable connection

∇ : H →Ω
1
U⊗OU

H

such that a section s of H in a small open set V ⊂ U with the property
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s(u) ∈ {u}×Hm(Xu,Z), u ∈ U

is flat. We will call this the ghost Gauss-Manin connection. Let α be a basis of V0
as before. We can consider αm,i as a global section of H and so we have

∇αm = Am⊗αm, Am =


Am,11 Am,12 · · · Am,1bm

Am,21 Am,22 · · · Am,2bm
...

...
. . .

...
Am,bm1 Am,bm2 · · · Am,bmbm

 , Am,i j ∈ H0(U,Ω 1
U).

(8.9)
Am is called the (m-th) ghost connection matrix of ∇ in the basis αm. The connection
∇ is integrable and so

dAm = Am∧Am

which is

dAm,i j =
bm

∑
k=1

Am,ik ∧Am,k j, i, j = 1,2, . . . ,bm. (8.10)

A fundamental system for the linear differential equation dY = Am ·Y in U is given
by Y = Ptr

m . It is sometimes useful to write

Am = dPtr
m ·P−tr

m . (8.11)

In the next discussion, for simplicity, we drop the sub index m from our notations.

Proposition 8.7 We have the equality

Ai1∧Ai2∧·· ·∧Aib =
1

det(P)
dP1i∧dP2i∧·· ·∧dPbi, i = 1,2, . . . ,b,

and hence
b∧

i=1

b∧
j=1

Ai j =
1

det(P)b

b∧
i=1

b∧
j=1

dP ji.

Proof. The proposition follows from the identity Atr =P−1 ·dP derived from (4.16).
ut

Note that we have
Φ = Ptr

Ψ
−trP. (8.12)

In particular, up to a minus sign we have:

det(P) =±

√
det(Φ)

det(Ψ)
,

which is a constant.
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8.10 Griffiths transversality distribution

Motivated by the Griffiths’s transversality theorem we define

Definition 8.11 The Griffiths transversality distribution Fgr in U is the OU sub
module of Ω 1

U generated by the differential 1-forms in the entries of

Ai j
m, j− i≥ 2, m = 1,2, . . . ,2n−1. (8.13)

These are %-entries of the Gauss-Manin connection matrices:

Am =



∗ ∗ % % · · · % %
∗ ∗ ∗ % · · · % %
...

...
...

. . . . . .
...

...
∗ ∗ ∗ · · · ∗ % %
∗ ∗ ∗ · · · ∗ ∗ %
∗ ∗ ∗ · · · ∗ ∗ ∗
∗ ∗ ∗ · · · ∗ ∗ ∗


, m = 0,1,2, . . . ,2n.

In general, the distribution Fgr on U is not integrable, see §5.2. This is, for instance,
the case of mirror quintic Calabi-Yau threefolds, see [Mov11a] and the section on
the τ-locus.

Definition 8.12 A holomorphic map f : V → U, where V is an analytic variety, is
called a ghost period map if it is tangent to the Griffiths transversality distribution,
that is, for all 1-form ω in (8.13) we have f−1ω = 0.

Proposition 8.8 We have the following C-linear relations between the differential
forms (8.13):

0 =
m

∑
k=m− j

Aik
Φ

k, j +
m

∑
k=m−i

Φ
i,k(A jk)tr, i+ j ≤ m−2.

We have also

0 =
m

∑
k=m− j

Aik
Φ

k, j +
m

∑
k=m−i

Φ
i,k(A jk)tr, i+ j = m−1,

which includes the entries of Ai j, j− i = 1 and modulo the differential forms (8.13)
is:

0 = Ai,i+1
Φ

i+1, j +Φ
i,m−i(Am−i−1,m−i)tr.

Proof. We have just opened the equality

0 = dΦ = AΦ +ΦAtr

This equality looks like (m = 4)
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0 =


∗ ∗ # # #
∗ ∗ ∗ # #
∗ ∗ ∗ ∗ #
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




0 0 0 0 ∗
0 0 0 ∗ ∗
0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

+


0 0 0 0 ∗
0 0 0 ∗ ∗
0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
# ∗ ∗ ∗ ∗
# # ∗ ∗ ∗
# # # ∗ ∗


∗ indicates the entries which do not interest us and # indicates the entries where the
differential forms (8.13) appear. Now, we write the above equality for the entries %
described below 

% % % ∗ ∗
% % ∗ ∗ ∗
% ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


and get the desired linear relations between the differential forms (8.13). We look
for the identities obtained from the entries % in:

∗ ∗ ∗ % ∗
∗ ∗ % ∗ ∗
∗ % ∗ ∗ ∗
% ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


and obtain the desired linear relations for the entries of Ai,i+1, i = 0,1, . . . ,m−1 and
the differential forms (8.13). ut

Proposition 8.9 The distribution Fgr is invariant under the action of G.

Proof. An element g ∈ G induces a biholomorphism on U which we denote it for
simplicity by g again. From A = dPtr ·P−tr it follows that

g∗A = gtrAg−tr.

This implies that g∗ sends the vector space generated by the 1-forms (8.13) to itself.
To see this one may draw gtrAg−tr:

gtrAg−tr =


∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗



∗ ∗ # # #
∗ ∗ ∗ # #
∗ ∗ ∗ ∗ #
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

 .

ut

Remark 8.4 Proposition 8.8 implies that in general the distribution Fgr has not the
expected codimension h0,mh2 + h1,m−1h3 + · · ·+ hm−2,2hm which is the number of
ωi j in (8.13).
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Remark 8.5 The equality dA = A∧A modulo the differential forms (8.13) has the
form:

dA =


∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∧

∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

=


∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


Therefore,

dAi j, i≤ hm−x, j > hm−x−2, x = 0,1, . . . ,m−3

are in the Ω 1
U-module generated by the differential forms (8.13). However,

dAi,i+2 = Ai,i+1∧Ai+1,i+2, modulo Fgr, (8.14)

which violates the integrability condition.

Remark 8.6 In the case of mirror quintic the Griffiths transversality distribution
Fgr :=F (A02,A03,A13) is of codimension 2 and it is not integrable. In order to see
this we proceed as follows. The matrix equality 0 = dΦ = AΦ +ΦAtr gives us six
independent equalities:

A13−A02 = 0, A23 +A01 = 0, A00 +A33 = 0,

A22 +A11 = 0, A32 +A10 = 0, (8.15)

A31−A20 = 0,

derived from its (1,2),(1,3),(1,4),(2,3),(2,4),(3,4) entries, respectively. Using
dA = A∧A we have

A13∧A14∧A24∧dA13 = A13∧A14∧A14∧A12∧A23,

A13∧A14∧A24∧dA14 = 0,
A13∧A14∧A24∧dA24 = A13∧A14∧A14∧A23∧A34.

The right hand side of the above equalities is not zero.

Remark 8.7 If all the linear relations in Proposition 8.8 were independent from
each other we could conclude that the Griffiths transversality is a consequence of
the definition if an enhanced family. For instance, this is the case for the Hodge
numbers h20 = h02 = 1, in which the collection of differential forms (8.13) is just
ω1,b and the equality in the (1,1) entries is A1bΦb1+Φb1A1b = 0. Since Φb1 = Φ1b

is not identically zero, we conclude that A1b is identically zero.

Remark 8.8 Is U an Stein veriety? The answer to this question can be the first step
toward the algebraization of U. To investigate this question one may start with the
article [LN99] of A. Lins Neto in which a theorem of A. Takeuchi in 1967 and G.
Elencwajg in 1975 is used.
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8.11 Modular foliations and vector fields

From now on we can use all the discussion in Chapter 3 and 6 replacing T with
U. Instead of algebraic objects like Xt we use their ghost versions like Xu. The
only difference lies in the format of Gauss-Manin connections. In T the Gauss-
Manin connection due to Griffiths transversality has a special format with bunch
of zeros, whereas, in U we have the Griffiths transversality distribution introduced
in §8.10. We can now define modular foliations and Hodge cycles etc. in the same
style that we did it for T in Chapter 6. It is too premature to claim a kind of Cattani-
Deligne-Kaplan theorem for U, that is, to say that a locus of Hodge cycles with
constant periods is a part of a global analytic subvariety of U. However, it seems to
the author that the following statement is true: Let p : T→ U be an analytic map
from an algebraic variety T to the generalized period domain U which is tangent
to the Griffiths transversality distribution. Then the pull-back of a locus of Hodge
cycles with constant periods by p is an algebraic subvariety of T. The possible proof
must be reconstructed from the arguments in [CDK95].

Recall that the group ΓZ acts from the left on the generalized period domain Π
and U = ΓZ\Π. We are interested to find vector fields in Π that are ΓZ-invariants
and hence can be lifted to vector fields in U. For simplicity, we sometimes drop
the subindex m from our notations. We denote a vector field v on the matrix space
Mat(b,C) with [vi j(P)]. In usual notations this is

v := ∑
i, j

vi j(P)
∂

∂ Pi j
.

For A ∈ ΓZ, let us consider the map

fA : Mat(b,C)→Mat(b,C), P 7→ AP.

Since fA is linear in P-coordinates, the vector field v in Π is ΓZ-invariant if

A[vi j(P)] = [vi j(AP)].

In particular, this is the case for vector fields of the form [vi j(P)] = P ·B, where B is
a constant matrix. We use Remark 8.3 and conclude that the mentioned vector field
is tangent to Π if B is in Lie(ΓC) defined in (8.6).

Proposition 8.10 For a matrix B ∈ Lie(ΓC), the vector field [vi j(P)] = P ·B gives
us a vector field in the generalized period domain U.

Recall that G acts from the right on U and so we have a canonical embedding

i : Lie(G) ↪→ H0(U,ΘU). (8.16)

Recall also from §8.8 that Lie(G)⊂ Lie(ΓC). We get

Proposition 8.11 For g∈Lie(G) the vector field i(g) in the m-th period coordinates
of U is given by:
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vg(P) := Pm ·gm

Proof. This is just the reformulation of Proposition 8.10. ut

Proposition 8.12 The Gauss-Manin connection matrix Am composed with the vec-
tor field vg, g ∈ Lie(G) is gtr

m , that is,

(Am)vg = gtr
m.

Proof. We have Am = dPtr
m ·P−tr

m and so

(Am)vg = (Pmgm)
trP−tr

m = gtr
m.

ut

Definition 8.13 A modular vector field v in U is a vector field such that (Am)v for
all m = 0,1,2, . . . ,2n is upper Hodge block triangular and all its Hodge blocks in
the diagonal are also zero.

8.12 Space of leaves

The foliation F (C) in U has local first integral P−trC, that is, its leaves are the
inverse image of points by P−trC. We consider the global LC̃, that is, we consider P
as a multi-valued function in U (the multi-valuedness arises from the choice of the
basis in homology), and

LC̃ :=

{
u ∈ U

∣∣∣∣∣P−trC = C̃

}
. (8.17)

The adjectives local or global will distinguish both sets from each other.

Proposition 8.13 The global set LC̃ consists of finitely many connected compo-
nents.

Note that Proposition 8.13 is valid also in the algebraic context of enhanced families
X/T if we assume that the period map P : T→ U is a biholomorphism. This hy-
pothesis can be verified for elliptic curves, K3 surfaces, cubic fourfolds and abelian
varieties. In general, partial compactifications of T might be used to prove statement
similar to Proposition 8.13.

Proof. The generalized period domain Π is an open subset (using the usual topol-
ogy) of the affine variety V of Cb given by the quadratic polynomials in (8.12). Its
boundary in V is given by zeros of polynomials in the entries of P and its complex
conjugate P̄. These are points for which the Hodge-Riemann bilinear relations fails.
Any algebraic subset of V in holomorphic variables P intersects Π in a finite number
of connected components. In particular, for fixed C, C̃ ∈ Cb the set
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ĽC̃ :=

{
P ∈ Π

∣∣∣∣∣PtrC̃ = C

}
(8.18)

has finitely many connected components. Its image under the canonical map Π→U
is the set LC̃ defined in U. ut

For A ∈ ΓZ, the biholomorphism Π → Π, P 7→ AP induces a biholomorphism
ĽAtrC̃ → ĽC̃ and so in the quotient U := ΓZ\Π they induce the same leaf of F (C).
Therefore, ΓZ acts on the set A of connected components of LC̃. Note that such
components might have different dimensions. Let {[L1], [L2], · · · , [Ls]} be the de-
composition of A into equivalency classes and

ΓZ,i :=

{
A ∈ ΓZ

∣∣∣∣∣A(Li) = Li

}
, i = 1,2, . . . ,s.

Proposition 8.14 The sum of indices of ΓZ,i, i = 1,2, . . . ,s inside ΓZ is equal to the
number of connected components of LC̃ in U.

Proof. Using Proposition 8.13, we know that the map from ΓZ/ΓZ,i to the set of
connected components of LC̃ given by A 7→ A(L̃) is injective. Considering all i =
1,2, . . . ,s we get the desired statement. ut

8.13 Transcendental degree of automorphic forms

Let D⊂CN be an open Hermitian symetric domain and let Γ be an arithmetic group
acting on D, see [Milb]. Let also j : D×Γ →C∗ be an automorphy factor. It follows
from the Baily-Borel theorem in [BJB66] that the transcendental degree of the field
of automorphic forms for (D,Γ , j) is the dimension of D. One may also ask what is
the transcendental degree of the algebra generated by automorphic forms and their
derivatives. When Γ \D is a moduli space of Hodge structures of weight w, we can
answer this question. The answer in this case is the dimension of the moduli space of
enhanced Hodge structures. We denote by z = (z1,z2, . . . ,zN) the coordinate system
in D⊂ CN and by ∂i := ∂

∂ zi
the derivation with respect to zi. The field generated by

automorphic forms for Γ y D and their derivatives under ∂i is expected to be of
transcendence degree dim(T) over C. For D = Hg the Siegel upper half plane and
Γ = Sp(2g,Z) this has been proved in [BZ01, BZ03].





Chapter 9
Elliptic curves

Though his [D. Northcott’s] thesis was in analysis under G. H. Hardy, he attended
Artin’s seminar, and when one of the first speakers mentioned the characteristic of
a field, Northcott raised his hand and asked what that meant. His question begot
laughter from several students, whereupon Artin delivered a short lecture on the
fact that one could be a fine mathematician without knowing what the characteristic
of a field was. And, indeed, it turned out that Northcott was the most gifted student
in that seminar, (J. Tate in [RS11] page 446).

9.1 Introduction

The case of elliptic curves is the founding stone of the present text, and therefore,
the content of this chapter must be read alongside any other chapter in this text. Un-
satisfied with P. Griffiths’ formulation of period domain [Gri70], K. Saito’s formula-
tion of primitive forms [Sai01] and N. Katz’s description of the relation beween the
Eisenstein series E2 and the Gauss-Manin connection of a family of elliptic curves
[Kat73], the author had to rewrite the case of elliptic curves in [Mov08b, Mov08c].
Later, more details were gathered in the lecture notes [Mov12b]. The main objec-
tive in this lecture notes is to derive the theory of quasi-modular forms in the purely
geometric context of elliptic curves. Therefore, in this chapter I will omit many dis-
cussions regarding quasi-modular forms. Even the reader who is interested in Hodge
cycles and Hodge loci will find the content of this chapter relevant. The only geo-
metric phenomena which could happen for a single elliptic curve are either getting
singular or having a complex multiplication. Both phenomena are isolated points
in the moduli of elliptic curves. However, the dynamics of modular foliations and
the non-existence of algebraic leaves in this case become non-trivial topics. This
will prepare the reader to the content of Chapter 10 in which we will encounter
the first non-trivial Hodge locus arising from the isogeny of elliptic curves and the
corresponding modular curves.

137
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9.2 Enhanced elliptic curves

It is a well-known fact that any elliptic curve over a field k can be embedded in
the projective space of dimension 2. Therefore, we are going to consider degree 3
smooth curves X in P2. Note that an elliptic curve over k by definition is marked
with a k-rational point 0 ∈ X(k). We can neglect the polarization θ in all of our dis-
cussions, because it is uniquely determined by Tr(θ) = 3. We only need to discuss
the middle cohomology H1

dR(X) and so we drop the sub index m from our notations.
For many missing details the reader is referred to [Mov12b].

An enhanced elliptic curve turns out to be a pair (X ,{α,ω}), where α is a regular
differential form in X and ω ∈ H1

dR(X) such that 〈α,ω〉= 1. In this case we have a
universal family of enhanced elliptic curves X→ T, where

X : y2−4(x− t1)3 + t2(x− t1)+ t3 = 0, α =

[
dx
y

]
, ω =

[
xdx

y

]
(9.1)

which is written in the affine coordinate (x,y), and

T := Spec
(
k

[
t1, t2, t3,

1
27t2

3 − t3
2

])
.

We have

Φ =Ψ =

[
0 1
−1 0

]
.

The algebraic group G is

G =

{[
k k′

0 k−1

]∣∣∣∣∣ k′ ∈ k,k ∈ k−{0}

}
= Spec

(
k

[
k,k′,

1
k

])
(9.2)

and its action on T is given by

t •g := (t1k−2 + k′k−1, t2k−4, t3k−6),

t = (t1, t2, t3) ∈ T, g =

[
k k′

0 k−1

]
∈ G.

The Gauss-Manin connection matrix of the family X/T is

A =
1
∆

[
− 3

2 t1α− 1
12 d∆

3
2 α

∆dt1− 1
6 t1d∆ − ( 3

2 t2
1 +

1
8 t2)α 3

2 t1α + 1
12 d∆

]
, (9.3)

∆ = 27t2
3 − t3

2 , α = 3t3dt2−2t2dt3.

This computation with t1 = 0 is well-known, see [Sas74] p. 304 or [Sai01], (in
the first reference the formula has a sign mistake). From a historical point of view
another family of elliptic curves turns out to be important as well. From this family
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we are going to derive Darboux’s differential equation. This can be also served as
a motivation to enlarge our notion of moduli of enhanced projective varieties by
adding more ingredients in the definition of an enhanced variety. Let

X : y2−4(x− t1)(x− t2)(x− t3) = 0, α =

[
dx
y

]
, ω =

[
xdx

y

]
, (9.4)

T = Spec
(
k

[
t1, t2, t3,

1
(t1− t2)(t2− t3)(t3− t1)

])
.

The family X/T is the universal family for the moduli of 3-tuple (X ,(P,Q),{α,ω}),
where (X ,{α,ω}) is an enhanced elliptic curve and P and Q are points of X(k̄) that
generate the 2-torsion subgroup of X with Weil pairing e(P,Q) =−1. The points P
and Q are given by (t1,0) and (t2,0). Its Gauss-Manin connection matrix is given by

A =
dt1

2(t1− t2)(t1− t3)

[
−t1 1

t2t3− t1(t2 + t3) t1

]
+ (9.5)

dt2
2(t2− t1)(t2− t3)

[
−t2 1

t1t3− t2(t1 + t3) t2

]
+

dt3
2(t3− t1)(t3− t2)

[
−t3 1

t1t2− t3(t1 + t2) t3

]
.

9.3 Modular vector fields

In this section we briefly recall the material of §6.11 in the case of elliptic curves.
We first consider the family (9.1). There are unique vector fields e,h, f in T such
that the Gauss-Manin connection matrix A of the family X/T along these vector
fields has the form:

Ah =

[
1 0
0 −1

]
, A f =

[
0 1
0 0

]
, Ae =

[
0 0
1 0

]
.

Since we know the explicit formula of the Gauss-Manin connection in (9.3), this
affirmation can be checked easily, and in fact, we can compute explicit expressions
for e, f ,h:

f =−(t2
1 −

1
12

t2)
∂

∂ t1
− (4t1t2−6t3)

∂

∂ t2
− (6t1t3−

1
3

t2
2 )

∂

∂ t3
, (9.6)

h =−6t3
∂

∂ t3
−4t2

∂

∂ t2
−2t1

∂

∂ t1
, e =

∂

∂ t1
.

The k-vector space generated by these vector fields equipped with the classical
bracket of vector fields is isomorphic to the Lie Algebra sl2, and hence, it gives
a representation of sl2 in the polynomial ring Q[t1, t2, t3] which is infinite dimen-
sional.

[h,e] = 2e, [h, f ] =−2 f , [e, f ] = h. (9.7)
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Definition 9.1 We call R :=− f in (9.6) the Ramanujan vector field.

One can check the relations (9.7) directly, however, there is a geometric way to see
this by using the composition of vector fields with the Gauss-Manin connection ma-
trix. For this we use Proposition 6.17 and we have for instance A[ f ,e] = [Ae,A f ]. Note
that after composing with A the role of h and e is exchanged. A similar discussion
can be done for the family (9.4). In this case we have

Definition 9.2 There is a unique vector field D in T such that

AD =

[
0 −1
0 0

]
.

This is

D = (t1(t2 + t3)− t2t3)
∂

∂ t1
+(t2(t1 + t3)− t1t3)

∂

∂ t2
+(t3(t1 + t2)− t1t2)

∂

∂ t3
.

and it is called the Darboux-Halphen vector field.

The algebraic morphism α : A3
k→ A3

k defined by

α : (t1, t2, t3) 7→ (T,4 ∑
1≤i< j≤3

(T − ti)(T − t j),4(T − t1)(T − t2)(T − t3)), (9.8)

where T := 1
3 (t1+ t2+ t3) connects the families (9.1) and (9.4), that is, if in (9.1) we

replace t with α(t) we obtain the family (9.4). The Gauss-Manin connection matrix
associated to (9.4) is just the pull-back of the Gauss-Manin connection associated
to (9.1), and so, the Darboux-Halphen vector field is mapped to Ramanujan vector
field under α .

9.4 Quasi-modular forms

The Eisenstein series are defined as follows:

E2k(τ) = 1+(−1)k 4k
Bk

∑
n≥1

σ2k−1(n)qn, k = 1,2,3, τ ∈H, (9.9)

where q = e2πiτ and σi(n) := ∑d|n di and Bi’s are the Bernoulli numbers:

B1 =
1
6
, B2 =

1
30

, B3 =
1

42
, . . . .

S. Ramanujan in [Ram16] proved that

g = (g1,g2,g3) = (a1E2,a2E4,a3E6), (9.10)
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with

(a1,a2,a3) =

(
2πi
12

,12(
2πi
12

)2,8(
2πi
12

)3
)
,

satisfies the ODE’s

R :

 ṫ1 = t2
1 −

1
12 t2

ṫ2 = 4t1t2−6t3
ṫ3 = 6t1t3− 1

3 t2
2

, (9.11)

where the derivation is with respect to τ . The constants ai’s have appeared in our
geometric treatment of Ramanujan differential equation R, and up to these constants,
(9.11) is the same as (1.1).

In 1881, G. Halphen considered the non-linear differential system ṫ1 + ṫ2 = 2t1t2
ṫ2 + ṫ3 = 2t2t3
ṫ1 + ṫ3 = 2t1t3

,

(see [Hal81b, Hal81c, Hal81a]) which originally appeared in G. Darboux’s work
in 1878 on triply orthogonal surfaces in R3 (see [Dar78b]). We write the above
equations in the ordinary differential equation form:

D :

 ṫ1 = t1(t2 + t3)− t2t3
ṫ2 = t2(t1 + t3)− t1t3
ṫ3 = t3(t1 + t2)− t1t2

. (9.12)

Halphen expressed a solution of the system (9.12) in terms of the logarithmic deriva-
tives of the theta series:

u1 = 2(lnθ4(0|τ))′,

u2 = 2(lnθ2(0|τ))′, ′ =
∂

∂τ
,

u3 = 2(lnθ3(0|τ))′.

where 
θ2(0|τ) := ∑

∞
n=−∞ q

1
2 (n+

1
2 )

2

θ3(0|τ) := ∑
∞
n=−∞ q

1
2 n2

θ4(0|τ) := ∑
∞
n=−∞(−1)nq

1
2 n2

, q = e2πiτ , τ ∈H.

9.5 Halphen property

For R = Z,R,C etc. let us define

SL(2,R) :=

{[
a b
c d

]∣∣∣∣∣a,b,c,d ∈ R, ad−bc = 1

}
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and

Γ (d) :=

{
A ∈ SL(2,Z)

∣∣∣∣∣A≡
[

1 0
0 1

]
mod d

}
, d ∈ N.

For a holomorphic function defined in H and A =

[
a b
c d

]
∈ SL(2,C), m ∈N let also

( f |0m A)(τ) := (cτ +d)−m f (Aτ),

( f |1m A)(τ) := (cτ +d)−m f (Aτ)− c(cτ +d)−1,

The following property of the differential equations R and D is known as the
Halphen property.

Proposition 9.1 If φi, i = 1,2,3 are the coordinates of a solution of the Ramanujan
differential equation R (resp. the Darboux-Halphen differential equation D) then

φ1 |12 A, φ2 |04 A, φ |06 A,

(resp.
φi |12 A, i = 1,2,3,

) are also coordinates of a solution of R (resp. D) for all A∈ SL(2,C). The subgroup
of SL(2,C) which fixes the solution given by Eisenstein series (resp. theta series) is
SL(2,Z) (resp. Γ (2)).

Proof. The first part of the proposition is a mere calculation and it is in fact true
for a general Halphen equation in §9.12. The second part is easy and it is left to the
reader. ut

It is useful to consider the special case A =

[√
d 0

0
√

d
−1

]
. Recall the Eisenstein

series (g1,g2,g3) in §9.4. The following

(d ·g1(d · τ), d2 ·g2(d · τ), d3 ·g3(d · τ))

is also a solution of the Ramanujan differential equation. For more discussion on
Halphen property see [Mov12a].

9.6 Period domain and map

For the rest of our discussion in this chapter we will only consider the family (9.1).
In this section we take k= C. The generalized period domain in the case of elliptic
curves is

Π :=

{[
x1 x2
x3 x4

]∣∣∣∣∣xi ∈ C, x1x4− x2x3 = 1, Im(x1x3)> 0

}
(9.13)
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seems to appear in the literature for the first time in [Mov08b]. In the case of elliptic
curves the discrete group ΓZ turns out to be SL(2,Z). This group (resp. G in (9.2) )
acts from the left (resp. right) on Π by usual multiplication of matrices. We also call

U := SL(2,Z)\Π

the period domain.

Theorem 9.2 The period map

P : T→ U, t 7→

[
1√
2πi

[∫
δ

dx
y
∫

δ
xdx

y∫
γ

dx
y
∫

γ
xdx

y

]]
(9.14)

is a biholomorphism of complex manifolds.

The first bracket [·] in (9.14) means the equivalence class in the quotient SL(2,Z)\Π,
and the other refers to a 2×2 matrix. We have chosen a basis δ ,γ ∈ H1(X ,Z) with
〈δ ,γ〉=−1. It is well-defined because different choices of δ ,γ lead to the action of
SL(2,Z) from the left on Π which is already absorbed in the quotient U. Theorem
9.2 follows from the fact that the classical period map C→ SL(2,Z)\H, which for
j ∈C it associates the quotient of two elliptic integrals attached to the elliptic curve
with the j-invariant j, is a biholomorphism and its inverse is given by the classical
j-function. For details see [Mov08c] or [Mov08b].

The period map satisfies

P(t •g) = P(t) ·g, t ∈ T, g ∈ G. (9.15)

The push-forward of the vector fields f ,e,h by the period map are respectively given
by

f = x2
∂

∂x1
+ x4

∂

∂x3
,

e = x1
∂

∂x2
+ x3

∂

∂x4
,

h = x1
∂

∂x1
− x2

∂

∂x2
+ x3

∂

∂x3
− x4

∂

∂x4
.

Here, the vector fields act as derivations on the ring OU of holomorphic functions in
U. This follows from dP = PAtr and

dP( f ) =
[

x2 0
x4 0

]
,

dP(e) =
[

0 x1
0 x3

]
,

dP(h) =
[

x1 −x2
x3 −x4

]
.
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9.7 Modular foliations

We analyze the modular foliations in the case of elliptic curves. The action of G on
A2
k−{0} has two orbits represented by

C =

[
1
0

]
,

[
0
1

]
.

The modular folation F (C) corresponding to the first one is given by the Ramanujan
vector field R in (9.6) and the modular foliation F (C) corresponding to the second
C is given by the vector field e. Therefore, the moduli of modular foliations consists
of two points. The Ramanujan vector field gives us also the foliation F (2) and so

F (2) = F (R) = F (C), C := [1,0]tr.

We call this the Ramanujan foliation. The singularities of F (2) are given by

Sing(F (2)) :=
{
(a,12a2,8a3)

∣∣∣a ∈ k
}
. (9.16)

We consider the foliation F in A3
k given by the k-vector space generated by e, f ,h.

The foliation F is three dimensional and its unique general leaf is given by the
whole space A3

k. The vector fields e,h, f are tangent to the discriminant locus {∆ =
0} ⊂ A3

k and

(6t3) f − (6t3t1−
1
3

t2
2 )h+(

2
3

t1t2
2 −6t2

1 t3−
1
2

t2t3)e =
4
3

∆
∂

∂ t2
(9.17)

Fig. 9.1 Singularities of Ramanujan vector field
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Therefore, Sing(F ) = {∆ = 0}. There is natural stratification of A3
k according to

linear independence of e, f ,h which is given by

{(t1,0,0) | t1 ∈ k} ⊂ {∆ = 0} ⊂ A3
k.

9.8 Moduli of Hodge decompositions

The moduli of Hodge decompositions T1 in the case of elliptic curves is the set of
pairs (E,H0,1), where E is an elliptic curve over k and H0,1 6= F1H1

dR(E) is a one
dimensional subspace of H1

dR(E). It turns out that this moduli is the quotient of T
under the action

T×Gm→ T, (t1, t2, t3),k 7→ (k · t1,k2 · t2,k3 · t3),

and so, such a moduli space is

T1 = P1,2,3
k −P{∆ = 0}.

This has a natural compactification in the weighted projective space P1,2,3 which is
the projectivization of A3

k with the coordinate system (t, t2, t3) and weights deg(ti) =
i, i = 1,2,3. The foliation F (2) in T1 induced by the Griffiths transversality can
be written explicitly in the affine coordinate system [1 : x : y] for P1,2,3 with

(x,y) :=
(

t2
t2
1
,

t3
t3
1

)
.

This is as follows. The Ramanujan vector field R as an ordinary differential equation
gives us {

ẋ = t1 · (2x−6y+ 1
6 x2),

ẏ = t1 · (3y− 1
3 x2 + 1

4 xy).

Therefore,

F (2) :
(

2x−6y+
1
6

x2
)

dy−
(

3y− 1
3

x2 +
1
4

xy
)

dx = 0. (9.18)

Proposition 9.3 The only algebraic leaf of the foliation (9.18) in C2 is the curve

27y2− x3 = 0.

The reader who is familiar with foliations in two dimensional surfaces, might try to
prove this theorem using the Camacho-Sad index theorem, see for instance [LNS].
This can be done in the same way as one proves that the Jouanolou foliation has no
algebraic leaf. Our proof of Proposition 9.3 does not use this and it follows from
Theorem 9.7 in which we use the moduli interpretation of the coordinate system

http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2018-03-StratificationRamanujan.txt 
http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2018-03-StratificationRamanujan.txt 
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(t1, t2, t3). Note that the natural projectivization of the foliation (9.18) is in P1,2,3 for
which the line at infinity is not invariant. However, if we look at (9.18) in the usual
projective space P2 then the line at infinity is invariant. Note also that singular points
of the foliation (9.18) in C2 are (x,y) = (0,0),(12,8).

9.9 Algebraic group acting on modular vector fields

Let us consider the left action of the Borel group G on the moduli space T. It induces
an action of G from the left on the space of vector fields on T in a canonical way.

Proposition 9.4 We have f •g
h•g
e•g

=

1 −k′ −k′2

0 1 2k′

0 0 1

 f
h
e

 , g =

[
1 k′

0 1

]
∈ G,

 f •g
h•g
e•g

=

k2 0 0
0 1 0
0 0 k−2

 f
h
e

 , g =

[
k 0
0 k−1

]
∈ G.

Proof. We just need to compute the derivation of the action

A3
k→ A3

k, (t1, t2, t3) 7→ (t1k−2 + k′k−1, t2k−4, t3k−6), g =

[
k k′

0 k−1

]
∈ G.

ut

The group GC with C = [1,0]tr in (6.11) turn out to be

GC :=
{[

k 0
0 k−1

]
| k ∈ k∗

}
,

and the character λ : GC→Gm is an isomorphism of groups given by
[

k 0
0 k−1

]
7→ k.

We conclude that

Proposition 9.5 The foliation F (2) is invariant under the action of g =

[
k 0
0 k−1

]
on T, that is, g maps a leaf of F (C) to another leaf.

Proof. The statement follows from f •g = k2 f . In fact, g maps the leaf LC̃ : P−trC=
C̃ to Lk−1C̃. Note that we have used the particular format of C = [1,0]tr. ut

Note that T1 = T/GC turns out to be the moduli of Hodge decompositions discussed
in §9.8. The foliation F (2) is our first example of a modular foliation with a non-
trivial character. We conclude that there is a foliation F (C,λ ) containing the leaves
of F (2) which is introduced in §6.4. This turns out to be the foliation F ( f ,h).

http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2018-03-SingularitiesFoliationRamanujan.txt
http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2018-03-SingularitiesFoliationRamanujan.txt
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Proposition 9.6 If the leaf of F (2) passing through p ∈ C3 is algebraic then the
leaf of F ( f ,h) passing through p is also algebraic.

Proof. Note that [h, f ] =−2 f and so the distribution given by f and h in the tangent
space of T is integrable. The assertion follows from Proposition 9.5 and the fact that
the Gm-action used in this proposition is given by h. ut

9.10 Leaves

The period map in the case of elliptic curves is a biholomorphism between T and
U and under this biholomorphism the notations in Chapter 6 and Chapter 8 are
translated to each other. For instance, F (2) in T is mapped to F (2) in U. A leaf of
the Ramanujan foliation F (2) in T is given by the equality

LC̃ :
[

x1 x2
x3 x4

]−tr [1
0

]
=

[
x4
−x2

]
= C̃ (9.19)

for some constant vector C̃ ∈ C2\{0}. In particular, the set L (C) in (6.12) is

L (C) =
{

C̃ ∈ C2, C̃ 6= 0
}
. (9.20)

Two such leaves LC̃i
, i = 1,2 are the same if and only if C̃1 = AC̃2 for some A ∈

SL(2,Z). This means that the converse of Proposition 6.6 is true in the case of
elliptic curves. The space of leaves SL(2,Z)\L (C) for points C̃ with C̃1/C̃2 ∈ R
does not enjoy any reasonable structure. For further study of the dynamics of F (2)
see [Mov12a].

A leaf of F ( f ,h) is given by

Lc :
x2

x4
= c, for some constant c ∈ P1. (9.21)

Two such leaves Lci , i = 1,2 are the same if and only if c1 = Ac2 for some
A ∈ SL(2,Z). Here, we have used the Möbius action of SL(2,Z) on P1. We ex-
pect that all the algebraic leaves of modular foliations are again moduli spaces of
certain structures in Algebraic Geometry. Viewed in this way, the following can be
considered as a first evidence to such a statement.

Theorem 9.7 No leaf of the Ramanujan foliation F (2) in T : C3\{27t2
3 − t3

2 = 0}
is algebraic.

Proof. Using Proposition 9.6 it is enough to prove the same statement for F ( f ,h).
Two leaves Lc1 ,Lc2 of F ( f ,h) given in (9.21) are the same if an only if A(c1) =
c2 for some A ∈ SL(2,Z). If a leaf Lc of F ( f ,h) is algebraic then the orbit of c
under SL(2,Z)-action is a closed subset of P1. Otherwise, such an orbit have an
accumulation point b. This implies that the leaf Lc accumulates on the leaf Lb which
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is a contradiction. It turns out that such a closed orbit does not exist and the theorem
follows. ut

9.11 An alternative proof of Theorem 9.7

There are two essential steps in the proof of Theorem 9.7. The first one is the fact
that the action of SL(2,Z) in P1 has no finite orbit. The second one is the usage
of Theorem 9.2. From this theorem what we need is the following. The loci of pa-
rameters t ∈ T such that the quotient

∫
δ

xdx
y /

∫
γ

xdx
y is constant for some choice of δ

and γ with 〈δ ,γ〉 = −1, is a “connected” leaf of F ( f ,h). The connectedness may
fail in general and this set might be a union of infinite number of leaves. This must
be considered the most critical part of the proof which makes it hard for general-
izations. Another way to look at this issue is that for any family of elliptic curves,
which is not isotrivial, that is, all the smooth fibers are not isomorphic to each other,
the image of the corresponding monodromy group in SL(2,Z) has finite index. For
an algebraic leaf of R in T the monodromy group contains only A ∈ SL(2,Z) such
that Ac = c. Up to the action of SL(2,Z), there are four possiblities for c:

c =±i,±−1+ i
√

3
2

. (9.22)

For the first (resp. the second) two c’s the group of such matrices A is a cyclic
group of order 4 (resp. 6). Therefore, such a group is far from having finite index in
SL(2,Z).

There are several other ideas which lead us to new proofs for Theorem 9.7. Since
they might be useful for further generalizations we mention them here.

The first idea is as follows. We know that the Eisenstein series E2,E4,E6 up to
multiplication with a constant form a solution of R. From another side we know
that they are algebraically independent over C. We can actually derive this from
Theorem 9.2 and the fact that the inverse of the period map can be expressed in
terms of Eisenstein sereis, see [Mov08b]. For an elementary proof see Theorem A.9
and [MR05]. We conclude that at least one solution of R is Zariski sense. Now,
we use the Halphen property of R (see §9.5) and conclude the statement for other
solutions, for more details see [Mov08c].

The idea of the second proof is as follows. Take any one parameter family of
elliptic curves which is not isotrivial, that is, all the smooth fibers are not isomor-
phic to each other. Leaves of R in T can be parameterized by elliptic integrals of
this family. The differential Galois group of the corresponding Picard-Fuchs equa-
tion is SL(2,C), and from this, we can deduce that the transcendental degree of
the field generated by such elliptic integrals is exactly three, and in particular, the
parametrization of leaves of R by elliptic integrals has three algebraically indepen-
dent coordinates over C, for more details see [Mov12b]. A similar statement in the
case of mirror-quintic is proved using this method, see [Mov11a].
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The third proof is the following. Using the abelian subvariety theorem, one can
show that all the leaves of R in T intersects Q̄3 at most at one point. For more details
see [Mov08c]. The following is slightly stronger than Theorem 9.7

Theorem 9.8 The leaves of the Ramanujan foliation F (2) in T :=C3\{27t2
3−t3

2 =
0} are Zariski dense.

Proof. By contradiction let L be a leaf of F (2) in T contained in P(t1, t2, t3) = 0
for some polynomial P with coefficients in C for which we can further assume that
P is irreducible over C. We have L ⊂ {dP(R) = 0}, and since by Theorem 9.7 L is
a transcendental leaf, P divides dP(R). This means that P = 0 is tangent to R. From
another side using the equality dP(R) = P ·Q, for some polynomial Q, we can take
the last homogeneous piece of P which satisfies a similar equality, and so, we can
assume that P is homogeneous. This is equivalent to say that dP(h) = deg(P) ·P and
so P = 0 is a leaf of F ( f ,h). In Theorem 9.7 we have shown that this foliation has
no algebraic leaf in T. ut

9.12 Halphen differential equation

In a series of article [Hal81b, Hal81c, Hal81a] Halphen studied the following system
of ODE’s:

H(α) :


ṫ1 = (1−α1)(t1t2 + t1t3− t2t3)+α1t2

1
ṫ2 = (1−α2)(t2t1 + t2t3− t1t3)+α2t2

2
ṫ3 = (1−α3)(t3t1 + t3t2− t1t2)+α3t2

3

, (9.23)

with αi ∈C∪{∞} (if for instance α1 = ∞ then the first row is replaced with−t1t2−
t1t3 + t2t3 + t2

1 ). He showed the so called Halphen property for H(α).

Proposition 9.9 If φi, i = 1,2,3 are the coordinates of a solution of H(α) then

1
(cz+d)2 φi(

az+b
cz+d

)− c
cz+d

, i = 1,2,3,
[

a b
c d

]
∈ SL(2,C)

are also coordinates of a solution of H(α).

Proof. The proof is based on explicit calculations and is left to the reader. ut

Halphen concluded that it is enough to find one solution of H(α) and then used
Proposition 9.9 to obtain the general solution. He then constructed a particular so-
lution of H(α) using the Gauss hypergeometric function.

Let a,b,c be defined by the equations:

1−α1 =
a−1

a+b+ c−2
,

1−α2 =
b−1

a+b+ c−2
,
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1−α3 =
c−1

a+b+ c−2
.

We consider the following matrix of differential 1-forms in (t1, t2, t3) ∈ C3:

A =
3

∑
i=1

Aidti, (9.24)

where
A1 =

1
(t1− t2)(t1− t3)

· (9.25)( 1
2 ((a+ c−1)t2 +(a+b−1)t3 +(b+ c−2)t1) ,

at2t3 +(b−1)t1t3 +(c−1)t1t2, ,

−a−b− c+2
− 1

2 ((a+ c−1)t2 +(a+b−1)t3 +(b+ c−2)t1)

)
and A2 (resp. A3) is obtained from A1 by changing the role of t1 and t2 (resp. t1
and t3). It is a mere computation to see that A gives us an integrable connection on
C3, that is, dA = −A∧A. From Lie theoretic point of view Halphen’s differential
equation should not be considered on its own but together with the attached sl2
structure, see for instance Guillot’s article [Gui07]. Let H = H(α) be the vector
field in C3 corresponding to the Halphen’s differential equation (9.23) and

f :=−H, h =−
3

∑
i=1

2ti
∂

∂ ti
, e =

3

∑
i=1

∂

∂ ti
.

The following is a mere computation.

Proposition 9.10 We have

A f =

[
0 1
0 0

]
, Ah =

[
1 0
0 −1

]
, Ae =

[
0 0
1 0

]
.

It follows that the C-vector space generated by e, f ,h forms the classical Lie algebra
sl2: [h,e] = 2e, [h, f ] =−2 f , [e, f ] = h. The reader is referred to [Mov12a] for the
geometric interpretation of the connection matrix A. In particular, one can find the
proof of the following proposition:

Proposition 9.11 The integrals

p
∫

δ

xdx
(x− t1)a(x− t2)b(x− t3)c , (9.26)

where
p := (t1− t3)−

1
2 (1−a−c)(t1− t2)−

1
2 (1−a−b)(t2− t3)−

1
2 (1−b−c)
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and δ is path in C\{t1, t2, t3} connecting two points in t1, t2, t3,∞ or it is a Pochham-
mer cycle, as local multi valued functions in t1, t2, t3 are constant along the solutions
of the Halphen differential equation H(α).

The following slight modification of the above discussion might be useful. Con-
sider the connection matrix

A =
3

∑
i=1

Aidti, (9.27)

where

A1 :=
1

(t1− t2)(t1− t3)
·
[
−at1 +(a+ c−1)t2 +(a+b−1)t3 −a−b− c+2

at2t3 +(b−1)t1t3 +(c−1)t1t2 (−a−b− c+2)t1

]
(9.28)

and A2 (resp. A3) is obtained from A1 by changing the role of t1 and t2 (resp. t1 and
t3). It is obtained from the connection matrix in (9.24) by subtracting it from d p

p I2×2,
where p is defined in Proposition 9.11. and I2 is the identity 2×2 matrix. The vector

field H such that for f := (a+b+ c−2)−1 ·H we have A f =

[
0 1
0 0

]
, is given by

 ṫ1 = (a−1)t2t3 +bt1t3 + ct1t2
ṫ2 = at2t3 +(b−1)t1t3 + ct1t2
ṫ3 = at2t3 +bt1t3 +(c−1)t1t2

. (9.29)

The integral ∫
δ

xdx
(x− t1)a(x− t2)b(x− t3)c ,

where δ is as in Proposition 9.11, is constant along the trajectories of (9.29). For the
computer codes used in this section see the author’s webpage.

Finally, let us state and prove the generalization of Theorem 9.7 for the Halphen
differential equation:

Theorem 9.12 If one of a+ c,a+ b or b+ c is equal to one and a,b,c 6∈ Z then
the leaves of the Halphen differential equation in C3\∪i, j=1,2,3, i< j {ti− t j = 0} are
Zariski dense.

Proof. We only sketch a proof. For more details see [Mov12a], see also [DGMS13]
Theorem 3. The integral (9.26) for t1 = 0, t2 = 1, t3 = z satisfies a second order
linear differential equation L whose monodromy group is inside SL(2,C). This is
essentially the Gauss hypergeometric equation. Moreover, since one of a+ c,a+b
or b+ c is equal to one and a,b,c are non integral it contains a nilpotent element[

1 α

0 1

]
, α 6= 0. This implies that the differential Galois group of L is SL(2,C).

From another side, the leaves of the Halphen differential equation in the Zariski
open set ti 6= t j can be parameterized by three algebraically independent elements in
the differential field generated by solutions of L. This finishes the proof. ut

http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2018-03-HalphenDifferentialEquation.txt
http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2018-03-HalphenDifferentialEquation.txt
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In the proof of Theorem 9.12 what we actually need is that the Galois group of the
corresponding Gauss hypergeometric equation is SL(2,C). One might use the result
of Beukers and Heckman in [BH89] and give a complete classification of Halphen
differential equations with Zariski dense general leaves.



Chapter 10
Product of two elliptic curves

The applications of modular curves and modular functions to number theory are
especially exciting: you use GL2 to study GL1, so to speak! There is clearly a lot
more to come from that direction ... may be even a proof of the Riemann Hypothesis
some day!, (J. P. Serre in [CTC01]).

10.1 Introduction

This chapter deals with enhanced pairs of elliptic curves, their moduli space T and a
modular foliation F on T. The reader interested in Hodge loci will encounter its first
non-trivial example, this is namely, the modular curve X0(d) which parametrizes
pairs of elliptic curves with an isogeny of degree d. In our context we repalce X0(d)
with a three dimensional affine subvariety Vd of T, which itself is six dimensional.
We prove that Vd’s are the only algebraic leaves of F . This will be the first verifica-
tion of Property 7.1. This chapter is the continuation of the previous work [Mov15b]
and §9, in which we have studied Vd using Eisenstein series.

10.2 Enhanced elliptic curves

We set X = X1×X2, where X1 and X2 are two elliptic curves over k. The sub index
i = 1,2 will attach an object to the first and second elliptic curve respectively. This
example does not fit exactly to the notion of enhanced varieties and their moduli
introduced in Chapter 3. It shows that we have to enlarge our moduli spaces T by
adding product structures or fixed algebraic cycles in X . In this example such fixed
algebraic cycles are given by {p1}×X2 and X1×{p2} for some pi ∈ Xi(k). For the
cohomology

H2
dR(X1×X2) j := H1

dR(X1)⊗k H1
dR(X2)

153
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we use the basis
[α1⊗α2,α1⊗ω2,ω1⊗α2,ω1⊗ω2]

tr. (10.1)

This is compatible with the Hodge filtration

0 = F3 ⊂ F2 ⊂ F1 ⊂ F0 = H2
dR(X1×X2) j,

where

F1H2
dR(X1×X2) j = F1H1

dR(X1)⊗k H1
dR(X2)+H1

dR(X1)⊗k F1H1
dR(X2),

F2H2
dR(X1×X2) j = F1H1

dR(X1)⊗k F1H1
dR(X2).

Therefore, the Hodge numbers are (h20,h11,h02) = (1,2,1). For the homology
group

H2(X1×X2,Z) j := H1(X1,Z)⊗Z H1(X2,Z),

we use the basis
[δ1⊗δ2, δ1⊗ γ2,γ1⊗δ2, γ1⊗ γ2]

tr.

The intersection matrices both in cohomology and homology are equal:

Φ =Ψ =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 . (10.2)

Note that both in cohomology and homology we have

〈a1⊗a2,b1⊗b2〉=−〈a1,b1〉 · 〈a2,b2〉. (10.3)

This follows from the relation between the cup product in cohomology (resp. in-
tersection bilinear map in homology) and Künneth formula in cohomology (resp.
homology). For now, the reader may consider (10.3) as a wedge product with four
pieces, and interchanging a2 with b1 contributes a minus sign to the product. Note
that the duality between homology and cohomology is given by the integration for-
mula:∫

δ1⊗δ2

ω1⊗ω2 :=
∫

δ1

ω1 ·
∫

δ2

ω2, δi ∈ H1(Xi,Z), ωi ∈ H1
dR(Xi), i = 1,2. (10.4)

10.3 The Gauss-Manin connection and modular vector fields

Let us now consider two copies Xi/Ti, i = 1,2 of the universal family of enhanced
elliptic curves (9.1). Let Ai, i= 1,2 be the Gauss-Manin connection matrix of Xi/Ti
in the basis [αi,ωi]

tr, see (9.3). In the basis (10.1) the Gauss-Manin connection
matrix of the family X1×X2→ T1×T2 is given by:
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A =


(A1)11 0 (A1)12 0

0 (A1)11 0 (A1)12
(A1)21 0 (A1)22 0

0 (A1)21 0 (A1)22

+

(A2)11 (A2)12 0 0
(A2)21 (A2)22 0 0

0 0 (A2)21 (A2)22
0 0 (A2)21 (A2)22

 .
The Gauss-Manin connection matrix composed with the vector fields hi,ei, fi, i =
1,2,3 is of the form:

Ah1 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , A f1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Ae1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 ,

Ah2 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , A f2 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , Ae2 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 .
From these computations we can easily derive

F (2) = F ( f1, f2).

10.4 Modular foliations

For the product of two elliptic curves, the algebraic group G is given by

G = G1⊗G2 :=




k1k2 k1k′2 k′1k2 k′1k′2
0 k1k−1

2 0 k′1k−1
2

0 0 k−1
1 k2 k−1

1 k′2
0 0 0 k−1

1 k−1
2

 ,k1,k2 ∈ k∗,k′1,k
′
2 ∈ k

 , (10.5)

where ⊗ is the Kronecker product of matrices. It acts from the right on A4
k by the

usual multiplication of matrices. For C ∈ A4
k and g ∈ G we have

C•g := gtrC = (10.6)

[k1k2C1,k1k′2C1 + k1k−1
2 C2,k′1k2C1 + k−1

1 k2C3,k′1k′2C1 + k′1k−1
2 C2 + k−1

1 k′2C3 + k−1
1 k−1

2 C4]
tr.

Proposition 10.1 The quotient (A4
k−{0})/G is isomorphic to the following set

1
0
0
a

 ,


0
a
1
0

 , a ∈ k−{0},


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 . (10.7)
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Proof. We only use the definition (10.6). For C ∈ A4
k, C 6= 0 if C1 6= 0 then in its

orbit under G we have a unique element of the form C = [1,0,0,a]tr, a∈ k. The case
a= 0 is separated and it is the third matrix in (10.7). If C1 = 0 then C2 ·C3 is invariant
under the action of G. The four cases C2 ·C3 6= 0, C2 6= 0&C3 = 0, C2 = 0&C3 6= 0
and C2 = 0&C3 = 0 give us the full classification. ut
Remark 10.1 The map

A2
k×A2

k→ A4
k, ([c1,c2]

tr, [b1,b2]
tr) 7→ [c1b1,c1b2,c2b1,c2b2]

tr

is invariant under the action of G on both sides. Therefore, we have four orbits of G
in A4

k corresponding to the product of [1,0]tr and [0,1]tr. This gives us the last four
C in (10.7).

We are going to discuss only the modular foliation attached to the second C in (10.7).
For a brief discussion of other cases see Remark 10.2. For reasons which come from
[Mov15b] and will be explained in §10.7, instead of the second matrix in (10.6) we
define:

Cd :=


0
d
−1
0

 . (10.8)

Here, Cd stands for both its entry, if d = 1,2,3 or 4, and this new notation. I hope this
will not produce any confusion. Let d, ď ∈ N be two natural numbers. Two modular
foliations F (Cd), F (Cď) are isomorphic through the action of G:

gtr
ď,d ·Cd = (

ď
d
)−

1
2 Cď , gď,d := I2×2⊗

[
( ď

d )
− 1

2 0
0 ( ď

d )
1
2

]
, (10.9)

see Propostion 6.3. Therefore, we only need to study the foliation F (Cd) with d = 1.
For reasons that will be revealed next section, we will keep working with an arbitrary
d.

Proposition 10.2 The modular foliation F (Cd) with Cd in (10.8) is given by the
vector fields

h1 +h2, d · f1 + f2, e1 +d · e2. (10.10)

Proof. Using the explicit computations in §10.3 we have

Ah1 ·Cd =


0
d
1
0

 , A f1 ·Cd =


−1
0
0
0

 , Ae1 ·Cd =


0
0
0
d

 ,

Ah2 ·Cd =


0
−d
−1
0

 , A f2 ·Cd =


d
0
0
0

 , Ae2 ·Cd =


0
0
0
−1

 .
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Fig. 10.1 Modular foliation for two elliptic curves

The space of vector fields v := a1h1+a2e1+a3 f1+b1h2+b2e2+b3 f2 with ai,bi ∈ k
such that AvCd = 0 is generated by (10.10). ut

Proposition 10.3 The singular set of F (Cd) in A3
k×A3

k consists of two irreducible
components of dimensions 2 and 3:

{(t1,0,0,s1,0,0)|t1,s1 ∈ k}∪

{(t1, t2, t3, t1, t2, t3)|27t2
3 − t3

2 = 27s2
3− s3

2 = d · (2t1− t
1
3

3 )− (2s1− s
1
3
3 ) = 0}.

Proof. Assume that at some point of A3
k×A3

k the three vectors (10.10) are linearly
dependent. This gives us linear relations for hi,ei, fi, i = 1,2

a1h1 +da2 f1 +a3e1 = 0, a1h2 +a2 f2 +da3e2 = 0

and so such a point is in ∆ ×∆ . For the rest of the proof we have used a computer.
ut

Figure 10.1 might be useful for analyzing the foliation F (Cd). The vector fields
e,h, f are tangent to V , where V is one of

{(t1,0,0) ∈ A3
k}, ∆ := {(t1, t2, t3) ∈ A3

k|27t2
3 − t3

2 = 0}, or A3
k.

Therefore, the three vectors (10.10) induce a foliation in V1×V2 for three choices
of V1 and V2. In particular, F (Cd) induces a foliation of dimension 3 in ∆ ×∆ with
the singular set as in Proposition 10.3.

Remark 10.2 The modular foliations F (C) with C being the last four matrices in
(10.7) do not seem to be of interest. The foliation F :=F (C) with C being the first
matrix in (10.7) is given by

http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2018-03-SingularSet-TwoElliptic.txt
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h1−h2, f1−a · e2, a · e1− f2.

It seems that this foliation has no algebraic leaves in T as this is a particular case
of Property 7.1. Note that the phenomenon of an isogeny between elliptic curves is
controlled by the modular foliation F (Cd), see §10.7. Note also that F induces a
foliation in P1,2,3,−1,−2,−3. This also follows from computing GC defined in (6.11)
and Proposition 6.5.

10.5 Period domain

The period domain in the case of product of two elliptic curves is

U := U1×U2 = SL(2,Z)\Π1×SL(2,Z)\Π2, (10.11)

where Ui, i = 1,2 are two copies of the period domain (9.13) in the case of elliptic
curves. The period matrix for (P1,P2) ∈ Π1×Π2 is the Kronecker product of P1
and P2:

P := P1⊗P2 =

(
x1P2, x2P2
x3P2, x4P2

)
. (10.12)

We consider the modular foliation F := F (C) with C = Cd , d = 1. The leaves of
the modular foliation F in U is given by C̃P = Ctr for constant 1× 4 matrices C̃
with coefficients in C. This can be written as an equality of 2×2 matrices:

Ptr
1 f P2 =

[
0 1
−1 0

]
, (10.13)

where f is a constant 2×2 matrix whose rows written one after another give us C̃.
Therefore, the local first integral of the foliation F is the function

f : U→Mat(2×2,C),

f (P1,P2) := P−tr
1

[
0 1
−1 0

]
P−1

2 .

We have actions of SL(2,Z) on Πi, i = 1,2. This means that analytic continuations
of f will result in the muliplications of f both from the left and right with elements
of SL(2,Z).

10.6 Character

Recall the group GC in (6.11) and let Cd be as in (10.8).

Proposition 10.4 The algebraic group GCd has two connected components
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GC = GCd ,+∪GCd ,−,

where

GCd ,ε :=

{[
k1 k′1
0 k−1

1

]
×
[

k2 k′2
0 k−1

2

]∣∣∣∣∣k2 = εk1, k′2 = εd · k′1

}
.

The character λ restricted to GCd ,+ is 1 and restricted to GCd ,− is −1.

Proof. The proposition follows directly from the definition of GC and the explicit
expression of the algebraic group G in (10.5). ut

In the case of product of two elliptic curves, λ is a discrete character, in the sense
that its image is a finite subgroup of Gm. For such characters we have F (C,λ ) =
F (C). We have computed the algebraic group GCd and we have seen that it is of
dimension two, containing one copy of the multiplicative group Gm and one copy
of the additive group Ga. Its subgroup GCd ,+ containg the identity element acts in
each leaf of F (Cd). This will be used in §10.10 in order to transport F (Cd) into a
four dimensional ambient space.

10.7 Modular curves as three dimensional affine varieties

We recall from [Mov15b] the following definition.

Definition 10.1 The affine variety Vd ⊂ T1×T2 is the locus of isogenies

f : X1→ X2, deg( f ) = d, f ∗ω2 = d ·ω1, f ∗α2 = α1. (10.14)

Here, f ∗ : H1
dR(X2)→ H1

dR(X1) is the map induced in de Rham cohomologies.

For an isogeny f as above let also f∗ : H1(X1,Z)→ H1(X2,Z) be the map induced
in homologies. Note that the definition in [Mov15b] is done using f ∗ω2 = ω1 which
is slightly different.

Proposition 10.5 The graph of an isogney f : X1→ X2 is represented by the homol-
ogy class

δ1⊗ f∗γ1− γ1⊗ f∗δ1 ∈ H2(X1×X2,Z) j, (10.15)

(up to ± sign) and its Poincaré dual is

d ·ω1⊗α2−α1⊗ω2 ∈ H2
dR(X1×X2) j.

Proof. Let δ ∈ H2(X1 × X2,Z) j be the homology class of the image of the map
X1→ X1×X2, x 7→ (x, f (x)). We have

1
2πi

[∫
δ

α1⊗α2,
∫

δ

α1⊗ω2,
∫

δ

ω1⊗α2,
∫

δ

ω1⊗ω2

]
= [0,d,−1,0],

where we have used
∫

X1
α1∧ω1 = 2πi and (10.14). For instance,
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δ

α1⊗α2 =
∫

X1

α1∧ f ∗α2 =
∫

X1

α1∧α1 = 0.

ut

Proposition 10.6 The set Vd is a leaf of F (Cd).

Proof. Note that the projection πi : Vd → Ti, i = 1,2 is a σ1(d) := ∑i|d i degree
covering of Ti and Vd is a subvariety of T1×T2 of dimension 3. The statement
follows from the period computation in Proposition 10.5 and the definition of a
modular foliation in Proposition 6.1. ut

10.8 Eisenstein series and modular curves

Consider the Eisenstein series si = E2i in (1.2). Recall that the map s = (s1,s2,s3) :
H→ C3, up to multillication of si’s with explicit rational numbers, is a solution of
the Ramanujan vector field. We denote by

ψ(d) := d ∏
p|d

(1+
1
p
)

the Dedekind ψ function, where p runs through primes p dividing d.

Theorem 10.7 For i = 1,2,3 and d ∈N, there is a homogeneous polynomial Pd,i of
degree i ·ψ(d) in the weighted ring

Q[ti,s1,s2,s3], weight(ti) = i, weight(s j) = j, j = 1,2,3 (10.16)

and monic in the variable ti such that ti(τ) := si(d · τ),s1(τ),s2(τ),s3(τ) satisfy the
algebraic relation:

Pd,i(ti,s1,s2,s3) = 0.

Moreover, for i = 2,3 the polynomial Pd,i does not depend on s1.

Note that the map τ 7→ d · τ in q variable is q 7→ qd . The above theorem for i = 2,3
must be considered classical, however, for i = 1 it has been mainly ignored in the
literature. For a proof see [Mov15b, Theorem 1]. We consider si, ti, i = 1,2,3 as in-
determinate variables and for simplicity we do not introduce new notations in order
to distinguish them from the Eisenstein series. We regard (t,s) = (t1, t2, t3,s1,s2,s3)
as coordinates of the affine variety A6

k, where k is any field of characteristic zero
and not necessarily algebraically closed. It can be shown that the curve given
by Id,2 = Id,3 = 0 in the weighted projective space P(2,3,2,3)

C with the coordinates
(t2, t3,s2,s3) is a singular model for the modular curve

X0(d) := Γ0(d)\(H∪Q), where
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Γ0(d) :=

{[
a1 a2
a3 a4

]
∈ SL(2,Z)

∣∣∣∣∣a3 ≡ 0 (mod d)

}
.

Computing explicit equations for X0(d) in terms of the variables j1 = 1728 t3
2

t3
2−27t2

3

and j2 = 1728 s3
2

s3
2−27s2

3
has many applications in number theory and it has been done

by many authors, see for instance [Yui78] and the references therein.

Theorem 10.8 The variety Vd (see Definition 10.1) in T1×T2 is given by the zero
set of the ideal

〈Id,1, Id,2, Id,3〉 ⊂ k[s, t],

where Id,i is the pull-back of Pd,i by the map

(t1, t2, t3,s1,s2,s3) 7→ (d−1 · t1, d−2 · t2, d−3 · t3, s1,s2,s3).

The proof can be found in [Mov15b].

10.9 Algebraic invariant sets

The main result of this section is Theorem 10.9. This is the first verification of a gen-
eral conjecture which is formulated in Property 7.1. It turns out that the verification
of this property involves the study of dynamics of modular foliations.

Theorem 10.9 Any algebraic leaf of the foliation

F (h1 +h2, d · f1 + f2, e1 +d · e2) , d ∈ N

in T1×T2 is of the form Lď , where Lď parametrizes pairs of enhanced elliptic curves
(X1,α1,ω1) and (X2,α2,ω2) with

f : X1→ X2, deg( f ) = ď, f ∗ω2 = d
1
2 ď

1
2 ω1, f ∗α2 = d−

1
2 ď

1
2 α1.

In the coordinate system (t,s), this is the zero set of the ideal 〈Q1,Q2,Q3〉 ⊂ k[s, t],
where Qi is the pull-back of Pd,i by the map

(t1, t2, t3,s1,s2,s3) 7→ (a1 · t1, a2 · t2, a3 · t3, s1,s2,s3),

and ai = d
i
2−2iď

i
2 , i = 1,2,3.

Proof. Using (10.9) and Proposition 6.3 we know that under the map T1×T2 →
T1×T2, (t,s) 7→ (t,s) • g−1

ď,d
, the foliation F (Cď) is mapped to F (Cd). The first

foliation has the algebraic leaf Vď which is mapped to

Lď :=Vď •g−1
ď,d

, d ∈ N. (10.17)
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Therefore, Lď’s are algebraic leaves of F (Cd).
Now let us prove that Lď’s are the only algebraic leaves of F (Cd). We do not have

a purely algebraic proof for this theorem, in the sense that it does not work over an
arbitrary field k. We consider the complex context k = C and study the dynamic of
F (Cd). Since the vector fields h,e, f are tangent to the discriminant locus ∆ = 0 in
A3
k, we know that the modular foliation F (Cd) is tangent to the hypersurfaces

{∆ = 0}×A3
k, A3

k×{∆ = 0}

and hence ∆×A3
k, A

3
k×∆ are F (Cd)-invariant. Let L be an algebraic leaf of F (Cd)

in T1×T2. This implies that the closure L̄ of L intersects these two hypersurfaces in
Sing(F (Cd)), which is given in (10.3). Note that a non-algebraic leaf can accumu-
late in both singularities and other leaves. Recall the notation of leaves of modular
foliations in §6.3. Using this notation the set of algebraic leaves Lď , ď ∈ N is the
same as the set of LC̃, [C̃] ∈ P3(Q). Note that in the latter set, there are many
repetitions. Our theorem follows from the next proposition.

Proposition 10.10 A leaf LC̃ of F (Cd) in T1×T2 accumulates on another leaf in
A3
k×∆ ∪∆ ×A3

k if and only if [C̃] 6∈ P3(Q).

Proof. Let us prove the non-trivial direction ⇐ of the proposition. We study the
behavior of the leaves of F (Cd) under the composition

A3
k×A3

k→ (A3
k×A3

k)/G∼= P1×P1 ∼= (SL(2,Z)\H∗)× (SL(2,Z)\H∗),

where H∗ := H∪Q and G is the algebraic group (10.5). The last isomorphism
is obtained from the isomorphism of the period map in Theorem 9.2. Let us
denote by ∞ := SL(2,Z)\Q the cusp of SL(2,Z)\H∗. A leaf LC̃ of the modu-
lar foliation F (Cd) is mapped to a locally analytic curve X in (SL(2,Z)\H)×
(SL(2,Z)\H). If LC̃ is algebraic in A3

k ×A3
k then so it is X in the compactified

moduli (SL(2,Z)\H∗)× (SL(2,Z)\H∗). From this we are going to conclude that
C̃ ∈ P3(Q). Let C̃ = [a1,a2,a3,a4]

tr. The definition of LC̃ includes the equality∫
δ

α1⊗α2 = 0, where

δ := a1δ1⊗δ2 +a2δ1⊗ γ2 +a3γ1⊗δ2 +a4γ1⊗ γ2.

This implies that for τk =

∫
δk

αk∫
γk

αk
, k = 1,2 we have

τ2 = A(τ1), A :=
[

a1 a3
−a2 −a4

]
, (10.18)

where A(τ1) is the Möbius transformation of τ1. By an analytic continuation ar-
gument the equality (10.18) can be transformed into τ2 = B1AB2τ1 for B1,B2 ∈
SL(2,Z). We know that X is a closed algebraic curve in the compctification
(SL(2,Z)\H∗)× (SL(2,Z)\H∗). From this we only use the following: for a fixed
[τ1] ∈ SL(2,Z)\H∗ there are finite number of [τ2] ∈ SL(2,Z)\H∗ with (10.18). This
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is translated into the following group theory problem:

#SL(2,Z)\(SL(2,Z) ·A ·SL(2,Z))< ∞. (10.19)

This happens if and only if the matrix A, up to multiplication with a constant, has
rational entries. ut

A better analyzing of the above proof reveals that the curves X for C̃ 6∈ P3(Q) has
a very complicated behavior in the compactfication P1×P1 of the classical moduli
of two elliptic curves. Such curves can be also described by differential equations,
see for instance the box equation in [CDLW09], [DMWH16], however, attaching a
geometry to such differential equations seems to be hopeless.

One of the most important pieces in the proof of Theorem 10.9 is (10.19). For
further generalization, the following problem must play an important role. For a
discrete subgroup Γ ⊂ GL(n,C) classify all n× n matrices with complex entries
such that

#Γ \(Γ ·A ·Γ )< ∞. (10.20)

10.10 A vector field in four dimensions

Recall the notations in §10.6 and Cd in (10.8). From now on we take C = Cd with
d = 1. The foliation F (C) induces a one dimensional foliation in the quotient space

(A3
k×A3

k)/GCd ,+
∼= P2,3,2,3,1, (t,s) 7→ [t2; t3;s2;s3; t1− s1], (10.21)

which is of dimension four. Since the foliation F (C) is given by the vector fields
in (10.10) and from this e1 + e2 and h1 + h2 are tangent to the orbits of GCd ,+,
only f1 + f2 will contribute to the tangent space of F (C) as a foliation F in the
quotient space (10.21). In order to compute this foliation explicitly we take the affine
coordinate system

(x2,x3,y2,y3) :=
(

t2
(t1− s1)2 ,

t3
(t1− s1)3 ,

s2

(t1− s1)2 ,
s3

(t1− s1)3

)
and consider two Ramanujan differential equations (9.11) in (t1, t2, t3) and (s1,s2,s3)
variables. We make derivations of xi and yi variables and divide them over t1− s1
and conclude that the foliation F in the quotient space (10.21) and in the affine
chart (x2,x3,y2,y3) ∈ C4 is given by the quadratic vector field:(

2x2−6x3 +
1
6
(x2− y2)x2

)
∂

∂x2
+

(
3x3−

1
3

x2
2 +

1
4
(x2− y2)x3

)
∂

∂x3
(10.22)

−
(

2y2−6y3 +
1
6
(y2− x2)y2

)
∂

∂y2
−
(

3y3−
1
3

y2
2 +

1
4
(y2− x2)y3

)
∂

∂y3
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There are no x1,y1 variables and the indices for xi and yi are chosen because of their
natural weights. For further details on this vector field and its foliation see [Mov18].

10.11 Elliptic curves with complex multiplication

We discuss the case X ×X , where X is an elliptic curve. In this context, for the first
time we will have isolated Hodge classes corresponding to isogenies, and trivial
modular foliations. We consider the reduced de Rham cohomology and homology
as below:

H2
dR(X×X) j =

H1
dR(X)⊗k H1

dR(X)

k(α1⊗ω1−ω1⊗α1)
,

H2(X×X ,Z) j = (δ1⊗ γ1− γ1⊗δ1)
⊥ in H1(X1,Z)⊗Z H1(X2,Z).

Here δ1⊗ γ1− γ1⊗δ1 is the homological cycle corresponding to the diagonal map
X ↪→ X×X (up to sign) and α1⊗ω1−ω1⊗α1 is its Poincaré dual. In the definition
of the reduced de Rham cohomology we can neglect⊗ and assume that the products
are commutative. We consider the basis α1α1,α1ω1,ω1ω1 for H2

dR(X ×X) j. The
intersection form in this basis is given by

Φ0 :=

0 0 1
0 −1 0
1 0 0


The enhanced moduli space of X ×X is the same as the moduli of elliptic curves.
We get the following representation of the algebraic group G of elliptic curves

[
k k′

0 k−1

]
7→

k2 kk′ k′2

0 1 2kk′

0 0 k−2

 .
The orbits of G acting on A3

k have representatives1
0
0

 ,
0

0
1

 ,
0

a
0

 , a ∈ k. (10.23)

We have also

Ae =

0 2 0
0 0 1
0 0 0

 , A f =

0 0 0
1 0 0
0 2 0

 , Ah =

1 0 0
0 −1 0
0 0 1

 .
Let C be the last vector in (10.23) with a 6= 0. There is no linear relations between
AeC, A f C, AhC and so the modular foliation F (C) is of dimension zero.



Chapter 11
Abelian varieties

Le présent Mémoire est consacré à l’edtude des surfaces remarquables, introduites
dans la Science par M. Picard, et pour lesquelles les coordonnées non homogènes
d’un point quelconque peuvent s’exprimer en fonctione uniforme, quadruplement
périodique, de deux paramètres [...] nous désignerons ces surfaces sous le nom de
surfaces hyperelliptiques, (M. G. Humbert in [Hum93]).

11.1 Introduction

The quotation above from Humbert’s article refers to the first appearances of abelian
surfaces in mathematics under the name “hyperelliptic surfaces”. The term soon was
discarded as “after Weil’s books, the term ‘abelian varieties’ had taken precedence”,
(D. Mumford, personal communication, January 15, 2016). We develop the theory
of modular foliations and vector fields on the moduli space T of enhanced princi-
pally polarized abelian varieties. If there is no danger of confusion we simply use
“abelian variety”, being clear that it is polarized. The literature on abelian varieties
is huge and the reader may consult [LB92, Mil86, Mum66, Mum08, FC90] for miss-
ing details.

The content of present chapter was first formulated in [Mov13, §4.1] and later
the author gave the idea of the proof of existence and uniqueness of modular vector
fields in a complex geometric context in his personal webpage. T. J. Fonseca in
[Fon21] developed these initial ideas in the framework of algebraic stacks and gave
applications in transcendental number theory, similar to applications of Ramanujan
vector field by P. Nesterenko in [NP01].
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11.2 De Rham cohomologies

Let X be an abelian variety of dimension n over a field k of characteristic 0. The de
Rham cohomology ring (H∗dR(X),∪) of X is freely generated by H1

dR(X):

Hm
dR(X) = ∧m

i=1H1
dR(X), m = 1,2, · · · ,2n. (11.1)

Therefore, the Betti numbers bm, m = 0,1, . . . ,2n are respectively

1,
(

2n
1

)
, . . . ,

(
2n
m

)
, · · · ,

(
2n

2n−1

)
,1.

We choose a basis α1,α2, . . . ,α2n for H1
dR(X) such that α1,α2, . . . ,αn form a basis

of F1H1
dR(X). A basis of Hm

dR(X) is given by

αi := αi1 ∧αi2 ∧·· ·∧αim , 1≤ i1 < i2 < · · ·< im ≤ 2n.

The quotient F p/F p+1 in the Hodge filtration of the m-th de Rham cohomology
Hm

dR(X) has the basis αi with

1≤ i1 < i2 < · · · ip ≤ n < ip+1 < · · ·< im ≤ 2n.

Therefore, the Hodge numbers hm,0, hm−1,1, · · · ,h0,m are respectively(
n
m

)(
n
0

)
,

(
n

m−1

)(
n
1

)
, · · · ,

(
n
0

)(
n
m

)
In particular, the Hodge numbers in the middle cohomology m = n are(

n
0

)2

,

(
n
1

)2

, · · · ,
(

n
n

)2

.

11.3 Polarization

The embedding X ⊂ PN gives us an element θ ∈ H2
dR(X) which we have called it

the polarization. It gives us the bilinear map

〈·, ·〉 : H1
dR(X)×H1

dR(X)→ k, 〈α,β 〉 := Tr
(
α ∪β ∪θ

n−1) , (11.2)

which is non-degenerate.

Proposition 11.1 In some basis αi, i = 1,2, . . . ,2n of H1
dR(X) with α1,α2, . . . ,αn a

basis of F1H1
dR(X), we have

θ = α1∧αn+1 +α2∧αn+3 + · · ·+αn∧α2n (11.3)
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and in particular, the intersection form (11.2) is of the form

[〈αi,α j〉] = Φ , where Φ :=
[

0 In
−In 0

]
. (11.4)

Proof. Let αi, i = 1,2, . . . ,2n be as in §11.2. Since θ ∈ F1H2
dR(X) we can always

write θ in the form θ = α1 ∧ βn+1 +α2 ∧ βn+2 + · · ·+αn ∧ β2n for some βn+i ∈
H1

dR(X). We prove that αi,βn+i’s form a basis of H1
dR(X). This follows from the

equality
θ

n = n!α1∧βn+1∧α2∧βn+2∧·· ·∧αn∧β2n.

Therefore, we can make a change of basis and we set βi = αn+i. We have

αi∧α j ∧θ
n−1 =

{
0, if |i− j| 6= n

1
n θ n, j = n+ i

We further make a change of of basis replacing αi, i = 1,2, . . . ,n with n
deg(X)αi and

we get the desired matrix format (11.4). Note that we have used

deg(X) = Tr(θ n). (11.5)

ut

Proposition 11.2 An enhanced principally polarized abelian variety X is uniquely
determined by

X , [α1,α2, · · · ,α2n]

such that αi, i = 1,2, . . . ,2n (resp. i = 1,2, . . . ,n) form a basis of H1
dR(X) (resp.

F1H1
dR(X)) and [〈αi,α j〉] = Φ , where 〈·, ·〉 and θ is defined by (11.2) and (11.3)

Recall Definition 3.7. In the case of abelian varieties we will not need to fix a marked
variety, however, if the reader insists he may try to prove the following: A CM
abelian variety has a Hodge structure defined over k̄.

Remark 11.1 An abelian variety is an R-variety in the sense of Definition 2.25 in
§2.17. For this we take m = 1 and k = 0. Note that the map (2.47) in this case is

δ0 : ∆→ Hom
(
H0(X ,Ω 1

X ), H1(X ,Ω 0
X )
)
,

which is not surjective, and hence it is not an R-variety in the sense of Definition
2.26. Its image is characterized by the equality

Q1(δ0(v)(α),β )+Q0(α,δ0(v)(β )) = 0, α,β ∈ H0(X ,Ω 1
X ), v ∈ ∆,

where Q is defined in (2.35).
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11.4 Algebraic group

The algebraic group G for polarized abelian varieties is

G =

{[
k k′

0 k−tr

]
∈ GL(2n,k)

∣∣∣∣∣kk′tr
= (kk′tr

)tr

}
⊂ Sp(2n,k),

where the form of g∈G is derived from the facts that g respects the Hodge filtration,
and hence g21 = 0, and gtrΦg = Φ . The algebraic group G is of dimension

dim(G) = 2n2− n(n−1)
2

. (11.6)

It is also called Siegel parabolic subgroup of Sp(4,k). The Lie group of G is given
by

Lie(G) :=

{[
k k′

0 −ktr

]
∈Mat(2n,k)

∣∣∣∣∣k′tr = k′
}
.

This is derived from the fact that g ∈ Lie(G) is upper triangular with respect to the
Hodge blocks and gtrΦ +Φg= 0 for g ∈ Lie(G).

Remark 11.2 The Siegel parabolic group G over the ring Z/NZ, N ∈ N appears
in a natural way as quotient of Sp(2n,Z) by its Siegel congruence subgroup:

Γ
2n

0 (N) :=

{
A ∈ Sp(2n,Z)

∣∣∣∣∣A≡N

[
∗ ∗
0 ∗

]}
⊂ Sp(2n,Z).

Note that G is formulated in an algebraic context (algebraic de Rham cohomol-
ogy, etc.), however, Γ 2n

0 (N) is formulated in a topological context (monodromy, ho-
mology etc.). For some properties of the Siegel congruence group see for instance
[Shu18].

11.5 Homology group

Let X0 ⊂ Pn be an abelian variety of dimension n over complex numbers. As a
complex manifold X0 is biholomorphic to a complex torus Cn/Λ , where Λ =Zω1+
Zω2 + · · ·+Zω2n is a lattice. We take a basis δi, i = 1,2, . . . ,2n of H1(X0,Z). For
instance, δi is the loop in X0 obtained by the identification of the initial and end
points of the vector ωi. A basis of Hm(X0,Z) is given by

δi1 ∧δi2 ∧·· ·∧δim , i1 < i2 < · · ·< im,

which are diffeomorphic to m-dimensional real tori. Note that wedge product in
homology is a special feature of tori, and for an arbitrary variety we do not have
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such a natural structure. We assume that

∆ := δ1∧δ2∧·· ·∧δ2n

is a basis of H2n(X0,Z) induced by the orientation of X0 due to its complex structure.
This gives us an isomorphism

Tr : H2n(X0,Z)→ Z, Tr(α) := n, where α := n∆ .

This data is enough to describe the intersection δi ·δ j of cycles δi ∈ Hm1(X0,Z) and
δ j ∈ Hm2(X0,Z). The intersection δi · δ j is zero if the union of ingredient sets of δi
and δ j is not {δ1,δ2, · · · ,δ2n}. In particular, this happens for m1 +m2 < 2n. In other
cases it is an element in Hm1+m2−2n obtained by removing ∆ from the ordered set
of ingredients of δi and δ j and then taking the wedge product of the rest. We have a
natural isomorphism

Hm(X0,Z)→ H2n−m(X0,Z), δi 7→ δ̂i (11.7)

where δ̂i is obtained by removing δi from ∆ , without changing the order of its in-
gredient elements. This resembles a kind of Hard Lefschetz theorem over Z and
without using a polarization element. This map transforms the wedge product into
intersection of cycles, that is,

δ̂i∧δ j = δ̂i · δ̂ j. (11.8)

Let Y0 ⊂ X0 be a hyperplane section of X0 and

[Y0] = ∑
1≤i< j≤2n

ai j(−1)i+ j−1
δ̂i∧δ j ∈ H2n−2(X0,Z), ai j ∈ Z

be the induced homology class. In H1(X0,Z) we get an anti-symmetric bilinear map

H1(X0,Z)×H1(X0,Z)→ Z, 〈δi,δ j〉 := Tr(δi∧δ j ∧ [Y0]) = ai j. (11.9)

In cohomological terms, we have u0 := [Y0]
pd ∈ H2(X0,Z) and (11.9) is obtained

from
u0 ∈ H2(X0,Z)∼= Hom(H1(X ,Z)∧H1(X0,Z),Z).

The data (H1(X0,Z),Tr,〈·, ·〉) is equivalent to the whole homology ring with a po-
larization element. By abuse of notation we also call (11.9) the polarization. We also
define

ΓZ := Aut(H1(X0,Z),Tr,〈·, ·〉) . (11.10)

In a basis of H1(X0,Z) its matrix is of the format

Ψ =

[
0 Dn
−Dn 0

]
, Dn = diag(d1,d2, . . . ,dn), d1 | d2 | · · · | dn.
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see for instance the references in [LB92], §3.1.

Definition 11.1 We say that X0 is principally polarized if all the integers di’s are
equal to 1. In other words, the bilinear map 〈·, ·〉 has a symplectic basis.

For principally polarized abelian varieties we have

ΓZ=Sp(2n,Z)=

{[
a b
c d

]
∈ GL(2n,Z)

∣∣∣∣∣abtr = batr, cdtr = dctr, adtr−bctr = In

}
.

(11.11)
In the case of abelian varieties we redefine the notion of Poincaré duals.

Definition 11.2 The Poincaré dual of δ ∈H1(X0,Z) is an element δ pd ∈H1(X0,Q)
such that

〈ω,δ pd〉= 1
2πi

∫
δ

ω, ∀ω ∈ H1
dR(X0), (11.12)

where the bilinear map 〈·, ·〉 is defined in (11.2).

There are two important issues which must be observed. First, since

H1(X0,Q)∼= H2n−1(X0,Q), δ 7→ δ ∪un−1
0

might not be isomorphism using Z instead of Q, the Poincaré dual may not live in
H1(X0,Q). Second, the bilinear map (11.9) is not necessarily dual to (11.2), that is,
〈δ pd

1 ,δ pd
2 〉 and 〈δ1,δ2〉 might be different. In practice, we will need the first bilinear

product and not the second one which is commonly used in the literature. Therefore,

Ψ := [〈δ pd
i ,δ pd

j 〉] (11.13)

has entries in Q. For principally polarized abelian varieties Ψ has entries in Z and
the reason is follows. By the hard Lefschetz theorem we have an embedding

H1(X0,Z) ↪→ H2n−1(X0,Z), δ 7→ δ ∪un−1
0 . (11.14)

Proposition 11.3 The abelian variety X0 is principally polarized if the map (11.14)
is surjective. In particular, the Hard Lefschetz theorem for principally polarized
abelian varieties is valid over Z, that is, H i(X0,Z) → H2n−i(X0,Z), δ 7→ δ ∪
un−i

0 , i = 1,2, . . . ,n is an isomorphism of Z-modules.

Note that the above map for i = 0 is not surjective and this is the only case in which
the hard Lefschetz theorem fails.

Proof. The second part follows from the first part and the fact that H∗(X0,Z) is
generated by H1(X0,Z). ut
The conclusion is that for proncipally polarized varieties we can assume that

Ψ :=
[

0 −In
In 0

]
(11.15)
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and we may discard the bilinear form (11.9) and replace it with 〈δi,δ j〉 := 〈δ pd
i ,δ pd

j 〉
which is automatically Poincaré dual to (11.2).

11.6 Generalized period domain

Recall the notion of a generalized period domain in Chapter 8. We take a basis
αi, i = 1,2, . . . ,2n of V0 := H1

dR(X0) as in §11.2 and §11.3 and a basis δi, i =
1,2, . . . ,2n of V0,Z := H1(X0,Z) as in §11.5. Moreover, we only consider princi-
pally polarized abelian varieties as in Definition 11.1. For an element of the period
domain Π we have

P :=
[∫

δi

α j

]
=

[
x1 x2
x3 x4

]
,

where xi, i = 1, . . . ,4, are n×n matrices. We use Proposition 4.1 for m = 1, in order
to find relations among the entries of xi’s. By Proposition 11.3 we have Ψ =Ψ2n−1 =
Ψ̃2n−1, where Ψ̃m is defined in §4.2 . We have also Ψ−tr =Ψ , therefore

Ψ = Ptr
ΨP (11.16)

which is the following polynomial relations between periods[
0 −In
In 0

]
=

[
xtr

1 xtr
3

xtr
2 xtr

4

][
0 −In
In 0

][
x1 x2
x3 x4

]
=

[
xtr

3 x1− xtr
1 x3 xtr

3 x2− xtr
1 x4

xtr
4 x1− xtr

2 x3 xtr
4 x2− xtr

2 x4

]
.

We have also

[〈αi, ᾱ
x
j 〉] =

[
xtr

1 xtr
3

xtr
2 xtr

4

][
0 −In
In 0

][
x̄1 x̄2
x̄3 x̄4

]
=

[
xtr

3 x̄1− xtr
1 x̄3 xtr

3 x̄2− xtr
1 x̄4

xtr
4 x̄1− xtr

2 x̄3 xtr
4 x̄2− xtr

2 x̄4

]
.

We can redefine Π through xi’s as follows:

Definition 11.3 The generalized period domain Π is the set of all 2n×2n matrices[
x1 x2
x3 x4

]
satisfying the above properties:

xtr
3 x1 = xtr

1 x3, xtr
3 x2− xtr

1 x4 =−In,

x1,x2 ∈ GL(n,C),
√
−1(xtr

3 x̄1− xtr
1 x̄3) is a positive matrix.

We also define U := ΓZ\Π, where ΓZ is defined in (11.11).
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The matrix x := x1x−1
3 is well-defined and invertible and it satisfies the well-known

Riemann relations.

Definition 11.4 The set of matrices x ∈Matn×n(C) with

xtr = x, Im(x) is a positive matrix.

is called the Siegel upper half-space and is denoted by Hn.

The group ΓZ acts on H by[
a b
c d

]
· x = (ax+b)(cx+d)−1,

[
a b
c d

]
∈ ΓZ, x ∈Hn

and we have the isomorphism

U/G→ ΓZ\Hn,

given by [
x1 x2
x3 x4

]
→ x1x−1

3 .

Remark 11.3 The quotient ΓZ\Hn is the moduli of principally polarized abelian
varieties of dimension n, and its singular locus is fairly studied in the literature,
see for instance [GMZ12] and the references therein. Since the action of ΓZ in Π
is free, the study of the singular locus of U := ΓZ\Π is reduced to the study of
the singular locus of Π itself. Note that Π is an open set (usual topology) of the
affine variety given by (11.16). For small n’s the description of singularities of Π
can be done by computer. For instance, for n = 2 we can use the procedure slocus
of SINGULAR and verify that Π is smooth. The algebraic moduli T for n = 2 is
explicitly constructed in [Mov20b].

11.7 Moduli of enhanced polarized tori

For a point x of Π we associate a triple (Ax,θx,αx) as follows. We have Ax :=Cn/Λx,
where Λx is the Z-submodule of Cn generated by the rows of x1 and x3. We have
cycles δi ∈ H1(Ax,Z), i = 1,2, . . . ,2n, which are defined by the property[∫

δi

dz j

]
=

[
x1
x3

]
,

where z j, j = 1,2, . . . ,n, are linear coordinates of Cn. There is a basis αx =
{α1,α2, . . . ,α2n} of H1

dR(Ax) such that[∫
δi

α j

]
=

[
x1 x2
x3 x4

]
.
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The polarization in H1(Ax,Z)∼=Λx (which is defined by [〈δi,δ j〉] =Ψ0) is an element
θx ∈ H2(Ax,Z) =

∧2
i=1 Hom(Λx,Z). It gives the following bilinear map

〈·, ·〉 : H1
dR(Ax)×H1

dR(Ax)→ C, 〈α,β 〉= 1
2πi

∫
Ax

α ∪β ∪θ
n−1
x

which satisfies [〈αi,α j〉] =Ψ0.
The triple (Ax,θx,αx) that we constructed in the previous paragraph does not

depend on the action of ΓZ from the left on Π. Therefore, for each x ∈ U we have
constructed such a triple. In fact, U is the moduli space of enhanced principally
polarized abelian varieties.

11.8 Moduli of enhanced abelian varieties

The moduli M of principally polarized abelian varieties of dimension n over k is
a quasi-projective variety over Q, see for instance [MFK94]. It is also denoted by
An in the literature. One first construct a family of principally polarized abelian
varieties Yt ⊂ PN , t ∈V for a full Hilbert scheme V , and then one proves that under
the action of the reductive group G = GL(N + 1) all principally polarized abelian
varieties are stable, and hence, the geometric quotient G\V exists as a scheme over
Q. One can even construct the moduli of abelian schemes over a ring and construct
the corresponding moduli stack, which is mainly known as Deligne-Mumford stack,
however, due to the lack of motivation we avoid this in the present text and refer the
reader to T. J. Fonseca’s article [Fon21] and the references therein.

Let X̌→ Ť be the full enhanced family constructed from Y →V in §3.6 and §3.7.
Theorem 3.5 gives us the coarse moduli space T := G\Ť of enhanced principally
polarized abelian varieties and we claim the following.

Conjecture 11.1 There is a universal family X→ T of enhanced principally polar-
ized abelian varieties of dimension n.

Note that the moduli space M is not fine, that is, there is no universal family over M,
however, the moduli space of principally polarized abelian varities with a full level
n-structure n ≥ 3 is fine, see [MFK94, Theorem 7.9] and [Fon21, §10.3], and so a
similar statement as in Conjecture 11.1 in this case is an easy exercise. For the main
puposes of the present text we do not need to solve Conjecture 11.1. Proposition
3.10 tells us that the Gauss-Manin connection matrix A := Am for m = 1, can be
transported to T, and this is all what we need to reproduce the theory of modular
vector fields and modular foliation in T. In the rest of this chapter by abuse of
terminology, we will talk about a universal family of enhanced principally polarized
abelian varieties X/T, knowning that only T and A exist as algebraic objects over
Q.

The dimension of the moduli of principally polarized abelian varieties is n(n+1)
2

and the dimension of the algebraic group G is given in (11.6). We conclude that the
dimension of the moduli T of enhanced principally polarized abelian varieties is
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dim(T) = 2n2 +n.

Let us now consider the moduli space T over complex numbers and identify it with
its points. The period map tursn out to be

P : T→ U, t 7→
[∫

δ j

αi

]
2n×2n

, (11.17)

where t is identified with (X ,α) as in §11.3.

Theorem 11.4 The period map (11.17) is a biholomorphism of complex manifolds.

Proof. This follows from the fact that the classical period map M→ Sp(2n,Z)\Hn
is a biholomorphism. ut.

11.9 Modular vector fields

Recall that the moduli space T and the Gauss-Manin connection matrix A are de-
fined over Q.

Theorem 11.5 There are unique vector fields vi j, i, j = 1,2, . . . ,n, i≤ j defined over
Q in the moduli space T of enhanced principally polarized abelian varieties such
that

Avi j =Ci j, (11.18)

where Avi j is the Gauss-Manin connection matrix composed with the vector field
vi j and Ci j is the constant matrix define as follows. All the entries of Ci j are zero
except (i,n + j) and ( j,n + i) entries which are −1. In other words, the Gauss-
Manin connection ∇ satisfies

∇vi j αi =−αn+ j, ∇vi j α j =−αn+i, i, j = 1,2 . . . ,n

and ∇vi j αk = 0 otherwise. Moreover, the Lie bracket of two such vector field is zero.

The main idea behind the proof of the above theorem is taken from [Mov13]. It also
appeared in the author’s webpage in 2013. Later, T. J. Fonseca in [Fon21] proved
Theorem 11.5 in the framework of moduli stacks.

Proof. Using Theorem 11.4 which says that the period map is a biholomorphism, it
is enough to prove the existence and uniqueness of vi j in the period domain U. Note
that the statement that vi j’s are defined over Q follows from this and the fact that A
is defined over Q.

Since U := ΓZ\Π, we prove the theorem in Π and moreover we prove that such
vector fields are invariant under the action of ΓZ. The Gauss-Manin connection ma-
trix in Π is of the form A := dPtr ·P−tr. Therefore, we are looking for vector fields
vi j such that

dP(vi j) = P ·Ctr
i j . (11.19)

http://w3.impa.br/~hossein/WikiHossein/files/Problems/2013-10-Siegel%20Quasi%20Modular%20Form.html 
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This equality can be used to define the vector field vi j in the space of 2n× 2n ma-
trices. We need to prove that it is tangent to Π and it is also ΓZ-invariant. The first
statement follows from (11.16) and the equality Ctr

i j Φ +ΦCi j = 0. The second state-
ment follows from Proposition 8.10. The statement on Lie brackets of vi j follows
from Proposition 6.17 and the fact that the Lie bracket of matrices Ci j’s is zero. ut

The vector field vi j is the algebraic incarnation of derivation of Siegel modular forms
with respect to τi j, where τ̃ = [τi j] is an element in the Siegel domain Hn. We define
the τ map:

τ : Hn→ Π, τ(τ̃) :=
(

τ̃ −In
In 0

)
and call its image in Π the τ locus. The Gauss-Manin connection restricted to the τ

locus is given by dτ ·τ−tr. If we compose it with the vector field ∂

∂τi j
then we get the

matrix Ci j. For simplicity, we write τ̃ = τ; being clear in the text whether τ refers to
a point in Hn or the τ map.

The Lie algebra of Sp(2n,k) consists of 2n×2n matrices g with coefficients in k
such that gtrΦ +Φg = 0, where Φ is the matrix in (11.4). It follows that

Lie(Sp(2n,k)) =

{[
a b
c −atr

]
∈Mat(2n,Q)

∣∣∣∣∣btr = b, ctr = c

}
.

It is a direct sum of two sub Lie algebra[
0 0
c 0

]
, ctr = c,

and [
a b
0 −atr

]
, atr = a.

A basis of the first group is given by the matrices Ci j in Theorem 11.5. The second
group will produce the constant vector fields vg, g ∈ Lie(G). Theorem 11.5 implies
that families of abelian varieties have the constant Gauss-Manin connection.

11.10 Modular foliations

By definition the foliation F (2) is given by the Q-vector space of vector fields
vi j, 1≤ i≤ j ≤ n. The action of G on A2n

k −{0} has two orbits represented by

C1 =


1
0
...
0
0

 , C2 =


0
0
...
0
1

 .



176 11 Abelian varieties

The modular foliation F (C1) is given by the vector fields

vi j, 1≤ i≤ j ≤ n, vg, gtrC1 = 0, g ∈ Lie(G), (11.20)

and the modular foliation F (C2) is given by

vi j, 1≤ i≤ j ≤ n−1, vg, gtrC2 = 0, g ∈ Lie(G). (11.21)

Note that Avi j C1 = 0 is automatically satisfied. Note also that (11.20) consists of
g ∈ Lie(G) whose first column is zero.

In §11.2 we have computed Hodge numbers of abelian varieties. It turns out that
both numbers bn and hn,0 + hn−1,1 + · · · ,h n

2 ,
n
2 grow faster than dim(T) := 2n2 +

n. This may suggest that for generic C ∈ Abn
k the modular foliation F (C) is zero

dimensional. However, this is not the case. Recall that for abelian varieties we have
the constant Gauss-Manin connection

Der(T) = C (X/T)⊗k OT, C (X/T)∼= Lie(Sp(2n,k)).

We consider the canonical left action of G on A2n
k . By taking the wedge product we

gain a new action:

G×Abm
k → Abm

k , Abm
k :=

m∧
1

A2n
k . (11.22)

For m≥ 2 the corresponding quotient

MFm := G\Abm
k

might not be discrete. This is the moduli of modular foliations defined in §6.7. We
also need to consider the canonical action of the Lie algebra Lie(Sp(2n,k)) on A2n

k
and the resulting action on the wedge product space:

Lie(Sp(2n,k))×Abm
k → Abm

k , (g,C) 7→ g•C. (11.23)

For C ∈ Abm
k we have

F (C) = F
(

vg ∈ Lie(Sp(2n,k))
∣∣∣ g•C = 0

)
.

Therefore, the codimension of the foliation F (C) is dimk (Lie(Sp(2n,k)•C) and so
it is natural to define the following filtration of Abm

k :

MFm(a) :=
{

C ∈ Abm
k

∣∣∣dimk (Lie(Sp(2n,k))•C)≤ a
}
, (11.24)

· · · ⊂MFm(a)⊂MFm(a+1)⊂ ·· · ⊂MFm(2n2 +n) = Abm
k .

The set MFm(a) is a closed algebraic subvariety of Abm
k . We take a basis gi, i =

1,2, . . . ,2n2 + n of Lie(Sp(2n,k)) and define the bm × (2n2 + n) matrix whose
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columns are giC. The variety MFm(a) consists of C’s such that the matrix B has rank
≤ a. Therefore, it is given by the determinants of all (a+1)× (a+1) sub matrices
of B. The study of Noether-Lefschetz loci in the case of abelian varieties is partially
done in [DL90] and it is of interest to translate such results into the framework of
modular foliations.

11.11 Differential Siegel modular forms

In this section we recover the theory of Siegel modular forms in our framework. The
reader is referred to [Kli90, Fre83, Maa71] for more information on Siegel modular
forms.

Definition 11.5 The algebra of (algebraic) differential Siegel modular forms is by
definition k[T], that is, that algebra of global regular functions on the moduli of
enhanced pricipally polarized abelian varieties of dimension n.

In order to relate this definition to classical Siegel modular forms, we work over the
field of complex numbers and consider the holomorphic map Hn→ T which is the
composition of the maps:

Hn→ Π→ U
P−1
→ T.

The first map is the τ maps given by

τ →
[

τ −In
In 0

]
and the second is the canonical map. Note that the period map P is a biholomor-
phism.

Definition 11.6 The algebra of (holomorphic) differential Siegel modular forms is
by definition the pull-back of the algebra of algebraic differential Siegel modular
forms k[T] by the map Hn→ T.

In order to recover the algebra of Siegel modular forms in the framework of en-
hanced principally polarized abelian varieties we need to introduce the following
moduli:

Definition 11.7 We define S the moduli of (A,ω,θ), where A is a principally po-
larized abelian variety of dimension n and with the polarization θ , and ω is a holo-
morphic differential n-form on A.

In a similar way as in §11.8 we know that S is a moduli scheme over k. We have a
canonical morphism of k schemes

T→ S, (11.25)
(X , [α1,α2, · · · ,α2n], θ) 7→ (X ,α1∧α2∧·· ·∧α2n,θ). (11.26)
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This map is surjective and hence we have an inclusion k[S] ⊂ k[T]. Recall that the
algebraic group G acts on the space T and hence on k[T]. If we impose a functional
equation for f ∈ k[T] with respect to the action of G then we may decpmpose k[T]
into graded pieces. We will do this just in the case of S. It inherits from T an action
of the multiplicative group Gm.

Definition 11.8 The algebra of (holomorphic) Siegel modular forms is by definition
the pull-back of k[S] by the composition Hn→ T→ S. A function f ∈ k[S] is called
an (algebraic) Siegel modular form of weight k ∈ N if

f (t •g) = f (t) ·g−k, ∀g ∈Gm. (11.27)

Its pull-back to Hn is called a (holomorphic) Siegel modular form.

The following propositon justifies the name Siegel modular form.

Proposition 11.6 A holomorphic function f : Hn→ C is a Siegel modular form of
weight k ∈ N if and only if

det(cτ +d)−k f
(
(aτ +b) · (cτ +d)−1)= f (τ), ∀

[
a b
c d

]
∈ Sp(2n,Z). (11.28)

The algebra of Siegel modular forms can be defined over Q and in this way we can
say:

Theorem 11.7 The moduli space S is a quasi-affine open subset of the affine scheme

Spec( the algebra of Siegel module forms in Hn for Sp(2n,Z)) . (11.29)

Proof. For a large k ∈ N, a basis of Siegel modular forms f0, f1, . . . , fN of weight k
gives us an embedding Sp(2n,Z)\Hn ↪→ CN+1. ut

The case n= 1 corresponds to classical modular forms and it is discussed in Chapter
9. For n = 2, the algebra of genus 2 Siegel modular forms is

C [E4,E6,C10,C12,C35]/
(
C 2

35 = P(E4,E6,C10,C12)
)
,

where E4,E6,C10,C12,C35 are generalization of Eisenstein sereis and P is an explicit
polynomial, see [Igu62].

For n = 1 the algebra of classical modular forms (without growth condition) is
Q[E4,E6,

1
∆
], where ∆ := 1

1728 (E
3
4 −E2

6 ). In this case we have the invertible element
∆ in this algebra and its logarithmic derivative is E2:

∆ ′

∆
= E2,

′ = q
d
dq

. (11.30)

For n ≥ 2 all the non-constant Siegel modular forms have zeros in Hn and hence
the only invertible Siegel modular forms are constants, see [Wei87]. Moreover, by
a result of Bertrand and Zudilin in the articles [BZ01, BZ03] we know that field
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generated by Siegel modular forms and their derivations has transcendental degree
2n2 + n over C. Since this is exactly the dimension of the moduli space T, it turns
out that any mermorphic function in T is algebraic over the field generated by k[S]
and the derivation of its elements along the vector fields vi j. It might be still too
early to expect the following conjecture. In a private communication, T. J. Fonseca
has also shown doubts about its truness.

Conjecture 11.2 For n≥ 2 the algebra of differential Siegel modular forms is gen-
erated by the algebra of Siegel modular forms and their derivations under ∂

∂τi j
.

One may look for a weaker version of the above conjectute which is easier to state
it in the algebraic framework.

Conjecture 11.3 The k-algebra k[T] is generated by k[S] and the derivation of its
elements along the vector fields vi j and vector fields vg, g ∈ Lie(G).

Our geometric point of view gives a natural context for the study of differential equa-
tions of Siegel modular forms, for some explicit differential equations Resnikof’s
articles [Res70a, Res70b]. If Conjecture 11.2 is false, one may try study the degree
of the field of differential Siegel modular forms over the field generated by Siegel
modular forms and their derivations. Our construction of modular vector fields in
§6.14 might be useful for this study.

The Shimura varieties parameterize certain Hodge structures, and a smaller class
of them called Shimura varieties of PEL-type, are the moduli of abelian varieties
with polarization, endomorphism, and level structure, see [Del71b, Milb, Ker14]
and the references therein. Constructing T as a moduli stack in the case of a Shimura
variety seems to be doable as the literature in this case is abundant. One special case
is the moduli of abelian varieties with real multiplication. In this case one has the
theory of Hilbert-Blumenthal modular forms, and the differential equations of such
modular forms have been studied in [Pel05]. The construction of functions on T
and the corresponding modular vector fields will give us the algebra of differential
Hilbert-Blumenthal modular forms. For the existence and uniqueness of such vector
fields in this case see [Fon21].





Chapter 12
Hypersurfaces

I see the process of mathematical creation as a kind of recognizing a preexisting
pattern. When you study something-topology, probability, number theory, whatever-
first you acquire a general vision of the vast territory, then you focus on a part of
it. Later you try to recognize “what is there?” and “what has already been seen by
other people?”. So you can read other papers and finally start discerning something
nobody has seen before you, (Y. Manin in The Berlin Intelligencer, 1998, p. 16-19).

12.1 Introduction

In this chapter we focus on enhanced smooth hypersurfaces of degree d and dimen-
sion n, and their moduli space T. The algebra k[T] of global regular functions in
T only in the case of elliptic curves (n,d) = (1,3), quartic surfaces (n,d) = (2,4),
and cubic fourfolds (n,d) = (4,3), will be related to automorphic forms and their
derivations. In these cases we will describe the differential equations of such auto-
morphic forms in terms of modular vector fields. Beyond these cases it is not clear
whether k[T] can be as useful as any theory of automorphic forms. Instead, we will
focus on the study of Noether-Lefschetz and Hodge loci in the moduli space T.
Using Griffiths theorem on de Rham cohomology of hypersurfaces, we construct
explicit coordinates on T and we show that most of the hypersurfaces have isolated
Hodge cycles and hence the corresponding modular foliations are trivial. A simpli-
fied version of T is introduced in [Mov17c] and the content of this chapter can be
considered as a better and more complete presentation of this article.

12.2 Fermat hypersurface as marked variety

Recall that for some special varieties, the Hodge decomposition might be defined
over the base field, see Definition 3.7. This is going to be the case of Fermat vari-
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eties:
X = Xd

n : xd
0 + xd

1 + · · ·+ xd
n+1 = 0. (12.1)

We remind the description of the de Rham cohomology and Hodge filtration of
hypersurfaces in [Gri69] and in particular the Fermat variety in [Mov19], Chapter
15. Let

I := {0,1, . . . ,d−2}n+1,

Aβ :=
n+1

∑
i=1

βi +1
d

, β ∈ I.

In the affine chart x0 = 1

L : xd
1 + xd

2 + · · ·+ xd
n+1 =−1,

a basis of the de Rham cohomology Hn
d (X)0 ⊂ Hn

dR(L) is given by

ωβ := xβ

(
n+1

∑
i=1

(−1)i−1

d
xidx1∧dx2∧·· ·∧ d̂xi∧·· ·∧dxn+1

)
, β ∈ I, Aβ 6∈ N,

(12.2)
where xβ := xβ1

1 xβ2
2 · · ·x

βn+1
n+1 is a monomial. A basis of Fn+1−kHn

dR(X)0 is given by

ωβ , Aβ < k, Aβ 6∈ N.

Proposition 12.1 The Hodge decomposition of the Fermat variety is defined over
rational numbers.

Proof. For the Fermat variety X = Xd
n , it is enough to prove that the primitive de

Rham cohomology Hn
d (X)0 has the Hodge decomposition defined over Q. The inte-

gral formula in [Mov19], Proposition 15.1, implies that

ωβ = ωd−2−β in Hn
dR(L), (12.3)

where
d−2−β := (d−2−β1,d−2−β2, · · ·).

Since Ad−2−β = n+1−Aβ , a basis of Fn+1−kHn
d (X)0 is given by

ωβ , Aβ > n+1− k, Aβ 6∈ N.

We conclude that a basis of Hn+1−k,k−1 := Fn+1−k∩Fn−k is given by ωβ , k−1 <
Aβ < k. ut

Proposition 12.2 The cup product in the basis ωβ , β ∈ I, Aβ 6∈ N of Hn
dR(X

d
n )0 is

given by
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ωβ ∪ωβ ′ =

{
Φβ ,β ′ ·θ n, for Aβ = n+1−Aβ ′ , with Φβ ,β ′ ∈Q

0. otherwise (12.4)

ωβ ∪θ
n
2 = 0. (12.5)

Proof. The equality (12.5) follows from∫
X

ωβ ∪θ
n
2 =

∫
Z∞

ωβ = 0,

where Z∞ is an intersection of a linear P n
2+1⊂Pn+1 with X . Since ωβ , k−1<Aβ <

k forms a basis of the piece Hn+1−k,k−1 of the Hodge decomposition of Hn
dR(X)0, if

Aβ +Aβ ′ 6= n+1 then ωβ ∪ωβ ′ = 0. The rationality of Φβ ,β ′ follows from the fact
that ωβ , θ and the cup product are defined over Q. ut

The cup product matrix in the basis {ωβ , β ∈ I, Aβ 6∈ N,} is of the Hodge block
form

Φ := [Φ i, j] =


0 0 0 · · · 0 Φ0,n

0 0 0 · · · Φ1,m−1 0
...

...
...

. . .
...

...
Φn,0 0 0 · · · 0 0

 , (12.6)

where Φn−i,i is an hi,n−i×hn−i,i matrix with rational entries. One can use the explicit
construction of the cup product in algebraic de Rham cohomology, see for instance
[Mov20a], and Carlson-Griffiths description of the algebraic de Rham cohomology
of hypersurfaces in [CG80] page 7, in order to compute the entries Φ explicitly. For
now, we make a change of basis in ωβ ’s such that for n even, Φ is written as the
following type of anti-diagonal matrix

Φ =


0 0 0 0 J
0 0 0 J 0
0 0 I 0 0
0 J 0 0 0
J 0 0 0 0

 (12.7)

(a sample for n = 4). Here, J is the anti-diagonal matrix with 1 in its anti-diagonal
entries and zero elsewhere, and I is the identity matrix. For this we have to work
over Q(

√
a) for some rational number a ∈Q, see Proposition 12.3. For n odd after

a change of basis we have

Φ =


0 0 0 J
0 0 J 0
0 −J 0 0
−J 0 0 0

 . (12.8)

(a sample for n = 3).
For a smooth hypersurface defined over Q and of even dimension n, we have a

bilinear map
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H
n
2 ,

n
2 (X)0×H

n
2 ,

n
2 (X)0→Q, (12.9)

〈ω1,ω2〉 7→
ω1∪ω2

θ n .

Proposition 12.3 There is a positive non-zero rational number a which depends
on d and n, and such that for X over k := Q(

√
a), H

n
2 ,

n
2 (X)0 has a basis αi with

[〈αi,α j〉] being the identity matrix.

Proof. The bilinear map 〈·, ·〉 is non-degenerate, and by second Hodge-Riemann
bilinear relations, we have 〈ω,ω〉> 0 for all non-zero ω . In order to find an orthog-
onal basis we start with a non-zero ω1 ∈ H

n
2 ,

n
2 (X)0 and replace it with a1ω1, where

a1 = (〈ω1,ω1〉)−
1
2 . Then we repeat this with the space orthogonal to ω1. ut

12.3 The algebraic group

Recall the general definition of the algebraic group G in §3.3. Since for a hypersur-
face, only the middle cohomology is non-trivial, we set b = bn, and so b0 := b−1
is the dimension of the primitive cohomology of X0 (and not the 0-th Betti number
of X0). We identify g ∈ G with its representation in the n-th primitive cohomology
of X0 := Xd

n and hence with b0×b0 matrices:

G :=

{
g ∈ GL(b0,k)

∣∣∣∣∣g block upper triangular and gtr
Φg = Φ

}
. (12.10)

This implies that we have a surjective morphisim of groups

G→ O(h
n
2 ,

n
2

0 ),

g 7→ g
n
2 ,

n
2 ,

where h
n
2 ,

n
2

0 := h
n
2 ,

n
2 −1 and

O(h
n
2 ,

n
2

0 ) = O(h
n
2 ,

n
2

0 ,k) :=
{

g ∈ GL(h
n
2 ,

n
2 0,k)

∣∣∣gtr ·g = identity matrix
}

(12.11)

is the orthogonal group. We have also a canonical immersion O(h
n
2 ,

n
2

0 ) ↪→ G which
follows from the fact that the Hodge decomposition of the Fermat variety is defined
over k̄ (see Proposition 12.1), and hence, we have the inclusion (3.25).
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12.4 Enhanced hypersurfaces

For a smooth hypersurface X/k in Pn+1, we use Lefschetz theorems and we know
that only the middle cohomology is non-trivial in the sense that

Hm
dR(X)∼=

{
k, m 6= n is even
0, m 6= n is odd .

For the middle cohomology we use Lefschetz decomposition and we conclude that
for n an odd number Hn

dR(X)0 = Hn
dR(X) and for n an even number

Hn
dR(X)0 :=

Hn
dR(X)

k ·θ n
2

↪→ Hn
dR(L).

The primitive cohomology can be also embedded in Hn
dR(X). For this we redefine

Hn
dR(X)0 :=

{
ω ∈ Hn

dR(X)
∣∣∣〈ω,θ

n
2 〉= 0

}
.

Definition 12.1 An enhanced hypersurface is a pair (X ,α), where X is a smooth
hypersurface and α = [α1,α2, . . . ,αb0 ] is a basis of Hn

dR(X)0 with

1. The basis α is compatible with the Hodge filtration of Hn
dR(X)0.

2. The intersection matrix [〈αi,α j〉] is the constant matrix (12.6).

Let V d
n ⊂ k[x]d be the affine variety parameterizing non-singular hypersurfaces. We

take π : Y → V d
n the full family of hypersurfaces over V d

n . Recall the construction
of the full enhanced family X/T in Theorem 3.3 and Theorem 3.4, and in partic-
ular, in the proof of these theorems. We use the Griffiths theorem on the de Rham
cohomology of hypersurfaces, see [Mov19], for construction of such an enhanced
family. From now on we are going to work with a full enhanced family X→ T of
hypersurfaces.

Remark 12.1 Hypersurfaces with k := n+2
d ∈ N have Hodge numbers 0, · · · ,0,1,

hk+1,m−k−1, · · · and they are R-varieties in the sense of Definition 2.26. For instance,
a smooth cubic tenfold in P11 has Hodge numbers 0,0,0,1,220,925,220,1,0,0,0
and its moduli is of dimension dim(H1(X ,ΘX )) = 220, see [Mov19, Chapter 15]
and Chapter 12. It might be interesting to classify all odd dimensional hypersurfaces
such that

H1(X ,ΘX )→
{

A ∈ Hom
(

H
n−1

2 (X ,Ω
n+1

2
X ),H

n+1
2 (X ,Ω

n−1
2

X )

)
∣∣∣Q(δ (v)(α),β )+Q(α,δ (v)(β )) = 0, α,β ∈ H

n−1
2 (X ,Ω

n+1
2 )
}
,

is an isomorphism, where Q is defined in (2.35). This would give us other type of
R-varieties in the context of hypersurfaces.
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12.5 Modular foliations of Hodge type

Recall the definition of constant periods of Hodge type and the corresponding mod-
ular foliation F (C) in §6.7.

Proposition 12.4 All the modular foliations F (C) of Hodge type with C as in (6.15)
are isomorphic.

Proof. The subgroup of the algebraic group G sending constant periods of Hodge
type (6.15) to themselves contains the orthogonal group O(h

n
2 ,

n
2

0 ). Since the orthog-
onal group act transitively on the unitary ball, the action of G on constant periods of
Hodge type is transitive. Now, the affirmation follows from Proposition 6.3. ut

The conclusion is that we have just one modular foliation of Hodge type F (C).

Definition 12.2 We define F n
d = F (C), where C has zeros every where except in

the first entry of the middle Hodge block, where it is 1 in this entry, and call it the
modular foliation for hypersurfaces.

Conjecture 12.1 For n ≥ 4 an even number and d > 2(n+1)
(n−2) the modular foliation

F d
n is trivial in the sense of Definition 6.4.

This conjecture is motivated by the study of Hodge cycles of the Fermat variety.
For n,d as in Conjecture 12.1, the generic Hodge cycle of the Fermat variety is
conjectured to be isolated, see [Mov19, §16.8], and so it does produce a leaf of
F d

n which is an orbit of Stab(G,C). Despite this fact, note that inside Sing(F d
n ) we

might have a non-trivial foliation.

12.6 Moduli of enhanced hypersurfaces

In this section we want to construct the moduli of enhanced hypersurfaces. Before
this we recall some useful information regarding the classical moduli of hypersur-
faces. We closely follow Mukai’s book [Muk03], Chapter 5. For many missing def-
initions and proofs see this and [MFK94].

Let k[x]d = k[x0,x1, . . . ,xn+1]d be the space of homogeneous degree d polyno-
mials in n + 2 variables x0,x1, . . . ,xn+1 and with coefficients in k. Note that the
projectivization of this space is the Hilbert scheme HilbP(Pn+1

k ), where P is the
Hilbert polynomial of hyepersurfaces in (2.19). For f ∈ k[x]d we denote by X the
hypersurface in Pn+1 given by f = 0. We consider the action of the reductive group
G := GL(n+2) on V d

n :

G× k[x]d → k[x]d , (g, f ) 7→ g· f := the polynomial f evaluated at xtrg.

The following theorem has been proved in Mukai [Muk03] Theorem 5.23, page 170
and it is attributed to Jordan in [Jor80] and Matsumura and Monsky in [MM64].
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In Mumford, Fogarty and Kirwan’s book [MFK94] §2, page 80, it is attributed to
Kodaira and Spencer [KS58], Lemma 14.2.

Theorem 12.5 Any non-singular hypersurface X of degree ≥ 3 and dimension n≥
2 given by a homogeneous polynomial f ∈ k[x0,x1, . . . ,xn+1]d is invariant under at
most finitely many g ∈ GL(n+2).

Let V d
n ⊂ k[x]d be the affine variety parameterizing non-singular hypersurfaces:

V d
n := Spec

(
k

[
t,

1
∆(t)

])
, (12.12)

where t = (tα) is a collection of all parameters with tα for each monomial xα of
degree d and ∆ = ∆(t) is the discriminant function on t. By the above theorem all
the points in V d

n have a finite stabilizer. The variety V d
n is affine and so all its points

are stable for the action of GL(n+2) on V d
n , see [Muk03] Corollary 5.14 page 166

and Corollary 5.24 page 171. Therefore

Definition 12.3 The quotient

Md
n := GL(n+2)\V d

n (12.13)

has a canonical structure of an algebraic variety over k and it is the moduli of smooth
hypersurfaces of degree d and dimension n.

In the literature we also find the action of SL(n+ 1) on k[x]d without mentioning
the geometric meaning of this. We next explain this, and in particular its geometric
interpretation in the case:

k :=
n+2

d
∈ N. (12.14)

For f ∈ k[x], f 6= 0 consider the following meromorphic differential (n+ 1)-form
in An+2

k :

Ω f :=
∑

n+1
i=0 (−1)ixid̂xi

f k . (12.15)

For the action of g ∈ GL(n+1) in k[x]d we have

g∗Ω f := det(g) ·Ωg· f . (12.16)

The differential form Ω f induces an (n+ 1)-form in Pn+1
k if and only if (12.14)

occurs. The residue of Ω f in X ⊂ Pn+1
k is a basis of the one dimensional space

Hn−k+1,k−1 of the Hodge decomposition of X . For k = 1, X is a Calabi-Yau variety
and such a residue is a holomorphic differential n-form in X . It follows from (12.14)
and the Griffiths theorem on the cohomology of hypersurfaces that H p,q = 0 for q <
k−1. We are interested in the moduli S of pairs (X ,α), where X is a hypersurface
of degree d and dimension n and 0 6= α ∈ Hn−k+1,k−1(X). If we write (X ,α) in a
coordinate system this is as follows. The group GL(n+ 2) acts on the set of pairs
( f ,aΩ f ), f ∈ k[x]d , a ∈Gm in a natural way:
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g · ( f ,aΩ f ) := (g· f ,ag∗Ω f ).

and we are interested in the corresponding quotient. It turns out that it is the same as
the the quotient of the action of the group SL(n+2) on k[x]d . Moreover, the trivial
Gm-action on pairs (X ,α) (multiplying α with a constant) is translated to the right
action of Gm:

k[x]d×Gm→ k[x]d ,

( f ,g) 7→ f •g := the polynomial f evaluated at (gx0,gx1, · · · ,gxn+1).

It commutes with the action of SL(n+2) on k[x]d , and so, we have the action of Gm
on the quotient space SL(n+2)\k[x]d .

Theorem 12.6 The quotient

S := SL(n+2)\V d
n (12.17)

is an affine variety over k and the Gm-action on S is also defined over k.

The affine variety S is called the moduli of holomorphic differential forms. This
naming makes sense for the case (12.14) with k = 1, however, we will use it in
general. Note that we can recover the classical moduli of hypersurfaces by taking
the quotient:

Md
n = S/Gm.

For a proof of Theorem 12.6 see [Muk03], §5.2. By Hilbert’s theorem the ring
k[t]SL(n+2) of polynomials in t and invariant under the action of SL(n+2) is finitely
generated. We take homogeneous polynomials F0,F1, · · · ,Fs ∈ k[t]SL(n+2) and con-
sider the map

S→ As
k, t 7→ (F0(t),F1(t), . . . ,Fs(t)),

which realizes S as a quasi-affine subvariety of As+1
k . Moreover, the action of Gm in

S is compatible with the action of Gm in As+1
k :

( f0, f1, . . . , fs)•g := (gd0 f0,g
d1 f1, . . . ,g

ds fs),

where di := deg(Fi). It turns out that the classical moduli space Md
n is a subvariety

of the weighted projective variety P(d0,d1,...,ds). In [Muk03] and many other texts, it
seems that S has been used as an auxiliary object for the study of Md

n , however, in
the present text and for cases (12.14) it is the little brother of our main moduli space
T. The case of elliptic curves in Theorem 12.6, that is, n = 1, d = 3, k = 1, is a
classical statement. The geometric quotient SL(3)\V 3

1 exists. It is

S = Spec(k[t2, t3,
1

27t2
3 − t3

2
]),

and the action of Gm on S is given by (t2, t3) • g := (g−4t2,g−6t3). For this, we
take a tangent line at an inflection point of the elliptic curve X and by an action
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of SL(3), put the inflection point at [0 : 1 : 0] and the line at x2 = 0. In Mukai
[Muk03], Example 5.26, page 172, this simple observation is attributed to Aronhold
in [Aro50].

Let Hd
n →V d

n be the n-th algebraic de Rham cohomology bundle, that is, its fiber
over the point f is Hn

dR(X), where X is the hypersurface in Pn+1 given by f = 0. Let
us define T̃ to be the set of all enhanced hypersurfaces (X ,α) with X as before, see
§12.4. This is the total space of all possible choices of α in the fibers of Hd

n →V d
n .

The group SL(n+1) acts in T̃ in a natural way and we have

Theorem 12.7 The moduli of enhanced hypersurfaces

T := T̃/SL(n+1). (12.18)

is an algebraic variety over k, with the action of the algebraic group G on T.

Proof. In our way of constructing enhanced families in §3.6, the group SL(n+ 2)
acts in each chart U0, and all the points in U0 have finite stabilizer. Therefore, SL(n+
2)\U0 is an affine variety with the action of the algebraic group G, all defined over
k. The quotient T is obtained by gluing these affine charts. ut

Note that T is not necessarily affine. When we choose sections of the cohomology
bundle, we can at most say that they form a basis in fibers for a Zariski open neigh-
bourhood in the base space V d

n , that is, they might not form a basis in all fibers. This
forces us to study T in charts.

We note that the parameter space of hypersurfaces is full in the sense of Defini-
tion 2.27.

Proposition 12.8 Let V d
n be the parameter space of smooth hypersurfaces of dimen-

sion n and degree d in Pn+1
k . The Kodaira-Spencer map

T0V d
n → H1(X ,ΘX )0 (12.19)

is surjective and its kernel is given by vector fields vg,t , g ∈ Lie(G).

Proof. For hypersurfaces we have H1(X ,ΘX )0 = H1(X ,ΘX ), except for (n,d) =
(2,4). In this exceptional case H1(X ,ΘX )0 is of codimension one in H1(X ,ΘX ). For
the second statement see [Voi03, Lemma 6.15]. ut

12.7 Hypersurfaces with a finite group action

In this section we take a finite group G acting on Pn+1
k . In practice, this will be

a subgroup of the automorphism group of the classical Fermat variety X = Xd
n of

dimension n and degree d given in (12.1). The group Sn+2 of all permutations in
n+2 elements {0,1, . . . ,n+1} acts on Xd

n in a natural way. An element in b ∈ Sn+2
acts on Xd

n by permuting the coordinates:



190 12 Hypersurfaces

(x0,x1, . . . ,xn+1) 7→ (xb0 ,xb1 , . . . ,xbn+1).

Multiplication of the coordinates by d-th roots of unity provides other automor-
phisms of the Fermat variety. Let

µ
n+2
d /µd := µd×µd×·· ·×µd︸ ︷︷ ︸

(n+2)− times

/diag(µd), (12.20)

where
µd := {1,ζd , . . . ,ζ

d−1
d } (12.21)

is the group of d-th roots of unity and diag(µd) is the image of the diagonal map

µd → µ
n+2
d , ζ 7→ (ζ ,ζ , · · · ,ζ ).

The group µ
n+2
d /µd acts on Xd

n by multiplication of coordinates:

(ζ0,ζ1, . . . ,ζn+1),(x0,x1, . . . ,xn+1) 7→ (ζ0x0,ζ1x1, . . . ,ζn+1xn+1). (12.22)

Let us define the free product group

Gd
n :=

(
µ

n+2
d /µd

)
∗Sn+2, (12.23)

which is a subgroup of the automorphism group of the Fermat variety Xd
n . Let G⊂

Gd
n be any finite subgroup. Our main examples for G are

G :=
{

ζ ∈ µ
n+2
d /µd

∣∣∣ ζ0ζ1 . . .ζn+1 = 1
}
, (12.24)

for the case d = n+ 2 and the permutation group G := Sn+1. The group G acts on
the space V d

n of smooth hypersurfaces V d
n in a canonical way and we define

VG :=
{

t ∈V d
n

∣∣∣g · t = t,
}

(12.25)

that is, VG parametrizes hypersurfaces X with G⊂Aut(X). By definition the Fermat
point 0 ∈ V d

n is in VG. For the group (12.24) the corresponding family of hypersur-
faces is give by

Xt : t0xn+2
0 + t1xn+2

1 + . . .+ tn+1xn+2
n+1− tn+3x0x1 . . .xn = 0, (12.26)

which is called the Dwork family. For the permutation group G = Sn+2 we will
consider the case d = 3. The corresponding family of hypersurfaces is given by

Xt : t0(x3
0 + · · ·)+ t1(x2

0x1 + · · ·)+ t3(x0x1x2 + · · ·) = 0, (12.27)

where · · · means the sum of all possible monomials obtained from the leading mono-
mial by permuting the variables. We call Xt the Deligne’s family, as working with
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hypersurfaces with large automorphism group is proposed by P. Deligne, (personal
communication, February 20, 2016).

An automorphism of a smooth projective variety leaves the Hodge filtration in-
variant and hence it is natural to consider the invariant part of Hn

dR(X)

Hn
dR(X)G :=

{
ω ∈ Hn

dR(X)
∣∣∣ σ
∗
ω = ω ∀σ ∈ G

}
(12.28)

and the induced Hodge filtration. This is also called the invariant cohomology of X .

Proposition 12.9 A basis of Hn
dR(X)G for a member X = Xt of the Dwork and

Deligne families and for t in a neighborhood of the Fermat point are given by

(x0x1 · · ·xn+1)
k−1Ω

f k , k = 1,2, . . . ,n+1,

(x0x1 · · ·x3k−n−2 + · · ·)Ω
f k , k = 1,2, . . . ,n+1,

respectively, where · · · means the sum of all possible monomials obtained from the
leading monimial by permuting the variables. It is compatible with the Hodge filtra-
tion. For the Dwork family dim(Hn

dR(X)G) = n+1 and the Hodge numbers are

1,1,1, . . . ,1︸ ︷︷ ︸
n+1− times

,

and for Deligne family dim(Hn
dR(X)G) = n+ 1− 2

[ n+1
3

]
and the Hodge numbers

are
0,0, · · · ,0︸ ︷︷ ︸

[ n+1
3 ]− times

, 1,1, · · · ,1︸ ︷︷ ︸
n+1−2[ n+1

3 ]− times

, 0,0, · · · ,0︸ ︷︷ ︸
[ n+1

3 ]− times

.

Proof. This follows from Griffiths theorem on the cohomology of hypersurfaces in
[Gri69], see also [Mov19]. ut

12.8 Automorphic forms for hypersurfaces

Let S be the moduli space of holomorphic differential forms constructed in Theorem
12.6. We denote by k[S] the ring of regular functions on S.

Definition 12.4 A regular function f ∈ k[S] is an automorphic form of weight k if

f (t •g) = g−k f (t), ∀t ∈ S, g ∈Gm.

The following theorem says that in which cases Definition 12.4 has to do with au-
tomorphic forms on some Hermitian symmetric domain. Recall the definition of
Griffiths period domain in Chapter 8.
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Theorem 12.10 The Griffiths period domain D arising from the middle primitive
cohomology of a smooth hypersurface is a Hermitian symmetric domain if and only
if (n,d) is in the Table 12.1.

(n,d) Hodge numbers of the primitive cohomology Dimension of the moduli
(1,d ≥ 3) (d−1)(d−2)

2 , (d−1)(d−2)
2

(d+1)(d+2)
2 −9

(2,4) 1,19,1 19
(3,3) 5,5 10
(3,4) 30,30 45
(4,3) 1,20,1 20
(5,3) 21,21 35

Table 12.1 Hypersurfaces with a Hermitian symmetric domain D

Proof. The Hodge numbers of a hypersurface satisfy hn,0≤ hn−1,1≤ ·· · ≤ hn−[ n
2 ],[

n
2 ]

and the Griffiths transversality implies that the corresponding period domain is Her-
mitian symmetric if and only if the Hodge numbers are of the format 0, · · · ,0,1,a,1,0 · · · ,0
for n even, and of the format 0, · · · ,0,a,a,0 · · · ,0 for n odd. Classical formulas for
the Hodge number of hypersurfaces imply the desired statement. ut

The dimension of the moduli space of hypersurfaces is

dim(Md
n) =

(
d +n+1

n+1

)
− (n+2)2

The dimension of the Hermitian symmetric domain for n odd in Table 12.1 is a(a+1)
2 ,

where a = h
n+1

2 , n−1
2 is the non-zero Hodge number. Therefore, in these cases and

except for (n,d) = (1,3),(1,4), the period map is not surjective. Similar to the one
dimensional case in which a curve is replaced with its Jacobian and the Jacobian is
replaced with a polarized abelian variety so that we get a biholomorphic period map,
we can also repeat this process in other cases using Griffiths’ intermediate Jacobian.
In the present text we are only interested in the even dimensional cases which are
(n,d) = (2,4),(4,3). In the next sections we are going discuss these cases in more
details.

12.9 Period domain

The cohomologies of a smooth hypersurface in Pn+1 in dimensions below and over n
is generated by the polarization θ ∈ H2

dR(X), and hence, our version of the Griffiths
period domain in Definition 8.4 is the same as Griffiths’ original definition. The
cases with Hodge numbers in Theorem 12.10 are of special interest. The generalized
period domain for Hodge numbers 0, · · · ,0,m,m,0 · · · ,0 is discussed in Chapter 11.
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In this section we disucuss the case of Hodge numbers 1,m,1. We make a slight
modification of the material in Chapter 8 as follows.

Let X0 be a projective smooth variety of even dimension n over C such that its
middle cohomology has Hodge numbers 0, · · · ,1,a,1,0 · · · ,0. By Poincaré duality
and Hodge index theorem the homology Hn(X0,Z) together with the intersection
of cycles is unimodular and it is of signature (3,a− 1) (resp. (a,2)) for n

2 an odd
number (resp. even number). The lattice of Hodge cycles Hodgen(X0,Z) is also non-
degenerate and of signature (1,b) for some b ≤ a− 1 (resp. (b,0) for some b ≤ a)
for n

2 an odd number (resp. even number). We take a non-degenerate sublattice L⊂
Hodgen(X0,Z) of signature (1,a−1−m) for n

2 an odd number (resp. (a−m,0) for
n
2 an even number) and define

V0,Z :=
{

δ ∈ H2(X0,Z)
∣∣∣〈δ ,L〉= 0

}
.

Since L is non-degenerate, L⊕L⊥ has finite index in Hn(X0,Z), and hence, the Z-
module V0,Z is equipped with a non-degenerate, not necessarily unimodular, sym-
metric bilinear form inherited from Hn(X0,Z), and of signature (2,m) for n

2 odd and
signature (m,2) for n

2 an even number. Let Lpd ⊂ Hn
dR(X0) be the set of Poincaré

duals of elements of L. In the cohomology side we define:

V0 := (Lpd)⊥ =
{

δ ∈ H2
dR(X0)

∣∣∣〈δ ,Lpd〉= 0
}
.

The integration map

V0,Z ↪→V∨0 , δ 7→
∫

δ

is well-defined and we proceed the same discussion as in Chapter 8 with this V0,Z
and V0. We take basis δ1, . . . ,δm+2 of V0,Z and α1,α2, . . . ,αm+2 of V0 with

Ψ = [〈δi,δ j〉], Φ = [〈αi,α j〉].

The generalized period domain Π consists of (m+2)× (m+2) matrices:

P :=

P00 P01 P02

P10 P11 P12

P20 P21 P22


(written in the Hodge block notation corresponding to 1+m+1) such that

Φ = Ptr
Ψ
−trP (12.29)

and P00

P10

P20

tr

Ψ
−tr

P
00

P
10

P
20

> 0. (12.30)
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The group

ΓZ := Aut(VZ,〈·, ·〉)∼=
{

A ∈ GL(m+2,Z) | Atr
ΨA =Ψ

}
written in the basis δi, i = 1,2, . . . ,m+ 2 acts from the left on Π with the usual
multiplication of matrices and U := Γ \Π.

We use x = [x1,x2, . . . ,xm+2] to denote the first column of P. The Griffiths period
domain is just the projectivization of the space of first columns of P:

D = {[x] ∈ Pm+1 | xΨ−trxtr = 0, xΨ−trx̄tr > 0 }. (12.31)

In the literature one mainly find the following format of the period domain D. Let
WZ =V∨0,Z be a non-degenerate lattice of rank m+2. We have

D := P
({

ω ∈WC

∣∣∣〈ω,ω〉= 0, 〈ω, ω̄〉> 0
})

.

Both definitions are related by writing

ω =
m+2

∑
i=1

xiδ
pd
i , xi ∈ C.

Note that [〈δ pd
i ,δ pd

j 〉] =Ψ−tr. The group ΓZ acts from the left on D. The quotient
ΓZ\D is the moduli of polarized Hodge structures of type 1,m,1.

12.10 K3 surfaces

For a detailed exposition of K3 surfaces the reader is referred to [Dol96]. A com-
plex compact smooth surface X with the trivial canonical bundle Ω 2

X and with
H1(X ,Q) = 0 is called a K3 surface. Using a result of Siu in [Siu83] we know
that a K3 surface is Kähler and hence its only non-trivial cohomology carries
a Hodge decomposition. Using Serre duality we know the Hodge numbers are
(h20,h11,h02) = (1,20,1). The homology H2(X ,Z) is torsion free and together with
the intersection of cycles is isomorphic to the K3 lattice

H⊕H⊕H⊕ (−E8)⊕ (−E8),

where H is the two dimensional lattice with the gram matrix
[

0 −1
−1 0

]
and E8 is the

eight dimensional lattice with the gram matrix
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2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


(12.32)

see [Ser78]. By Lefschetz (1,1) theorem, the elements of the lattice NS(X) :=
H2(X ,Z)∩H1,1 are Poincaré dual to the Néron-Severi group of divisors in X . More-
over, since H1(X ,Q) = 0 this is also the Picard group which is the group of line
bundles in X . For an algebraic K3 surface, the signature of NS(X) is (1,a) for some
a≤ 19, and hence, the Picard rank of the surface is 1+a. For instance, for a generic
quartic in P3 NS(X) = Z ·u with u ·u = 4.

Let L be an even non-degenerate lattice of signature (1,19−m), m≥ 0. Our main
example for this is

L = 〈2n〉, n≥ 2 (12.33)

which means that L = Z ·u with 〈u,u〉= 2n. A lattice polarization on the K3 surface
X is given by a primitive embedding

i : L ↪→ NS(X), (12.34)

whose image contains a pseudo-ample class, that is, a numerically effective class
with positive self-intersection. This gives us a line bundle l in X such that four
linearly independent sections s0,s1,s2,s3 of l give us a generically one to one map
X→ P3 whose image is given by a polynomial of degree 4. After the works of many
authors we have the following theorem.

Theorem 12.11 The coarse moduli space M of L-polarized K3 surfaces is a quasi-
projective variety over C and the period map

M → ΓZ\D

is a biholomorphism of analytic spaces.

see [Dol96] page 11. It is natural to expect that M is a quasi projective variety
defined over Q or Z[ 1

N ]. This is only done in the case (12.33) for which one uses a
Theorem of Viehweg, see §13.4. Let S be the moduli space of pairs (X ,α1), where
X is an L-polarized K3 surfaces and α1 is a holomorphic 2-form on X . In many
examples the following is true:

Conjecture 12.2 There is a universal family X̌ → S of L-polarized K3 surfaces
enhanced with a holomorphic differential 2-form.

An immediate translation of Theorem 12.11 into the context of enhanced lattice
polarized K3 surfaces is that the generalized period map
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T→ U (12.35)

is a biholomorphism. Moreover, if the above conjecture is true then we have a uni-
versal family X→ T of enhanced L-polarized K3 surfaces.

Theorem 12.12 Let X/T be a universal family of of enhanced L-polarized K3 sur-
faces. There are unique vector fields vk, k = 1,2, . . . ,h1,1

0 in T such that

Avk =

0 δ
j

k 0
0 0 −δ i

k
0 0 0

 (12.36)

Proof. The proof in the period domain U is similar to the case of Abelian varieties,
see Theorem 11.5 and it is left to the reader. For the algebraic description of modular
vector fields in T for L in (12.33) see §13.6. ut

12.11 Cubic fourfolds

For missing details in this section see Hassett’s article [Has00]. The generalized
period map P : T→ U in the case of cubic fourfolds becomes an open immersion,
and so, the modular vector fields constructed in Proposition 8.10 can be transported
to T. We get a similar statement as in Theorem 12.12 in this case.

Theorem 12.13 Let X/T be a universal family of of enhanced cubic fourfolds.
There are unique vector fields vk, k = 1,2, . . . ,h2,2

0 in T such that

Avk =

0 δ
j

k 0
0 0 −δ i

k
0 0 0

 (12.37)



Chapter 13
Calabi-Yau varieties

Every time I gave a counterexample [to Calabi Conjecture], it failed in a very deli-
cate manner, so I felt it cannot be that delicate unless God had fooled me; so it had
to be right now. I changed my mind completely, and then I prepared everything to
try to solve it, (S.-T. Yau in Kavli IPMU News No. 33 March 2016).

13.1 Introduction

In this chapter we will prove the existence and uniqueness of modular vector fields
for Calabi-Yau varieties of arbitrary dimension. This has been formulated in Prop-
erty 6.4 in Chapter 6. For Calabi-Yau threefolds this has been proved in [AMSY16]
using certain manipulations of periods in mirror symmetry, and so, the proof might
not be accessible for a general mathematics reader or it might not be considered a
polished mathematical proof. Our proof in this chapter simplifies many arguments
used in [AMSY16], and it works for Calabi-Yau varieties of arbitrary dimension
and defined over any field of characteristic zero. In even dimension we aim to use
modular vector fields in order to study Hodge cycles.

Modular vector fields are algebraic incarnation of derivations with respect to the
so called flat coordinate system on the moduli of Calabi-Yau varieties. Such a co-
ordinate system was first introduced in the physics literature for Calabi-Yau three-
folds, see [CdlOGP91b, BCOV93, BCOV94], and in the mathematics literature it
was used in the proof of the Bogomolov-Tian-Todorov theorem, see for instance
Todorov’s expository article [Tod03]. Recall from Chapter 9 that in the case of el-
liptic curves such a coordinate is the variable τ in the upper half plane and ∂

∂τ
in the

moduli of enhanced elliptic curves is incarnated as the Ramanujan vector field.

197
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13.2 Preliminaries

For the main purposes of the present text we will only need the following definition
of a Calabi-Yau variety.

Definition 13.1 A smooth projective variety X ⊂ PN
k of dimension n over k is called

a Calabi-Yau variety if its canonical line bundle Ω n
X is trivial.

Throughout the text we will not need the extra condition

H i(X ,OX ) = 0, 0 < i < n.

Only the condition H2(X ,OX ) = 0 for n≥ 3 might be useful for some discussions.
For instance, from this we deduce that the primitive deformation space H1(X ,ΘX )0
of X (see Definition 2.42) is equal to the usual one H1(X ,ΘX ). For Calabi-Yau
twofolds (K3 surfaces) note that the dimension of H2(X ,OX ) is one, and so, we
cannot drop 0 from our cohomology notations. There are two important aspects of
a Calabi-Yau variety.

1. The vector space H0(X ,Ω n) is one dimensional and it is generated by a holomor-
phic nowhere vanishing differential n-form ω . In particular, the Hodge numbers
satisfy

hn,0 = 1 = h0,n.

2. Using Serre duality we have:

H1(X ,ΘX )∼= Hn−1(X ,Ω n
X ⊗Ω

1
X ) = Hn−1(X ,Ω 1

X ). (13.1)

In particular, the dimension of the deformation space of X is equal to the Hodge
number hn−1,1.

The Serre duality also manifests itself in the IVHS for smooth Calabi-Yau varieties.
Recall the map in (2.40).

Proposition 13.1 For a smooth projective Calabi-Yau variety over k, the following
part of IVHS

δn,0 : H1(X ,ΘX )0→ Hom
(
H0(X ,Ω n

X ), H1(X ,Ω n−1
X )0

)
(13.2)

is an isomorphism of k-vector spaces.

Note that for n≥ 3 we have H1(X ,Ω n−1
X )0 = H1(X ,Ω n−1

X ).

Proof. We know that H0(X ,Ω n
X ) is one dimensional, and so, the right hand side

of (13.2) is canonically isomorphic to H1(X ,Ω n−1
X )0. We give a proof in the com-

plex context k = C. Since the canonical bundle of X is trivial, we can take a gobal
holomorphic nowhere vanishing n-form ω in X . In a local holomorphic coordinate
system (z1,z2, . . . ,zn), we can write ω = dz1∧dz2∧·· ·∧dzn and the map

i·ω : ΘX →Ω
n−1
X , v 7→ ivω
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is an isomorphism of holomorphic coherent sheaves, because for

v =
n

∑
i=1

vi(z)
∂

∂ zi
, we have ivω =

n

∑
i=1

vi(z)(−1)i−1d̂zi.

This induces an isomorphism in H1. By Serre’s GAGA the same isomorphism is
valid for Cech cohomologies with Zariski topology of X . The affirmation for the
primitive part of H1 follows from the fact that the following diagram commutes:

H1(X ,ΘX )
i·ω→ H1(X ,Ω n−1

X )
i·θ↓ ↓θ∧·

H2(X ,OX )
·ω→ H2(X ,Ω n

X ).

This in turn follows from

0 = iv(θ ∧ω) = ivθ ∧ω−θ ∧ ivω,

for v ∈H1(X ,ΘX ). Note that θ ∈H1(X ,Ω 1
X ) and so it contributes (−1) in the above

formula. It must not be confused with its C∞ counterpart which is a 2-form . ut

By Proposition 13.1 a Calabi-Yau variety is an R-variety with m = n and k = 0 in
the sense of §2.17.

13.3 R-varieties and modular vector fields

Recall the notion of an R-variety in §2.17. We are interested in R-varieties becuase
they give us some important information about the corresponding modular vector
fields.

Proposition 13.2 Let Y/V be an R-family of smooth projective varieties in the
sense of Definition 2.26 and let X/T be the corresponding enhanced family con-
structed in §3.6 and §3.7. Assume that the Kodaira-Spencer map TtV→H1(Yt ,ΘYt )0

is surjective for all t ∈ V . Then the map Yk−1,k
m,· : Mm(X/T)→Mat(hm−k+1,k−1

0 ×
hm−k,k

0 ,OT) defined in (6.26) is a surjective morphism of OT-modules.

A slight modification of the proof of Proposition 13.2 might give us a similar state-
ment for R-varieties in the sense of Definition 2.25.

Proof. By Theorem 6.23 we know that the Kodaira-Spencer map at a point t ∈V is
the composition

TtV
f→TtT

δm,k→ Hom
(

Hk(X ,Ω m−k
X )0, Hk+1(X ,Ω m−k−1

X )0

)
,
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where X =Xt . Since Yk−1,k
m,· is just δm,k with its image written in the standard basis of

the enhanced family X/T (Proposition 6.26), the result follows from the surjectivity
of the Kodaira-Spence map. ut

Let i and j be integers with 1 ≤ i ≤ hm−k+1,k−1
0 and 1 ≤ j ≤ hm−k,k

0 and let us take
the hm−k+1,k−1×hm−k,k matrix Mi j such that its entries are all zero except its (i, j)-
entry which is 1. Proposition 13.2 gives us a vector field vi j in T with Yk−1,k

m,vi j = Mi j.
This vector field might not be unique. We are going to discuss the uniqueness issue
in the case of Calabi-Yau varieties, see Theorem 13.4. We will discuss the moduli
of enhanced Calabi-Yau varieties using the available results on the classical moduli,
however, the contruction of vector fields vi j as above suggests that we might be
able to construct the moduli of enhanced R-varieties in the following way which
seems to be completely new. Let us consider the action of a reductive group G for
the enhanced R-family X/T as in §3.7. Starting from vi j constructed above, we
have to construct modular vector fields v ∈M(X/T) in T which are G-invariant.
By Proposition 6.20 all the entries of Yi−1,i

m,v are constant along the orbits of G.
Further derivations of these functions along G-invariant vector fields produce more
functions constant along the orbits of G. We might hope that all these functions
would be enough to construct the quotient G\T as an affine scheme.

13.4 Universal family of enhanced Calabi-Yau varieties

The classical moduli of Calabi-Yau varieties X is fairly well-understood both in the
complex and algebraic context. In the complex side we have the following.

Theorem 13.3 (Bogomolov-Tian-Todorov) The moduli space M of complex po-
larized Calabi-Yau manifolds X is smooth and of dimension N := dimH1(X ,Ω n−1)0.
Moreover, a holomorphic coordinate system for M around a point t0 ∈M, Xt0 = X
is given by τ := (τ1,τ2, · · · ,τN), where

τi :=

∫
δi,t

ω∫
δ1,t

ω

(13.3)

for some cycles δi,t ∈Hn(Xt ,Z) with t ∈ (M, t0) and ω is the holomorphic n-form on
Xt .

For a summary of results in this direction see Todorov’s expository article [Tod03],
see also [IM10] for an algebraic proof of this theorem. For the affirmation concern-
ing construction of τi’s, see Tian’s article [Tia87] Corollary 1, page 664. Note that
Tian uses a period domain which is different from the Griffiths period domain and
it essentially encodes the periods of ω , see [Tia87] page 637. In the Physics litera-
ture, see [CdlOGP91b, BCOV93, BCOV94], and for many examples of Calabi-Yau
varieties, we find a precise description of how to choose the topological cycles δi,t .
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This description is necessary if we want to find relations between Theorem 13.4 and
periods of Calabi-Yau varieties. This is only done in the case of Calabi-Yau varieties
of dimension ≤ 3, see [AMSY16].

In the algebraic side, E. Viehweg has constructed the coarse moduli space of
polarized smooth Calabi-Yau varieties as a quasi-projective variety, see [Vie95].
His method is based on Mumford-Hilbert geometric invariant theory (GIT). He has
shown that smooth Calabi-Yau varieties Xt ⊂ PN , t ∈ V for an irreducible com-
ponent V of a Hilbert scheme, are stable under the action of the reductive group
G = GL(N +1), and hence, the geometric quotient G\V exists as a scheme over k.
According to [Tod03] pages 700 and 707, the first moduli is just a local holomorphic
chart of the second moduli for k= C.

In order to construct universal families of enhanced Calabi-Yau varieties we are
going to take an irreducible component V of a full Hilbert scheme of Calabi-Yau
varieties X ⊂ PN

k defined in §2.18. Our main example for this is the parameter space
V of smooth hypersurfaces of dimension n and degree d = n+ 2 in Pn+1

k or the
Dwork family discussed in §12.7. In Proposition 12.8 we have proved that the pa-
rameter space of hypersurfaces is full. Let X→ T be the full enhanced family con-
structed from Y →V in §3.6 and §3.7. Theorem 3.5 gives us the coarse moduli space
Ť := G\T of enhanced Calabi-Yau varieties and we claim the following.

Conjecture 13.1 There is a universal family X̌→ Ť of enhanced Calabi-Yau vari-
eties.

Despite the fact that we have not solved the above conjecture, Proposition 3.10 tells
us that the Gauss-Manin connection matrices Am can be transported to Ť, and this
is all what we need to reproduce the theory of modular vector fields and modular
foliations in Ť. In the rest of this chapter by abuse of terminology, we will talk
about a universal family of enhanced Calabi-Yau varieties X/T, knowning that only
T and Am’s exists as algebraic objects over k (we will use Ť instead of T etc.). It
must be remarked that according to Todorov [Tod03] Theorem 33, there exists a
universal family over a finite covering of the classical moduli space of polarized
smooth Calabi-Yau varieties.

13.5 Modular vector fields for Calabi-Yau varieties

We are now ready to state our main theorem on modular vector fields for Calabi-Yau
varieties.

Theorem 13.4 Let X/T be a universal family of enhanced smooth projective Calabi-
Yau varieties of dimension n. There exist unique global vector fields v j, j =
1,2, . . . ,hn−1,1

0 in T and unique hm−i+1,i−1
0 ×hm−i,i

0 matrices Yi−1,i
m,v , i= 1,2, . . . ,m, m=

1,2, . . . ,2n−1 with entries as global regular functions in T such that
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Am,v j = Ym, j :=


0 Y01

m, j 0 · · · 0
0 0 Y12

m, j · · · 0
...

...
...

. . .
...

0 0 0 · · · Ym−1,m
m, j

0 0 0 · · · 0

 (13.4)

with

Y01
n, j = [0,0, . . . ,0,1,0, . . . ,0], 1 is in the j-th place (13.5)

Yi−1,i
m, j = (−1)m−1

(
Ym−i,m−i+1

m, j

)tr
, (13.6)

v j(Y
i−1,i
m,k ) = vk(Y

i−1,i
m, j ), (13.7)

Yi−1,i
m, j Yi,i+1

m,k = Yi−1,i
m,k Yi,i+1

m, j . (13.8)

Proof. The existence is already proved in Proposition 13.2 in which we have used
Theorem 6.23. This also gives the matrix format (13.5). The intersection matrix
Φn is taken in the standard format (3.24). Therefore, (13.6), (13.7) and (13.8) fol-
lows respectively from (6.28), (6.31) and (6.32). For (6.31) we need to prove that
[v j,vk] = 0. In summary, we only need to prove that vi’s are unique and commute
with each other. If we have given two such vector fields v j and v̌ j then for v := v j− v̌ j
we have Y01

n,v = 0. Moreover, if we have two such vector fields v j and vk with differ-
ent j,k, it follows from (6.31) applied for i = 1 that Y0,1

n,[v j ,vk]
= 0 becasue Y01

n,v j
and

Y01
n,vk

are contant matrices. Therefore, for v := [v j,vk] we have Y0,1
n,v = 0.

We prove that if v is a vector field in T with Y0,1
n,v = 0 then v must be necessarily

the zero vector field. We have ∇vα1 = 0, where α1 is the first element (a basis of
Hn0) of the standard basis of Hn

dR(Xt0). We proceed the proof over complex numbers,
that is, k = C. Let γ : (C,0)→ T be an arbitrary integral curve of the vector field v
with γ(0) = t0. In order to prove that v = 0 it is enough to prove that γ is a constant
map. It follows that all the integrals∫

δx

α1, δx ∈ Hn(Xγ(x),Z)

do not depend on x and hence are constant numbers. Let π : T → M := T/G
be the canonical map to the classical moduli space of Calabi-Yau varieties. By
Bogomolov-Tian-Todorov theorem we know that M is smooth of dimension N :=
hn−1,1

0 , moreover, a coordinate system for M around the point π(t0) is given by

τ := (τ1,τ2, · · · ,τN), where τi :=
∫

δi,t
α1∫

δ1,t
α1

for certain cycles δi,t ∈ Hn(Xt ,Z) with

t ∈ (T, t0). We conclude that π ◦ γ is a constant map, and hence if we identify
t ∈ T with (Xt ,α1,t , · · ·) then Xγ(x) = Xt0 does not depend on x. Now, we use
∇vα i

m = Yi,i+1
m,v α i+1

m . We take the pull-back of this equation by γ and regard all
the involved quantities depending on x. The operation ∇v turns out to be the usual
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derivation ∂

∂x . We write the Taylor series α i
m = ∑

∞
j=0 x jα i

m, j, where the entries of
α i

m, j’s are elements in Hm
dR(Xt0) independent of x. The conclusion is that the Gauss-

Manin connection ∇v leaves the Hodge filtration invariant and hence Yi,i+1
m,v are all

zero, and hence, the Gauss-Manin connection matrix Am of X/T composed with v is
identically zero and the elements of the standard basis α of H∗dR(Xt) do not depend
on x. This means that γ is a constant map. ut

As a corollary of Theorem 13.4 we have

Theorem 13.5 For a universal family of enhanced smooth projective Calabi-Yau
varieties X/T, the vector fields vi, i = 1,2, . . . ,hn−1,1

0 are linearly independent at
each point t ∈ T and the OT-module M(X/T) of modular vector fields is freely
generated by vi’s. In particular, the modular foliation F (2) has no singularities
and it is of dimension hn−1,1

0 .

Proof. The first statement follows from (13.5). The argument for the second state-
ment is as follows. Let v ∈ M(X/T) be a modular vector field and let Y01

n,v =

[a1,a2, . . . ,aN ]. For v̌ = v−∑
N
i=1 aivi we have Y01

n,v̌ = 0 and the same argument as
in the last step of the proof of Theorem 13.4 shows that v̌ = 0. The last statement
follows from the fact that any vector field tangent to the foliation F (2) is modular.
ut

After a partial compactification of T one might get singularities for the foliation
F (2), see for instance the case of elliptic curves in Chapter 9.

The cases of Calabi-Yau 1,2,3 and 4-folds are of special interest. The Calabi-
Yau 1-folds are elliptic curves and Theorem 13.4 is reduced to the existence of
the Ramanujan vector field discussed in §9.3. In the next sections for our matrices
(13.4) we are going to use the notation of [AMSY16]. We define δ

j
k (resp. δ i

k) to be
the 1×hn−1,1

0 (resp. hn−1,1
0 ×1) matrix with zeros everywhere except at its (1,k)-th

(resp. (k,1)-th) entry which is one.

13.6 Modular vector fields for K3 surfaces

The Calabi-Yau two folds are K3 surfaces. In this case it is also fruitful to enhance
X with some fixed curves in its Neron-Severi group. This is well-known under the
name ‘lattice polarization’ and it is discussed in §12.10. A version of the following
theorem has been proved in [Ali17] using ideas from period manipulations of mirror
symmetry. For Dwork family of K3 surfaces it is also proved in [MN18].

Theorem 13.6 Let X/T be a universal family of K3 surfaces. There are unique
vector fields vk, k = 1,2, . . . ,h1,1

0 in T such that

Avk =

0 δ
j

k 0
0 0 −δ i

k
0 0 0

 . (13.9)
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Note that for K3 surfaces there is no non-constant Y and they belong to the class
of varieties with the constant Gauss-Manin connection, see §6.12. The intersection
matrix in this case is taken to be

Φ :=

0 0 1
0 I 0
1 0 0

 .

where I = I
h1,1

0 ×h1,1
0

is the identity matrix. We get the following generalization of sl2
Lie algebra. This is namely the k-vector space generated by vector fields

vg, g ∈ Lie(G), vk, k = 1,2, . . . ,h1,1
0 .

After composing with the transpose of the Gauss-Manin connection matrix we get
the following representation of this Lie algebrag ∈Mat(N×N,k)

∣∣∣∣∣ g=

∗ ∗ ∗∗ ∗ ∗
0 ∗ ∗

 , gtr
Φ +Φg= 0

 , (13.10)

where N := 1+ h1,1
0 + 1 and it contains Lie(G). Note that g20 = gN,1 = 0 follows

from the (N,1)-entry of the equality gtrΦ +Φg= 0.

13.7 Modular vector fields for Calabi-Yau threefolds

Theorem 13.4 in the case of Calabi-Yau threefolds is inspired from many period
manipulations in mirror symmetry.

Theorem 13.7 (Alim-Movasati-Scheidegger-Yau, [AMSY16]) Let X/T be a uni-
versal family of enhanced smooth Calabi-Yau threefolds. There are unique vector
fields vk, k = 1,2, . . . ,h2,1

0 in T and unique regular functions in T, Yi jk, i, j,k =

1,2, . . . ,h2,1
0 symmetric in i, j,k such that

Avk =


0 δ

j
k 0 0

0 0 Yki j 0
0 0 0 δ i

k
0 0 0 0

 , (13.11)

with
vi1 Yi2i3i4 = vi2 Yi1i3i4 . (13.12)

Note that in this case we have taken
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Φ :=


0 0 0 1
0 0 I 0
0 −I 0 0
−1 0 0 0

 . (13.13)

and if h1,0 = 0 then we do not need to use the primitive cohomology notation and
so h2,1

0 = h2,1.

13.8 Modular vector fields for Calabi-Yau fourfolds

For applications in Hodge theory and in particular the study of Hodge loci, we high-
light Theorem 13.4 in the case of Calabi-Yau fourfolds. There has been some interest
in Calabi-Yau fourfolds in the physics literature for which we refer ro [HMY17] and
the references therein. It might be possible to generalize the period manipluations
of periods in the case of Calabi-Yau threefolds to higher dimensions, and in this we
reprove Theorem 13.4 and its particular case of Calabi-Yau fourfolds.

Theorem 13.8 Let X/T be a universal family of enhanced smooth projective Calabi-
Yau fourfolds. There are unique vector fields vk, k = 1,2, . . . ,h3,1

0 in T and unique
regular functions in T

Yki j, i,k = 1,2, . . . ,h3,1
0 , j = 1,2, . . . ,h2,2

0

symmetric in i,k such that

Avk =


0 δ

j
k 0 0 0

0 0 Yki j 0 0
0 0 0 −Yk ji 0
0 0 0 0 −δ i

k
0 0 0 0 0

 (13.14)

with
vrYki j = vkYri j, (13.15)

for r, i,k = 1,2, . . . ,h3,1
0 , j = 1,2, . . . ,h2,2

0 .

Let C be a period vector of Hodge type as in (6.15):

C =


0
0

C
n
2

0
0

 , C
n
2 =


1
0
...
0

 . (13.16)

For simplicity we have assumed that all the entries of the middle Hodge block C
n
2

are also zero except for the first entry which is 1.
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Proposition 13.9 The foliation F (2)∩F (C) is of dimension zero and its singular
set is given by

Sing(F (2)∩F (C)) =
{

det[Yi j1]h3,1
0 ×h3,1

0
= 0
}
.

Proof. A vector field ∑
h3,1

0
k=1 fkvk is tangent to the mother foliation F (2) if

h3,1
0

∑
k=1

fkAvk C = 0.

The special format of C implies that all the Hodge blocks of Avk C are zero except
for the middle one which is [Yki1]h3,1

0 ×1. ut

13.9 Periods of Calabi-Yau threefolds

Apart from the polynomial relations between the entries of Pm described in Propo-
sition 4.1 we do not know any other relation which might be used in the definition
of the period domains Π,U in order to make it samller dimension. For Calabi-Yau
threefolds with constant Yukawa couplings the following discussion might be devel-
oped into a precise formulation of extra polynomial relations. The main sources for
this section are [AMSY16, Ali17]. For the special case of mirror quintic and in gen-
eral Calabi-Yau threefolds with Hodge numbers of the third cohomology all equal
to one, similar discussions are developed in [Mov17b] with different notations.

Let M be a moduli space of Calabi-Yau threefolds X with h = h2,1(X). Let also
H be a connected component of the moduli of (X ,δ ), where X ∈M and δ stands for
a symplectic basis δ1,δ2, . . . ,δh+1,δh+2 · · · ,δ2h+2 of H3(X ,Z), that is

[δi ·δ j] =

[
0 I(h+1)×(h+1)

−I(h+1)×(h+1) 0

]
.

Note that this moduli space might have infinitely many components, for instance,
this is the case of mirror quintic, see the discussion in [Mov17b] §4.6.

Proposition 13.10 ([AMSY16], Proposition 3) For (X ,δ ) in an open dense subset
of H there is a unique enhanced variety (X ,α) such that the period matrix is of the
form [∫

δ j

αi

]
= τ

tr :=


1 τ j Fj 2F0−∑

h
l=1 τlFl

0 δ i
j Fi j Fi−∑

h
l=1 τlFli

0 0 δ i
j −τi

0 0 0 −1

 (13.17)

for some holomorphic function F0 in τ which is called the prepotential and Fi := ∂F0
∂τi

.



13.10 Calabi-Yau threefolds with constant Yukawa couplings 207

The functions τi are those which are used in Bogomolov-Tian-Todorov theorem
(Theorem 13.3). In the first line of the equality we claim that(∫

δ1
ω∫

δ1
ω
,

∫
δ2

ω∫
δ1

ω
,

∫
δ3

ω∫
δ1

ω
, · · · ,

∫
δh+1

ω∫
δ1

ω
,

∫
δh+2

ω∫
δ1

ω
, · · · ,

∫
δ2h+1

ω∫
δ1

ω
,

∫
δ2h+2

ω∫
δ1

ω

)
=(

1,τ1,τ2, · · · ,τh,
∂F0

∂τ1
, · · · , ∂F0

∂τh
,2F0−

h

∑
i=1

τi
∂F0

∂τi

)

for a holomorphic (3,0)-form ω on X . Evidently, due to the quotient, this does not
depend on the choice of ω . Propostion 13.10 gives us a meromorphic map

t : H 99K T, (X ,δ ) 7→ (X ,α). (13.18)

For (X ,δ ) we first choose an arbitrary enhancement (X , α̃). For the period matrix
P̃ := [

∫
δi

α̃ j] there is a unique g ∈ G such that P̃g is of the form (13.17). For this we
have divided over many periods

∫
δi

α j which might be zero, and the meromorphic
points of the map (13.18) is due to these zeros. For further details in the case of
mirror quintic see [Mov17b] §4.6, §4.7. We call (13.18) the special map. Here, the
adjective ‘special’ is taken from the special geometry of mirror symmetry.

Proposition 13.11 ([AMSY16], Proposition 5) For the period matrix in (13.17)
we have

dτ
tr · τ−tr =


0 dτ j 0 0
0 0 ∑

h
k=1 Fi jkdτk 0

0 0 0 dτi
0 0 0 0

 . (13.19)

Proof. This follow from (13.17) after performing explicit matrix multiplication. ut

Recall from §13.7 the modular vector fields vk, k = 1,2, . . . ,h in the moduli T of
enhanced Calabi-Yau threefolds.

Theorem 13.12 The modular vector fields vk’s are tangent to the image of the map
t in (13.18) and ∂

∂τk
is mapped to vk under the derivation of t.

Proof. This follows from Proposition 13.11, Theorem 13.7 and the uniqueness of
the vector field vk. ut

13.10 Calabi-Yau threefolds with constant Yukawa couplings

Recall the algebraic Yukawa couplings in §13.7. It might be useful to describe the
functional equation of Yi jk with respect to the action of G. By Proposition 3.6 we
know that the pull-back of the Gauss-Manin connection matrix A under the isomor-
phism g : T→T, t 7→ t •g is gtr ·A ·g−tr. If vk is a modular vector field in T and g∗vk
is its push-forward then we have gtr ·Y ·g−tr = A(g∗vk) which is not in the desired
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format of the Yukawa coupling matrix, and hence, g∗vk is not modular. We might
work out further in order to get the functional equation of Yi jk. It seems that such
a functional equation does only depends on the Hodge numbers and not the under-
lying Calabi-Yau varieties, see for instance the case of Calabi-Yau threefolds with
(h3,0,h2,1) = (1,1) in [Mov17b, §2.4 §7.8]. This means that the algebraic Yukawa
couplings Yi jk might not be constant, even though the Yukawa coupling which are
mainly used in Physics and are written in terms of period might be constant.

Definition 13.2 We say that a Calabi-Yau threefold (or in fact its moduli) has con-
stant Yukawa couplings if there are constants ci jk symmetric in i, j,k = 1,2, . . . ,h2,1

such that the variety

Ť : Yi jk− ci jk = 0, i, j,k = 1,2, . . . ,h21 (13.20)

is non-empty and the modular vector fields vl , l = 1,2, . . . ,h21 are tangent to Ť. In
other words, the quantities vl(Yi jk) restricted to Ť are zero.

Let us consider Calabi-Yau threefolds such that prepotential F0 is a polynomial of
degree at most 3 in τ1,τ2, . . . ,τh. By Proposition 13.11, the pull-back of the algebraic
Yukawa couplings Yi jk by t is Fi jk which is a constant ci jk. This implies that the
image of t is inside Ť given by (13.20). This might suggest that the algebraic Yukawa
couplings are constant in the sense of Definition 13.2. For Calabi-Yau threefolds
with constant Yukawa couplings, there are many polynomial relations among the
entries of the period matrix P(t), t ∈ T, and this indicates that one might be able to
define smaller dimensional period domains.

Conjecture 13.2 A moduli of Calabi-Yau threefolds is a quotient of a Hermitian
symmetric domain (constructed from periods) by an arithmetic group if and only if
the corresponding algebraic Yukawa couplings are constants in the sense of Defini-
tion 13.2.

The conjecture must be formulated precisely, as the term ‘constructed from peri-
ods’ is ambigous. Note that Conjecture 13.2 is analogous to Conjecture 6.2 which
is formulated for arbitrary projective varieties. Due to the enumerative meaning of
Yukawa couplings Yi jk in the case of Calabi-Yau threefolds we have reformulated
it again. The main idea is that Calabi-Yau threefolds with constant Yukawa cou-
plings are like K3 surfaces and abelian varieties. For them there is a new period
domain which is much smaller than the Griffiths period domain and such that the
period map is surjective. There is a list of examples for which Conjecture 13.2
is true or expected. This includes C. Schoen’s fiber product of two rational el-
liptic surfaces in [Sch88] and Borcea-Voisin’s examples [Bor97, Voi93], see also
[EK93, Roh09, GvG10]. In a personal communication (February 5, 2018) E. Schei-
degger informed the author most of the references cited in this paragraph. In many
of these examples a common feature is that they do not admit a maximal unipo-
tent monodromy. This can be rigorously proved for a class of Calabi-Yau threefolds
which we discuss in §13.11. Another class of Calabi-Yau varieties which might fit
into our discussion, is those which are cyclic covers branched over a (2n+2) hyper-
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plane arrangements in a general position in Pn. A particular family of such Calabi-
Yau varieties can be also constructed as a quotient of a product of higher genus
curves, see [SXZ13][§3] and [SZ10]. This is informed to the author by Tsung-Ju
Lee (personal communucation, January 15, 2019). For these classes of Calabi-Yau
varieties it seems that some of the Yukawa couplings are constant and some are
not. In the case of K3 surfaces, where we do not have Yukawa couplings, the de-
scription of the moduli space as a quotient of a Hermitian symmetric domain by an
arithmetic group, and the corresponding automorphic forms needed for inverting the
mirror map, has been discussed in [HLTY18]. It is also interesting to investigate the
relation of Conjecture 13.2 with the description of Hermitian symmetric domains in
[Yau93].

The following statement which is similar to Proposition 13.10 might be helpful
for understanding Conjecture 13.2. For lattice polarized K3 surfaces we define H in
a similar way as for Calabi-Yau threefolds.

Proposition 13.13 ([Ali17] Proposition 7.1) For (X ,δ ) in an open dense subset of
H there is a unique enhanced lattice polarized K3 surface (X ,α) such that the
period matrix is of the form

[∫
δ j

αi

]
=

1 τ j F0
0 δ i

j τi

0 0 0

 , (13.21)

for some degree two homogeneous polynomial F0 in τi’s.

Proposition 13.10 for Calabi-Yau threefolds with constant Yukawa couplings and
Proposition 13.13 suggest that there might be some relation between these two con-
texts. For instance, there might be a birational map between X1×X2×X3/G1 and
Y1×Y2/G2, where Xi’s (resp. Yi’s) are three lattice polarized K3 surfaces (resp. two
Calabi-Yau threefolds) and G1 (resp. G2) is a finite group acting on their product.

13.11 Calabi-Yau equations

Conjecture 13.2 seems to be non-trivial even in the case of Hodge numbers hi,3−i all
equal to one. In this section we discuss the classification of such Calabi-Yau three-
folds with constant Yukawa couplings in the sense that the prepotential F0 becomes
a polynomial of degree 3, see the comments after Definition 13.2. We follow the no-
tations used in [Mov17b] which is different (in particular those related to periods)
from the notation of an arbitrary Calabi-Yau threefolds used in this chapter.

Let us consider a family Xz,z ∈ P1 of Calabi-Yau threefolds with h1,2 = h2,1 = 1
and with possibly finitely many singular fibers.

Definition 13.3 The periods
∫

δz
ω3,0, δz ∈ H3(Xz,Z) generate a C-vector space of

dimension ≤ 4, and we assume that this dimension is exactly four, (for many ex-
amples of Calabi-Yau threefolds such that this vector space is of dimension two
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see [Cv17]). This implies that they generate the solution space of a Picard-Fuchs
equation of order four:

L := θ
4−

3

∑
i=0

ai(z)θ i = 0, (13.22)

where θ = z ∂

∂ z and ai’s are rational functions in z. The Picard-Fuchs equation
(13.22) is called a Calabi-Yau equation (of order 4).

We define:
a4 :=

1
4

a2
3 +a2−

1
2

θa3, a5(z) := e
1
2
∫

a3(z) dz
z . (13.23)

Griffiths transversality implies the following equality

a1 =−
1
2

a2a3−
1
8

a3
3 +θa2 +

3
4

a3θa3−
1
2

θ
2a3. (13.24)

see [Mov17b] Proposition 15 and Remark 9. The algebraic condition (13.24) can be
written as

a1 =−
1
2

a3a4 +θa4. (13.25)

where a4 is given in (13.23). The condition (13.24) is not changed when a solution
of L (equivalently ω3,0) is multiplied with a holomorphic function f . In particular,
for f = a5 in (13.23) we get a new differential equation with a3 = 0. In this case we
have a4 = a2 and (13.24) becomes

a1 = θa2. (13.26)

Proposition 13.14 A Calabi-Yau equation L with a constant Yukawa coupling is the
third symmetric power of a second order Fuchsian linear differential equation:

Ľ : θ
2−b1(z)θ −b0(z) = 0. (13.27)

that is, L = sym3Ľ.

Proof. Let us assume that the Yukawa coupling of Xz, z ∈ P1 is constant. It turns
out that the prepotential F0 a polynomial of degree ≤ 3 in τ0 and

τ1 :=
∂F0

∂τ0
, τ3 =

∂ 2F0

∂τ2
0
, Y =

∂ 3F0

∂τ3
0
, (13.28)

τ2 =

∫ (
∂F0

∂τ0
− τ0

∂ 2F0

∂τ2
0

)
= 2F0− τ0

∂F0

∂τ0
, (13.29)

where we are using the following τ-locus format
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τ =


τ0 1 0 0
1 0 0 0
τ1 τ3 1 0
τ2 −τ0τ3 + τ1 −τ0 1

 . (13.30)

used in [Mov17b] Chapter 4. By our assumption in definition 13.3 the degree of
F0 in τ0 is exacly 3. We have τ0 := x11

x21
, τ1 = x31

x21
and τ2 = x41

x21
for four linearly

independent solutions xi1, i = 1,2,3,4 of L. If we write x21 = y3
0 and x11 = y2

0y1
we conclude that the solution space of L is generated by y3

0, y2
0y1,y0y2

1,y
3
1, where

y0,y1 form a basis of solutions of a second order differntial equation (13.27). This
implies that L = sym3Ľ. In a personal communication (June 14, 2018), S. Reiter
kindly reminded the author that the third symmetric product sym3Ľ of an arbitrary
second order linear differential equation Ľ is given by:

sym3Ľ : θ
4−6b1θ

3 +
(
11b2

1−4θb1−10b0
)

θ
2 + (13.31)(

−6b3
1 +7b1θb1 +30b0b1−10θb0−θ

2b1
)

θ

−18b2
1b0 +6b0θb1 +15(θb0)b1 +9b2

0−3θ
2b0

This implies that b0,b1 are rational functions in z and Ľ is Fuchsian. ut

Proposition 13.15 The third symmetric product of an arbitrary second order linear
differential equation satisfies (13.24).

Proof. This can be verfied directly from the formula (13.31). Another proof is as
follows. The second order Fuchsian differential equation (13.27) can be transformed
into SL-form by substituting y by f y, where 0 6= f satisfies θ f = 1

2 b1(z) f . Then by
[IKSY91, p. 166]

θ
2y = p(z)y, p(z) = b0 +

1
4 b2

1−
1
2 θb1. (13.32)

For b1 = 0 (13.31) is just

sym3Ľ : θ
4−10b0θ

2−10θb0θ +9b2
0−3θ

2b0

This satisfies automatically (13.26). ut

Example 13.1 This example is take from [Bv95] page 525. The product of 3 ellip-
tic cubic curves in P2 is an abelian threefold. The periods of its mirror satisfy the
Picard-Fuchs equation

L := θ
4−3z(6+29θ +56θ

2 +54θ
3 +27θ

4)+

81z2(27θ
2 +54θ +40)(θ +1)2−2187z3(3θ +5)(3θ +4)(θ +2)(θ +1).

In a personal communication (February 17, 2018), Duco van Straten informed the
author about the following Picard-Fuchs equation with a constant Yukawa coupling.
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L := θ
4−12z(4θ +1)(4θ +3)(18θ

2 +18θ +7)+
2436z2(4θ +1)(4θ +3)(4θ +5)(4θ +7).

We would like to classify all Calabi-Yau equations, and once this is done, we may
try to classify the underlying Calabi-Yau threefolds with Hodge numbers hi,3−i =
1. This might be as hard as the Hodge conjecture and construction of algebraic
cycles. We have to collect properties for the Picard-Fuchs equation L which has been
derived from the underlying geometry. This job with non-constant Yukawa coupling
and conjecturally integral instanton numbers is undertaken by Almkvist, Enckevort,
van Straten and Zudilin in [AvEvSZ10], and up to the writing of the present text they
were able to find approximately 400 such equations. Calabi-Yau equations L with
constant Yukawa coupling are not included in their list. In Proposition 13.15 we have
already seen that L = sym3Ľ, where Ľ is a second order differential equation. One
needs more data from the underlying geometry in order to charachterize Calabi-Yau
equations with constant Yukawa coupling. Here, are some suggestions.

Let Ľ be the a second order differential equation as in (13.27). The monodromy
Γ̌ ⊂ GL(2,C) of Ľ satisfies

Γ = A
(
sym3

Γ̌
)

A−1 ⊂ Sp(4,Z)

for some 4×4 matrix A with det(A) 6= 0. Even if Γ̌ ⊂ SL(2,Z) we may have A with
this property which has not rational entries. We have to classify all degree three F0
such that

Im(τ0τ̄1 + τ̄2)< 0 (13.33)

Re(τ1(−τ0τ3 + τ1)− τ2τ3− (τ0(−τ0τ3 + τ1)− τ2)τ̄3)−|− τ0τ3 + τ1|2 < 0. (13.34)

These are the positivity conditions of the Hodge structure H3(Xz) = H30⊕H21⊕
H12⊕H03, see [Mov17b] §4.3. Further, we may assume that the family of Calabi-
Yau threefolds Xz (or the holomorphic function

∫
δz

ω3,0) is not a pull-back under a
rational map p : P1→ P1.

Since the Yukawa coupling is constant, one may try find some constrains for
Calabi-Yau equations from genus 1 instanton numbers. Such numbers are encoded
in the following expression

Fhol
1 := −1

2
log

(
(θ

x11

x21
)−1x

−3−h11+ χ

12
21 ∏

i
(bi− z)∗i

)
(13.35)

Here, bi’s are singularities of L and ∗i’s are some constant ambiguities. The number
h1,1 and χ are (1,1) Hodge number and Euler number of Xz, respectively. In the
absense of the geometric object Xz they might be also considered as ambiguities.
When Xz has a singularity, let us say z = 0, with maximal unipotent monodromy,
we have a receipe to define q-coordinate around z = 0 and inside the log one has a
q-expansion of the form (up to multiplication with a constant):
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qa0(
∞

∏
n=1

(1−qn)∑r|n dr)a1(
∞

∏
s=1

(1−qs)ns)a2 = qa0(
∞

∏
n=1

(1−qn)∑r|n dr)a1 (13.36)

Since the Yukawa coupling is constant we have ns = 0 for all s≥ 1 which is used in
the above equality. However, for Calabi-Yau equations with constant Yukawa cou-
pling we do not have maximal unipotent monodromy. This follows from Proposition
13.14 which implies that the differential Galois group of L is a proper subgroup of
Sp(4,C), for further details see [Mov17b]§7.6. Even though, we have L = Sym3Ľ
and one might use the q-coordinate constructed from the solution of Ľ around a
point z = 0 with maximal unipotent mondromy for Ľ. In this case one can develope
modular form theories attached to Ľ in a similar style as for Gauss hypergeomet-
ric equation, see [DGMS13]. It turns out that for a class of Gauss hypergeometric
equations the corresponding modular form theory has a basis with integral Fourier
coefficients if and only if the corresponding monodromy group is arithmetic, and
hence, we have a finite list of them, see [Mov17b] Appendix C and [MS14]. This
might be the case for second order differential equations Ľ computed from Calabi-
Yau equations.





Appendix A
A geometric introduction to transcendence
questions on values of modular forms
TIAGO J. FONSECA

A.1 Introduction

One of the most striking arithmetical applications of Ramanujan’s relations between
the normalised Eisenstein series E2, E4, E6 (see [Ram16] and [NP01] Chapter 1),
namely

1
2πi

dE2

dτ
=

E2
2 −E4

12
,

1
2πi

dE4

dτ
=

E2E4−E6

3
,

1
2πi

dE6

dτ
=

E2E6−E2
4

2
, (R)

is the following algebraic independence theorem proved by Nesterenko in 1996.

Theorem A.1 ([Nes96]) For every τ ∈H= {z ∈ C | Imz > 0}, we have

trdegQQ(e2πiτ ,E2(τ),E4(τ),E6(τ))≥ 3.

This means that among the four complex numbers e2πiτ , E2(τ), E4(τ), and E6(τ)
there are always three of them which are algebraically independent over Q.

Nesterenko’s result is remarkable both in its short and powerful statement as in
its proof method. In the next sections, we explain some applications of Nesterenko’s
theorem and the main ideas of its proof. For other accounts of Nesterenko’s proof,
the reader may consult, besides the original paper [Nes96], the collective volumes
[NP01] and [FGK05]. Here, we shall emphasise the special role played by the dy-
namics of the algebraic differential equations (R) in the guise of Nesterenko’s ‘D-
property’.

To help the reader with no background in Transcendental Number Theory, we
shall start with a brief overview of some of its main concepts and results. Let us
point out, however, that some major results such as Baker’s theorems or Wüstholz
analytic subgroup theorem are not discussed. For more complete and better written
introductions to this same subject, we refer to the classic [Bak75], or to the more
recent [MR14].

In the last section, we give a very short introduction to ‘periods’ and discuss some
general transcendence questions related to Nesterenko’s theorem. Periods are com-
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plex numbers given by integrals in algebraic geometry which have recently gained
much attention of the Number Theory community due to their deep connections with
the theory of motives. This places Nesterenko’s theorem in a larger context and al-
lows us not only to better appreciate its content, but also to dream and speculate on
future generalisations.

A.2 A biased overview of transcendence theory

Transcendence theory is one of the oldest, and reputedly one of the most difficult,
domains of Mathematics. Here, we can only scratch the surface.

A.2.1 First notions

In mathematics, ‘transcendental’ is the antonym of ‘algebraic’. Accordingly, a com-
plex number α is said to be transcendental if it is not algebraic — that is, P(α) 6= 0
for every P ∈ Q[X ] \ {0}. Similarly, we say that a function f (seen either as a for-
mal Laurent series in C((t)) or as a meromorphic function on some open domain
of C) is transcendental if it is not an algebraic function: P(t, f (t)) 6≡ 0 for every
P ∈ C[X ,Y ]\{0}.

The following definition generalises these notions.

Definition A.1 Let k ⊂ K be a field extension. We say that elements α1, . . . ,αn of
K are algebraically independent over k, or that the set {α1, . . . ,αn} ⊂ K is alge-
braically independent over k, if

P(α1, . . . ,αn) 6= 0

for every polynomial P ∈ k[X1, . . . ,Xn] \ {0}. When n = 1, we rather say that α1 is
transcendental over k.

Some of the most traditional choices of fields k and K are:

k K
arithmetic case Q C
functional case C C((t1, . . . , tm))

These give origin to the two main branches of transcendence theory: arithmetic tran-
scendence (or transcendental number theory), and functional transcendence. Albeit
essentially distinct, these two branches are subtly, and often mysteriously, inter-
twined.

Remark A.1 One could also replace the field of formal Laurent series C((t1, . . . , tm))
above by the field of meromorphic functions on some open domain of Cm. In the
one variable case, it is common to consider C(t) as the base field k. Our framework
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includes this one, since f1, . . . , fn ∈ C((t)) are algebraically independent over C(t)
if and only if f0 = t, f1, . . . , fn are algebraically independent over C.

Closely related to the notion of algebraic independence, is the quantitative notion
of transcendence degree of a field extension.

Definition A.2 Let k ⊂ K be a field extension. A subset S of K is algebraically
independent over k if every finite subset of S is algebraically independent over k. The
transcendence degree of K over k, denoted by trdegkK, is the maximal cardinality of
a subset of K algebraically independent over k.

For instance, let us assume that K = k(α1, . . . ,αn). Then trdegkK ≤ n. To as-
sert that trdegkK ≤ n− 1 is equivalent to assert that there exists a non-trivial alge-
braic relation, with coefficients in k, between α1, . . . ,αn. If 1≤ r ≤ n, to assert that
trdegkK ≥ r is equivalent to assert that some subset of r elements of {α1, . . . ,αn} is
algebraically independent over k.

Example A.1 (Exponential function) Consider t as a formal variable and let

et =
∞

∑
m=0

tm

m!
∈ C((t))

be the exponential power series. Then t and et are algebraically independent over C.
In other words, et is transcendental over C(t). We prove this by contradiction. If et

were algebraic over C(t), then there would exist a minimal integer d ≥ 1 for which
there are polynomials P0, . . . ,Pd ∈ C[X ] satisfying

d

∑
j=0

Pj(t)e jt = 0.

By differentiating with respect to t and by subtracting the resulting equation from d
times the original equation, we obtain

d

∑
j=0

(P′j(t)+( j−d)Pj(t))e jt = 0,

so that the leading coefficient is now P′d(t). By induction, we would obtain poly-
nomials Q0, . . . ,Qd−1 ∈ C[X ] (not all zero; check!) such that ∑

d−1
j=0 Q j(z)e jt ≡ 0,

thereby contradicting the minimality of d.

In general, the notion of algebraic independence admits the following scheme-
theoretic interpretation. Let k ⊂ K be a field extension, and consider a K-point α =
(α1, . . . ,αn) ∈ An

k(K). Then, α1, . . . ,αn are algebraically independent over k if and
only if the image of

α : SpecK −→ An
k

is dense in An
k for the Zariski topology — that is, if Y ⊂ An

k is a closed k-subvariety
such that α ∈ Y (K), then Y = An

k .
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This point of view allows us to give concrete geometric significance to functional
transcendence. For instance, algebraic independence of one variable functions cor-
responds to Zariski-density of parameterised curves. To fix ideas, let U be a neigh-
bourhood of 0 ∈ C, and let ϕ1, . . . ,ϕn be holomorphic functions on U . We thus
obtain a holomorphic curve

ϕ = (ϕ1, . . . ,ϕn) : U −→ Cn = An
C(C).

To say that ϕ1, . . . ,ϕn (seen as formal power series) are algebraically independent
over C is equivalent to say that the image of the curve ϕ is Zariski-dense in An

C.

Example A.2 (Exponential function, revisited) It follows from the above discus-
sion that the transcendence of et over C(t) is equivalent to the Zariski-density of the
image of the holomorphic curve

ϕ : C−→ C2, z 7−→ (z,ez).

Geometrically, this can be proved as follows. Assume that there exists an irreducible
algebraic curve C ⊂ A2

C = SpecC[X ,Y ] containing the image of ϕ . Since e2πin =
1 for every n ∈ Z, C intersects the line V (Y − 1) at an infinite number of points:
(2πin,1)∈C2 for n∈Z. As C and V (Y−1) are both irreducible, this is only possible
if C = V (Y − 1) (by a weaker form of Bézout’s theorem). This would imply that
ez ≡ 1, which is clearly absurd.

A.2.2 Arithmetic transcendence and Diophantine approximation

It is widely acknowledged that functional transcendence is easier than arithmetic
transcendence. Indeed, while results concerning functional transcendence date back
to the founding fathers of calculus (see [And17] Footnote 1, p. 2), the first transcen-
dence proof of explicitly defined numbers appears in Liouville’s landmark paper
[Lio51].

The fundamental insight of Liouville was to establish a link between arithmetic
transcendence and Diophantine approximation.

Theorem A.2 (Liouville) If a real number α is algebraic of degree d > 1 over Q,
then there exists c = c(α)> 0 such that∣∣∣∣α− p

q

∣∣∣∣> c
qd .

for every rational number of the form p/q, with p,q ∈ Z coprime and q > 0.

Proof. Let P ∈ Z[X ] be an irreducible polynomial of degree d such that P(α) = 0,
and take p/q as above with |α− p/q|< 1. By considering the Taylor expansion of
P at α , we obtain
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|P(p/q)|= |
d

∑
i=1

P(i)(α)

i!
(p/q−α)i| ≤M|p/q−α|

where M = ∑
n
i=1 |P(i)(α)/i!|. Since P is irreducible, we have P(p/q) 6= 0; since it

is of degree d and has integral coefficients, we have qdP(p/q) ∈ Z \ {0}, so that
|P(p/q)| ≥ 1/qd . We can thus take c = min{1,(2M)−1}. ut

For instance, the above result gives the transcendence of α = ∑
∞
n=0 10−n!.

Remark A.2 [‘The fundamental theorem of transcendence’] The seemingly in-
nocuous observation, used in the above proof, that the absolute value of a non-zero
integer is at least 1 is at the heart of virtually every proof in arithmetic transcendence
(cf. [Mas16]).

Liouville’s theorem can be regarded as a general transcendence criterion. Some
other general algebraic independence criteria in terms of Diophantine approxima-
tion exist. Nesterenko’s proof of his theorem on values of Eisenstein series, to be
discussed below, relies on the following particular case of Philippon’s sophisticated
criteria [Phi86].

For a polynomial P ∈ C[X1, . . . ,Xn], we denote by ‖P‖∞ the maximum of the
absolute values of its coefficients.

Theorem A.3 (Philippon) Let n≥ 2 be an integer and α1, . . . ,αn be complex num-
bers. Suppose that there exists an integer r ≥ 2 and real constants a > b > 0
such that, for every sufficiently large positive integer d, there exists a polynomial
Qd ∈ Z[X1, . . . ,Xn]\{0} of degree degQd = O(d logd) satisfying

log‖Qd‖∞ = O(d(logd)2)

and
−adr ≤ log |Qd(α1, . . . ,αn)| ≤ −bdr.

Then
trdegQQ(α1, . . . ,αn)≥ r−1

Geometrically, we may interpret the hypotheses of the above result as an approx-
imation condition of α by hypersurfaces in An

Q in terms of their degree and their
‘arithmetic complexity’.

A.2.3 Schneider-Lang and Siegel-Shidlovsky

The connection between transcendence and Diophantine approximation suggests a
closer inspection on values of analytic functions. Indeed, properties of such func-
tions such as growth conditions, and differential or functional equations, can provide
additional tools to the study of the approximation properties of their values.
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Historically, this vague idea culminated in two precise and general theorems,
those of Schneider-Lang and Siegel-Shidlovsky, which deal with entire or mero-
morphic functions over C satisfying some algebraic differential equation, a growth
condition, a functional transcendence statement, and some hypotheses of arithmetic
nature.

We next state both theorems and derive some consequences, without saying
anything about their proofs. The idea here is simply to help the reader to put
Nesterenko’s theorem in perspective (see Section A.4.3 below).

A.2.3.1 Schneider-Lang

Given a real number ρ > 0, we say that the order of an entire function f on C is
≤ ρ if there exist real numbers a,b > 0 such that

| f (z)| ≤ aeb|z|ρ

for every z ∈ C. A meromorphic function on C is of order ≤ ρ if it can be written
as a quotient of two entire functions of order ≤ ρ .

Theorem A.4 (Schneider-Lang, cf. [Wal74] Thm. 3.3.1) Let ρ1,ρ2 > 0 be real
numbers, K ⊂ C be a number field, n≥ 2 be an integer, and f1, . . . , fn be meromor-
phic functions on C such that the ring K[ f1, . . . , fn] is stable under the derivation
d
dz . Let us further assume that:

1. f1 and f2 are algebraically independent over K;
2. fi is of order ≤ ρi, for i = 1,2.

Then, if S denotes the set of α ∈ C such that, for every 1≤ j ≤ n, α is not a pole of
f j and f j(α) ∈ K, we have:

card(S)≤ (ρ1 +ρ2)[K : Q].

In essence, this theorem simply asserts that f1, . . . , fn can only take too many
simultaneous algebraic values if there is an algebraic relation between them.

Remark A.3 The Schneider-Lang criterion also admits geometric generalisations
replacing differential equations by algebraic foliations. See [Her] and [Gas13].

As a first corollary, we can recover the following classical result which brings
together the pioneering works of Hermite and Lindemann on the transcendence of e
and π .

Corollary A.1 (Hermite-Lindemann) For every z ∈ C\{0}, we have

trdegQQ(z,ez)≥ 1.

Proof. Let f1(z) = z and f2(z) = ez. Clearly, both f1 and f2 are of order ≤ 1 and
the ring Q[ f1, f2] is stable under d

dz . We have already seen in Example A.1 that f1
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and f2 are algebraically independent over C. By absurd, suppose that there exists
α ∈ C \ {0} such that both α and eα are algebraic, and set K = Q(α,eα). Then S
would contain the infinite set {nα | n ∈ Z}, thereby contradicting Schneider-Lang’s
theorem. ut

Taking z = 2πi, we obtain the transcendence of π; taking z = 1, we obtain the
transcendence of e.

In the same spirit, we can prove Schneider’s theorem characterising ‘bi-algebraic’
points for the j-invariant, seen as a holomorphic function on the Poincaré upper
half-plane H= {τ ∈ C | Imτ > 0}.

Corollary A.2 (Schneider) If τ ∈H is not quadratic imaginary, then

trdegQQ(τ, j(τ))≥ 1.

Note that, if τ ∈ H is quadratic imaginary, i.e., Q(τ) is an imaginary algebraic
extension of Q of degree 2, then it follows from the classical theory of complex mul-
tiplication of elliptic curves that j(τ) is algebraic (see, for instance, [Sil94] Chapter
II).

Proof. Suppose that τ and j(τ) are both algebraic. Since j(τ) is algebraic, which
means that the elliptic curve corresponding to τ can be defined over the field of
algebraic numbers Q ⊂ C, there exists a lattice Λ = Zω1 +Zω2 ⊂ C such that
τ = ω2

ω1
and g2(Λ),g3(Λ) ∈ Q. Here, g2(Λ) and g3(Λ) are the ‘invariants’ of the

Weierstrass elliptic function ℘Λ , so that we have the differential equation

℘
′
Λ (z)

2 = 4℘Λ (z)3−g2(Λ)℘Λ (z)−g3(Λ).

Set

( f1(z), f2(z), f3(z), f4(z)) = (℘Λ (z),℘Λ (τz),℘′Λ (z),℘
′
Λ (τz))

and let K be a number field containing τ , j(τ), and the field of definition of all 2-
torsion points on the elliptic curve E over Q( j(τ)) such that E(C) = C/Λ . Then
K[ f1, f2, f3, f4] is stable under derivation and

f j(nω1 +
1
2

ω1) ∈ K

for every j = 1, . . . ,4 and n∈Z. Since each f j is of finite order (cf. [MR14] Chapter
10), it follows from Schneider-Lang’s theorem that f1 and f2 cannot be algebraically
independent over K. This implies that there exists m ∈ Z such that mω2 is a period
of f2(z) =℘Λ (τz), so that there exists a,b ∈ Z satisfying

mω2 = a
ω1

τ
+b

ω2

τ
.

Since τ = ω2/ω1, we get mτ2−bτ−a = 0. ut
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Exercise A.4 The Gelfond-Schneider theorem asserts that for algebraic numbers
α 6∈ {0,1} and β 6∈ Q, αβ is transcendental. Derive this result from Schneider-
Lang’s theorem. Hint: consider the functions ez and eβ z.

A.2.3.2 Siegel-Shidlovsky

We say that a power series

f (z) =
∞

∑
n=0

an

n!
zn

defines a Siegel E-function if:

1. there exists a number field K ⊂ C such that an ∈ K for every n≥ 0;
2. for every ε > 0, we have maxσ |σ(an)| = O(nεn), where σ runs through the set

of all field embeddings of K into C;
3. for every ε > 0, there exists a sequence of strictly positive numbers (qn)n≥0 such

that qn = O(nεn) and qna j is an algebraic integer of K for every 0≤ j ≤ n.

The second condition above implies that f defines an entire function on C. The
prototype of an E-function is the exponential function ez, but other remarkable ex-
amples include some special cases of hypergeometric functions, such as Bessel’s
function

J0(z) =
∞

∑
n=0

(−1)n

n!2

( z
2

)2n
.

Theorem A.5 (Siegel-Shidlovsky; cf. [Bak75] Ch. 11) Let n≥ 1 be an integer and
f1, . . . , fn be entire functions on C whose Taylor coefficients at the origin all lie in
a same number field K ⊂ C and for which there exist rational functions gi j ∈ K(z),
1≤ i, j ≤ n, such that

d fi

dz
=

n

∑
j=1

gi j f j

for every 1≤ i≤ n. If, moreover:

1. f1, . . . , fn are algebraically independent over K(z), and
2. each fi is a Siegel E-function,

then, for every non-zero algebraic number α ∈ C which is not contained in the set
of poles of gi j, we have

trdegKK( f1(α), . . . , fn(α)) = n.

Besides the arithmetic and the growth conditions, Siegel-Shidlovsky’s and Schneider-
Lang’s theorems differ in an essential aspect: in Siegel-Shidlovsky the differential
equation must be linear over K(z). This more restrictive hypothesis yields, on the
other hand, a stronger result of algebraic independence, while in Schneider-Lang we
can only obtain transcendence. Observe however that the hypotheses of both results
are structurally very similar.
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Example A.3 The Bessel function J0 introduced above satisfies the linear equation

z2 d2J0

dz2 + z
dJ0

dz
+ z2J0 = 0.

Applying Siegel-Shidlovsky’s theorem, we obtain that for every algebraic α ∈ C,
J0(α) and J′0(α) are algebraically independent over Q.

Remark A.5 As Schneider-Lang’s theorem (see Remark A.3 above), there are also
geometric generalisations of Siegel-Shidlovsky’s theorem; see [Ber12] and [Gas10].

A.3 The theorem of Nesterenko

Both in Schneider-Lang and in Siegel-Shidlovsky results, functions (holomorphic
or meromorphic) are assumed to be defined on the whole complex plane C. This
rules out any immediate application of these methods to functions defined on proper
domains of C, such as modular functions.

Note that Schneider’s theorem (Corollary A.2 above) is indeed a theorem on
the values of some modular function, but its proof relies fundamentally on elliptic
functions. Schneider himself, in his famous memoir [Sch57] (p. 138), asks if it is
possible to recover his result through a direct study of the j-function.

Schneider’s question remains unanswered, but we dispose nowadays of other
transcendence results on modular functions with truly modular proofs. The follow-
ing statement was conjectured by Mahler [Mah69b] and proved by Barré-Sirieix,
Diaz, Gramain and Philibert [BDGP96].

Theorem A.6 For every τ ∈H,

trdegQQ(e2πiτ , j(τ))≥ 1.

This implies that j(τ) is transcendental whenever e2πiτ is algebraic. Observe
the appearance of the ‘modular parameter’ q = e2πiτ instead of τ . Shortly after,
Nesterenko generalised the above result in his famous theorem on values of Eisen-
stein series [Nes96].

Theorem A.7 For every τ ∈H, we have

trdegQQ(e2πiτ ,E2(τ),E4(τ),E6(τ))≥ 3.

Taking, for instance, τ = i, we obtain the algebraic independence of eπ ,π,Γ (1/4)
over Q. We refer to Nesterenko’s original paper [Nes96] for more applications. In
Section A.4.2 below, we shall interpret Nesterenko’s result in terms of periods of
elliptic curves.
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A.3.1 Nesterenko’s D-property and a zero lemma

Let X be a smooth affine variety over C equipped with a vector field v∈Γ (X ,TX/C).
We say that a closed subvariety Y of X is v-invariant if v restricts to a vector field on
Y . In other words, if v is seen as a derivation on the ring of regular functions OX (X),
and if IY denotes the ideal of OX (X) corresponding to Y , then Y is v-invariant if
v(IY )⊂ IY .

Example A.4 Consider the vector field

v =
∂

∂x
+ y

∂

∂y

on A2
C = SpecC[x,y]. It is clear that V (y) is a v-invariant subvariety of A2

C. Let
us prove that this is the only one. For any v-invariant subvariety Y , we can write
Y =V (P) where

P(x,y) = P0(x)+P1(x)y+ · · ·+Pn(x)yn, Pn(x) 6= 0

is an irreducible polynomial dividing

v(P) =
∂P
∂x

+ y
∂P
∂y

Since degP = degx Pn + n = degv(P), we must have v(P) = λP for some constant
λ ∈ C\{0}; that is

P′j(x)+ jPj(x) = λPj(x) ( j = 0, . . . ,n)

It is not hard to conclude from our hypotheses that λ = 1, P1(x) = P1(0) is constant
6= 0, and P = P1(0)y. In other words, Y =V (y).

Definition A.3 Let X be a smooth affine variety over C, v ∈Γ (X ,TX/C) be a vector
field on X, and

ϕ : U ⊂ C−→ X(C)

be a non-constant holomorphic integral curve1 of v defined on some connected open
neighbourhood U of 0 ∈C. We say that ϕ satisfies Nesterenko’s D-property if there
exists a constant c > 0 such that, for every v-invariant closed subvariety Y of X,
there exists a regular function f on X vanishing on Y and satisfying

ord0( f ◦ϕ)≤ c.

Lemma A.1. For X, v and ϕ as in the above definition (with or without D-property),
let Y be the Zariski closure of ϕ(U) ⊂ X(C) (i.e., Y is the smallest subvariety of

1 By this, we simply mean that the derivative of ϕ at every z ∈U is a multiple of vϕ(z).
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X such that ϕ(U) ⊂ Y (C)). Then Y is v-invariant. In particular, any ϕ satisfying
Nesterenko’s D-property must have Zariski-dense image in X.

Proof. Let f be a regular function on X vanishing on Y ; we must prove that g := v( f )
also vanishes on Y . Let λ be the holomorphic function on the open subset of U where
vϕ(z) 6= 0 such that ϕ ′(z) = λ (z)vϕ(z), so that

λ (z)(g◦ϕ)(z) = ( f ◦ϕ)′(z) = 0.

Since U is connected and ϕ is not constant, we obtain g◦ϕ ≡ 0. Since the image of
ϕ is dense in Y , we conclude that g vanishes on Y . ut

Conversely, if the image of ϕ is Zariski-dense in X and if there exists a finite
number of subvarieties Y1, . . . ,Ym ⊂ X for which every v-invariant subvariety Y of X
containing ϕ(0) is contained in some Yi, then ϕ satisfies the D-property. This is how
Nesterenko’s D-property is verified in practice.

Example A.5 We have already seen in Example A.2 that the image of the integral
curve

ϕ : C−→ A2
C(C), z 7−→ (z,ez).

of the vector field v of Example A.4 is Zariski-dense in A2
C. Since v admits at most

a finite number of invariant subvarieties (actually, there is only one!), we conclude
that ϕ satisfies the D-property.

Remark A.6 Alternatively, one could remark that the Zariski-density of the image
of z 7−→ (z,ez) implies the Zariski-density of the image of

ϕa : z 7−→ (z+a,ez)

for any a ∈ C. This ‘stronger’ statement immediately implies Nesterenko’s D-
property for ϕ since any leaf of the holomorphic foliation on D(y) = A2

C \V (y)
induced by v can be parameterised by some ϕa (cf. Lemma A.1).

Remark A.7 A famous theorem of Darboux and Jouanolou (see, for instance,
[Dar78a], [Ghy00]) implies that any vector field v on a smooth algebraic surface
X admitting a holomorphic integral curve with Zariski-dense image has at most a
finite number of v-invariant subvarieties. Thus, when dimX = 2, Nesterenko’s D-
property is actually equivalent to the image of ϕ being Zariski-dense in X .

The raison d’être of the D-property is that it gives a sufficient condition to an
integral curve to satisfy certain ‘zero estimates’ which are useful in Diophantine
approximation. Here is a precise statement.

Theorem A.8 (Zero Lemma) Let X be an open affine subscheme of An
C, v ∈

Γ (X ,TX/C) \ {0} be a vector field on X, U ⊂ C be a neighbourhood of 0, and
ϕ : U −→ X(C) be a holomorphic map satisfying the differential equation
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z
dϕ

dz
= v◦ϕ .

If ϕ satisfies the D-property, then there exists a constant C > 0 such that, for every
polynomial P ∈ C[x1, . . . ,xn]\{0}, we have

ord0(P◦ϕ)≤C(degP)n.

The above result was proved in this geometric form by Binyamini [Bin14] and is
based on Nesterenko’s original result in [Nes96], Paragraph 5. It also admits more
general versions (see [Fon19], Appendix B).

Binyamini’s approach is based on intersection theory of analytic cycles. We iso-
late the main technical details in the form of the following lemma.

Lemma A.2 (cf. [Bin14]). With notation as in Theorem A.8, there exists an additive
function multϕ , the intersection multiplicity with ϕ at p = ϕ(0), which takes an
effective algebraic cycle Z of X and associates a natural number (or +∞)

multϕ(Z) ∈ N∪{+∞}

satisfying the following properties:

1. multϕ(Z) only depends on the analytic germ of Z at p;
2. If Z =V (P)∩X, for some P ∈ C[x1, . . . ,xn]\{0}, then multϕ(Z) = ord0(P◦ϕ);
3. If Z = p, then multϕ(Z) = 1;
4. For any closed subvariety Y of X for which p ∈ Y , and any polynomial P ∈

C[x1, . . . ,xn]\{0} vanishing identically on Y , we have multϕ(Y )≤ ord0(P◦ϕ) ·
multp(Y );2

5. For any closed subvariety Y of X, and any polynomial P∈C[x1, . . . ,xn]\{0} van-
ishing identically on Y for which v(P) does not vanish identically on Y , we have
multϕ(Y )≤multϕ(Y ·V (v(P))), where Z1 ·Z2 denotes the intersection product of
algebraic cycles;

6. There is an integer n0 ≥ 0 such that, for every closed subvariety Y of X not
contained in a v-invariant subvariety of X, if d ≥ 1 is the smallest integer for
which there exists P ∈ C[x1, . . . ,xn]\{0} of degree d vanishing identically on Y ,
then min{n | vn(P) = v(v(· · ·(v(P)) · · ·)) does not vanish identically on Y} ≤ n0.

Let us now sketch Binyamini’s argument assuming the above lemma.

Proof (Proof of Theorem A.8). Let P ∈ C[x1, . . . ,xn] \ {0} be a polynomial of de-
gree d ≥ 1. We want to show that ord0(P ◦ϕ) ≤Cdn for some constant C > 0 not
depending on d or P.

Set Z1 =V (P)∩X . The idea is to construct, by induction, cycles Zk of codimen-
sion k, for 2≤ k ≤ n, satisfying

2 Here, multp(Y ) denotes the Samuel multiplicity of the variety Y at the closed point p ∈ Y . It is

given by S(T ) = multp(Y )
d! T d +O(T d−1), where d = dimY , and S ∈Q[T ] is the unique polynomial

such that S(n) = length(OY,p/m
n+1
p ) for every n ∈ N.
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1. multϕ(Zk) ≤ multϕ(Zk+1)+ cdegZk, where c is the constant of the D-property,
and

2. for every 1≤ k≤ n−1, degZk+1 ≤ (d+c0)degZk, for some constants c0,c1 > 0
(not depending on d or P).

Once this is done, we have:

ord0(P◦ϕ) = multϕ(Z1)

≤multϕ(Z2)+ cdegZ1

≤multϕ(Z3)+ c(degZ2 +degZ1)

...

≤multϕ( Zn︸︷︷︸
0−cycle

)+ c(degZn−1 + · · ·+degZ1)

≤ c(degZn +degZn−1 + · · ·+degZ1)

≤ c((d + c0)
n +(d + c0)

n−1 + · · ·+(d + c0))

≤ cn(1+ c0)
ndn,

so that we may take C = cn(1+ c0)
n.

Let us now see how the sequence of cycles Zk is constructed, and where the
D-property comes in. By induction, suppose that Zk has been constructed; let us
construct Zk+1. We write

Zk = Zk
n +Zk

c

where, by definition, the irreducible components of Zk
c are those of Zk which are

contained in some v-invariant subvariety of X . Now, write Zk
n = ∑i miYi, and, for

every i, let di ≥ 1 be the smallest integer for which there exists a polynomial Pi ∈
C[x1, . . . ,xn] \ {0} of degree di vanishing identically on Yi (note that di ≤ d). Let
ni = min{n | vn(Pi)|Yi 6≡ 0}. Since, by definition, Yi is not contained in a v-invariant
subvariety, ni is finite. Then we define

Zk+1 = ∑
i

miYi ·V (vni(Pi)).

Finally, (i) follows from properties 4 (combined with the D-property) and 5, and (ii)
follows from 6. ut
Exercise A.8 Write down a complete proof for the Zero Lemma in dimension 2.

A.3.2 Mahler’s theorem and the D-property for the Ramanujan
equations

We shall now study the foliation induced by the Ramanujan equations and prove the
corresponding D-property.
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We start with Mahler’s theorem asserting that the j-invariant satisfies no alge-
braic differential equation of second order or lower (see [Mah69a]). More precisely,
if we denote

θ =
1

2πi
d

dτ
,

Mahler proved that the holomorphic functions on H

τ,e2πiτ , j(τ),θ j(τ),θ 2 j(τ)

are algebraically independent over C.

Lemma A.3. We have

Q( j,θ j,θ 2 j) =Q(E2,E4,E6).

Proof. Since j ∈ Q(E4,E6), it follows immediately from Ramanujan’s equations
that Q( j,θ j,θ 2 j)⊂Q(E2,E4,E6). Explicitly:

j = 1728
E3

4

E3
4 −E2

6
, θ j =−1728

E2
4 E6

E3
4 −E2

6
, θ

2 j = 288
−E2E2

4 E6 +4E4E2
6 +3E4

4

E3
4 −E2

6
.

The above formulas can be inverted. Recall that ∆ = 1
1728 (E

3
4 − E2

6 ) and that
θ log∆ = E2 (this follows from Ramanujan’s equations). Writing j = E3

4/∆ and
j−1728 = E2

6/∆ , and using the Ramanujan equations, we get

θ log j =−E6

E4
, θ log( j−1728) =−E2

4
E6

so that

E4 = θ log j ·θ log( j−1728), E6 =−(θ log j)2 ·θ log( j−1728) ∈Q( j,θ j).

Finally,
E2 = θ log∆ = 3θ logE4−θ log j ∈Q( j,θ j,θ 2 j).

ut

It follows from the above lemma that Mahler’s theorem is equivalent to the fol-
lowing statement.

Theorem A.9 The holomorphic functions on H

τ,e2πiτ ,E2(τ),E4(τ),E6(τ)

are algebraically independent over C.

Our proof is different from Mahler’s, but it is still fairly elementary. It relies
on the following simple geometric considerations (see Remark A.9 below for the
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original motivation). Let T be the open affine subscheme of A3
C = SpecC[t1, t2, t3]

where t3
2 − t2

3 6= 0 and consider the surjective map

π : T−→ A1
C, (t1, t2, t3) 7−→ 1728

t3
2

t3
2 − t2

3
.

If G denotes the subgroup scheme of SL(2,C) of upper triangular matrices, so that

G(C) =
{(

x−1 y
0 x

)
∈ SL(2,C)

∣∣∣∣x ∈ C×,y ∈ C
}

,

then G acts on T by

(t1, t2, t3)•
(

x−1 y
0 x

)
= (−12xy+ x2t1,x4t2,x6t3).

This action clearly preserves the fibres of π . In fact, T is ‘almost’ a G-torsor over
A1
C. A general context for the group G and its action are presented in §3.3, §3.4.

Lemma A.4. For every z ∈ C and t ∈ T(C) such that π(t) = z, the morphism

G−→ π
−1(z), g 7−→ t •g

is finite and surjective.

Proof. Exercise. ut

We are now ready for our proof.

Proof. Set X =A2
C×T, and denote p = π ◦pr2 : X −→A1

C. We must prove that the
image of the holomorphic map

ϕ : H−→ X(C), τ 7−→ (τ,e2πiτ ,E2(τ),E4(τ),E6(τ))

is Zariski-dense in X . Note that ϕ is well defined since Ramanujan’s ∆ function

∆(τ) =
E4(τ)

3−E6(τ)
2

1728

never vanishes on H; moreover, (p◦ϕ)(τ) = j(τ) for every τ ∈H.
Since p and j are surjective, it suffices to prove that the image of ϕ is Zariski-

dense in every fibre of p. It follows from Lemma A.4 that, for every τ ∈ H, the
map

fτ : A2
C×G−→ p−1( j(τ)), (a,b,g) 7−→ (a,b,(E2(τ),E4(τ),E6(τ))•g)

is finite and surjective, so that ϕ(H)∩ p−1( j(τ)) is Zariski-dense in p−1( j(τ)) if
and only if f−1

τ (ϕ(H)∩ p−1( j(τ))) is Zariski-dense in A2
C×G.
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Using the (quasi)modularity of E2, E4, and E6, one easily verifies that f−1
τ (ϕ(H)∩

p−1( j(τ))) contains the set

Sτ =

{
(γ · τ,e2πiγ·τ ,gγ,τ) ∈ C2×G(C)

∣∣∣∣γ =

(
a b
c d

)
∈ SL(2,Z), cτ +d 6= 0

}
where

gγ,τ =

(
(cτ +d)−1 −c/2πi

0 cτ +d

)
∈ G(C),

so that it suffices to prove that Sτ is Zariski-dense in A2
C×G for any τ ∈H.

As a first reduction, observe that it suffices to prove that the set

{(e2πiγ·τ ,gγ,τ) ∈ C×G(C) | γ ∈ SL(2,Z), cτ +d 6= 0}

is Zariski-dense in A1
C ×G. Indeed, if we denote nγ =

(
1 n
0 1

)
· γ for every γ ∈

SL(2,Z) and n ∈ Z, then

(γn · τ,e2πinγ·τ ,gnγ,τ) = (γ · τ +n,e2πiγ·τ ,gγ,τ)

and our claim follows from the Zariski-density of Z⊂ C in A1
C.

We now perform a second reduction: it suffices to prove that the set

{(e2πi a
c ,c) ∈ C2 | (a,c) ∈ Z2, gcd(a,c) = 1}

is Zariski-dense in A2
C. Indeed, let P ∈ C[t,x,y]\{0} be such that

P(e2πiγτ ,gγ,τ) = P(e2πiγτ ,cτ +d,−c/2πi) = 0

for every γ ∈ SL(2,Z). Writing P = ∑
N
j=0 Pj(t,y)x j, with PN 6= 0, we obtain that

N

∑
i=0

Pj(e2πiγn·τ ,−c/2πi)(cτ +d + cn) j = 0

for every γ ∈ SL(2,Z) and n ∈ Z, where γn = γ ·
(

1 n
0 1

)
. We can assume c 6= 0.

Multiplying the above equation by (cτ +d+cn)−N and letting n−→+∞, we obtain

PN(e2πi a
c ,−c/2πi) = 0

for every γ ∈ SL(2,Z), and our claim follows.
Finally, suppose that there exists a polynomial P(x,y) = ∑

N
j=0 Pj(y)x j ∈ C[x,y],

such that P(e2πi a
c ,c) = 0 for every (a,c) ∈ Z2 with gcd(a,c) = 1. Taking, for in-

stance, c to be a prime p ≥ N + 1, we see that P(x, p) is a polynomial of degree N

having at least N + 1 roots: 1,e2πi 1
p , . . . ,e2πi p−1

p , so that P(x, p) = 0. As there are
infinitely many prime numbers greater than N +1, we conclude that P = 0. ut
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Remark A.9 The affine space T can be identified to the moduli space of isomor-
phism classes of complex elliptic curves E endowed with a basis b = (ω,η) of
H1

dR(E) such that ω ∈ H0(E,Ω 1
X/C) and 〈ω,η〉 = 1 (where 〈 , 〉 denotes the cup

product on algebraic de Rham cohomology) in a way that the holomorphic map
τ 7−→ (E2(τ),E4(τ),E6(τ)) corresponds to

ϕ : H−→ T(C), τ 7−→ [(C/Z+ τZ,(ωτ ,ητ)]

where ωτ = 2πidz and ητ = 1
2πi℘τ(z)dz− E2(τ)

12 2πidz (cf. Chapter 9 and [Fon21]
Section 8). Under such moduli-theoretic interpretation, the group scheme G acts by
right multiplication on the basis b seen as a row vector. Note that T admits a natural
map to the moduli stack of complex elliptic curves M1,1 and that T is a bona fide G-
torsor over M1,1. In the above proof, we replaced M1,1 by its coarse moduli scheme
A1
C, at the cost of weakening this ‘torsor property’ (cf. Lemma A.4).

Corollary A.3 Every leaf of the holomorphic foliation on T(C) induced by the vec-
tor field

v =
(x2

1− x2)

12
∂

∂x1
+

(x1x2− x3)

3
∂

∂x2
+

x1x3− x2
2

2
∂

∂x3

is Zariski-dense in T.

Proof. Let (c,d) ∈ C2 \{0} and define

ϕc,d(τ) =

(
(cτ +d)2E2(τ)+

12c
2πi

(cτ +d),(cτ +d)4E4(τ),(cτ +d)6E6(τ)

)
.

One may easily check that ϕc,d satisfies the differential equation

θϕc,d = (cτ +d)−2v◦ϕc,d

so that its image is a leaf of the foliation defined by v.
By Theorem A.9, the image of each ϕc,d is Zariski-dense in T. Thus, to finish

our proof it suffices to show that any point of T lies in the image of ϕc,d for some
(c,d)∈C2 \{0}. Let t ∈T(C) and choose τ ∈H such that π(t) = j(τ), so that t and
(E2(τ),E4(τ),E6(τ)) lie in the same π-fibre. By Lemma A.4, there exists g ∈ G(C)
such that

t = (E2(τ),E4(τ),E6(τ))•g.

To conclude, we simply remark that any element of G is of the form

g =

(
(cτ +d)−1 −c/2πi

0 cτ +d

)
∈ G(C)

for some (c,d) ∈ C2 \{0}, so that

t = (E2(τ),E4(τ),E6(τ))•g = ϕc,d(τ).
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ut

Finally, for the next theorem, we consider E2, E4, E6 as functions of q ∈ D =
{z ∈ C | |z|< 1} under the change of variables q = e2πiτ . Note that θ = q d

dq .

Theorem A.10 Consider the vector field w on A4
C given by

w = x0
∂

∂x0
+

(x2
1− x2)

12
∂

∂x1
+

(x1x2− x3)

3
∂

∂x2
+

x1x3− x2
2

2
∂

∂x3

and consider the holomorphic curve

ϕ : D−→ A4(C), q 7−→ (q,E2(q),E4(q),E6(q))

satisfying the differential equation

θϕ = w◦ϕ .

Then ϕ satisfies Nesterenko’s D-property.

Proof. Since we already know from Mahler’s theorem that the image of ϕ is Zariski-
dense in A4

C, it is sufficient to prove that there’s only a finite number of maximal
w-invariant subvarieties containing ϕ(0) = (0,1,1,1). Actually, we shall prove that
every w-invariant subvariety containing p is either V (x0) or it is contained in V (x3

2−
x2

3).
Consider the projection

π : A4
C −→ A3

C, (x0,x1,x2,x3) 7−→ (x1,x2,x3).

Let Y ⊂ A4
C be a w-invariant subvariety containing p. Then π(Y ) 6= /0 is v-invariant,

where v is the ‘Ramanujan vector field’ of Corollary A.3. It follows from this corol-
lary that either π(Y ) ⊂ V (x3

2− x2
3) in A3

C, or π(Y ) = A3
C. In the first case, we have

that Y ⊂ V (x3
2− x2

3) in A4
C. To conclude, we only need to prove that π(Y ) = A3

C
implies that Y =V (x0).

Now, if π(Y ) = A3
C, then Y has dimension at least 3, so that Y = V (P) for a

unique irreducible polynomial

P = fnxn
0 + · · ·+ f1x0 + f0

with fi ∈ C[x1,x2,x3], and fn monic. Since Y is w-invariant, there exists Q ∈
C[x0,x1,x2,x3] such that w(P) = QP. By considering the degree in x0, we see that
Q = g ∈ C[x0,x1,x3], and we get the equations

v( f j) = (g− j) f j

for every j = 0, . . . ,n. Again using Corollary A.3, we conclude (exercise) that f1 = 1
and f j = 0 for every j 6= 1, i.e., P = x0. ut
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By combining the above theorem with the Zero Lemma (Theorem A.8), we ob-
tain the following corollary.

Corollary A.4 There exists a constant C > 0 such that, for every polynomial P ∈
C[x0,x1,x2,x3]\{0}, we have

ordq=0P(q,E2(q),E4(q),E6(q))≤C(degP)4.

A.3.3 Sketch of Nesterenko’s proof

Nesterenko’s proof is rather long and intricate, but its general structure is not dif-
ficult to understand. In what follows we outline the main steps of Nesterenko’s ap-
proach.

We see E2, E4, E6 as holomorphic functions on the unit disk through the change
of variables q = e2πiτ . To avoid any confusion, we adopt the following convention:
q will denote a generic variable in D, and z ∈ D a point, so that E2k(q) is a function
and E2k(z) is a complex number.

Let z ∈ D\{0}. We want to prove that

trdegQQ(z,E2(z),E4(z),E6(z))≥ 3

and the main idea is to apply Philippon’s algebraic independence criterium as stated
in Theorem A.3 above. This means that we have to construct a sequence of polyno-
mials Qd ∈ Z[x0, . . . ,x3], d >> 0, satisfying

1. degQd = O(d logd),
2. log‖Qd‖∞ = O(d(logd)2), and
3. −ad4 ≤ log |Qd(z,E2(z),E4(z),E6(z)| ≤ −bd4

for some constants a,b > 0 (not depending on d). The first step in obtaining the
sequence (Qd)d>>0 is the construction of the so-called auxiliary polynomials.

Lemma A.5. There is a constant c > 0 such that, for every integer d >> 0 there
exists a polynomial Pd ∈ Z[x0, . . . ,x3] satisfying

1. degPd = d,
2. log‖Pd‖∞ = O(d logd), and
3. ordq=0Pd(q,E2(q),E4(q),E6(q))≥ cd4.

Proof (Sketch of the proof). For every multi-index J = ( j0, . . . , j3) with |J| = j0 +
· · ·+ j3 ≤ d, write

q j0E2(q) j1E4(q) j2E6(q) j3 = ∑
i≥0

ti,Jqi ∈ Z[[q]].

Note that ti,J are rational integers because the Taylor coefficients of E2k are. Let
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P = ∑
|J|≤d

vJxJ ∈ Z[x0, . . . ,x3]

be a polynomial with ‘unknown coefficients’ vJ , so that

P(q,E2(q),E4(q),E6(q)) = ∑
i≥0

(
∑
|J|≤d

ti,JvJ

)
qi ∈ Z[[q]].

Let r = b 1
4! d4c. To find P such that ordq=0P(q,E2(q),E4(q),E6(q))≥ r is equivalent

to solving the following r linear equations over Z with s =
(d+4

4

)
variables:

∑
|J|≤d

ti,JvJ = 0, i = 0, . . . ,r−1.

To get a bound on the size of a solution (vJ), we apply the ubiquitous Siegel’s
lemma.

Lemma A.6 (Siegel; cf. [Wal74] Lemme 1.3.1 or [MR14] Lemma 6.1). Let s >
r > 0 be integers and T ∈ Mr×s(Z) be such that ‖T‖∞ ≤ b. Then, there exists v ∈
Zs \{0} with ‖v‖∞ ≤ 2(2sb)r/(s−r) such that T v = 0.

To finish, we just need to prove that maxi≤r−1,|J|≤d |ai,J | = O(dd). This follows
from the fact that the Taylor coefficients of E2k, which are given up to a constant by
the arithmetical function σ2k−1(m) = ∑d|m m2k−1 have polynomial growth; namely,
we have the trivial bound σ2k−1(m)≤ m2k. ut

Exercise A.10 Complete the above proof.

For the next step, let us denote fd(q) = Pd(q,E2(q),E4(q),E6(q)) and md =
ordq=0 fd .

Lemma A.7. There exist α > β > 0 and, for d >> 0, a sequence kd = O(d logmd)
satisfying

−αmd ≤ log
∣∣∣ f (kd)

d (z)
∣∣∣≤−βmd .

This is the most technical, and most analytical, part of the proof. The main point
in obtaining the bound −αmd ≤ log

∣∣∣ f (kd)
d (z)

∣∣∣ can explained through the following
intuitive argument. If all the Taylor coefficients of fd at q = z up to a sufficiently
large order are too small, then its first non-zero Taylor coefficient at q = 0 will have
absolute value < 1, thereby contradicting its integrality (cf. Remark A.2). Of course,
the difficulty here consists in precisely quantifying ‘too small’ and ‘sufficiently large
order’. Once this is established, the other bound log

∣∣∣ f (kd)
d (z)

∣∣∣ ≤ −βmd is a mere
consequence of the Cauchy inequalities. We refer to [NP01] Chapter 3, Lemma 3.3
for details.

Finally, we use the existence of the Ramanujan equations. Consider the derivation
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w = x0
∂

∂x0
+

(x2
1− x2)

12
∂

∂x1
+

(x1x2− x3)

3
∂

∂x2
+

x1x3− x2
2

2
∂

∂x3

and define, for every k ≥ 1,

w[k] = 12kw◦ (v−1)◦ · · · ◦ (w− (k−1)).

We set
Qd = w[kd ]Pd ∈ Z[x0, . . . ,x3].

Since kd = O(d logmd), it is clear that degQd = O(d logmd), and that log‖Qd‖∞ =
O(d(logd)(logmd)). Moreover, the identity of derivations

qk dk

dqk = θ ◦ (θ −1)◦ · · · ◦ (θ − (k−1))

where θ = q d
dq , implies that

(12q)kd f (kd)
d (q) = Qd(q,E2(q),E4(q),E6(q)).

Using Lemma A.7, we immediately deduce the bound

−αmd− γkd ≤ log |Qd(z,E2(z),E4(z),E6(z))| ≤ −βmd− γkd

where γ =− log |12z|> 0.
To conclude, we observe that kd = O(d logmd), that d4 = O(md) by Lemma A.5,

and that md = O(d4) by Corollary A.4.

Remark A.11 The use of ‘auxiliary polynomials’ is an essential step in Nesterenko’s
proof. Similar ideas occur in most results in Diophantine approximation or transcen-
dental number theory. The reader may consult [Mas16] for a thorough exposition of
the role of auxiliary polynomials in number theory.

A.4 Periods

Roughly speaking, a period (or an arithmetic period) is an integral that appears in
algebraic geometry over Q. The set of all periods forms a countable subset of C –
actually, a subring – containing all the algebraic numbers, but ‘most’ of the periods
are transcendental numbers. It is the subtle connection between these numbers and
algebraic geometry that allows us to make sense of their structure and their symme-
tries.

Most of the general theory is still largely conjectural, but the omnipresence of
periods in number theory (regulators, special values of L-functions, etc.) and high
energy physics (Feynman amplitudes) makes the study of periods one of the most
attractive subjects in current mathematics.
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A.4.1 Definition

There are several equivalent definitions; we start with the more elementary ones
given in [KZ01].

Definition A.4 A real number ϖ is a period if it can be written as an absolutely
convergent integral

ϖ =
∫

σ

P(t1, . . . , tn)
Q(t1, . . . , tn)

dt1 · · ·dtn

where P,Q ∈ Q[t1, . . . , tn], Q 6= 0, and σ ⊂ Rn is a domain given by polynomial
inequalities with rational coefficients. A complex number is a period if its real and
imaginary parts are periods.

For instance,

π =
∫

t2
1+t2

2≤1
dt1dt2 and log2 =

∫
1≤t≤2

dt
t

are periods. A less trivial example is

ζ (3) =
∞

∑
n=1

1
n3 =

∫
0<t1<t2<t3<1

dt1dt2dt3
(1− t1)t2t3

.

Exercise A.12 The algebraic number
√

2 is a period, since it can be written as

√
2 =

∫
t2≤2

dt
2

Similarly, show that any algebraic number is a period.

One can show that we can replace rational numbers by algebraic numbers, and ra-
tional functions by algebraic functions (with algebraic coefficients) in the definition
of periods.

More generally, let Q⊂C be the algebraic closure of Q in C, and consider a tuple
(X ,D,ω,σ), where X is a quasi-projective variety over Q, Y is a closed subvariety of
X , ω ∈Γ (X ,Ω n

X/Q) is a closed algebraic n-form on X vanishing on Y , and σ ⊂X(C)
is a singular (topological) n-chain with boundary ∂σ ⊂ Y (C).

Proposition A.11 For every tuple (X ,Y,ω,σ) as above, the number∫
σ

ω

is a period. Conversely, every period is of this form.

Proof. See [HM17] 12.2. ut
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Yet another way of defining periods, which makes explicit their ‘motivic’ nature,
is as follows. For a pair (X ,Y ) as above, we can consider its relative algebraic de
Rham cohomology (see [HM17] Chapter 3)

Hn
dR(X ,Y )

which is a finite dimensional Q-vector space, and the singular cohomology of X(C)
relative to the closed subspace Y (C)⊂X(C) with Q-coefficients, also called relative
Betti cohomology,

Hn
B(X ,Y )

which is a finite dimensional Q-vector space. Then, a theorem of Grothendieck says
that, after base change to C, there is a canonical comparison isomorphism between
these two cohomology groups:

comp : Hn
dR(X ,Y )⊗QC ∼−→ Hn

B(X ,Y )⊗QC

Now, a period is simply a number that appears as an entry of the matrix of comp
with respect to some Q-basis of Hn

dR(X ,Y ) and some Q-basis of Hn
B(X ,Y ).

Note that Y can be empty, in which case we simply denote Hn
dR(X) and Hn

B(X).
For the proof of the equivalences between all of these different definitions of periods,
we refer to [HM17] Section 12.2.

A.4.2 Elliptic periods and values of quasimodular forms

Let E be an elliptic curve over Q given by a Weierstrass equation

E : y2 = 4x3−ux− v (u,v ∈Q, u3−27v2 6= 0)

and consider the following algebraic differential forms on E:

ω =
dx
y

, η = x
dx
y

.

Note that ω is regular on E (form of the first kind), while η has a pole at infinity (of
order 2) with vanishing residue (form of the second kind). We can see (ω,η) as a
basis of the algebraic de Rham cohomology H1

dR(E) under its classical identification
with the space of forms of second kind modulo exact forms (see [HM17] Chapter
14).

Let (γ1,γ2) be any oriented Z-basis of the first homology group H1(E(C);Z).
Here, ‘oriented’ means that the intersection product γ1 ·γ2 = 1. We can then consider
the four complex numbers

ω1 =
∫

γ1

ω , ω2 =
∫

γ2

ω , η1 =
∫

γ1

ω , η2 =
∫

γ2

η .
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Classically, ω1 and ω2 are known as ‘periods’ of E, while η1 and η2 are called
‘quasi-periods’. Under the above modern definition, they are all periods.

Example A.6 Consider the elliptic curve E : y2 = 4x3−4x and let γ1 ∈H1(E(C);Z)
be the class of the connected component of E(R) containing the 2-torsion point
(1,0).

Then

ω1 =
∫

γ1

ω = 2
∫

∞

1

dx√
4x3−4x

x= 1
t2= 2

∫ 1

0

dt√
1− t4

=
Γ (1/4)2

2
√

2π
,

where to compute the last integral we used Euler’s formula for the Beta function

B(a,b) :=
∫ 1

0
ta−1(1− t)b−1dt =

Γ (a)Γ (b)
Γ (a+b)

(Re(a),Re(b)> 0) (A.4.1)

the fact that Γ (1/2) =
√

π , and Euler’s reflection formula:

Γ (1/4)Γ (3/4) =
π

sin(π/4)
.

Let us remark ω1 computed above is a very classical object in the theory of elliptic
integrals: it is half of the length of Bernoulli’s lemniscate (x2 + y2)2 = x2− y2.

One of the fundamental problems in the theory of periods is to understand all
the algebraic relations such numbers can satisfy. For instance, in the case of elliptic
curves, we have Legendre’s relation:

ω1η2−ω2η1 = 2πi,

which holds for every E. Are there any other relations? In particular, are these num-
bers transcendental? Are some of them algebraically independent?

Conjecture A.1 (Grothendieck’s period conjecture for elliptic curves) With the
above notation,
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trdegQQ(ω1,ω2,η1,η2) =

{
2 if E has complex multiplication
4 otherwise

Recall that E has complex multiplication if its endomorphism algebra End(E)
strictly contains Z. The geometric idea is that such extra endomorphisms of E cor-
respond to algebraic cycles (correspondences) on E×E which force algebraic rela-
tions between periods.

Exercise A.13 An endomorphism ϕ : E −→ E defined over Q induces an additive
map

ϕB,∗ : H1(E(C);Z)−→ H1(E(C);Z)

preserving the intersection product, and a Q-linear map

ϕ
∗
dR : H1

dR(E)−→ H1
dR(E)

preserving the subspace of differentials of first kind H0(E,Ω 1
E/Q) and the de Rham

cup product. Show that this induces an identity of the form(
a b
c d

)(
ω1 η1
ω2 η2

)
=

(
ω1 η1
ω2 η2

)(
r s
0 r−1

)
with a,b,c,d ∈ Z, ad − bc = 1, and r,s ∈ Q. Conclude that if E has complex
multiplication, then τ is quadratic imaginary, Q(ω1,ω2,η1,η2) = Q(ω1,η1), and
Q(ω1,η1) is algebraic over Q(2πi,ω1).

Loosely speaking, Grothendieck conjectured that algebraic cycles in powers of
some algebraic variety X are the only way of producing algebraic relations between
periods of X (see [And04] 23.4.1 for a more precise statement). For elliptic curves,
Schneider proved that each one of ω1, ω2, η1 and η2 are transcendental numbers,
and Chudnovsky proved the uniform bound:

trdegQQ(ω1,ω2,η1,η2)≥ 2

for any elliptic curve, therefore establishing Grothendieck’s period conjecture for
complex multiplication elliptic curves (see [Wal06] and references therein).

Proposition A.12 With notation as above, if τ = ω2/ω1, then Im(τ)> 0 and

E2(τ) = 12
(

ω1

2πi

)(
η1

2πi

)
, E4(τ) = 12u

(
ω1

2πi

)4
, E6(τ) =−216v

(
ω1

2πi

)6
.

Proof. The proof is based on the classical theory of elliptic and modular func-
tions. Let Λ = Zω1 +Zω2 ⊂ C. Then Λ is a lattice and it follows from Weier-
strass’ uniformisation theorem that u = g2(Λ) and v = g3(Λ). On the other hand, if
Λτ := ω

−1
1 Λ = Z+Zτ , then

g2(Λτ) =
(2πi)4

12
E4(τ), g3(Λτ) =−

(2πi)6

216
E6(τ)
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By homogeneity, we get

g2(Λτ) = g2(ω
−1
1 Λ) = ω

4
1 g2(Λ) = ω

4
1 u

and similarly for g3. This proves that

E4(τ) = 12u
(

ω1

2πi

)4
, E6(τ) =−216v

(
ω1

2πi

)6

For E2(τ), we use the formula (see [Ser78] eq. (46) p. 96)

E2(τ) =−
12

(2πi)2 ∑
n

∑
m

′ 1
(m+nτ)2

where ∑
′ means that (m,n) 6= (0,0)3. Now, by using the following expression for

the Weierstrass zeta function ζΛτ
(a primitive of −℘Λτ

)

ζΛτ
(z) =

1
z
= ∑

n
∑
m

′
(

1
z−m−nτ

+
1

m+nτ
+

z
(m+nτ)2

)
.

we obtain

∑
n

∑
m

′ 1
(m+nτ)2 =−

∫ 1

0
℘Λτ

(z)dz =−ω1η1.

where the last equality follows from the identity

ω
−2
1 ℘Λτ

(z) =℘Λ (ω1z).

We conclude that
E2(τ) = 12

(
ω1

2πi

)(
η1

2πi

)
.

ut

It follows from the above formulas and from Nesterenko’s theorem that, for every
elliptic curve over Q,

trdegQQ
(

e2πi ω2
ω1 ,

ω1

2πi
,

η1

2πi

)
= 3

this improves the theorem of Chudnovsky, and thus also proves Grothendieck’s Pe-
riod conjecture for complex multiplication elliptic curves (cf. Exercise A.13).

3 Beware that the above sum does not converge absolutely, so that the order of the summation is
important!
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A.4.3 Open problems

Currently, the study of periods is an active and rapidly developing domain of num-
ber theory. Among the important recent achievements in the field there is Brown’s
theorem on multiple zeta values (see [FG] for a thorough introduction).

There remains countless open questions concerning periods. Besides Kontse-
vich’s and Zagier’s introduction [KZ01], Waldschmidt’s survey [Wal06] contains
a good summary of what is known and what is not regarding transcendence. Here,
we focus only on values of (quasi)modular forms.

We have seen that Nesterenko’s theorem proves, in particular, Grothendieck’s
period conjecture for complex multiplication elliptic curves. A careful analysis of
the period conjecture for certain 1-motives attached to elliptic curves (see [Ber02])
suggests the following statement.

Conjecture A.2 For any τ ∈H, we have

trdegQQ(2πi,τ,e2πiτ ,E2(τ),E4(τ),E6(τ))≥

{
3 if τ is quadratic imaginary
5 otherwise

Moreover, we have equality if j(τ) ∈Q.

This conjectural statement essentially contains everything that is known or that
there is to know concerning algebraic independence of values taken by quasimodu-
lar forms at a same τ ∈H. For instance, both Nesterenko’s theorem and Schneider’s
theorem on the j-function follow from the above conjecture.

Exercise A.14 Check that Conjecture A.2 implies Nesterenko’s theorem and Schnei-
der’s theorem.

Remark A.15 A natural question is to ask what happens for elliptic modular forms
of higher levels. From the point of view of transcendence, we don’t get anything
new. The values of higher level quasimodular forms (or modular functions) are al-
gebraic on values of level 1 quasimodular forms.

A proof of Conjecture A.2 seems out of reach, but we can also turn our attention
to higher dimensional notions of modular forms, such as Siegel or Hilbert modu-
lar forms. Understanding their values amounts to understanding periods of abelian
varieties, a generalisation of elliptic curves. This also includes periods of higher
genus curves, since the cohomology in degree 1 (de Rham or Betti) of a curve is
canonically isomorphic to the cohomology of its Jacobian.

We next exhibit some explicit examples of higher genera abelian periods.

Example A.7 Let us consider the hyperelliptic curve C over Q whose affine part is
given by the equation y2 = 1−x5. The chart at ∞ is given by the equation s2 = t6−t,
where (x,y) = (1/t,s/t3). We now show how to compute the periods of C.

For k = 1,2,3,4, define the differential forms
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ωk := xk−1 dx
y

.

One can check that ω1 and ω2 are of first kind (i.e., everywhere regular), whereas
ω3 and ω4 are of the second kind (i.e., all the residues vanish). Each of these forms
define an element of H1

dR(C), and since they have distinct orders at ∞, they must
be linearly independent. As dimH1

dR(C) = 2× genus(C) = 4, they form a basis of
H1

dR(C).
Now, consider the path

ε : [0,1]−→C(C), u 7−→ (u,
√

1−u5).

Using the automorphisms τ : (x,y) 7−→ (x,−y) and σ : (x,y) 7−→ (ζ x,y) of C, where
ζ denotes a primitive 5th root of unity, we may define a loop γ at p = (0,1) ∈C(C)
by

c := ε · (τ ◦ ε)−1 · (σ ◦ τ ◦ ε) · (σ ◦ ε)−1,

where · denotes path composition and −1 the operation on paths that reverses direc-
tion. We compute (cf. formula (A.4.1)):∫

ε

ωk =
1
5

B
(

k
5
,

1
2

)
.

As τ∗ωk =−ωk and σ∗ωk = ζ kωk, we conclude that∫
γ

ωk =
∫

ε

ωk−
∫

ε

τ
∗
ωk +

∫
ε

(σ ◦ τ)∗ωk−
∫

ε

σ
∗
ωk =

2
5
(1−ζ

5)B
(

k
5
,

1
2

)
.

Exercise A.16 For l = 1,2,3,4, let γl := σ l
∗γ ∈ H1(C(C),Q) = H1

B(C)∨. Show that
(γ1, . . . ,γ4) forms a basis of H1(C(C),Q), and that∫

γl

ωk =
2
5

ζ
k(l−1)(1−ζ

k)B
(

k
5
,

1
2

)
.

Note that these can be expressed in terms of the Γ function via Euler’s formula
(A.4.1).

Here already not much is known. For instance, the period conjecture applied to
the above example predicts that π , Γ (1/5), and Γ (2/5) should be algebraically
independent over Q, i.e.,

trdegQ(π,Γ (1/5),Γ (2/5)) ?
= 3. (A.4.2)

Currently, only the weaker

trdegQ(π,Γ (1/5),Γ (2/5))≥ 2

is proved (see [Vas96] and [Gri02]).
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Remark A.17 If we restrict our attention to linear relations, instead of arbitrary
algebraic relations, then a general result is known. A theorem of Wüstholz (based on
his analytic subgroup theorem) shows that every Q-linear relation between periods
of an abelian variety must come from an endomorphism of the abelian variety. This
has been recently generalised by Huber-Wüstholz [HW] to 1-motives.

We have seen that interpreting periods of elliptic curves as values of modular
forms can be useful, via Nesterenko’s theorem, to understanding their algebraic in-
dependence properties. We can ask if a similar approach can be generalised to higher
dimensions. As it was already remarked above, values of Hilbert or Siegel modular
forms can be expressed in terms of periods of abelian varieties; our question then
boils down to asking if Nesterenko’s methods can be generalised to such modular
forms of several variables.

Given the prominent role played by the Ramanujan equations in Nesterenko’s
method, one is naturally lead to the study of the differential equations in these higher
dimensional contexts. This is indeed the point of view adopted by Pellarin [Pel05]
for Hilbert modular forms. The case of Siegel modular forms was studied by Zudilin
[Zud00], via explicit equations involving theta functions, and by Bertrand-Zudilin
[BZ03] via derivatives of modular functions. Recently, a geometric approach to such
problems has been proposed in [Fon21].

Recall that the Ramanujan equations can be interpreted as a vector field on some
moduli space of elliptic curves with additional structure, and that this admits a natu-
ral generalisation to moduli spaces of abelian varieties (see Chapter 11). In [Fon21],
we also develop a similar theory for the Hilbert moduli problem.

For instance, consider the real quadratic field Q(
√

5). By considering ‘principally
polarised abelian surfaces with real multiplication by Q(

√
5)’, we obtain a smooth

quasi-affine variety T over Q of dimension 6 endowed with commuting algebraic
vector fields v1, v2 (generalising the Ramanujan vector fields), and a canonical ana-
lytic map

ϕ : H2 −→ T(C)

satisfying the differential equations

θ jϕ = v j ◦ϕ ( j = 1,2)

where

θ1 =
1

2πi

(√
5
−1 ∂

∂τ1
−
√

5
−1 ∂

∂τ1

)
and θ2 =

1
2πi

(
1+
√

5
−1

2
∂

∂τ1
+

1−
√

5
−1

2
∂

∂τ2

)
.

This differential equation satisfies many of the remarkable properties the usual Ra-
manujan equations satisfy. For example, ϕ can be shown to have integral coefficients
in an appropriate q-expansion. Moreover, every leaf of the holomorphic foliation on
T(C) defined by v1 and v2 are Zariski-dense in BC (cf. Corollary A.3 above).

One can moreover relate the values of ϕ with periods of abelian surfaces with
real multiplication by Q(

√
5). This allows us to reformulate the period conjecture
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in terms of bounds on the transcendence degree of the fields generated by values of
ϕ , in the same spirit of Nesterenko’s theorem. As it is shown [Fon21], a successful
adaptation of Nesterenko’s method to this higher dimensional setting would yield in
particular the conjectural statement (A.4.2).

Remark A.18 Although we don’t make explicit mention to modular forms, it can
be proved that ϕ is indeed related to modular forms and their derivatives as in the
Bertrand-Zudilin approach. We refer to [Fon21] Section 15 for a precise statement.

There are many technical difficulties in obtaining sufficiently strong algebraic in-
dependence statements for the above higher dimensional generalisations of (E2,E4,E6),
the main obstacle being the presence of positive dimensional ‘special subvarieties’
in moduli spaces of abelian varieties.

Let us also remark that Nesterenko’s method relies on a very restrictive growth
condition satisfied by the Eisenstein series, namely the polynomial growth of their
Fourier coefficients (see Section A.3.3 above). It turns out that this condition can be
replaced by a much more flexible, geometric, notion of growth based on Nevanlinna
theory (see [Fon19]), which is suitable to generalisation.

Here, a curious problem emerges. It is shown in [Fon19] that to any collection
of holomorphic functions f1, . . . , fn on the complex unity disk D satisfying an alge-
braic differential equation (with the D-property), an integrality property, and a mild
growth condition, Nesterenko’s method applies to give

trdegQQ( f1(z), . . . , fn(z))≥ n−1

for every z∈D\{0}. This comprises Nesterenko’s result if we take ( f1, f2, f3, f4) =
(q,E2(q),E4(q),E6(q)), but in principle it could have other applications. It turns
out that no other essentially different example (i.e., not related to elliptic modular
forms) is currently known. This is surprising, given the rather general shape of the
hypotheses.

It could be, however, that quasimodular forms are essentially the only functions
on the disk satisfying the above conditions. If one could prove this fact, this would
yield a rather exotic characterisation of quasimodular forms, making no explicit
reference to modularity.
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et du premier degré. Darboux Bull. (2), 2:60–96, 123–144, 151–200, 1878.

246
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1976-78, Lect. Notes Math. 868, 80-137 (1981)., 1981.

DG70. Michel Demazure and Alexander Grothendieck, editors. Schémas en groupes. II:
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Voi02. Claire Voisin. Hodge theory and complex algebraic geometry. I, volume 76 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2002. Translated from the French original by Leila Schneps.

Voi03. Claire Voisin. Hodge theory and complex algebraic geometry. II, volume 77 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2003. Translated from the French by Leila Schneps.

Voi07. Claire Voisin. Hodge loci and absolute Hodge classes. Compos. Math.,
143(4):945–958, 2007.

Voi13. Claire Voisin. Hodge loci. In Handbook of moduli. Vol. III, volume 26 of Adv.
Lect. Math. (ALM), pages 507–546. Int. Press, Somerville, MA, 2013.

Wal74. Michel Waldschmidt. Nombres transcendants., volume 402. Springer, Cham, 1974.
Wal06. Michel Waldschmidt. Transcendence of periods: the state of the art. Pure Appl.

Math. Q., 2(2):435–463, 2006.
Wei77. Abelian varieties and the hodge ring. André Weil: Collected papers III, pages 421–
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